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Abstract
We resolve the computational complexity of Graph Isomorphism for classes of 
graphs characterized by two forbidden induced subgraphs H1 and H2 for all but six 
pairs (H1,H2) . Schweitzer had previously shown that the number of open cases was 
finite, but without specifying the open cases. Grohe and Schweitzer proved that 
Graph Isomorphism is polynomial-time solvable on graph classes of bounded clique-
width. Our work combines known results such as these with new results. By exploit-
ing a relationship between Graph Isomorphism and clique-width, we simultaneously 
reduce the number of open cases for boundedness of clique-width for (H1,H2)-free 
graphs to five.
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1  Introduction

The Graph Isomorphism problem, which is that of deciding whether two given 
graphs are isomorphic, is a central problem in Computer Science. It is not known 
whether Graph Isomorphism is polynomial-time solvable. However, it is not NP-
complete unless the polynomial hierarchy collapses [29]. Analogously to the use 
of the notion of NP-completeness, we can say that a problem is Graph Isomor-
phism-complete (abbreviated to GI-complete). Babai [1] proved that Graph Iso-
morphism can be solved in quasi-polynomial time.

In order to increase understanding of the computational complexity of Graph 
Isomorphism, it is natural to place restrictions on the input. This approach has 
established that on many graph classes Graph Isomorphism is polynomial-time 
solvable, but that on many others the problem remains GI-complete. We refer to 
[16] for a survey, but some recent examples include a polynomial-time algorithm 
for unit square graphs [26], a complexity dichotomy for H-induced-minor-free 
graphs [3] and a polynomial-time algorithm for graphs of bounded maximum 
degree [18] (improving on the runtime of previous polynomial-time algorithms 
on graphs of bounded maximum degree [2, 25]).

In this paper we consider the Graph Isomorphism problem for hereditary graph 
classes, which are the classes of graphs that are closed under vertex deletion. It is 
readily seen that a graph class G is hereditary if and only if there exists a family 
of graphs FG , such that the following holds: a graph G belongs to G if and only 
if G does not contain any graph from FG as an induced subgraph. We implicitly 
assume that FG is a family of minimal forbidden induced subgraphs, in which 
case FG is unique. We note that FG may have infinite size. For instance, if G is the 
class of bipartite graphs, then FG consists of all odd cycles.

A natural direction for a systematic study of the computational complexity of 
Graph Isomorphism is to consider graph classes G , for which FG is small, starting 
with the case where FG has size 1. A graph is H-free if it does not contain H as 
induced subgraph; conversely, we write H ⊆i G to denote that  H is an induced 
subgraph of  G. The classification for H-free graphs can be found in a techni-
cal report of Booth and Colbourn [6], who credit the result to an unpublished 
manuscript of Colbourn and Colbourn; another proof of it appears in a paper of 
Kratsch and Schweitzer [22].

Theorem  1  (see [6, 22]) Let  H be a graph. Then Graph Isomorphism on H-free 
graphs is polynomial-time solvable if H ⊆i P4 and GI-complete otherwise.

Later, Colbourn [10] proved that Graph Isomorphism is polynomial-time solvable 
even for the class of permutation graphs, which form a superclass of the class of  
P4-free graphs. Classifying the case where FG has size 2 is much more difficult than 
the size-1 case. Kratsch and Schweitzer [22] initiated this classification. Schweitzer 
[30] later extended the results of [22] and proved that only a finite number of cases 
remain open. This leads to our research question:
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Is it possible to determine the computational complexity of Graph Isomorphism 
for (H1,H2)-free graphs1 for all pairs H1,H2?

The analogous research question for H-induced-minor-free graphs was fully 
answered by Belmonte, Otachi and Schweitzer [3], who also determined all graphs H 
for which the class of H-induced-minor-free graphs has bounded clique-width. Simi-
lar classifications for Graph Isomorphism [28] and boundedness of clique-width [15] 
are also known for H-minor-free graphs.

Lokshtanov et  al. [23] recently gave an FPT algorithm for Graph Isomorphism 
with parameter k on graph classes of treewidth at most k, and this has since been 
improved by Grohe et al. [19]. Whether an FPT algorithm exists when parameter-
ized by clique-width is still open. Grohe and Schweitzer [20] proved membership of 
XP.

Theorem 2  [20] For every constant c, Graph Isomorphism is polynomial-time solv-
able on graphs of clique-width at most c.

Grohe and Neuen [17] have since improved this result by showing that the more 
general Canonisation problem is also in XP when parameterized by clique-width.

1.1 � Our Results

By combining known results with Theorem 2 we narrow the list of open cases for 
Graph Isomorphism on (H1,H2)-free graphs to 14. Of these 14 cases, we prove that 
three of them are polynomial-time solvable (Sect. 3) and five others are GI-complete 
(Sect. 4). Thus we reduce the number of open cases to six.

Besides Theorem 2, there is another reason why results for clique-width are of 
importance for Graph Isomorphism. Namely, Schweitzer [30] pointed out great simi-
larities between proving unboundedness of clique-width of some graph class G and 
proving that Graph Isomorphism stays GI-complete for G . We will illustrate these 
similarities by showing that our construction demonstrating that Graph Isomorphism 
is GI-complete for (gem,P1 + 2P2)-free graphs can also be used to show that this 
class has unbounded clique-width. This reduces the number of pairs (H1,H2) for 
which we do not know if the class of (H1,H2)-free graphs has bounded clique-width 
from six [14] to five. As such, our paper also continues a project [4, 8, 11, 12, 14, 
15] aiming to classify the boundedness of clique-width of (H1,H2)-free graphs for 
all pairs (H1,H2) ; see Sect. 5 (or a recent survey on clique-width [13]) for an over-
view of the known and open cases.

In Sect. 6 we present our main theorem, which states exactly for which classes of 
(H1,H2)-free graphs Graph Isomorphism is known to be polynomial-time solvable, 
for which it is GI-complete and for which six cases the complexity remains open.

1  A graph is (H1,H2)-free if it has no induced subgraph isomorphic to H1 or H2.



	 Algorithmica

1 3

2 � Preliminaries

We consider only finite, undirected graphs without multiple edges or self-loops. 
An isomorphism from a graph  G to a graph  H is a bijection f ∶ V(G) → V(H) 
such that vw ∈ E(G) if and only if f (v)f (w) ∈ E(H) . For a function f ∶ X → Y  , if 
X′ ⊆ X , we define f (X�) ∶= {f (x) ∈ Y | x ∈ X�} . The Graph Isomorphism problem 
is defined as follows. 

Graph Isomorphism

      Instance: Graphs G and H.
      Question: Is there an isomorphism from G to H?

The disjoint union (V(G) ∪ V(H),E(G) ∪ E(H)) of two vertex-disjoint graphs G 
and  H is denoted by G + H and the disjoint union of  r copies of a graph  G is 
denoted by  rG. For a subset S ⊆ V(G) , we let  G[S] denote the subgraph of  G 
induced by  S, which has vertex set  S and edge set {uv | u, v ∈ S, uv ∈ E(G)} . If 
S = {s1,… , sr} , then we may write G[s1,… , sr] instead of G[{s1,… , sr}] . Recall 
that for two graphs  G and G′ we write G′ ⊆i G to denote that G′ is an induced 
subgraph of  G. For a set of graphs {H1,… ,Hp} , a graph  G is (H1,… ,Hp)-free 
if it has no induced subgraph isomorphic to a graph in {H1,… ,Hp} ; recall that 
if p = 1 , we may write H1-free instead of (H1)-free.

Let G be a graph. The set N(u) = {v ∈ V | uv ∈ E} denotes the (open) neigh-
bourhood of u ∈ V(G) and N[u] = N(u) ∪ {u} denotes the closed neighbour-
hood of u. The degree dG(v) of a vertex v in a graph G is the number of vertices 
in  G that are adjacent to  v. A vertex v ∈ V(G) is dominating if every vertex in 
V(G) ⧵ {v} is adjacent to v. If X is a set of vertices in G, then X is dominating if 
every vertex in V(G) ⧵ X has a neighbour in X. A vertex and an edge are incident 
if the vertex is one of the two end-vertices of the edge. A (connected) component 
of G is a maximal subset of vertices that induces a connected subgraph of G; it is 
non-trivial if it has at least two vertices, otherwise it is trivial. The complement G 
of a graph G has vertex set V(G) = V(G) such that two vertices are adjacent in G 
if and only if they are not adjacent in G.

The graphs Ct , Kt , K1,t−1 and Pt denote the cycle, complete graph, star and 
path on t vertices, respectively. Let K+

1,t
 and K++

1,t
 be the graphs obtained from K1,t 

by subdividing one edge once or twice, respectively. The graphs K1,3 , 2P1 + P2 , 
P1 + P3 , P1 + P4 and 2P1 + P3 are also called the claw , diamond , paw , gem and 
crossed house , respectively. The graph  Sh,i,j , for 1 ≤ h ≤ i ≤ j , denotes the sub-
divided claw, that is, the tree that has only one vertex x of degree 3 and exactly 
three leaves, which are at distance  h,  i and  j from  x, respectively. Observe that 
S1,1,1 = K1,3 . We use S to denote the set of graphs every component of which is 
either a subdivided claw or a path on at least one vertex. A subdivided star is a 
graph obtained from a star by subdividing its edges an arbitrary number of times. 
A graph is a path star forest if all of its connected components are subdivided 
stars. A graph is a linear forest if every component of G is a path (on at least one 
vertex).
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We will need the following results.

Lemma 1  [30] For every fixed t, Graph Isomorphism is polynomial-time solvable on 
(2K1,t,Kt)-free graphs.

Lemma 2  [30] For every fixed t, Graph Isomorphism is polynomial-time solvable on 
(Kt,P5)-free graphs.

Let G be a graph and let X, Y ⊆ V(G) be disjoint sets. The edges between X and Y 
form a perfect matching if every vertex in X is adjacent to exactly one vertex in Y 
and vice versa. A vertex x ∈ V(G) ⧵ Y  is complete (resp. anti-complete) to  Y if it 
is adjacent (resp. non-adjacent) to every vertex in Y. Similarly, X is complete (resp. 
anti-complete) to Y if every vertex in X is complete (resp. anti-complete) to Y. A 
graph is bipartite if its vertex set can be partitioned into two (possibly empty) inde-
pendent sets. A graph is split if its vertex set can be partitioned into a clique and 
an independent set. A graph is complete multipartite if its vertex set can be parti-
tioned into independent sets V1,… ,Vk such that Vi is complete to Vj whenever i ≠ j ; 
if k = 2 , then the graph is complete bipartite. We will need the following result.

Lemma 3  [27] Every connected (P1 + P3)-free graph is either complete multipartite 
or K3-free.

2.1 � Clique‑width

The clique-width of a graph G, denoted by cw(G) , is the minimum number of labels 
needed to construct G using the following four operations: 

	 (i)	 create a new graph consisting of a single vertex v with label i;
	 (ii)	 take the disjoint union of two labelled graphs G1 and G2;
	 (iii)	 join each vertex with label i to each vertex with label j ( i ≠ j);
	 (iv)	 rename label i to j.

A class of graphs G has bounded clique-width if there is a constant c such that the 
clique-width of every graph in G is at most  c; otherwise the clique-width of G is 
unbounded.

Let  G be a graph. We define the following operations. For an induced 
subgraph G′ ⊆i G , the subgraph complementation operation (acting on  G 
with respect to  G′ ) replaces every edge present in  G′ by a non-edge, and 
vice versa, that is, the resulting graph has vertex set  V(G) and edge set 
(E(G) ⧵ E(G�)) ∪ {xy | x, y ∈ V(G�), x ≠ y, xy ∉ E(G�)} . Similarly, for two disjoint 
vertex subsets S and T in G, the bipartite complementation operation with respect 
to S and T acts on G by replacing every edge with one end-vertex in S and the other 
in T by a non-edge and vice versa.

We now state some useful facts about how these two operations (and some 
others) influence the clique-width of a graph. We will use these facts throughout 
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the paper. Let k ≥ 0 be a constant and let � be some graph operation. We say that 
a graph class G′ is (k, �)-obtained from a graph class G if the following two con-
ditions hold: 

	 (i)	 every graph in G′ is obtained from a graph in G by performing � at most k times, 
and

	 (ii)	 for every G ∈ G there exists at least one graph in G′ obtained from G by per-
forming � at most k times.

We say that � preserves boundedness of clique-width if for any finite constant k 
and any graph class G , any graph class G′ that is (k, �)-obtained from G has 
bounded clique-width if and only if G has bounded clique-width. 

Fact 1.	� Vertex deletion preserves boundedness of clique-width [24].
Fact 2.	� Subgraph complementation preserves boundedness of clique-width [21].
Fact 3.	� Bipartite complementation preserves boundedness of clique-width [21].

We need the following two lemmas on clique-width.

Lemma 4  [7] The class of 2P1 + P3-free split graphs has bounded clique-width.

Lemma 5  [9] The class of (K3,P6)-free graphs has bounded clique-width.

Since complete multipartite graphs have clique-width at most  2, and the 
clique-width of a graph is equal to the maximum clique-width of its compo-
nents, we can use Lemma 3 to extend Lemma 5 into the following (previously-
known) corollary.

Corollary 1  The class of (paw,P6)-free graphs has bounded clique-width.

We also need the special case of [15, Theorem  3] when V0,i = Vi,0 = � for 
i ∈ {1,… , n}.

Lemma 6  [15] For m ≥ 1 and n > m + 1 the clique-width of a graph G is at least 
⌊ n−1

m+1
⌋ + 1 if V(G) has a partition into sets Vi,j (i, j ∈ {1,… , n}) with the following 

properties:

1.	 |Vi,j| ≥ 1 for all i, j ≥ 1.
2.	 G[∪n

j=1
Vi,j] is connected for all i ≥ 1.

3.	 G[∪n
i=1

Vi,j] is connected for all j ≥ 1.
4.	 For i, j, k,� ≥ 1 , if a vertex of Vi,j is adjacent to a vertex of Vk,� , then |k − i| ≤ m 

and |� − j| ≤ m.
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3 � New Polynomial‑Time Results

In this section we prove Theorems 3 and 4, which state that Graph Isomorphism is 
polynomial-time solvable on (2P1 + P3,P5)-free graphs and (2P1 + P3,P2 + P3)-
free graphs, respectively (see also Fig.  1). The complexity of Graph Isomorphism 
on (2P1 + P3, 2P2)-free graphs was previously unknown, but since this class is 
contained in the classes of (2P1 + P3,P5)-free graphs and (2P1 + P3,P2 + P3)-free 
graphs, Theorems 3 and 4 both imply that Graph Isomorphism is also polynomial-
time solvable on this class.

Before proving Theorems 3 and 4, we first prove a useful lemma (see also Fig. 2).

Lemma 7  Let  G be a 2P1 + P3-free graph containing an induced K5 with vertex 
set KG . Then V(G) can be partitioned into sets AG

1
,… ,AG

p
,NG

1
,… ,NG

p
,BG for some 

p ≥ 5 such that:

Fig. 1   Forbidden induced subgraphs from Theorems 3 and 4

Fig. 2   An example of Lemma  7 applied to a 2P1 + P3-free graph. White vertices denote the vertices 
of KG and thick edges between two sets of vertices indicate that these sets are complete to each other
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	 (i)	 KG ⊆
⋃

AG
i

;
	 (ii)	 G[

⋃
AG
i
] is a complete multipartite graph, with partition AG

1
,… ,AG

p
;

	 (iii)	 For every i ∈ {1,… , p} , every vertex of NG
i

 has a neighbour in AG
i

 , but is anti-
complete to AG

j
 for every j ∈ {1,… , p} ⧵ {i} ; and

	 (iv)	 BG is anti-complete to 
⋃

AG
i

.
Furthermore, given KG , this partition is unique (up to permuting the indices on 
the AG

i
s and corresponding NG

i
s) and can be found in polynomial time.

Proof  Let G be a 2P1 + P3-free graph containing an induced K5 with vertex set KG . 
If a vertex v ∈ V(G) ⧵ KG has two neighbours x, x� ∈ KG and two non-neighbours 
y, y� ∈ KG , then G[x, x�, y, v, y�] is a 2P1 + P3 , a contradiction. Therefore every ver-
tex in V(G) ⧵ KG has either at most one non-neighbour in KG or at most one neigh-
bour in KG . Let LG denote the set of vertices that are either in KG or have at most 
one non-neighbour in KG and note that LG is uniquely defined by the choice of KG.

We claim that G[LG] is a complete multipartite graph. Suppose, for contradic-
tion, that  G[LG] is not complete multipartite. Then  G[LG] contains an induced 
P1 + P2 = P3 , say on vertices v, v′, v′′ (note that some of these vertices may be 
in KG ). Now each of v, v′, v′′ has at most one non-neighbour in KG and if a vertex 
w ∈ {v, v�, v��} is in KG , then it is adjacent to every vertex in KG ⧵ {w} . Therefore, 
since |KG| = 5 , there must be distinct vertices u, u� ∈ KG ⧵ {v, v�, v��} that are com-
plete to {v, v�, v��} . Now G[u, u�, v�, v, v��] is a 2P1 + P3 . This contradiction completes 
the proof that G[LG] is complete multipartite.

We let AG
1
,… ,AG

p
 be the partition classes of the complete multipartite graph G[LG] . 

Note that p ≥ 5 , since each AG
i

 contains at most one vertex of KG . We claim that each 
vertex not in LG has neighbours in at most one set AG

i
 . Suppose, for contradiction, 

that there is a vertex v ∈ V(G) ⧵ LG with neighbours in two distinct sets AG
i

 , say v is 
adjacent to u ∈ AG

1
 and u� ∈ AG

2
 . Since v ∉ LG , the vertex v has at most one neigh-

bour in KG . Since |KG| = 5 , there must be two vertices y, y� ∈ KG ⧵ (AG
1
∪ AG

2
) that 

are non-adjacent to v. Now G[u, u�, y, v, y�] is a 2P1 + P3 , a contradiction. Therefore 
every vertex not in LG has neighbours in at most one set AG

i
 . Let NG

i
 be the set of 

vertices in V(G) ⧵ LG that have neighbours in AG
i

 and let BG be the set of vertices in 
V(G) ⧵ LG that are anti-complete to LG . Finally, note that the partition of V(G) into 
sets AG

1
,… ,AG

p
,NG

1
,… ,NG

p
,BG can be found in polynomial time and is unique (up to 

permuting the indices on the AG
i

 s and corresponding NG
i

s).	�  ◻

For the (2P1 + P3,P5)-free case, we will use the following observation.

Observation 1  If G is a graph containing a vertex x and Gx is the graph obtained 
from G by adding a new vertex x′ with the same neighbourhood as x in G, then Gx is 
(2P1 + P3,P5)-free if and only if G is (2P1 + P3,P5)-free.

Proof  Since  G is an induced subgraph of Gx , if Gx is (2P1 + P3,P5)-free then  G 
is (2P1 + P3,P5)-free. Suppose, for contradiction, that Gx contains a set of verti-
ces X that induce a 2P1 + P3 or a P5 , but that G is (2P1 + P3,P5)-free. Since nei-
ther 2P1 + P3 nor P5 has two vertices with the same neighbourhood, it follows that 
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either x ∉ X or x� ∉ X . By symmetry, we may assume that x� ∉ X , in which case 
X ⊆ V(G) , so G contains an induced 2P1 + P3 or P5 , a contradiction.	�  ◻

Theorem 3  Graph Isomorphism is polynomial-time solvable on (2P1 + P3,P5)-free 
graphs.

Proof  Since Graph Isomorphism can be solved component-wise, we need only con-
sider connected graphs. Therefore, since Graph Isomorphism is polynomial-time 
solvable on (K5,P5)-free graphs by Lemma  2, and we can test whether a graph 
is K5-free in polynomial time, it only remains to consider the class of connected 
(2P1 + P3,P5)-free graphs G that contain an induced K5 . Let KG be the vertices of 
such a K5 in G. Let AG

1
,… ,AG

p
,NG

1
,… ,NG

p
,BG be defined as in Lemma 7 and let 

LG =
⋃

AG
i

 . We start by proving the following claim.

Claim 1  If at least three NG
i

’s are non-empty, then G has bounded clique-width.

Suppose, for contradiction, that we can find vertices x,  y,  z with 
x ∈ NG

i
, y ∈ NG

j
, z ∈ NG

k
 with i, j, k pairwise distinct such that z is adjacent to y, but 

not to x. Let x� ∈ AG
i

 be a neighbour of x, let y� ∈ AG
j

 be a neighbour of y and let 
x�� ∈ KG ⧵ (AG

i
∪ AG

j
∪ AG

k
) (which exists since the sets AG

i
 , AG

j
 and AG

k
 each contain 

at most one vertex of KG , while |KG| = 5 ). Then G[x��, x�, x, y, z] or G[x, x�, y�, y, z] is 
a P5 if x is adjacent or non-adjacent to y, respectively. It follows that the NG

i
 ’s are 

either pairwise anti-complete or pairwise complete. We consider these two cases 
separately.

Case 1  At least three NG
i

’s are non-empty and the NG
i

’s are pairwise anti-complete.

Suppose, for contradiction, that there is a vertex x ∈ BG . Since G is connected, x 
must have a neighbour y ∈ NG

i
 for some  i. Choose a vertex z ∈ NG

j
 for some j ≠ i 

and note that  z is non-adjacent to  y. Let y� ∈ AG
i

 and z� ∈ AG
j

 be neighbours of  y 
and  z, respectively, and let w ∈ KG ⧵ (AG

i
∪ AG

j
) . Then G[w, y�, y, x, z] or 

G[x, y, y�, z�, z] is a P5 if x is adjacent or non-adjacent to z, respectively. This contra-
diction implies that BG = �.

Suppose, for contradiction, that there are two adjacent vertices y, y� ∈ NG
i

 that 
have different neighbourhoods in AG

i
 , say y is adjacent to z ∈ AG

i
 , but y′ is not. Let 

x ∈ NG
j

 for some j ≠ i and let x� ∈ AG
j

 be a neighbour of x; note that x is non-adja-
cent to y and y′ . Then G[x, x�, z, y, y�] is a P5 . This contradiction implies that if two 
vertices in some set NG

i
 are in the same component of G[NG

i
] , then they must have 

the same neighbourhood in AG
i

.
Suppose, for contradiction, that for some  i there are vertices x, y ∈ NG

i
 with 

incomparable neighbourhoods in  AG
i

 . Note that in this case  x and  y must be in 
different components of G[NG

i
] , so they must be non-adjacent to each other. Let 

x� ∈ AG
i

 be a neighbour of x that is non-adjacent to y, let y� ∈ AG
i

 be a neighbour 
of  y that is non-adjacent to  x and let z ∈ KG ⧵ AG

i
 . Then G[x, x�, z, y�, y] is a P5 . 
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This contradiction implies that the components of G[NG
i
] can be ordered by con-

tainment of their neighbourhoods in AG
i

.
We will now show that Gi ∶= G[AG

i
∪ NG

i
] has bounded clique-width. We 

may order the vertices of  AG
i

 , say a1,… , ar , in decreasing order of neighbour-
hoods in  NG

i
 (breaking ties arbitrarily); note that every vertex of  NG

i
 is adja-

cent to a1 . We partition NG
i

 into sets X1,… ,Xr such that the vertices of Xj are 
adjacent to ak if and only if k ≤ j . Since a1 dominates NG

i
 , and G[NG

i
∪ {a1}] is 

2P1 + P3-free, it follows that G[NG
i
] is paw-free (recall that the paw is P1 + P3 ). 

By Corollary  1, it follows that G[NG
i
] has bounded clique-width. Therefore, for 

some constant  c, we can construct each of G[X1],… ,G[Xr] using only labels 
from {1,… , c} . We will now construct Gi using two new labels 1′ and 2′ in addi-
tion to the labels from {1,… , c} . For j ∈ {1,… , r} , suppose we have constructed 
Gi[X1,… ,Xj−1 ∪ {a1,… , aj−1}] such that the vertices in X1,… ,Xj−1 have label 1′ 
and the vertices in {a1,… , aj−1} have label 2′ (if j = 1 , this means we have con-
structed the empty graph). We then construct G[Xj] using labels from {1,… , c} 
and construct aj with label 2′ and take the disjoint union of these and the graph 
constructed so far. We join vertices with labels in {1,… , c} to the vertices with 
label 2′ and then relabel the vertices with label {1,… , c} to have label 1′ . We 
have now constructed Gi[X1,… ,Xj ∪ {a1,… , aj}] such that the vertices in 
X1,… ,Xj have label 1′ and the vertices in {a1,… , aj} have label 2′ . By induction, 
we can therefore construct Gi with c + 2 labels. It follows that Gi has bounded 
clique-width.

Now, for every  i, let G∗
i
 be the graph obtained from Gi by complementing AG

i
 

and note that G∗
i
 has bounded clique-width by Fact 2. Let G∗ be the disjoint union 

of the G∗
i
 graphs and note that G∗ has bounded clique-width (since the clique-

width of a graph is the maximum of the clique-width of its components). Note 
that G is the graph obtained from G∗ by complementing LG . By Fact 2, it follows 
that G has bounded clique-width. This completes Case 1.

Case 2  At least three NG
i

’s are non-empty and the NG
i

’s are pairwise complete.

We first claim that BG is complete to 
⋃

NG
i

 . Suppose, for contradiction, that 
there is a vertex in x ∈ BG that has both a neighbour y and a non-neighbour z in ⋃
NG
i

 . Since there is more than one non-empty set  NG
i

 , we may assume that 
y ∈ NG

i
 and z ∈ NG

j
 for some i ≠ j ; note that this means  y is adjacent to  z. Let 

z� ∈ AG
j

 be a neighbour of z and let z�� ∈ KG ⧵ (AG
i
∪ AG

j
) . Then G[x, y, z, z�, z��] is 

a P5 , a contradiction, and so every vertex of BG is either complete or anti-com-
plete to 

⋃
NG
i

 . Since  G is connected, if not every vertex of  BG is complete 
to 

⋃
NG
i

 , then there must be adjacent vertices x, x� ∈ BG that are complete and 
anti-complete to 

⋃
NG
i

 , respectively. Let y ∈ NG
i

 for some  i, let y� ∈ AG
i

 be a 
neighbour of y and let z ∈ KG ⧵ AG

i
 . Then G[x�, x, y, y�, z] is a P5 . This contradic-

tion implies that BG is indeed complete to 
⋃

NG
i

.
Now suppose, for contradiction, that for some  i there is a vertex z ∈ NG

i
 that 

has a non-neighbour x ∈ AG
i

 . Let x� ∈ AG
i

 be a neighbour of z, let z� ∈ NG
j

 for some 
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j ≠ i and let y ∈ KG ⧵ (AG
i
∪ AG

j
) . Then G[x, y, x�, z, z�] is a P5 , a contradiction. It 

follows that for every i, NG
i

 is complete to AG
i

.
Now BG is dominated by a vertex of NG

i
 for some  i. Moreover, for every  i the 

set NG
i

 is dominated by a vertex in AG
i

 . Since G is a 2P1 + P3-free graph, it follows 
that G[BG] and, for every i, G[NG

i
] are paw-free graphs and thus have bounded clique-

width by Corollary 1. Since G[AG
i
] is an edgeless graph for every  i, it has clique-

width 1. The graph Gi ∶= G[NG
i
∪ AG

i
] can be obtained from G[NG

i
] and G[AG

i
] by 

taking their disjoint union and applying a bipartite complementation between NG
i

 
and AG

i
 . By Fact 3, it follows that Gi has bounded clique-width.

Let G∗
i
 be the graph obtained from Gi by complementing AG

i
 and NG

i
 . Then G∗

i
 has 

bounded clique-width by Fact 2. Let G∗ be the disjoint union of G[BG] and the G∗
i
 

graphs and note that G∗ has bounded clique-width (since the clique-width of a graph 
is the maximum of the clique-width of its components). Now, if we complement LG 
and 

⋃
NG
i

 and apply a bipartite complementation between BG and 
⋃

NG
i

 we obtain 
the graph  G. By Facts  2 and 3, it follows that  G has bounded clique-width. This 
completes Case 2 and therefore completes the proof of Claim 1. � ⋄

We now describe an algorithm to prove Theorem  3. Suppose  G and  H are  
(2P1 + P3,P5)-free graphs. We can enumerate all sets KG that induce a K5 in G in poly-
nomial time. By Lemma 7, we can therefore test in polynomial time whether there is 
a KG such that at least three NG

i
 sets are non-empty; if so, then G has bounded clique-

width by Claim 1 and we apply Theorem 2.
We may now assume that for every KG at most two sets NG

i
 are non-empty. We 

may also assume that the same is true for every KH in H (otherwise we immediately 
output that G and H are not isomorphic). We will now explain how to transform G 
into a graph G′ that is K5-free.

First note that if x ∈ AG
i
 for some i such that NG

i
= � , then LG = AG

i
∪ N(x) . Since AG

i
 

is the set of vertices in G with the same neighbourhood as x, every set LG can be written 
as N(x) ∪ {y | N(y) = N(x)} for some vertex x of G. Moreover, for every choice of LG , 
there are at least three sets AG

i
 such that NG

i
= � . Now LG = N(x) ∪ {y | N(y) = N(x)} 

holds for every vertex x in such a set AG
i
 , so every LG can be obtained in this way from 

at least three possible vertices x. We conclude that there are at most n
3
 possible sets LG.

Given a set LG , recall that the sets AG
i

 are uniquely determined (up to reorder-
ing). Let L′G denote the set 

⋃
i � NG

i
=� A

G
i

 ; we say that the multiset {|AG
i
| | NG

i
= �} 

is the type of LG . We consider all possibilities for LG in G and number the differ-
ent types that occur 1,… , t ; note that the possible sets L′G are pairwise vertex-
disjoint. Suppose that for j ∈ {1,… , t} we replace the vertices of  L′G in each 
set LG of type j by a copy of Kn+j,n+j that is complete to LG ⧵ L′G , where n denotes 
the number of vertices in the original graph G. Note that since L′G is a complete 
multipartite graph with at least three parts, this would change the graph in the 
same way as deleting all but two parts of this multipartite graph and then expand-
ing the remaining two parts by adding false twins of vertices already in the graph. 
By Observation 1, the resulting graph G′ is still (2P1 + P3,P5)-free. Furthermore, 
applying this operation removes every K5 from the graph, so G′ is a (K5,P5)-free 
graph. We can apply the same transformation to  H to obtain a (K5,P5)-free 
graph H′ . For  G and  H we can enumerate all possible sets L′G and L′H (using 
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Lemma 7), and, as observed above, there are at most  n
3
 such sets in each graph. 

For each type of an L′G in G, H must have the same number of sets L′H with this 
type as G does (and vice verse), otherwise we output that G and H are not iso-
morphic. We therefore number the types of L′G in G and the types L′H in H in the 
same way. Since G′ and H′ are (K5,P5)-free graphs, by Lemma  2, we can test 
whether they are isomorphic in polynomial time.

It therefore suffices to show that G′ and H′ are isomorphic if and only if  G 
and H are isomorphic. By construction, if G and H are isomorphic, then G′ and H′ 
are isomorphic. Now suppose that there is an isomorphism f from G′ to H′ . For a 
vertex x ∈ V(G�) , let VG�

x
= {v ∈ V(G�) | N(v) = N(x)} . Note that 

|VH�

f (x)
| = |f (VG�

x
)| = |VG�

x
| . Now x ∈ V(G�) ⧵ V(G) if and only if |VG′

x
| > n . By con-

struction, two sets of the form VG′

x
 with |VG′

x
| > n are either complete or anti-com-

plete to each other and each such set is complete to exactly one other such set. 
Therefore, for each j ∈ {1,… , t} , the isomorphism  f maps the copies of Kn+j,n+j 
from the construction of G′ to copies of Kn+j,n+j from the construction of H′ and f 
maps V(G) ∩ V(G�) to V(H) ∩ V(H�) . We may therefore replace each copy 
of Kn+j,n+j in G′ and H′ by an L′G and L′H of the corresponding type. Since it is 
trivial to find an isomorphism from a set L′G to a set L′H of the same type, we can 
construct an isomorphism from G to H. 	�  ◻

We are now ready to prove Theorem 4. Note that as P2 + P3 contains two vertices 
with the same neighbourhood, we do not have an analogue of Observation 1 for the 
(2P1 + P3,P2 + P3)-free case. Because of this, the proof of Theorem  4 is slightly 
more involved than that of Theorem 3.

Theorem 4  Graph Isomorphism is polynomial-time solvable on (2P1 + P3,P2 + P3)- 
free graphs.

Proof  Since Graph Isomorphism can be solved component-wise, we need only con-
sider connected graphs. Therefore, as Graph Isomorphism is polynomial-time solv-
able on (K5,P2 + P3)-free graphs by Lemma  1, and we can test whether a graph 
is K5-free in polynomial time, it only remains to consider the class of connected 
(2P1 + P3,P2 + P3)-free graphs  G that contain an induced K5 . Let KG be the ver-
tices of an induced K5 in  G (note that such a set KG can be found in polynomial 
time, but it is not necessarily unique). Let AG

1
,… ,AG

p
,NG

1
,… ,NG

p
,BG be defined as 

in Lemma 7 and let LG =
⋃

AG
i

 and DG = V(G) ⧵ LG.
Now suppose that  G and  H are connected (2P1 + P3,P2 + P3)-free graphs that 

each contain an induced K5 . If  G and  H have bounded clique-width (which hap-
pens in Case 1 below), then by Theorem 2 we are done. Otherwise, note that if KG 
and KH are vertex sets that induce a K5 in  G and  H, respectively, then Lemma  7 
implies that LG,DG, LH and DH are uniquely defined. Therefore, we fix one choice 
of KG and, for each choice of KH , test whether there is an isomorphism f ∶ G → H 
such that f (LG) = LH (we use this approach in Cases 2 and 3 below). Clearly, we 
may assume that the vertex partitions given by Lemma  7 for  G and  H have the 
same value of  p and that |AG

i
| = |AH

i
| and |NG

i
| = |NH

i
| for all i ∈ {1,… , p} and 
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|BG| = |BH| . Furthermore, for any claims we prove about G and its vertex sets, we 
may assume that the same claims hold for H (otherwise such an isomorphism f does 
not exist). We start by proving the following four claims.

Claim 1  G[DG] is P3-free.

Indeed, suppose, for contradiction, that G[DG] contains an induced P3 , say on 
vertices u, u′, u′′ . Since |KG| = 5 and each vertex in DG has at most one neighbour 
in KG , there must be vertices v, v� ∈ KG that are anti-complete to {u, u�, u��} . Then 
G[v, v�, u, u�, u��] is a P2 + P3 , a contradiction. � ⋄

Claim 2  If v ∈ NG
j

 for some j ∈ {1,… , p} and there are two adjacent vertices 
u, u� ∈ DG ⧵ NG

j
 , then v is complete to {u, u�}.

Since G[DG] is P3-free by Claim 1, the vertex v must be either complete or anti-
complete to {u, u�} . Suppose, for contradiction, that  v is anti-complete to {u, u�} . 
Since v ∈ NG

j
 , v has a neighbour v� ∈ AG

j
 . Since |KG ⧵ AG

j
| ≥ 4 and each vertex in DG 

has at most one neighbour in KG , there is a vertex v�� ∈ KG ⧵ AG
j

 that is non-adjacent 
to both u and u′ . Since v�� ∉ AG

j
 , v′′ is also non-adjacent to v, but is adjacent to v′ . 

Now G[u, u�, v, v�, v��] is a P2 + P3 , a contradiction. � ⋄

Claim 3  If G[DG] has at least two components and one of these components C has at 
least three vertices, then there is an i ∈ {1,… , p} such that DG ⧵ C ⊂ NG

i
∪ BG and 

all but at most one vertex of C belongs to NG
i

.

By Claim 1, G[DG] is a disjoint union of cliques. Since G is connected, DG ⧵ C 
cannot be a subset of BG . Hence, for some i ∈ {1,… , p} , there must be a vertex 
x ∈ NG

i
⧵ C . Therefore, by Claim 2, at most one vertex of C can lie outside of NG

i
 . 

Since |C| ≥ 3 , it follows that C ∩ NG
i

 contains at least two vertices. Since the vertices 
in C are pairwise adjacent, by Claim 2 it follows that DG ⧵ C ⊂ NG

i
∪ BG .  � ⋄

Claim 4  Let i ∈ {1,… , p} . If G[DG] contains at least two non-trivial components 
and there is a vertex  v in  AG

i
 with two non-neighbours in the same component 

of G[DG] , then v is anti-complete to DG . Furthermore, there is at most one vertex 
in AG

i
 with this property.

Suppose v ∈ AG
i

 has two non-neighbours x, x′ in some component C of G[DG] . 
By Claim  1, G[DG] is a disjoint union of cliques, so  x must be adjacent to  x′ . 
We claim that  v is anti-complete to DG ⧵ C . Suppose, for contradiction, that  v 
has a neighbour y ∈ DG ⧵ C . Since every vertex of DG has at most one neigh-
bour in KG , there must be a vertex z ∈ KG ⧵ AG

i
 that is non-adjacent to x, x′ and y 

and so G[x, x�, y, v, z] is a P2 + P3 . This contradiction implies that v is indeed anti-
complete to DG ⧵ C . Now G[DG ⧵ C] contains another non-trivial component C′ 
and we have shown that v is anti-complete to C′ . Repeating the same argument 
with C′ taking the place of  C, we find that  v is anti-complete to DG ⧵ C′ , and 
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therefore v is anti-complete to DG . Finally, suppose, for contradiction, that there 
are two vertices v, v� ∈ AG

i
 that are both anti-complete to DG . Let x, x′ be adjacent 

vertices in DG and let z ∈ KG ⧵ AG
i

 be a vertex non-adjacent to  x and  x′ . Then 
G[x, x�, v, z, v�] is a P2 + P3 , a contradiction. � ⋄

We now start a case distinction and first consider the following case.

Case 1  G[DG] contains at most one non-trivial component.

In this case we will show that  G has bounded clique-width, and so we will 
be done by Theorem  2. By Claim  1, every component of G[DG] is a clique. 
Since G[DG] contains at most one non-trivial component, we may partition DG 
into a clique C and an independent set I (note that C or I may be empty). If |C| ≥ 3 
and |I| ≥ 1 , then by Claim 3 there is an i ∈ {1,… , p} such that at most one ver-
tex of C ∪ I is outside NG

i
 ; if such a vertex exists, then by Fact 1 we may delete 

it. Now if |C| ≤ 3 , then by Fact 1 we may delete the vertices of C. Thus we may 
assume that either C = � or |C| ≥ 4 and furthermore, if |C| ≥ 4 and |I| ≥ 1 , then 
C ∪ I ⊆ NG

i
 for some i ∈ {1,… , p} . Note that I ∩ BG = � since G is connected, so 

BG ⊂ C . Therefore G[BG] is a complete graph, so it has clique-width at most 2. 
Applying a bipartite complementation between BG and C ⧵ BG removes all edges 
between BG and V(G) ⧵ BG . By Fact 3, we may therefore assume that BG = �.

Let M be the set of vertices in LG that have neighbours in  I. We claim that M 
is complete to all but at most one vertex of  C. We may assume that |C| ≥ 4 and 
|I| ≥ 1 , otherwise the claim follows trivially. Therefore, as noted above, C ∪ I ⊆ NG

i
 

for some i ∈ {1,… , p} . Suppose u ∈ M has a neighbour u� ∈ I and note that this 
implies u ∈ AG

i
 , u� ∈ NG

i
 . Suppose, for contradiction, that u has two non-neighbours 

v, v� ∈ C and let w ∈ KG ⧵ AG
i

 . Then G[v, v�, u�, u,w] is a P2 + P3 , a contradiction. 
Therefore if u ∈ M , then u has at most one non-neighbour in C. Now suppose that 
there are two vertices u, u� ∈ M . It follows that u, u� ∈ AG

i
 , so these vertices must be 

non-adjacent. Furthermore, each of these vertices has at most one non-neighbour 
in C. If u and u′ have different neighbourhoods in C, then without loss of general-
ity we may assume that there are vertices x, y, y� ∈ C such that u is adjacent to x, y 
and y′ and u′ is adjacent to y and y′ , but not to x. Now G[y, y�, u, u�, x] is a 2P1 + P3 , a 
contradiction. Therefore every vertex in M has the same neighbourhood in C, which 
consists of all but at most one vertex of C and the claim holds. If the vertices of M 
are not complete to C, then we delete one vertex of C (we may do so by Fact 1), after 
which M will be complete to C. We may therefore assume that M is complete to C.

Now note that for all i ∈ {1,… , p} , the graph Gi = G[(AG
i
⧵M) ∪ (NG

i
∩ C)] is 

a 2P1 + P3-free split graph, so it has bounded clique-width by Lemma  4. Fur-
thermore G�

i
= G[(AG

i
∩M) ∪ (NG

i
∩ I)] is a (P2 + P3)-free bipartite graph, so it has 

bounded clique-width by Lemma 5. Let G′′
i
 be the graph obtained from the dis-

joint union Gi + G�
i
 by complementing AG

i
 and (NG

i
∩ C) . By Fact 2, G′′

i
 also has 

bounded clique-width. Therefore the disjoint union G∗ of all the G′′
i
 s has bounded 

clique-width. Now G can be constructed from G∗ by complementing LG , comple-
menting C and applying a bipartite complementation between C and M. Hence, 
by Facts 2 and 3, G has bounded clique-width. This completes Case 1.
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We may now assume that Case 1 does not apply, that is, G[DG] has at least two non-
trivial components. This leads us to our second and third cases.

Case 2  G[DG] contains at least two non-trivial components, but is K4-free.

Recall that G[DG] is P3-free by Claim 1, so every component of G[DG] is a clique. 
Let C be a non-trivial component of G[DG] and let x, y ∈ C . Then x is adjacent to y 
and x, y ∈ NG

i
∪ NG

j
∪ BG for some (not necessarily distinct) i, j ∈ {1,… , p} . By 

Claim  2, every vertex  z in a component of G[DG] other than  C must also be in 
NG
i
∪ NG

j
∪ BG . Since G[DG] contains at least two non-trivial components, repeating 

this argument with another non-trivial component implies that every vertex of DG 
lies in NG

i
∪ NG

j
∪ BG . Without loss of generality, we may therefore assume that 

NG
k
= � for k ≥ 3.

Since G[DG] is K4-free, for each i ∈ {1,… , p} the graph G[DG ∪ AG
i
] is K5-free. 

This means that every K5 in G is entirely contained in LG . By Claim 4, for i ≥ 3 , 
|AG

i
| = 1 and so LG ⧵ (AG

1
∪ AG

2
) must be a clique. The vertices of LG ⧵ (AG

1
∪ AG

2
) 

have no neighbours outside  LG and are adjacent to every other vertex of  LG , 
so these vertices are in some sense interchangeable. Indeed, N[v] = LG for 
every v ∈ LG ⧵ (AG

1
∪ AG

2
) , and so every bijection that permutes the vertices of 

LG ⧵ (AG
1
∪ AG

2
) and leaves the other vertices of  G unchanged is an isomorphism 

from G to itself. Let G′ be the graph obtained from G by deleting all vertices in AG
i

 
for i ≥ 6 (if any such vertices are present). Now G′ is K6-free, so it is a (K6,P2 + P3)-
free graph. Therefore we can test isomorphism of such graphs G′ in polynomial time 
by Lemma 1. If there is an isomorphism between two such graphs G′ and H′ , then, 
because the vertices of LG ⧵ (AG

1
∪ AG

2
) are interchangeable, we can extend it to a full 

isomorphism of G and H by mapping the remaining vertices of LG ⧵ (AG
1
∪ AG

2
) to 

LH ⧵ (AH
1
∪ AH

2
) arbitrarily. This completes Case 2.

Case 3  G[DG] contains at least two non-trivial components and contains an 
induced K4.

Recall that G[DG] is P3-free by Claim 1, so every component of G[DG] is a clique. 
We claim that DG ⊆ NG

i
∪ BG for some i ∈ {1,… , p} . Let  C be a component 

of G[DG] that contains at least four vertices, and let C′ be a component of G[DG] 
other than C, and note that such components exist by assumption. By Claim 3, there 
is an i ∈ {1,… , p} such that DG ⧵ C ⊂ NG

i
∪ BG and all but at most one vertex of C 

belongs to NG
i

 . In particular, this implies that C� ⊂ NG
i
∪ BG . By Claim 2, it follows 

that C cannot have a vertex in NG
j

 for some j ∈ {1,… , p} ⧵ {i} , and so C ⊂ NG
i
∪ BG . 

Without loss of generality, we may therefore assume that NG
j
= � for j ∈ {2,… , p} 

and so DG = NG
1
∪ BG . Now if j ∈ {2,… , p} , then the vertices of AG

j
 are anti-com-

plete to DG , so Claim 4 implies that |AG
j
| = 1 . This implies that LG ⧵ AG

1
 is a clique.

By Claim 4 there is at most one vertex xG ∈ AG
1

 that has two non-neighbours 
in the same non-trivial component C of G[DG] and if such a vertex exists, then it 
must be anti-complete to DG . Let A∗G

1
= AG

1
⧵ {xG} if such a vertex xG exists and 
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A∗G
1

= AG
1

 otherwise. Then every vertex in A∗G
1

 has at most one non-neighbour in 
each component of G[DG] . Note that  A∗G

1
 is non-empty, since DG is non-empty 

and G is connected.
Suppose  C is a component of G[DG] on at least four vertices. Now suppose, 

for contradiction, that there are two vertices y, y� ∈ A∗G
1

 with different neighbour-
hoods in C. Then without loss of generality there is a vertex x ∈ C that is adja-
cent to y, but not to y′ . Since |C| ≥ 4 and every vertex in A∗G

1
 has at most one non-

neighbour in C, there must be two vertices z, z� ∈ C that are adjacent to both y 
and y′ . Now G[z, z�, x, y�, y] is a 2P1 + P3 , a contradiction. We conclude that every 
vertex in A∗G

1
 has the same neighbourhood in C. This implies that every vertex 

of C is either complete or anti-complete to A∗G
1

 . If a vertex of C is anti-complete 
to A∗G

1
 , then it is anti-complete to AG

1
 , and so it lies in BG.

Let D∗G be the set of vertices in DG that are in components of G[DG] that have 
at most three vertices. Then every vertex of DG ⧵ D∗G is complete or anti-com-
plete to A∗G

1
 and anti-complete to AG

1
⧵ A∗G

1
.

Now let G� = G[D∗G ∪ LG ⧵ (AG
1
⧵ A∗G

1
)] and note that this graph is uniquely 

defined by  G and  KG . Then  G�[D∗G] is K4-free, so G�[D∗G ∪ A∗G
1
] is K5-free, 

so every induced  K5 in  G′ is entirely contained in  LG ⧵ (AG
1
⧵ A∗G

1
) . Fur-

thermore, since p ≥ 5 , every vertex in  LG ⧵ (AG
1
⧵ A∗G

1
) is contained in an 

induced  K5 in  G′ . Therefore every isomorphism  q from  G′ to  H′ satisfies 
q(LG ⧵ (AG

1
⧵ A∗G

1
)) = LH ⧵ (AH

1
⧵ A∗H

1
) . Therefore a bijection f ∶ V(G) → V(H) is 

an isomorphism from G to H such that f (LG) = LH if and only if all of the follow-
ing hold: 

1.	 The restriction of  f to V(G�) is an isomorphism from G′ to H′ such that 
f (A∗G

1
) = A∗H

1
.

2.	 f (AG
1
⧵ A∗G

1
) = AH

1
⧵ A∗H

1
.

3.	 For every component C of G[DG] with at least four vertices, f(C) is a component 
of H[DH] on the same number of vertices and |C ∩ BG| = |f (C) ∩ BH|.

It is therefore sufficient to test whether there is a bijection from G to H with the 
above properties. Note that these properties are defined on pairwise disjoint ver-
tex sets, and the edges in G and H between these sets are completely determined 
by the definition of the sets. Thus it is sufficient to independently test whether 
there are bijections satisfying each of these properties. If D∗G is empty, then G′ is 
a complete multipartite graph, so we can easily test if Property  1 holds in this 
case. Otherwise, since AG

j
 has no neighbours outside LG for j ∈ {2,… , p} , every 

isomorphism from G′ to H′ satisfies f (A∗G
1
) = A∗H

1
 , so it is sufficient to test if G′ 

and H′ are isomorphic, and we can do this by applying Case 1 or Case 2. The sets 
AG
1
⧵ A∗G

1
 and AH

1
⧵ A∗H

1
 consist of at most one vertex, so we can test if Property 2 

can be satisfied in polynomial time. To satisfy Property 3, we only need to check 
whether there is a bijection q from the components of G[DG ⧵ D∗G] to the compo-
nents of H[DH ⧵ D∗H] such that |q(C)| = |C| and |q(C) ∩ BH| = |C ∩ BG| for every 
component of G[DG ⧵ D∗G] and this can clearly be done in polynomial time. This 
completes the proof of Case 3. 	�  ◻
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4 � New GI‑complete Results

We state Theorems 5, 6 and 7, which establish that Graph Isomorphism is GI-com-
plete on (diamond, 2P3)-free, (diamond,P6)-free and (gem,P1 + 2P2)-free graphs, 
respectively (see Fig. 3). The complexity of Graph Isomorphism on (2P1 + P3, 2P3)- 
free graphs and (gem,P6)-free graphs was previously unknown, but since these 
classes contain the classes of (diamond, 2P3)-free graphs and (diamond,P6)-free 
graphs, respectively, Theorems 5 and 6, respectively, imply that Graph Isomorphism 
is also GI-complete on these classes. In Theorems 5 and 6, GI-completeness follows 
from the fact that the constructions used in our proofs fall into the framework of so-
called simple path encodings (see [30]). For brevity, we do not explain this general 
notion here, but instead include direct proofs of GI-completeness for both cases. The 
construction used in the proof of Theorem 7 does not fall into this framework and 
we give a direct proof of GI-completeness in this case.

Theorem 5  Graph Isomorphism is GI-complete on (diamond, 2P3)-free graphs.

Proof  Let G be a graph. We construct a graph q(G) as follows: 

1.	 Create a clique with vertex set AG = V(G).
2.	 For every edge vw ∈ E(G) , add vertices vw and wv and edges vvw, vwwv and wvw . 

Let BG be the set of vertices added in this step.

Note that every vertex in BG has exactly two neighbours in  q(G) and that these 
neighbours are non-adjacent. Therefore no induced K3 in  q(G) contains a vertex 
of BG . Also note that |AG| = |V(G)| and |BG| = 2|E(G)|.

We claim that q(G) is (diamond, 2P3)-free for every graph G. First suppose, for 
contradiction, that the diamond is an induced subgraph of  q(G). Since no vertex 
in BG is in an induced K3 in  q(G), it follows that no vertex of this diamond can 
be in BG . This is a contradiction, since AG is a clique. Therefore q(G) is diamond-
free. Now suppose, for contradiction, that 2P3 is an induced subgraph of q(G). Since 
q(G)[BG] is a disjoint union of P2’s, every P3 in q(G) must contain at least one vertex 
in AG . Therefore, the two components of the 2P3 must each contain a vertex of AG 
and so there must be two non-adjacent vertices in AG . Since AG is a clique, this is a 
contradiction. Therefore q(G) is 2P3-free.

Given two graphs G and H, we claim that G is isomorphic to H if and only if q(G) 
is isomorphic to  q(H). Clearly, if  G is isomorphic to  H, then  q(G) is isomorphic 

Fig. 3   Forbidden induced subgraphs from Theorems 5, 6 and 7
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to q(H). Now suppose that there is an isomorphism f from q(G) to q(H). Let us show 
that this implies G is isomorphic to H. If G or H contains at most two vertices, then 
this can be verified by inspection, so we may assume |V(G)|, |V(H)| ≥ 3 . It follows 
that every vertex of AG (resp. AH ) is in an induced K3 in q(G) (resp. q(H)). Since 
no vertex of BG (resp. BH ) is in an induced K3 in q(G) (resp. q(H)), it follows that 
f (AG) = AH and f (BG) = BH . Now two vertices  v and  w in  G are adjacent if and 
only if v and w are connected in q(G) via a path of vertices in BG if and only if f(v) 
and f(w) are connected in q(H) via a path of vertices in BH if and only if f(v) and f(w) 
are adjacent in H. Therefore G is isomorphic to H. This completes the proof.	�  ◻

Theorem 6  Graph Isomorphism is GI-complete on (diamond,P6)-free graphs.

Proof  Let G be a graph. We construct a graph q(G) as follows: 

1.	 Create an independent set with vertex set AG = V(G).
2.	 Create an independent set with vertex set CG = E(G).
3.	 Add every possible edge between AG and CG.
4.	 For every edge e = vw ∈ E(G) , add vertices vw and wv and edges vvw, vwe, ewv 

and wvw (note that e ∈ CG ). Let BG be the set of vertices added in this step.

Note that every vertex in BG has exactly two neighbours in q(G) and these neigh-
bours are adjacent. Furthermore, note that AG,BG and CG are independent sets 
with |AG| = |V(G)| and |BG| = 2|E(G)| = 2|CG|.

We claim that  q(G) is (diamond,P6)-free for every graph  G. First suppose, for 
contradiction, that the diamond is an induced subgraph of  q(G). Since AG,BG 
and CG are independent sets, every induced K3 in q(G) must have exactly one vertex 
from each of these sets. Therefore, since the vertices of BG have degree-2 in q(G), 
one of the degree-3 vertices of the diamond must be in AG and the other in CG , and 
so both degree-2 vertices of the diamond must be in BG . However no pair of vertices 
in BG has the same neighbour in AG and the same neighbour in CG , a contradiction. 
We conclude that q(G) is diamond-free. Now suppose, for contradiction, that P6 is 
an induced subgraph of q(G). Since the two neighbours of every vertex in BG are 
adjacent, the internal vertices of the P6 cannot lie in BG . Therefore q(G)[AG ∪ CG] 
contains an induced P4 . Since q(G)[AG ∪ CG] is a complete bipartite graph, it is P4- 
free. This contradiction implies that q(G) is P6-free.

Now let G and H be graphs. Let G∗ and H∗ be the graphs obtained from G and H, 
respectively, by adding four pairwise adjacent vertices that are adjacent to every ver-
tex of G and H, respectively. Given two graphs G and H, we claim that G is isomor-
phic to H if and only if q(G∗) is isomorphic to q(H∗) . Clearly if G is isomorphic to H, 
then q(G∗) is isomorphic to q(H∗) . Furthermore, G is isomorphic to H if and only 
if G∗ is isomorphic to H∗ . Now suppose that there is an isomorphism f from q(G∗) 
to q(H∗) . It suffices to show that G∗ is isomorphic to H∗ . Note that |V(G∗)| ≥ 4 and 
|E(G∗)| ≥ 6 by construction. Thus every vertex in AG∗

∪ CG∗ has degree greater 
than 2 in q(G∗) . Since every vertex in BG∗ has degree 2 in q(G∗) , it follows that a ver-
tex of q(G∗) has degree exactly 2 if and only if it is in BG∗ . Similarly, a vertex of q(H∗) 
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has degree 2 if and only if it is in BH∗ . Therefore f (BG∗

) = BH∗ , and so |BG∗ | = |BH∗ | . 
Since BG∗

= 2|E(G∗)| and |BH∗ | = 2|E(H∗)| , it follows that |E(G∗)| = |E(H∗)| . 
Since q(G∗) has |V(G∗)| + 3|E(G∗)| vertices and q(H∗) has |V(H∗)| + 3|E(H∗)| verti-
ces, it follows that |V(G∗)| = |V(H∗)| . Now q(G∗) ⧵ BG∗ is a complete bipartite graph 
with parts of size |V(G∗)| and |E(G∗)| , respectively. Since we obtained G∗ from G 
by adding four vertices that are complete to every other vertex of G∗ , it follows that 
|E(G∗)| = |E(G)| + 4(|V(G∗)| − 4) + 6 ≥ 3(|V(G∗)| − 4) + |V(G∗)| + 2 > |V(G∗)|.
We conclude that f (AG∗

) = f (AH∗

) and f (CG∗

) = CH∗ . Now two vertices  v and  w 
in G∗ are adjacent if and only if v and w are connected in q(G∗) via a path of vertices 
in BG∗

,CG∗ and BG∗ , respectively if and only if f(v) and f(w) are connected in q(H∗) 
via a path of vertices in BH∗

,CH∗ and BH∗ , respectively, if and only if f(v) and f(w) 
are adjacent in H∗ . Therefore G∗ is isomorphic to H∗.

Combining the above with the fact that q(G∗) and q(H∗) are (diamond,P6)-free 
shows that Graph Isomorphism is GI-complete on (diamond,P6)-free graphs.	�  ◻

Theorem  7  Graph Isomorphism is GI-complete on (gem,P1 + 2P2)-free graphs. 
Furthermore, (gem,P1 + 2P2)-free graphs have unbounded clique-width.

Proof  Let  G be a graph. Let vG
1
,… , vG

n
 be the vertices of  G and let eG

1
,… , eG

m
 be 

the edges of  G. For the proof of both statements of the theorem, we construct a 
graph q(G) from G as follows: 

1.	 Create a complete multipartite graph with partition (AG
1
,… ,AG

n
) , where 

|AG
i
| = dG(v

G
i
) for i ∈ {1,… , n} and let AG =

⋃
AG
i

.
2.	 Create a complete multipartite graph with partition (BG

1
,… ,BG

m
) , where |BG

i
| = 2 

for i ∈ {1,… ,m} and let BG =
⋃

BG
i

.
3.	 Take the disjoint union of the two graphs above, then for each edge eG

i
= vG

i1
vG
i2

 
in G in turn, add an edge from one vertex of BG

i
 to a vertex of AG

i1
 and an edge 

from the other vertex of BG
i

 to a vertex of AG
i2

 . Do this in such a way that the edges 
added between AG and BG form a perfect matching.

We claim that q(G) is (gem,P1 + 2P2)-free. Since q(G)[AG] and q(G)[BG] are com-
plete multipartite graphs, they must both be (P1 + P2)-free, so every induced 
P1 + P2 in  q(G) must contain at least one vertex in  AG and at least one vertex 
in BG . Suppose, for contradiction, that the gem is an induced subgraph of q(G). 
Let X ∈ {AG,BG} be the set that contains the dominating vertex v of the gem and 
let  Y be the other set. Since gem − v is isomorphic to  P4 , which contains an 
induced P1 + P2 , at least one vertex w of the gem must be in Y. Since v has only 
one neighbour in Y, all other vertices of the gem must be in X. However, w has 
only one neighbour in X, but at least two neighbours in the gem . This contradic-
tion shows that  q(G) is indeed gem-free. Now suppose, for contradiction, 
that P1 + 2P2 is an induced subgraph of q(G). First suppose that one of the P2 ’s in 
this  P1 + 2P2 either has both vertices in  AG or both vertices in  BG ; let 
X ∈ {AG,BG} be the set that contains this P2 and let  Y be the other set. Then 
since q(G)[X] is (P1 + P2)-free, the remaining three vertices of the P1 + 2P2 must 
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be in Y. This means that q(G)[Y] contains P1 + P2 as an induced subgraph. This 
contradiction means that each of the P2 ’s in the P1 + 2P2 must have exactly one 
vertex in AG and exactly one vertex in BG . Therefore there must be non-adjacent 
vertices x1, x2 ∈ AG and non-adjacent vertices y1, y2 ∈ BG such that xi is adjacent 
to yj if and only if i = j . Therefore  x1 and  x2 must be in the same set AG

i
 and y1 

and  y2 must be in the same set BG
j

 . This is a contradiction as the two vertices 
in BG

j
 cannot both have neighbours in the same set AG

i
 . Therefore q(G) is indeed 

(gem,P1 + 2P2)-free.
We are now ready to prove that Graph Isomorphism is GI-complete on 
(gem,P1 + 2P2)-free graphs. Now let  G and  H be graphs. Let G∗ and H∗ be the 
graphs obtained from G and H, respectively, by adding four pairwise adjacent verti-
ces that are adjacent to every vertex of G and H, respectively. Note that every vertex 
of G∗ and H∗ has degree at least 3. We claim that G is isomorphic to H if and only 
if q(G∗) is isomorphic to q(H∗) . Clearly if G is isomorphic to H, then q(G∗) is iso-
morphic to q(H∗) . Furthermore, G is isomorphic to H if and only if G∗ is isomorphic 
to H∗ . Now suppose that there is an isomorphism f from q(G∗) to q(H∗) . It suffices to 
show that G∗ is isomorphic to H∗ . Note that q(G∗)[AG∗

] and q(G∗)[BG∗

] each contain 
an induced K3 (but there is no K3 in q(G∗) with vertices in both AG∗ and BG∗ ). Fur-
thermore, given such a  K3 in  q(G∗)[AG∗

] (resp.  q(G∗)[BG∗

] ), a vertex is in  AG∗ 
(resp.  BG∗ ) if and only if it has at least two neighbours in this  K3 , so either 
f (AG∗

) = AH∗ and f (BG∗

) = BH∗ or f (AG∗

) = BH∗ and f (BG∗

) = AH∗ . Since q(G∗)[AG∗

] 
contains an induced 3P1 , but q(G)[BG∗

] does not, it follows that f (AG∗

) = AH∗ and 
f (BG∗

) = BH∗ . Furthermore, this implies that for all i ∈ {1,… , n} , f (AG∗

i
) = AH∗

j
 for 

some j ∈ {1,… , n} with |AH∗

j
| = |AG∗

i
| and for all i ∈ {1,… ,m} , f (BG∗

i
) = BH∗

j
 for 

some j ∈ {1,… ,m} . Now two vertices vG∗

i
 and vG∗

j
 in G∗ are adjacent if and only if 

there is a k ∈ {1,… ,m} such that there are edges in q(G∗) from BG∗

k
 to both  AG∗

i
 

and AG∗

j
 if and only if there is a k ∈ {1,… ,m} such that there are edges in q(H∗) 

from  f (BG∗

k
) to both  f (AG∗

i
) and  f (AG∗

j
) if and only if vH∗

i�
 and vH∗

j�
 are adjacent where 

f (AG∗

i
) = AH∗

i�
 and f (AG∗

j
) = AH∗

j�
 . Therefore G∗ is isomorphic to H∗.

Combining the above with the fact that q(G∗) and q(H∗) are (gem,P1 + 2P2)-free 
shows that Graph Isomorphism is GI-complete on (gem,P1 + 2P2)-free graphs.
We now prove that the class of (gem,P1 + 2P2)-free graphs has unbounded clique-
width. Let Hn be the n × n grid (see also Fig. 4). We claim that the set of graphs 
{q(Hn) | n ∈ ℕ} has unbounded clique-width and note that we have shown that every 
graph in this set is (gem,P1 + 2P2)-free. Let H′

n
 be the graph obtained from q(Hn) by 

complementing AHn and complementing BHn (see also Fig. 4). By Fact 2, it is suffi-
cient to show that the set of graphs {H�

n
| n ∈ ℕ} has unbounded clique-width. We 

now partition V(H�
n
) into sets Vi,j for i, j ∈ {1,… , n} as follows. For i, j ∈ {1,… , n} 

let Vi,j consist of the vertices in the set AHn

k
 that correspond to the vertex in the ith 

row and jth column of Hn , along with the vertices in BHn that have a neighbour 
in AHn

k
 . Note that every vertex of H′

n
 is in exactly one set Vi,j , so these sets form a par-

tition of V(H�
n
) . Furthermore H�

n
[∪n

j=1
Vi,j] is connected for all i ≥ 1 , H�

n
[∪n

i=1
Vi,j] is 

connected for all j ≥ 1 , and for i, j, k,� ≥ 1 , if a vertex of Vi,j is adjacent to a vertex 
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of Vk,� , then |k − i| ≤ 1 and |� − j| ≤ 1 . Applying Lemma  6 with m = 1 we find 
that H′

n
 has clique-width at least ⌊ n−1

2
⌋ + 1 . This completes the proof.	�  ◻

5 � Clique‑Width for Hereditary Graph Classes

The following result (see [15] for a proof), combined with Theorem 1, shows that 
the classifications of the complexity of Graph Isomorphism and boundedness of 
clique-width are analogous for H-free graphs.

Theorem 8  Let H be a graph. The class of H-free graphs has bounded clique-width 
if and only if H ⊆i P4.

However, for (H1,H2)-free graphs, the classifications no longer coincide. 
Below, we update the summary theorem and list of open cases from [14]. That is, 
we added the new case solved in Theorems 7 to 9 (Statement 2(vii)) and removed 
it from Open Problem 1. Given four graphs H1,H2,H3,H4 , the classes of (H1,H2)- 
free graphs and (H3,H4)-free graphs are equivalent if the unordered pair H3,H4 
can be obtained from the unordered pair H1,H2 by some combination of the 
operations: 

	 (i)	 complementing both graphs in the pair, and
	 (ii)	 if one of the graphs in the pair is K3 , replacing it with the paw or vice versa.

If two classes are equivalent, then one of them has bounded clique-width if and only 
if the other one does [15].

Fig. 4   The n × n grid H
n
 and the graph H′

n
 , defined in the proof of Theorem 7, for n = 4 . In the image 

of H′
n
 , the vertices in AH

n are coloured black and the vertices in BH
n are coloured white
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Theorem 9  For a class G of graphs defined by two forbidden induced subgraphs, 
the following holds:

1.	 G has bounded clique-width if it is equivalent to a class of (H1,H2)-free graphs 
such that one of the following holds:

	 (i)	 H1 or H2 ⊆i P4

	 (ii)	 H1 = Ks and H2 = tP1 for some s, t ≥ 1

	 (iii)	 H1 ⊆i paw and  H2 ⊆i
K1,3 + 3P1, K1,3 + P2, P1 + P2 + P3, P1 + P5,

P1 + S1,1,2, P2 + P4, P6, S1,1,3 or S1,2,2
	 (iv)	 H1 ⊆i diamond and H2 ⊆i P1 + 2P2, 3P1 + P2 or P2 + P3

	 (v)	 H1 ⊆i gem and H2 ⊆i P1 + P4 or P5

	 (vi)	 H1 ⊆i K3 + P1 and H2 ⊆i K1,3

	 (vii)	 H1 ⊆i 2P1 + P3 and H2 ⊆i 2P1 + P3.

2.	 G has unbounded clique-width if it is equivalent to a class of (H1,H2)-free graphs 
such that one of the following holds:

	 (i)	 H1 ∉ S and H2 ∉ S

	 (ii)	 H1 ∉ S and H2 ∉ S

	 (iii)	 H1 ⊇i K3 + P1 or C4 and H2 ⊇i 4P1 or 2P2

	 (iv)	 H1 ⊇i diamond and H2 ⊇i K1,3, 5P1, P2 + P4 or P6

	 (v)	 H1 ⊇i K3 and H2 ⊇i 2P1 + 2P2, 2P1 + P4, 4P1 + P2, 3P2 or 2P3

	 (vi)	 H1 ⊇i K4 and H2 ⊇i P1 + P4 or 3P1 + P2

	 (vii)	 H1 ⊇i gem and H2 ⊇i P1 + 2P2.

Open Problem 1  Does the class of (H1,H2)-free graphs have bounded or unbounded 
clique-width when:

	 (i)	 H1 = K3 and H2 ∈ {P1 + S1,1,3, S1,2,3}

	 (ii)	 H1 = diamond and H2 ∈ {P1 + P2 + P3,P1 + P5}

	 (iii)	 H1 = gem and H2 = P2 + P3.

6 � Classifying the Complexity of Graph Isomorphism for (H1,H2)‑free 
Graphs

Recall that given four graphs H1,H2,H3,H4 , the classes of (H1,H2)-free graphs 
and (H3,H4)-free graphs are equivalent if the unordered pair H3,H4 can be 
obtained from the unordered pair H1,H2 by some combination of the operations: 

	 (i)	 complementing both graphs in the pair, and
	 (ii)	 if one of the graphs in the pair is K3 , replacing it with the paw or vice versa.
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Note that two graphs G and H are isomorphic if and only if their complements G 
and H are isomorphic. Therefore, for every pair of graphs H1,H2 , the Graph Iso-
morphism problem is polynomial-time solvable or GI-complete for (H1,H2)-free 
graphs if and only if the same is true for (H1,H2)-free graphs. Since Graph Iso-
morphism can be solved component-wise, and it can easily be solved on complete 
multipartite graphs in polynomial time, Lemma 3 implies that for every graph H1 , 
the Graph Isomorphism problem is polynomial-time solvable or GI-complete for 
(H1,K3)-free graphs if and only if the same is true for (H1, paw)-free graphs. Thus 
if two classes are equivalent, then the complexity of Graph Isomorphism is the 
same on both of them.

Here is the summary of known results for the complexity of Graph Isomor-
phism on (H1,H2)-free graphs (see Sect. 2 for notation).

Theorem 10  For a class G of graphs defined by two forbidden induced subgraphs, 
the following holds:

1.	 Graph Isomorphism is solvable in polynomial time on G if G is equivalent to a class 
of (H1,H2)-free graphs such that one of the following holds:

	 (i)	 H1 or H2 ⊆i P4

	 (ii)	 H1 and H2 ⊆i K1,t + P1 for some t ≥ 1

	 (iii)	 H1 and H2 ⊆i tP1 + P3 for some t ≥ 1

	 (iv)	 H1 ⊆i Kt and H2 ⊆i 2K1,t,K
+
1,t

 or P5 for some t ≥ 1

	 (v)	 H1 ⊆i paw and H2 ⊆i P2 + P4,P6, S1,2,2 or K++
1,t

+ P1 for some t ≥ 1

	 (vi)	 H1 ⊆i diamond and H2 ⊆i P1 + 2P2

	 (vii)	 H1 ⊆i gem and H2 ⊆i P1 + P4 or P5

	 (viii)	 H1 ⊆i 2P1 + P3 and H2 ⊆i P2 + P3 or P5.

2.	 Graph Isomorphism is GI-complete on G if G is equivalent to a class of (H1,H2)

-free graphs such that one of the following holds:

	 (i)	 neither H1 nor H2 is a path star forest
	 (ii)	 neither H1 nor H2 is a path star forest
	 (iii)	 H1 ⊇i K3 and H2 ⊇i 2P1 + 2P2,P1 + 2P3, 2P1 + P4 or 3P2

	 (iv)	 H1 ⊇i K4 and H2 ⊇i K
++
1,4

,P1 + 2P2 or P1 + P4

	 (v)	 H1 ⊇i K5 and H2 ⊇i K
++
1,3

	 (vi)	 H1 ⊇i C4 and H2 ⊇i K1,3, 3P1 + P2 or 2P2

	 (vii)	 H1 ⊇i diamond and H2 ⊇i K1,3,P2 + P4, 2P3 or P6

	 (viii)	 H1 ⊇i gem and H2 ⊇i P1 + 2P2.

Proof  In the proof of this theorem we will refer to theorems in a number of other 
papers, in some cases indicating the value some parameter given therein must take. 
Restating and fully explaining all these various theorems in detail is beyond the 
scope of this paper, but to aid the reader who refers to [22] or [30], we note that 
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there H(a, b, c) denotes K1,b + cP1 if a = 0 , H(a, b, c) denotes K+
1,b+1

+ cP1 if a = 1 , 
and H(1, 0, b, 1) denotes K++

1,b+1
+ P1.

We first consider the polynomial-time cases. Statement 1(i) follows from Theo-
rem 1. Statement 1(ii) follows from the fact that for every t ≥ 1 , Graph Isomorphism 
is solvable in polynomial-time on (K1,t + P1,K1,t + P1)-free graphs [22, Theorem 4.2 
with b = b� = t and c = c� = 1 ]. Statement 1(iii) follows from the fact that for every 
t ≥ 1 , Graph Isomorphism is solvable in polynomial-time on (tP1 + P3, tP1 + P3)-free 
graphs [22, Theorem 4.2 and 4.3 with b = b� = 2  and c = c� = t ]. Statement 1(iv) 
follows from the fact that for every t ≥ 1 , Graph Isomorphism is solvable in polyno-
mial-time on (Kt, 2K1,t)-free graphs [30, Corollary 3 with s = t ] (see also Lemma 1), 
(Kt,K

+
1,t
)-free graphs [30, Theorem  16 with b = t − 1 and s = t ] and (Kt,P5)-free 

graphs [30, Theorem  14]. Statement  1(v) follows from the fact that (paw,H)-free 
graphs have bounded clique-width if H ∈ {P2 + P4,P6, S1,2,2} (Theorem  9.1(iii)) 
combined with Theorem 2, along with the fact that for every t ≥ 1 Graph Isomor-
phism is solvable in polynomial-time on (K3,K

++
1,t

+ P1)-free graphs [30, Theorem 15 
with b = t − 1 ] and this class is equivalent to the class of (paw,K++

1,t
+ P1)-free 

graphs. Statement 1(vi) follows from the fact that (diamond,P1 + 2P2)-free graphs 
have bounded clique-width (Theorem  9.1(iv)) combined with Theorem  2. Simi-
larly, Statement 1(vii) follows from the fact that (gem,H)-free graphs have bounded 
clique-width if H ∈ {P1 + P4,P5} (Theorem  9.1(v)) combined with Theorem  2. 
Statement 1(viii) follows from the fact that Graph Isomorphism is solvable in poly-
nomial-time on (2P1 + P3,P2 + P3)-free graphs (Theorem 4) and (2P1 + P3,P5)-free 
graphs (Theorem 3).

Next, we consider the GI-complete cases. Statement  2(i) is [22, Lemma  2]. 
Statement 2(ii) follows from Statement 2(i) since the class of (H1,H2)-free graphs 
is equivalent to the class of (H1,H2)-free graphs. Statement  2(iii) follows from 
the fact that Graph Isomorphism is GI-complete on H-free bipartite graphs if 
H ∈ {2P1 + 2P2, 2P1 + P4, 3P2} [22, Lemma 5] or H = P1 + 2P3 [30, Theorem 6]. 
Statement  2(iv) follows from the fact that Graph Isomorphism is GI-complete on 
(K4,H)-free graphs if H ∈ {K++

1,4
,P1 + 2P2} [30, Theorem  5] or H = 2P1 + P4 

[22, Theorem  3]. Statement  2(v) follows from the fact that Graph Isomorphism is 
GI-complete on (K5,K

++
1,3

)-free graphs [30, Theorem  7]. Statement  2(vi) follows 
from the fact that Graph Isomorphism is GI-complete on (C4,C5, 3P1 + P2, 2P2)-
free graphs [22, Lemma 6 with i = 2 ] and for (C4, diamond,K1,3)-free graphs [22, 
Lemma  9]. Statement  2(vii) follows from the fact that Graph Isomorphism is GI-
complete on (C4, diamond,K1,3)-free graphs [22, Lemma  9] and on (diamond,H)-
free graphs if H is P2 + P4 [12, Theorem 3], 2P3 (Theorem 5) or P6 (Theorem 6). 
Statement 2(viii) follows from the fact that Graph Isomorphism is GI-complete on 
(P1 + P4,P1 + 2P2)-free graphs (Theorem 7).	�  ◻

Open Problem  2  What is the complexity of Graph Isomorphism on (H1,H2)-free 
graphs in the following cases?

	 (i)	 H1 = K3 and H2 ∈ {P7, S1,2,3}

	 (ii)	 H1 = K4 and H2 = S1,1,3



1 3

Algorithmica	

	 (iii)	 H1 = diamond and H2 ∈ {P1 + P2 + P3,P1 + P5}

	 (iv)	 H1 = gem and H2 = P2 + P3

Note that all of the classes of (H1,H2)-free graphs in Open Problem  2 are 
incomparable. The following theorem states that Open Problem 2 lists all open 
cases.

Theorem  11  Let G be a class of graphs defined by two forbidden induced sub-
graphs. Then G is not equivalent to any of the classes listed in Theorem 10 if and 
only if it is equivalent to one of the six cases listed in Open Problem 2.

Proof  It is easy to verify that none of the classes in Open Problem 2 are equivalent 
to any of the classes in Theorem 10.

Let H1,H2 be graphs and let G be the class of (H1,H2)-free graphs. Suppose G 
is not equivalent to any class for which the complexity of Graph Isomorphism is 
implied by Theorem 10. We will show that G is equivalent one of the classes in Open 
Problem 2. By Theorem 10.1(i), we may assume that H1,H2 ⊈i P4 . Since P4 = P4 , 
this means that none of H1,H1,H2,H2 are induced subgraphs of P4.

By Theorem 10.2(i), at least one of H1 and H2 must be a path star forest. By The-
orem 10.2(ii), at least one of H1 and H2 must be a path star forest. Suppose, for con-
tradiction, that both H1 and H1 are path star forests. Let n be the number of vertices 
in H1 . Then H1 and H1 each contain at most n − 1 edges. Since H1 and H1 together 

have 
(
n

2

)
 edges, it follows that 

(
n

2

)
≤ 2(n − 1) and so n ≤ 4 . It is easy to verify 

that if F is a forest on at most four vertices and F is also a forest, then F is an induced 
subgraph of P4 . Therefore H1 is an induced subgraph of P4 , a contradiction. By sym-
metry, we may therefore assume that H1 and H2 are path star forests, but H1 and H2 
are not.

Also note that by definition of equivalence, the theorem is symmetric in  H1 
and H2 . We will consider a number of cases, depending on the possibilities for H1 . 
First, we consider the cases when H1 = Ks for some s ≥ 1 . Since H ⊈i P4 , we may 
assume that s ≥ 3.

Case 1  H1 = K3.

By Theorem  10.2(iii), we may assume that  H2 is (2P1 + 2P2,P1 + 2P3,

2P1 + P4, 3P2)-free.
First consider the case when H2 is a P4-free path star forest, or equivalently 

when H2 is a disjoint union of stars. Since H2 is 3P2-free, it has at most two non-
trivial components. If H2 has at most one non-trivial component, then it is an 
induced subgraph of K1,t + tP1 ⊆i 2K1,t for some t ≥ 1 and so Theorem  10.1(iv) 
applies. If H2 has two non-trivial components, at least one of which is isomorphic 
to P2 , then H2 has at most three components since it is (2P1 + 2P2)-free, and so H2 
is an induced subgraph of K1,t + P2 + P1 ⊆i K

++
1,t+1

+ P1 for some t ≥ 1 and so The-
orem 10.1(v) applies. If H2 has two non-trivial components, neither of which is 
isomorphic to P2 , then both of these components contain an induced P3 . In this 



	 Algorithmica

1 3

case, since H2 is (P1 + 2P3)-free, H2 contains exactly two components, so it is 
an induced subgraph of 2K1,t for some t ≥ 1 and thus Theorem 10.1(iv) applies. 
Therefore we may assume that H2 contains an induced P4.

Let  C be the component of  H2 that contains this induced  P4 . Since  H2 is 
(2P1 + P4)-free, H2 contains at most one component apart from C. Furthermore, if 
it does contain a second component, then that component must isomorphic to P1 
or P2 . In other words, H2 is isomorphic to C, C + P1 or C + P2.

If H2 = C + P2 , then since H2 is (2P1 + 2P2, 3P2)-free, it follows that  C is a 
(2P1 + P2, 2P2)-free tree that contains an induced P4 . Since C is 2P2-free, the end-
vertices of the induced P4 cannot have a neighbour outside the P4 and since it 
is (2P1 + P2)-free, the two internal vertices of the P4 cannot have a neighbour 
outside the P4 . Therefore H2 = P2 + P4 and so Theorem 10.1(v) applies. We may 
therefore assume that H2 ≠ C + P2.

Suppose that H2 = C + P1 . Since  H2 is (2P1 + 2P2, 2P1 + P4)-free, it follows 
that C is (P1 + 2P2,P1 + P4)-free. Since C is (P1 + P4)-free, the P4 dominates C 
and at most one of the end-vertices of the P4 has a neighbour outside this P4 . 
Since H2 is a path star forest, it has at most one vertex of degree greater than 2. 
Therefore, since the P4 dominates C, it follows that C is obtained from P4 or P5 by 
attaching a (possibly empty) set of pendant edges to one of its internal vertices. 
Since  C is (P1 + 2P2)-free, it cannot be obtained from P5 by adding a non-zero 
number of pendant vertices adjacent to the central vertex. Therefore C is obtained 
from P4 or P5 by adding t pendant vertices to a vertex adjacent to an end-vertex 
of this path for some t ≥ 0 . It follows that H2 = K+

1,t+2
+ P1 or H2 = K++

1,t+2
+ P1 , 

respectively and so Theorem  10.1(v) applies. We may therefore assume that 
H2 ≠ C + P1.

Finally, suppose that H2 = C , in which case  H2 is connected. Then it is 
obtained from K1,t for some t ≥ 2 by subdividing edges. If t = 2 , then H2 is iso-
morphic to Pk for some k ≥ 4 , and k ≤ 7 since H2 is 3P2-free. If k = 7 , then Open 
Problem 2.(i) applies, and if k ≤ 6 , then Theorem 10.1(v) applies. We may there-
fore assume that t ≥ 3 . Since H2 is (2P1 + P4)-free, each edge of this K1,t can be 
subdivided at most twice. If t ≥ 4 , then at most one of the edges of the K1,t can be 
subdivided since H2 is (2P1 + 2P2)-free and so in this case H2 ⊆i K

++
1,t

 and Theo-
rem 10.1(v) applies. We may therefore assume that t = 3 , so H2 = Si,j,k for some 
1 ≤ i ≤ j ≤ k . Now k ≥ 2 since H2 contains an induced P4 and k ≤ 3 since each 
edge of the K1,t is subdivided at most twice. If k = 2 or j = 1 , then H2 ⊆i S1,2,2 or 
H2 ⊆i S1,1,3 = K++

1,t
 for t = 3 , respectively and Theorem 10.1(v) applies, so we may 

assume j = 2 and k = 3 . Therefore H2 = S1,2,3 and Open Problem  2.(i) applies. 
This completes the proof for Case 1.

Case 2  H1 = Ks for some s ≥ 4.

By Theorem  10.2(iv), we may assume that  H2 is (K++
1,4

,P1 + 2P2,P1 + P4)-
free. Since H2 is (P1 + 2P2)-free, if it contains two non-trivial components, then 
it contains no other components. Thus if every component of H2 is a star, then 
either H2 contains only two components, or H2 contains at most one non-trivial 
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component and all other components are trivial. In the first case H2 ⊆i 2K1,t for 
some t ≥ 1 and in the second case H2 ⊆i K1,t + tP1 ⊆i 2K1,t for some t ≥ 1 . There-
fore, if every component of H2 is a star, then Theorem 10.1(iv) applies. We may 
therefore assume that H2 is not a disjoint union of stars. Since H2 is a forest, this 
implies that P4 is an induced subgraph of H2 . Since H2 is (P1 + P4)-free, this P4 
must dominate H2 and H2 cannot be isomorphic to Pk for k ≥ 6 . In particular, 
note that this implies that H2 is connected. If H2 has maximum degree at most 2, 
then H2 ⊆i P5 and Theorem  10.1(iv) applies. We may therefore assume that H2 
is obtained by subdividing edges of K1,t for some t ≥ 3 . Since H2 is (P1 + 2P2)- 
free, at most one edge of the K1,t can be subdivided. Since H2 is (P1 + P4)-free, 
any edge of the K1,t can be subdivided at most twice, and so H2 ⊆i K

++
1,t

 . If H2 
is obtained from K1,t by subdividing an edge at most once, then H2 ⊆i K

+
1,t

 and 
Theorem  10.1(iv) applies, so we may assume that H2 = K++

1,t
 . Since H2 is K++

1,4
- 

free, it follows that t = 3 and so H2 = K++
1,3

= S1,1,3 . Now Open Problem 2.(ii) or 
Theorem 10.2(v) applies if s = 4 or s ≥ 5 , respectively. This completes the proof 
for Case 2.

For the remainder of the proof we may therefore assume that Cases  1 and 2 do  
not apply, so H1 is not a complete graph. By symmetry between H1 and H2 , we 
may thus assume that both these graphs contain an edge. Furthermore, by def-
inition of equivalence, if H1 or H2 is isomorphic to P1 + P3 = paw , then we can 
replace the graph in question by 3P1 = K3 . Thus Case 1 completes the proof if H1 
or H2 is either 3P1 or P1 + P3 . Every induced subgraph of P1 + P3 , other than 3P1 
and P1 + P3 , is an induced subgraph of P4 , and we assumed that neither H1 nor H2 is 
an induced subgraph of P4 . In the remainder of the proof we may therefore assume 
that neither H1 nor H2 is an induced subgraph of P1 + P3 or of P4.

Case 3  H1 not a linear forest.

In this case  H1 contains a vertex of degree at least  3, so it contains an 
induced K1,3 . Note that C4 = 2P2 and diamond = 2P1 + P2 . Therefore, by Theo-
rems  10.2(vi) and 10.2(vii), respectively, we may assume that  H2 is 2P2-free 
and (2P1 + P2)-free. Since H2 is 2P2-free, it has at most one non-trivial compo-
nent. Furthermore, every non-trivial component of H2 must be a 2P2-free path 
star, so it must be isomorphic to K1,k or K+

1,k
 for some k ≥ 1 . Recall that we may 

assume that H2 contains at least one non-trivial component, otherwise we reduce 
to Case  1 or  2. Therefore, since H2 is (2P1 + P2)-free, it can have at most one 
trivial component and we conclude that H2 ∈ {K1,k,K

+
1,k
,K1,k + P1,K

+
1,k

+ P1} 
for some k ≥ 1 . If k ≤ 2 , then either H2 is an induced subgraph of P1 + P3 or P4 , 
or H2 = K+

1,2
+ P1 = P1 + P4 , in which case  H2 contains an induced  2P1 + P2 , 

a contradiction. We may therefore assume that k ≥ 3 , in which case 
H2 ∉ {K+

1,k
,K+

1,k
+ P1} since  H2 is (2P1 + P2)-free. Thus H2 ∈ {K1,k,K1,k + P1} 

for some k ≥ 3 . In particular, this implies K1,3 ⊆i H2 , so by the same argument 
with H2 taking the part of H1 , we may assume that H1 ∈ {K1,t,K1,t + P1} for some 
t ≥ 3 . Therefore Theorem 10.1(ii) applies. This completes the proof for Case 3.
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For the remainder of the proof we may therefore assume that Case 3 does not apply. 
By symmetry between H1 and H2 , we may thus assume that both these graphs are 
linear forests.

Case 4  H1 contains P5 as an induced subgraph.

Recall that we may assume H2 contains a non-trivial component, otherwise we 
reduce to Case 1 or 2. Note that P5 ⊇i 2P2 = C4 . Therefore, by Theorem 10.2(vi), we 
may assume that H2 is (3P1 + P2, 2P2)-free. Since H2 is 2P2-free, it has exactly one 
non-trivial component, which must be isomorphic to Pt , for some 2 ≤ t ≤ 4 . Since H2 
is not an induced subgraph of P4 , it follows that H2 is isomorphic to sP1 + Pt for some 
s ≥ 1 and t ∈ {2, 3, 4} . Since H2 is (3P1 + P2)-free, it follows that s ≤ 2 and if t = 4 , 
then s = 1 . Since H2 is not an induced subgraph of P1 + P3 , if s = 1 , then t = 4 . There-
fore H2 ∈ {2P1 + P2, 2P1 + P3,P1 + P4} . First consider the case when H2 = P1 + P4 . 
By Theorems 10.2(vii) and 10.2(viii), respectively, we may assume that H1 is P6-free 
and (P1 + 2P2)-free. Since H1 contains P5 as an induced subgraph, but is (P1 + 2P2)-
free, it follows that H1 is connected. Since H1 is P6-free, it follows that H1 = P5 , and so 
Theorem 10.1(vii) applies. This completes the case when H2 = P1 + P4 and so we may 
assume that H2 ∈ {2P1 + P2, 2P1 + P3} . By Theorems 10.2(iii) and 10.2(vii), respec-
tively, we may assume that H1 is (2P1 + 2P2)-free and (P2 + P4,P6)-free. Since H1 is 
a P6-free linear forest that contains P5 as an induced subgraph, it follows that H1 con-
tains a component isomorphic to P5 . Since H1 is (2P1 + 2P2,P2 + P4)-free, it follows 
that H1 contains at most one vertex outside this component, so H1 ∈ {P5,P1 + P5} . 
If H1 = P5 , then Theorem 10.1(vii) applies if H2 = 2P1 + P2 ⊆i P1 + P4 and Theo-
rem 10.1(viii) applies of H2 = 2P1 + P3 . If H1 = P1 + P5 , then Open Problem 2.(iii) 
applies if H2 = 2P1 + P2 and Theorem 10.2(iv) applies if H2 = 2P1 + P3 ⊇i 4P1 . This 
completes the proof for Case 4.

Case 5  H1 contains P4 as an induced subgraph.

By Case 3 we may assume that H1 and H2 are linear forests and by Cases 1 and 2, 
we may assume they each contain at least one non-trivial component. By Case 4, we 
may assume that H1 is P5-free, so it contains a component isomorphic to P4 . Since H1 
is not an induced subgraph of P4 , it follows that H1 contains at least one other com-
ponent. First consider the case when H1 contains a non-trivial component apart from 
this P4 , so P2 + P4 ⊆i H1 . In this case Theorems 10.2(vi) and 10.2(vii), respectively, 
imply that H2 is 2P2-free and (2P1 + P2)-free. Since H2 is 2P2-free, it has one non-
trivial component, which must be isomorphic to Pt for some 2 ≤ t ≤ 4 . Since H2 is 
(2P1 + P2)-free, it follows that H2 is an induced subgraph of P1 + P3 or P4 , a contra-
diction. We conclude that H1 cannot contain any non-trivial components apart from 
the P4 and so H1 = tP1 + P4 for some t ≥ 1 . If t ≥ 2 , then by Theorem 10.2(iii) we 
may assume that H2 is 3P1-free. Since H2 is a linear forest that is not an induced sub-
graph of P4 , this implies that H2 = 2P2 , in which case Theorem 10.2(vi) applies. We 
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may therefore assume that t = 1 and so H1 = P1 + P4 . By symmetry, if H2 contains 
a P4 as an induced subgraph, then we may assume H2 = P1 + P4 , in which case Theo-
rem 10.1(vii) applies. We may therefore assume that H2 is P4-free, so every component 
of H2 is isomorphic to P1 , P2 or P3 . By Theorems 10.2(iv), 10.2(vii) and 10.2(viii), 
respectively, we may assume that H2 is 4P1-free, 2P3-free and (P1 + 2P2)-free. Since H2 
is 2P3-free, it contains at most one component isomorphic to P3 . Since H2 is (P1 + 2P2)- 
free, if it contains two non-trivial components, then it contains no other components. In 
this case H2 = 2P2 ⊆i P5 or H2 = P2 + P3 , in which case Theorem 10.1(vii) or Open 
Problem 2.(iv), respectively, applies. We may therefore assume that H2 contains exactly 
one non-trivial component. Since  H2 is 4P1-free, but not an induced subgraph of 
P1 + P3 , it follows that H2 = 2P1 + P2 ⊆i P1 + P4 and so Theorem 10.1(vii) applies. 
This completes the proof for Case 5.

Case 6  H1 contains 2P2 as an induced subgraph.

We may assume that H2 contains a non-trivial component, otherwise we reduce 
to Case 1 or 2. Furthermore, we may assume that H2 is a P4-free linear forest, oth-
erwise we reduce to Case  3 or  5. By Theorem  10.2(vi), we may assume that H2 is 
(3P1 + P2, 2P2)-free. Since H2 is 2P2-free, but contains at least one non-trivial com-
ponent, it follows that H2 contains exactly one non-trivial component. Furthermore, 
since  H2 is P4-free, this non-trivial component is isomorphic to either  P2 or  P3 . 
Since H2 is (3P1 + P2)-free, but not an induced subgraph of P1 + P3 , it follows that 
H2 ∈ {2P1 + P2, 2P1 + P3} . By Theorems 10.2(iii) and 10.2(vii), respectively, we may 
assume that H1 is (2P1 + 2P2, 3P2)-free and 2P3-free. Since H1 is 3P2-free, it has at 
most two non-trivial components and since it contains 2P2 as an induced subgraph, 
it must contain at least two non-trivial components. Since H1 is 2P3-free, its non-triv-
ial components must either both be isomorphic to P2 , or one of these components is 
isomorphic to P2 and the other to P3 . We may assume that H1 has another compo-
nent, otherwise H1 ⊆i P2 + P3 , in which case Theorem 10.1(viii) applies. Since H1 is 
(2P1 + 2P2)-free, it has at most one other component, which must be trivial. We con-
clude that H1 ∈ {P1 + 2P2,P1 + P2 + P3} . By Theorem  10.2(iv), we may assume 
that  H2 is 4P1-free, so H2 = 2P1 + P2 . Theorem  10.1(vi) or Open Problem  2.(iii) 
applies if H1 = 2P1 + P2 or P1 + P2 + P3 , respectively. This completes the proof for 
Case 6.

By Case 3 we may assume that H1 and H2 are both linear forests. By Cases 5 and 6, we  
may assume that they are both (2P2,P4)-free. Since, H1 and H2 are 2P2-free, they 
each contain at most one non-trivial component. Since they are P4-free, any such 
non-trivial component must be isomorphic to P2 or P3 . Therefore H1 and H2 must 
both be induced subgraphs of tP1 + P3 for some t ≥ 1 . In this case Theorem 10.1(iii) 
applies. This completes the proof. 	�  ◻



	 Algorithmica

1 3

7 � Conclusions

By combining known and new results, we determined the complexity of Graph 
Isomorphism in terms of polynomial-time solvability and GI-completeness for 
(H1,H2)-free graphs for all but six pairs (H1,H2) . This also led to a new class of 
(H1,H2)-free graphs whose clique-width is unbounded. In particular, we devel-
oped a technique for showing polynomial-time solvability of Graph Isomorphism 
for (2P1 + P3,H)-free graphs, which we illustrated for the H = P2 + P3 and H = P5 
cases, thus completing the classification for (2P1 + P3,H)-free graphs. To obtain 
full dichotomies for the complexity of Graph Isomorphism and the (un)bounded-
ness of clique-width on (H1,H2)-free graphs, we need to solve the six remaining 
open cases for Graph Isomorphism (see Open Problem 2) and five open cases for 
boundedness of clique-width (see Open Problem 1). We leave this as future work, 
but note that new techniques will be required to deal with these cases.

Acknowledgements  Research supported by the London Mathematical Society (SC7-1718-04), ANR 
projects HOSIGRA (ANR-17-CE40-0022) and GrR (ANR-18-CE40-0032), EPSRC (EP/K025090/1), 
the Leverhulme Trust (RPG-2016-258) and the MUNI Award in Science and Humanities of the Grant 
Agency of Masaryk university. An extended abstract of this paper appeared in the proceedings of WADS 
2019 [5]; the proceedings version did not include Theorem 3.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​
ses/by/4.0/.

References

	 1.	 Babai, L.: Graph isomorphism in quasipolynomial time [extended abstract]. Proc. STOC 2016, 
684–697 (2016)

	 2.	 Babai, L., Kantor, W.M., Luks, E.M.: Computational complexity and the classification of finite 
simple groups. Proc. FOCS 1983, 162–171 (1983)

	 3.	 Belmonte, R., Otachi, Y., Schweitzer, P.: Induced minor free graphs: Isomorphism and clique-
width. Algorithmica 80(1), 29–47 (2018)

	 4.	 Blanché, A., Dabrowski, K.K., Johnson, M., Lozin, V.V., Paulusma, D., Zamaraev, V.: Clique-
width for graph classes closed under complementation. SIAM J. Discrete Math. 34(2), 1107–
1147 (2020)

	 5.	 Bonamy, M., Dabrowski, K.K., Johnson, M., Paulusma, D.: Graph isomorphism for (H1,H2)-
free graphs: an almost complete dichotomy. In: Procedings of WADS 2019, LNCS 11646, pp. 
181–195 (2019)

	 6.	 Booth, K.S., Colbourn, C.J.: Problems polynomially equivalent to graph isomorphism. Technical 
Report CS-77-04, Department of Computer Science, University of Waterloo (1979)

	 7.	 Brandstädt, A., Dabrowski, K.K., Huang, S., Paulusma, D.: Bounding the clique-width of H-free 
split graphs. Discrete Appl. Math. 211, 30–39 (2016)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1 3

Algorithmica	

	 8.	 Brandstädt, A., Dabrowski, K.K., Huang, S., Paulusma, D.: Bounding the clique-width of H-free 
chordal graphs. J. Graph Theory 86(1), 42–77 (2017)

	 9.	 Brandstädt, A., Klembt, T., Mahfud, S.: P6 - and triangle-free graphs revisited: structure and 
bounded clique-width. Discrete Math. Theor. Comput. Sci. 8(1), 173–188 (2006)

	10.	 Colbourn, C.J.: On testing isomorphism of permutation graphs. Networks 11(1), 13–21 (1981)
	11.	 Dabrowski, K.K., Dross, F., Paulusma, D.: Colouring diamond-free graphs. J. Comput. Syst. Sci. 

89, 410–431 (2017)
	12.	 Dabrowski, K.K., Huang, S., Paulusma, D.: Bounding clique-width via perfect graphs. J. Com-

put. Syst. Sci. 104, 202–215 (2019)
	13.	 Dabrowski, K.K., Johnson, M., Paulusma, D.: Clique-width for hereditary graph classes. Lond. 

Math. Soc. Lect. Note Ser. 456, 1–56 (2019)
	14.	 Dabrowski, K.K., Lozin, V.V., Paulusma, D.: Clique-width and well-quasi-ordering of triangle-

free graph classes. J. Comput. Syst. Sci. 108, 64–91 (2020)
	15.	 Dabrowski, K.K., Paulusma, D.: Clique-width of graph classes defined by two forbidden induced 

subgraphs. Comput. J. 59(5), 650–666 (2016)
	16.	 de Ridder et al. H.N.: Information System on Graph Classes and their Inclusions, 2001–2020. http://

www.graph​class​es.org. Accessed 8 July 2020
	17.	 Grohe, M., Neuen, D.: Canonisation and definability for graphs of bounded rank width. Proc. LICS 

2019, 1–13 (2019)
	18.	 Grohe, M., Neuen, D., Schweitzer, P.: A faster isomorphism test for graphs of small degree. Proc. 

FOCS 2018, 89–100 (2018)
	19.	 Grohe, M., Neuen, D., Schweitzer, P., Wiebking, D.: An improved isomorphism test for bounded-

tree-width graphs. In: Proceedings of ICALP 2018, LIPIcs, vol. 107, pp. 67:1–67:14 (2018)
	20.	 Grohe, M., Schweitzer, P.: Isomorphism testing for graphs of bounded rank width. Proc. FOCS 

2015, 1010–1029 (2015)
	21.	 Kamiński, M., Lozin, V.V., Milanič, M.: Recent developments on graphs of bounded clique-width. 

Discrete Appl. Math. 157(12), 2747–2761 (2009)
	22.	 Kratsch, S., Schweitzer, P.: Graph isomorphism for graph classes characterized by two forbidden 

induced subgraphs. Discrete Appl. Math. 216, Part 1, 240–253 (2017)
	23.	 Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Fixed-parameter tractable canonization 

and isomorphism test for graphs of bounded treewidth. SIAM J. Comput. 46(1), 161–189 (2017)
	24.	 Lozin, V.V., Rautenbach, D.: On the band-, tree-, and clique-width of graphs with bounded vertex 

degree. SIAM J. Discrete Math. 18(1), 195–206 (2004)
	25.	 Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial time. J. Com-

put. Syst. Sci. 25(1), 42–65 (1982)
	26.	 Neuen, D.: Graph isomorphism for unit square graphs. In: Proceedings of ESA 2016, LIPIcs, vol. 

57, pp. 70:1–70:17 (2016)
	27.	 Olariu, S.: Paw-free graphs. Inf. Process. Lett. 28(1), 53–54 (1988)
	28.	 Ponomarenko, I.N.: Isomorphism problem for classes of graphs closed under contractions. Zapiski 

Nauchnykh Seminarov (LOMI) 174, 147–177 (1988). (in Russian, English translation in J. Soviet 
Math. 55(2), 1621–1643 (1991). https​://doi.org/10.1007/BF010​98279​)

	29.	 Schöning, U.: Graph isomorphism is in the low hierarchy. J. Comput. Syst. Sci. 37(3), 312–323 
(1988)

	30.	 Schweitzer, P.: Towards an isomorphism dichotomy for hereditary graph classes. Theory Comput. 
Syst. 61(4), 1084–1127 (2017)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

http://www.graphclasses.org
http://www.graphclasses.org
https://doi.org/10.1007/BF01098279

	Graph Isomorphism for -Free Graphs: An Almost Complete Dichotomy
	Abstract
	1 Introduction
	1.1 Our Results

	2 Preliminaries
	2.1 Clique-width

	3 New Polynomial-Time Results
	4 New GI-complete Results
	5 Clique-Width for Hereditary Graph Classes
	6 Classifying the Complexity of Graph Isomorphism for -free Graphs
	7 Conclusions
	Acknowledgements 
	References




