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Abstract
In this article we prove upper bounds for the Laplace eigenvalues 𝜆𝑘 below the
essential spectrum for strictly negatively curved Cartan–Hadamard manifolds.
Our bound is given in terms of 𝑘2 and specific geometric data of the manifold.
This applies also to the particular case of non-compactmanifoldswhose sectional
curvature tends to −∞, where no essential spectrum is present due to a theorem
of Donnelly/Li. The result stands in clear contrast to Laplacians on graphs where
such a bound fails to be true in general.
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1 INTRODUCTION

In 1979 Donnelly and Li [5] proved a criterion for discrete spectrum of the Laplacian on Riemannianmanifolds in terms of
decreasing sectional curvature. This complemented a result by Weyl for Schrödinger operators with increasing potential.
In particular, let𝑀 be a complete Riemannian manifold and let Δ be the Laplacian. We denote by 𝐾𝑟 the supremum of

the sectional curvatures at points outside of 𝐵𝑟(𝑥0), the ball of radius 𝑟 about some arbitrary base point 𝑥0, that is

𝐾𝑟 ∶= sup
{
𝐾(𝜎) ∣ 𝜎 ⊂ 𝑇𝑝𝑀 two-dimensional subspace, 𝑝 ∈ 𝑀∖𝐵𝑟(𝑥0)

}
. (1.1)

Then the theorem of Donnelly/Li reads as follows.

Theorem 1.1 (Donnelly/Li). Let𝑀 be a complete simply connected negatively curved Riemannian manifold. If 𝐾𝑟 → −∞

as 𝑟 → ∞, then Δ has purely discrete spectrum.

In this note we give an upper bound on the eigenvalues 𝜆𝑘 (listed with increasing order and counting multiplicities)
in terms of 𝑘2 and specific geometric data of the manifold. While this bound is a classical result in the case of compact
manifolds, it stands in clear contrast to case of Laplacians on graphs. Indeed, for graphs any asymptotics of eigenvalues
can occur, see e.g. [2].
Our result is based on so-called improved Cheeger inequalities which were introduced in the setting of finite graphs in

[7]. A dimension-free version of these improved Cheeger inequalities in themanifold setting was derived in [8] to prove an
eigenvalue ratio result for closed weighted manifolds of nonnegative Bakry–Émery curvature. In this article, we discuss
an application in the case of negative curvature: we use an adaption of the improved Cheeger inequalities for general
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non-closed manifolds (Theorem 2.1 below) to derive the following result on eigenvalues below the essential spectrum for
strictly negatively curved Cartan–Hadamard manifolds:

Theorem 1.2. Let𝑀 be a complete simply connected Riemannian manifold with strictly negative curvature, that is 𝐾0 < 0

(with 𝐾𝑟 defined in (1.1)). Then, we have for the 𝐿2-eigenvalues 𝜆0 < 𝜆1 ≤ … of the Laplacian below the essential spectrum

𝜆𝑘 ≤ 128𝜇2|𝐾0|(dim(𝑀) − 1)2
𝑘2, 𝑘 ≥ 1,

where

𝜇 = inf
𝑟,𝑠>0,𝑥∈𝑀

vol(𝐵𝑟+𝑠(𝑥) ⧵ 𝐵𝑠(𝑥))

𝑟2vol(𝐵𝑠(𝑥))
.

Remark 1.3. Using the result of Cheng [4], one can obtain a different upper bound as follows. For a ball 𝐵𝑟(𝑥) ⊂ 𝑀 with
lowerRicci curvature bound larger than (𝑛 − 1)𝑅with𝑅 < 0, and𝑛 = dim(𝑀), Cheng obtains for theDirichlet eigenvalues
of this ball

𝜆𝑘(𝐵𝑟(𝑥)) ≤ 𝑛2

4
|𝑅| + (

1 + 𝜋2
)(
1 + 24𝑛

)
𝑟2

𝑘2

for odd dimensions and an estimate with somewhat better constants for the even-dimensional case and all 𝑘 ≥ 0, see [4,
Corollary 2.3] and [3, Theorem 7, Chapter III]. (Note that Cheng proves this result for closed manifolds but his arguments
work also without modification in the case of the compact manifold 𝐵𝑟(𝑥) with Dirichlet boundary conditions. Note also
that under the assumptions of Theorem 1.2, we have 𝑅 ≤ 𝐾0.) By domain monotonicity, [3, Corollary 1, Chapter I], we
have for all eigenvalues 𝜆𝑘(𝑀) of𝑀 below the essential spectrum

𝜆𝑘(𝑀) ≤ 𝜆𝑘(𝐵𝑟(𝑥)).

This yields an upper estimate with different geometric constants.

2 PROOF OF OURMAIN RESULT

We introduce the following notation. For a Riemannian manifold𝑀 let vol be its volume measure and 𝑑 the Riemannian
distance. For a Borel set 𝐴 ⊆ 𝑀 the boundary measure vol+(𝐴) is defined as

vol
+
(𝐴) = lim inf

𝑟→0

vol(𝑂𝑟(𝐴)) − vol(𝐴)

𝑟
,

where 𝑂𝑟(𝐴) = {𝑥 ∈ 𝑀 ∣ 𝑑(𝑥, 𝑎) ≤ 𝑟 for some 𝑎 ∈ 𝐴}. If 𝐴 has positive volume and finite boundary measure, we let

𝜙(𝐴) =
vol

+
(𝐴)

vol(𝐴)

and 𝜙(𝐴) = ∞ otherwise. The Cheeger constant of a non-compact Riemannian manifold𝑀 is defined as (see [3, p. 95])

ℎ = ℎ(𝑀) = inf
𝐴⊆𝑀

𝜙(𝐴).

We deduce ourmain result, Theorem 1.2 above, from the following result for general manifolds which was shown in the
setting of closed manifolds, [8, Theorem 1.6]. The basic idea of the proof is an extension of the methods of [7, Lemma 4,
Proposition 2] developed for finite graphs to prove the so-called improved Cheeger inequalities.

Theorem 2.1. Let𝑀 be a complete Riemannian manifold. Then, we have for the 𝐿2-eigenvalues 𝜆0 ≤ 𝜆1 ≤ … of the Lapla-
cian below the essential spectrum

ℎ2𝜆𝑘 ≤ 128𝑘2𝜆20, 𝑘 ≥ 1.
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The proof of this theorem is based on an estimatewhichwas proven for compactmanifolds in [8, Theorem3.1]. Although
the proof carries over we recall the proof here for the convenience of the reader. To this end let 𝑓 ≥ 0 be a function on𝑀
that is supported on a set of positive measure and define

𝜙(𝑓) = inf
𝑡≥0 𝜙

(
𝑀𝑓(𝑡)

)
,

where 𝑀𝑓(𝑡) = {𝑥 ∈ 𝑀 ∣ 𝑓(𝑥) > 𝑡} is the level set of 𝑓 for 𝑡 ∈ ℝ. Furthermore, we denote the 𝐿𝑝 norm by ‖ ⋅ ‖𝑝 for
𝑝 ∈ [1,∞]. The following proposition is the essential ingredient in the proof of Theorem 2.1.

Proposition2.2 (Non-compact version of Theorem3.1 [8]). Let𝑀 be a completeRiemannianmanifoldwith𝐿2-eigenvalues

𝜆0 ≤ 𝜆1 ≤ …

of the Laplacian below the essential spectrum and let 𝑓 ≥ 0 be a bounded Lipshitz function in 𝐿2(𝑀). Then,

𝜙(𝑓) ≤ 8
√
2

𝑘√
𝜆𝑘

‖|∇𝑓|‖22‖𝑓‖22 , 𝑘 ≥ 1.

Proof. Herewe sketch the core arguments of the proof. Formore detailswe refer the reader to [8].We assume |∇𝑓| ∈ 𝐿2(𝑀)

since otherwise the asserted inequality is trivial.
For a finite set 𝜃 ⊂ ℝ, let 𝜓𝜃 ∶ ℝ → ℝ be defined by

𝜓𝜃(𝑠) = argmin
𝑡∈𝜃

|𝑠 − 𝑡|,
𝜂𝜃 ∶ ℝ → ℝ be defined by

𝜂𝜃(𝑠) = |𝑠 − 𝜓𝜃(𝑠)|,
and 𝜂𝜃,𝑓 ∶ 𝑀 → [0,∞)

𝜂𝜃,𝑓 = 𝜂𝜃◦𝑓 = |𝑓 − 𝜓𝜃◦𝑓|
be the difference of 𝑓 and its approximation 𝜓𝜃◦𝑓. Note that we have 0 ≤ 𝜂𝜃,𝑓 ≤ 𝑓.
Now, fix 𝑘 ∈ ℕ for the rest of the proof and let 𝑡0 = 0. Assume 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑗−1 are given. If there is 𝑡 ≥ 𝑡𝑗−1 such that

‖‖𝜂{𝑡𝑗−1,𝑡},𝑓1𝑓−1((𝑡𝑗−1,𝑡])‖‖22 = 1

𝑘𝜆𝑘
‖|∇𝑓|‖22 =∶ 𝐶0, (2.1)

then let 𝑡𝑗 be the smallest such 𝑡 ≥ 𝑡𝑗−1. Otherwise, let 𝑡𝑗 = ‖𝑓‖∞. Observe that
𝑓𝑗 = 𝜂{𝑡𝑗−1,𝑡𝑗},𝑓1𝑓−1((𝑡𝑗−1,𝑡𝑗]), 𝑗 ≥ 1,

are positive disjointly supported Lipshitz functions which are trivial whenever 𝑡𝑗 = ‖𝑓‖∞. Moreover, 𝑓𝑗 ∈ 𝐿2 since
0 ≤ 𝑓𝑗 ≤ 𝑓 and 𝑓 ∈ 𝐿2(𝑀). Furthermore, by the reverse triangle inequality we have ||𝑓𝑗(𝑥) − 𝑓𝑗(𝑦)|| ≤ |𝑓(𝑥) − 𝑓(𝑦)|,
𝑥, 𝑦 ∈ 𝑀. Therefore, as the supports of the 𝑓𝑗 are disjoint, we obtain

∞∑
𝑗=1

||∇𝑓𝑗||2 ≤ |∇𝑓|2
and therefore, ||∇𝑓𝑗|| ∈ 𝐿2(𝑀) whenever |∇𝑓| ∈ 𝐿2(𝑀). By completeness of the Riemannian manifold, the Laplacian is
essentially selfadjoint. Thus, the 𝑓𝑗 ’s are included in the form domain of the Laplacian since 𝑓𝑗, ||∇𝑓𝑗|| ∈ 𝐿2(𝑀). We show
the following claim.
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Claim: 𝑡2𝑘 = ‖𝑓‖∞.
In the case 𝑡2𝑘 < ‖𝑓‖∞, we infer by the arguments above and by the fact that in this case ‖‖𝑓𝑗‖‖22 = 𝐶0 for all 𝑗 = 1,… , 2𝑘

2𝑘∑
𝑗=1

‖‖||∇𝑓𝑗||‖‖22‖‖𝑓𝑗‖‖22 ≤ 1

𝐶0
‖|∇𝑓|‖22 = 𝑘𝜆𝑘.

By the assumption 𝑡2𝑘 < ‖𝑓‖∞, the functions 𝑓𝑗 are non-zero and therefore non-constant. Thus, there exist at least 𝑘 + 1

of the 𝑓𝑗 ’s such that

‖‖||∇𝑓𝑗||‖‖22‖‖𝑓𝑗‖‖22 ≤ 𝜆𝑘.

Hence, the inequality above for 𝑘 + 1 orthogonal functions stands in contradiction the Min-Max-Principle and the claim
is proven.
So let 𝜃 = {0 = 𝑡0 < 𝑡1 ≤ ⋯ ≤ 𝑡2𝑘 = ‖𝑓‖∞}. By (2.1) and what we have shown above, we obtain

‖𝑓 − 𝜓𝜃◦𝑓‖22 = 2𝑘∑
𝑗=1

‖‖𝜂{𝑡𝑗,𝑡},𝑓1𝑓−1((𝑡𝑗 ,𝑡])‖‖22 ≤ 2

𝜆𝑘
‖|∇𝑓|‖22. (2.2)

In order to estimate the 𝐿2 norm of 𝑓 − 𝜓𝜃◦𝑓 from below, we observe that the function ℎ ∶ 𝑀 → ℝ

ℎ(𝑥) = ∫
𝑓(𝑥)

0

𝜂𝜃(𝑡) 𝑑𝑡

has the same level sets as 𝑓 and therefore,

𝜙(𝑓) = 𝜙(ℎ) ≤ ‖|∇ℎ|‖1‖ℎ‖1 ,

where the last inequality follows from the area formula and the co-area inequality [1, Lemma 3.2] (for more details see [8,
Lemma 2.4]). Firstly, we find by the fundamental theorem of calculus and the chain rule and secondly by the Cauchy–
Schwarz inequality and 𝜂𝜃,𝑓 = 𝑓 − 𝜓𝜃◦𝑓 that

‖|∇ℎ|‖1 = ‖|∇𝑓|(𝜂𝜃◦𝑓)‖1 ≤ ‖|∇𝑓|‖2‖𝑓 − 𝜓𝜃◦𝑓|‖2.
Thirdly, is it elementary to estimate

ℎ ≥ 1

8𝑘
𝑓2

by choosing 𝑡𝑗 ≤ 𝑓(𝑥) ≤ 𝑡𝑗+1 for 𝑥 ∈ 𝑀 and estimatingh

ℎ(𝑥) ≥ 1

4

(
𝑗−1∑
𝑖=0

(
𝑡𝑖+1 − 𝑡𝑖

)2
+
(
𝑓(𝑥) − 𝑡𝑗

)2) ≥ 1

8𝑘

(
𝑗−1∑
𝑖=0

(
𝑡𝑖+1 − 𝑡𝑖

)
+
(
𝑓(𝑥) − 𝑡𝑗

))2

=
1

8𝑘
𝑓(𝑥)2.

These considerations together with (2.2) yield

𝜙(𝑓) ≤ ‖|∇ℎ|‖1‖ℎ‖1 ≤ 8𝑘
‖|∇𝑓|‖2‖𝑓 − 𝜓𝜃◦𝑓|‖2‖𝑓‖22 ≤ 8

√
2

𝑘√
𝜆𝑘

‖|∇𝑓|‖2
2‖𝑓‖22 ,

which finishes the proof. □

With the help of this proposition we are now in the position to prove Theorem 2.1.
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Proof of Theorem 2.1. We observe that for any 𝑛 we have

𝜙(𝑓) ≤ 𝜙(𝑓 ∧ 𝑛),

where 𝑓 ∧ 𝑛 = min{𝑓, 𝑛}. Moreover, by the proposition above we have

𝜙(𝑓 ∧ 𝑛) ≤ 8
√
2

𝑘√
𝜆𝑘

∫
𝑀
|∇𝑓 ∧ 𝑛|2 𝑑vol

∫
𝑀
|𝑓 ∧ 𝑛|2 𝑑vol .

Since 𝜙(𝑓) ≤ 𝜙(𝑓 ∧ 𝑛), |∇(𝑓 ∧ 𝑛)| ≤ |∇𝑓| and ∫
𝑀
|𝑓 ∧ 𝑛|2 𝑑vol → ∫

𝑀
|𝑓|2 𝑑vol = 1, 𝑛 → ∞, we conclude

𝜙(𝑓) ≤ 8
√
2

𝑘√
𝜆𝑘

∫
𝑀
|∇𝑓|2 𝑑vol

∫
𝑀
|𝑓|2 𝑑vol .

We choose 𝑓 to be an eigenfunction to 𝜆0. Then, 𝑓 is a Lipshitz function in 𝐿2(𝑀)with a definite sign which can be chosen
to be positive. Then, by the definition of the Cheeger constant and the proposition above, we have

ℎ
√
𝜆𝑘 ≤ 8

√
2𝑘𝜆0,

which finishes the proof. □

Finally, we present the proof of our main result, Theorem 1.2 in the Introduction.

Proof of Theorem 1.2. Let us first derive ℎ2 ≥ (dim(𝑀) − 1)2|𝐾0|: In the definition of the Cheeger constant, we can restrict
ourselves to sets 𝐴 with smooth boundary. Let 𝐴 ⊂ 𝑀 be such a set, let 𝑥 ∈ 𝑀 be a point with positive distance to 𝐴,
and let 𝑑𝑥 ∶ 𝑀 → [0,∞) be the distance function to 𝑥. Then 𝑑𝑥 is a smooth function on 𝐴 (since the exponential map
exp𝑥 ∶ 𝑇𝑥𝑀 → 𝑀 is a diffeomorphism). By the Laplacian Comparison Theorem (see, e.g., [6, (3)]), we have

Δ𝑀 𝑑𝑥(𝑥) ≥ (dim(𝑀) − 1)
√
−𝐾0 coth

(√
−𝐾0𝑑𝑥(𝑥)

)
.

This implies that Δ𝑀 𝑑𝑥(𝑥) ≥ (dim(𝑀) − 1)
√|𝐾0| for all 𝑥 ∈ 𝐴 and, therefore, on the one hand,

∫
𝐴

Δ𝑀 𝑑𝑥 𝑑vol ≥ (dim(𝑀) − 1)
√|𝐾0| vol(𝐴),

and, on the other hand, using the Gauß Divergence Theorem,

∫
𝐴

Δ𝑀 𝑑𝑥 𝑑vol = ∫
𝜕𝐴

⟨grad 𝑑𝑥, 𝜈⟩𝑑vol𝜕𝐴 ≤ vol
+
(𝐴),

where 𝜈 is the outward unit normal vector of 𝜕𝐴. Combining both inequalities leads to the proof of the above estimate of
the Cheeger constant ℎ.
Furthermore, let 𝜂 = (1 − 𝑑(⋅, 𝐵𝑠(𝑥))∕𝑟)+. Then,

𝜆0 ≤ ∫
𝑀
|∇𝜂|2 𝑑vol

∫
𝑀
|𝜂|2 𝑑vol =

vol(𝐵𝑟+𝑠(𝑥) ⧵ 𝐵𝑠(𝑥))

𝑟2(vol(𝐵𝑠(𝑥)) + ∫
(𝐵𝑟+𝑠(𝑥))⧵𝐵𝑠(𝑥)

(𝑟 − 𝑑(𝑦, 𝐵𝑠(𝑥))2 𝑑vol(𝑦))

≤ vol(𝐵𝑟+𝑠(𝑥) ⧵ 𝐵𝑠(𝑥))

𝑟2vol(𝐵𝑠(𝑥))
.

Hence, combining this with Proposition 2.1 we conclude the statement of the theorem. □
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