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ABSTRACT 

Behavioral interference between species can influence a wide range of ecological and 

evolutionary processes. Here we test foundational hypotheses regarding the origins and 

maintenance of interspecific territoriality, and evaluate the role of interspecific territoriality and 

hybridization in shaping species distributions and transitions from parapatry to sympatry in sister 

species of North American perching birds (Passeriformes). We find that interspecific territoriality is 

pervasive among sympatric sister species pairs, and that interspecifically territorial species pairs 
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have diverged more recently than sympatric non-interspecifically territorial pairs. None of the 

foundational hypotheses alone explains the observed patterns of interspecific territoriality, but our 

results support the idea that some cases of interspecific territoriality arise from misdirected 

intraspecific aggression while others are evolved responses to resource competition. The 

combination of interspecific territoriality and hybridization appears to be an unstable state 

associated with parapatry, while species that are interspecifically territorial and do not hybridize are 

able to achieve extensive fine- and coarse-scale breeding range overlap. In sum, these results 

suggest that interspecific territoriality has multiple origins and impacts coexistence at multiple 

spatial scales. 

 

Keywords: interspecific territoriality; interference competition; misdirected aggression; resource 

competition; passerine birds; sympatry 

 

INTRODUCTION 

Behavioral interference between species, such as interspecific courtship, mate guarding and 

territorial defense, can have considerable impacts on the ecology and evolution of co-occurring 

species (Robinson and Terborgh 1995; Amarasekare 2002; Gröning and Hochkirch 2008; Grether et 

al. 2009, 2013; Kishi and Nakazawa 2013; Drury et al. 2015). The causes of different types of 

behavioral interference, their impacts on species coexistence, and the timescale over which they 

operate are active areas of research (Laiolo 2013; Martin and Ghalambor 2014; Losin et al. 2016; 

Grether et al. 2017; Kyogoku and Sota 2017; Sottas et al. 2018). Recent empirical and theoretical 

work has documented influences of interspecific territoriality on species coexistence and evolution 

in diverse taxa (reviewed in Grether et al. 2017). Interspecific territoriality has been shown to drive 

species replacements (e.g., Duckworth and Badyaev 2007) and to accelerate competitive exclusion 

(e.g., Pasch et al. 2013), but it also appears to stabilize coexistence between resource competitors in 

some cases (e.g., Ovadia and Dohna 2003; Ziv and Kotler 2003). While these recent findings highlight 

an important role for interspecific territoriality in ecological and evolutionary processes, it is difficult 

to predict just how interspecific territoriality influences the dynamics of interacting species. Part of 

the challenge is that a general explanation for the causes of interspecific territoriality remains 

elusive.  

In theory, interspecific territoriality could evolve de novo between competing species for 

essentially the same reasons as intraspecific territoriality, but it also could arise as a byproduct of 

intraspecific territoriality when formerly allopatric species with similar territorial signals first come 

into contact. Regardless of how interspecific territoriality originates, selection in the zone of 

sympatry should strengthen adaptive responses to heterospecifics and eliminate maladaptive 

responses. Foundational hypotheses for the origin and persistence of interspecific territoriality posit 

that it is either an adaptive response to competition (see the resource competition, asymmetric 

competition, and reproductive interference hypotheses below) or a maladaptive byproduct of 

intraspecific territoriality (the misdirected aggression hypothesis).  

Under the resource competition hypothesis, interspecific territoriality evolves or persists 

between species with substantial niche overlap because territory holders benefit from the reduction 

in exploitative resource competition (Orians & Willson 1964; Cody 1969, 1973; Grether et al. 2009). 

In other words, under this hypothesis, interspecific territoriality is a mechanism of spatial resource 

partitioning that benefits dominant individuals of both species (Cody 1969, 1973; Grether et al. 
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2009). One variant of this hypothesis additionally predicts that interspecific territoriality should 

primarily be seen in structurally simple habitats (e.g., grassland) where the species are unable to 

diverge sufficiently in resource use to make interspecific territory defense unprofitable (Orians and 

Willson 1964). The asymmetric competition hypothesis also assumes strong resource competition 

but is based on the premise that only dominant individuals of dominant species benefit from 

interspecific aggression (MacArthur 1972). Thus, this hypothesis predicts that interspecific 

territoriality is more likely to occur when one species is behaviorally dominant over the other.  

While these first two hypotheses consider interspecific territoriality to be a consequence of 

resource competition, interspecific territoriality may also benefit species that engage in reproductive 

interference, such as hybridization. The reproductive interference hypothesis posits that 

interspecific territoriality can evolve or be maintained by selection arising from local mate 

competition between species that are incompletely reproductively isolated (e.g., due to 

indiscriminate male mate recognition; Payne 1980; Drury et al. 2015). This hypothesis has mainly 

been invoked to explain interspecific territoriality between species that are not resource 

competitors (Payne 1980; Drury et al. 2015), but mate defense and resource defense are both 

functions of intraspecific territoriality and the same might be true for some cases of interspecific 

territoriality.  

Finally, interspecific territoriality may not serve an adaptive purpose and instead have a net 

cost for both species. The misdirected aggression hypothesis assumes that interspecific territoriality 

arises as a byproduct of intraspecific territoriality and lowers the fitness of the aggressors (Orians & 

Willson 1964; Murray 1971). Such maladaptive behavior would not be expected to persist 

indefinitely. However, maladaptive interspecific territoriality may be observed if species have only 

recently come into contact or usually occupy different habitats and thus encounter each other 

infrequently (i.e., low syntopy; Losin et al. 2016).  

Determining which of these hypotheses explain(s) interspecific territoriality is important for 

building a general understanding of how interspecific territoriality affects the local coexistence and 

evolutionary dynamics of interacting species. Whether interspecific territoriality generally hinders or 

stabilizes local coexistence may also translate to patterns at broader geographic scales, such as the 

ability of species to co-occur in extensive sympatry. Previous studies on species interactions provide 

reasons to expect that interspecific territoriality could impact whether species are sympatric. 

Interspecific territoriality has been shown to impact range limits along elevational gradients 

(Jankowski et al. 2010; Pasch et al. 2013; Freeman et al. 2019). Additionally, other types of 

interactions between competitors, such as resource competition and hybridization, have been 

shown to constrain how quickly sister species across vertebrate groups become sympatric after 

allopatric speciation (Price 2010; Weir and Price 2011; Pigot and Tobias 2013; Laiolo et al. 2017).  

Whether interspecific territoriality is primarily maladaptive or adaptive leads to different 

expectations for how it impacts sympatry. If interspecific territoriality is a maladaptive byproduct of 

misdirected intraspecific aggression, it could reduce the rate at which parapatric species expand 

their ranges into broadly overlapping sympatry. This prediction is consistent with how resource 

competition and hybridization are thought to impact species range overlap. Alternatively, if 

interspecific territoriality stabilizes the local coexistence of closely related species, strong resource 

competitors, and/or hybridizing species, it could allow these species to transition more rapidly into 

sympatry than if they were not interspecifically territorial. For example, two allopatric species with 

extensive resource overlap could expand into sympatry without diverging in resource use if engaging 
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in interspecific territoriality allows them to spatially partition the limiting resource (Grether et al. 

2013). 

Although the foundational hypotheses for interspecific territoriality were inspired by 

observations in particular species pairs, developing a general understanding of the origins and 

maintenance of this behavior requires a comprehensive study across a broad taxonomic group. The 

wealth of information available on North American birds, including a long record of behavioral 

observations and species occurrences, makes this an ideal system for testing hypotheses about 

interspecific territoriality. We compiled field observations of interspecific territoriality and a variety 

of ecomorphological traits for the largest order of North American birds (Passeriformes). In Drury et 

al. (2020), we present a comparative analysis of territoriality between species pairs across the entire 

clade. That analysis shows that resource competition and reproductive interference are the primary 

evolutionary drivers of interspecific territoriality in passerine birds. Because that analysis includes 

many distantly related species pairs that have likely interacted for millions of years (average 

divergence time = 30.9 Ma), however, its results best characterize the persistence of interspecific 

territoriality over long timescales. What remain unclear are the origins of interspecific territoriality, 

including whether it can emerge as a maladaptive phenomenon. Addressing this question requires 

studying the drivers of interspecific territoriality among the most recently diverged species pairs. 

In this paper, we present a sister taxon-based analysis in which only the youngest 

interspecifically territorial species pairs of North American passerine birds are compared to non-

interspecifically territorial sister species pairs. Focusing on the youngest sympatric species pairs in 

the clade allows us to characterize how interspecific territoriality affects the dynamics of relatively 

recent species interactions, and therefore increases the likelihood of detecting patterns predicted by 

the misdirected aggression hypothesis. Considering that interspecific territoriality could arise and 

persist for different reasons in different species pairs, we deduced and tested for patterns predicted 

by the misdirected aggression hypothesis and each of the other hypotheses in combination (Figure 

1). Finally, we use the sister taxa data to test for effects of interspecific territoriality on species 

coexistence in sympatry.    

 

METHODS 

Species pairs identification and classification 

Our dataset consists of sister species of passerine birds that breed in North America and that 

overlap in breeding range. We identified sister species by sampling 104 trees from the posterior 

distribution of a North American passerine phylogeny (Hackett et al. 2008; Jetz et al. 2012) and 

selecting those that appeared as sister species in 90% or more of the phylogenies. Since allopatric 

sister species do not have the opportunity to be interspecifically territorial, we excluded species 

pairs that are allopatric in the breeding season according to 2016 and 2017 species distribution 

shapefiles from BirdLife International (www.birdlife.org). For each allopatric sister species pair, we 

selected the next most closely related species in the phylogeny that is sympatric with only one of the 

allopatric species to form a pair of closely related sympatric species. We only did this for one species 

from each allopatric pair to avoid sampling from non-independent nodes. We then created a 

maximum clade credibility tree from this posterior distribution in TreeAnnotator v1.8.4 (Suchard et 

al. 2018). Next, we calculated patristic distance between species from this phylogeny using the 

cophenetic.phylo function in the R package ape (Paradis et al. 2004). Due to recent taxonomic splits, 
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we could not calculate patristic distance for all species pairs using this method. We obtained the 

patristic distance for one such pair, Troglodytes pacificus and T. hiemalis, from the literature (Toews 

and Irwin 2008). The other two species pairs that lacked patristic distances were omitted from our 

analyses.  

We determined whether each species pair is interspecifically territorial with comprehensive 

literature searches using Web of Science, Birds of North America Online (Rodewald 2015), ProQuest 

Theses and Dissertations, and Google Scholar. We also contacted Birds of North America Online 

authors for additional behavioral observations. As in Losin et al. (2016), we considered a study 

sufficient evidence for interspecific territoriality if it contained at least two accounts of interspecific 

territorial aggression between unique individuals. Behaviors that qualified as interspecific territorial 

aggression include aggressive displays or countersinging, fighting, or chasing a heterospecific from a 

territory. We did not consider aggression over a food source or defense of a nest from a predator to 

be evidence of interspecific territoriality. Aggressive response to playbacks of territorial song and 

expansion of territory in response to removal of heterospecifics supported the classification of 

interspecific territoriality but were not required, since not all species pairs had been studied with 

these methods. If the behavior of both species in a pair had been studied together and no 

interspecific territoriality was reported, we classified that pair as non-interspecifically territorial. We 

omitted from our dataset any species pairs whose behavior had not been studied in sympatry (25 

pairs), with two exceptions: the Empidonax species E. difficilis and E. occidentalis and the 

Troglodytes species T. pacificus and T. hiemalis have only recently been recognized as separate 

species (Johnson 1980; Toews and Irwin 2008), and have been reported to have non-overlapping 

territories in sympatry, so we classified them as interspecifically territorial. We also excluded species 

pairs for which neither species in the pair was intraspecifically territorial (2 species pairs), or for 

which we lacked data on fine-scale breeding habitat overlap (1 species pair). A full list of species 

pairs can be found in Table S1.  

To determine whether species hybridize in the wild, we consulted McCarthy (2006) and 

searched the literature for newer reports of hybridization through 2018. We considered McCarthy’s 

(2006) “Natural Hybridization Reported” category as sufficient evidence for hybridization, although 

several species pairs in our dataset have been reported to have ongoing or extensive hybridization. 

We did not consider weaker categories of evidence (McCarthy’s “Hybridization Inferred” categories) 

or reports of hybridization in captivity to be sufficient evidence for classifying species as hybridizing 

in our analysis. 

To assess whether greater study effort increased the likelihood of species pairs being 

reported as interspecifically territorial, we used the number of records of each species pair in the 

Zoological Records database (Thomson Reuters, New York, NY) as a proxy for past research effort 

and used Mann-Whitney tests to compare interspecifically versus non-interspecifically territorial 

species. 

 

Breeding range and habitat overlap quantification 

We used two metrics to represent breeding season range overlap and habitat overlap of 

species pairs. First, we calculated the proportion of breeding range sympatry by dividing the area of 

overlap between BirdLife shapefiles by the breeding range area of the species with the smallest 

breeding range in each pair. However, BirdLife shapefiles were missing for two species pairs. We 

therefore also estimated sympatry using the Breeding Bird Survey (BBS; Sauer et al. 2017), a dataset 



 

 

 

This article is protected by copyright. All rights reserved. 

 

of transects run across North America during the breeding season since the 1960s to survey the 

number of birds observed. Each BBS route is run annually, with 50 stops along each route. We 

measured sympatry by dividing the number of routes shared by both species by the total number of 

routes where the species with the fewest routes was observed. To replace the missing Birdlife 

sympatry values with rescaled BBS sympatry estimates, we used predicted values from a zero-

intercept linear regression of the available Birdlife sympatry estimates on the BBS sympatry 

estimates (R2 = 0.69, df = 85, P < 0.0001). 

Our second measure of overlap was syntopy (Rivas 1964), a fine-scale measure of breeding 

habitat overlap within the region of sympatry, such that species with higher syntopy are more likely 

to occur in the same habitat at the same time within their breeding range. We measured syntopy by 

identifying BBS routes where both species in a breeding season were found and dividing the number 

of “shared” stops (where both species were observed) by the number of stops where either species 

was observed. For two sympatric species pairs without BBS data (Plectrophenax hyperboreus and 

Plectrophenax nivalis; Ammodramus caudacutus and Ammodramus nelsoni), we used rescaled 

measures of syntopy from eBird records (Sullivan et al. 2009) (Supplemental Analysis 1). 

 

Ecological trait quantification 

To determine whether interspecific territoriality can be predicted by species-level traits, we 

collected ecomorphological data for each species and calculated the absolute value of the difference 

between these traits for each species pair. We focused on male traits since males perform territorial 

displays and defense for all territorial species in our dataset. We collected mass and bill length 

(exposed culmen length) values from the Birds of North America Online or additional references 

(e.g., Oberholser 1974, Dunning 2008). To account for possible geographic variation in the traits, 

when possible we used measurements collected close to the location where interspecific 

territoriality was studied. If the bill length measurement we found for a species was a measurement 

from the nostril to the tip of the bill instead of the exposed culmen length, we used a linear 

regression equation based on species for which both types of measurements were available (R2 = 

0.985, df = 23, P < 0.0001) to predict exposed culmen length from the nostril-to-tip measurement.  

We categorized foraging guild overlap between species in a pair by calculating the number 

of foraging guild axes on which the species overlap based on de Graaf et al. (1985). Specifically, 

species were categorized by the food types, foraging techniques, and foraging substrates used 

during the breeding season, and each species pair was assigned a score (1 or 0) based on whether or 

not they overlap in all three axes. 

We categorized the habitat complexity of each species using descriptions from the Birds of 

North America Online and categories from Losin et al. (2016), with 1 representing a simple habitat 

such as a grassland, marsh, or tundra, 2 representing intermediate habitat, such as chaparral or 

forest edge, and 3 representing complex habitat such as deciduous forest.  

 

Quantification of territorial signal similarity 

To determine whether interspecific territoriality could be predicted by overlap in common 

territorial signals, we quantified species similarity in territorial song and plumage coloration. To 

assess similarity in song, we downloaded high quality sound files from xeno-canto 

(https://www.xeno-canto.org/) and the Cornell Macaulay Library (Table S2) that matched the 

description in the Birds of North America of the vocalization used by each species for territorial 

https://www.xeno-canto.org/
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advertisement and interactions. We categorized the size of the territorial repertoire for each species 

with descriptions in the Birds of North America, and determined the number of song files needed to 

capture repertoires of different sizes with a sensitivity analysis (Supplemental Analysis 2, Figure S1). 

For species with relatively small repertoires (fewer than 4 song types), we collected 2 representative 

song files, and for species with relatively large repertoires (4 or more song types), we collected 4 

song files. We performed noise reduction on sound files with background noise in Audacity version 

2.1.3 (http://web.audacityteam.org/), using starting values of noise reduction = 12, sensitivity = 6, 

frequency smoothing = 0. We then used the Audacity normalize function to standardize the 

amplitudes of all sound files. 

To assess similarity in song between the species in a pair, we used two approaches. First, we 

calculated a measure of song dissimilarity based on numerous song parameters. We used the R 

package warbleR (Araya-Salas and Smith-Vidaurre 2016) to extract acoustic parameters (Table S3) 

and then additionally calculated the number of notes, length of the longest note, total note 

duration, average note duration, longest pause between notes, and average pause length per song. 

We averaged parameters for the sound files for each species and performed principal component 

analysis (PCA; Figure S2) on these averaged parameters. We then calculated the Euclidean distance 

between all principal component scores for each species pair as a measure of song dissimilarity. 

Second, we used spectral cross-correlation analysis (Clark et al. 1987) to quantify similarity in 

the frequency-time structure of song files. Spectral cross-correlation incrementally time-shifts 

spectrograms and calculates the cross-correlation between the frequency-time matrices of the 

spectrograms at each increment. We used the xcor function in warbleR to perform spectral cross-

correlation analysis between all song files in a species pair, and averaged the maximum cross-

correlation value from those comparisons as a second metric of song similarity. These two song 

measures are correlated (r = -0.37, N = 45, P = 0.011), but are not redundant/collinear (VIFPCA range = 

1.16 – 1.93, VIFcross-correlation range = 1.65 – 2.02 across all models). 

To quantify similarity in plumage coloration and pattern, we recruited volunteers to score 

images of birds based on how dissimilar they appeared. We obtained digital images of each species 

from two field guides (Sibley 2000; Dunn and Alderfer 2006) and asked participants to rank the 

plumage dissimilarity of each species pair on a 0-4 scale using those images. We partitioned the 

images into seven comparison sets that we distributed with Survey Gizmo 

(https://www.surveygizmo.com) through social media and birding groups. Each comparison set 

started with a training set of 4 species pairs to help acquaint volunteers with the dissimilarity scale 

and then presented a series of approximately 30 pairs of images, with images repeated across and 

within comparison sets, and a test for colorblindness. We filtered out incomplete responses and 

responses from participants who failed the color vision test. After obtaining at least 10 complete 

responses per comparison set, we calculated the mean dissimilarity score for each species pair. 

Plumage dissimilarity scores were strongly correlated between field guides (Spearman correlation   

= 0.79, N = 14), within comparison sets (  = 0.92, N = 14), across comparison sets (  = 0.85, N = 14), 

and with a plumage distance metric based on spectrally calibrated photos of bird specimens and an 

avian color vision model (  = 0.73, n = 104; Supplemental Analysis 3; Figure S3) 

 

Assessing ecological predictors of interspecific territoriality 

We first used univariate tests to determine whether the trait differences (such as song 

similarity or bill length difference) within interspecifically territorial species pairs differed from non-

http://web.audacityteam.org/
https://www.surveygizmo.com/


 

 

 

This article is protected by copyright. All rights reserved. 

 

interspecifically territorial species pairs. Because the potential to detect such differences depends on 

the level of variability among sister species, we calculated coefficients of variation for traits 

measured on a ratio scale and coefficients of nominal variation for binary traits (Kvålseth 1995). 

To assess whether a single hypothesis explained the observed pattern of interspecific 

territoriality, we ran a generalized linear model with interspecific territoriality as a binomial response 

variable and the ecological, phenotypic, and behavioral traits in Table 1 as the predictor variables: 

hybridization (presence or absence), overlap in all three foraging niche axes (yes or no), and six 

continuous variables: syntopy, ecomorphological differences (mass and bill length), song similarity 

(PCA distance and maximum spectral cross-correlation), and plumage similarity.  

To test the hypothesis that interspecific territoriality persists among ecological competitors 

living in simple habitats (Orians and Willson 1964), we performed a Fisher’s exact test to evaluate 

whether interspecific territoriality depends on the complexity of the habitat. 

To determine if interspecific territoriality arises in diverse ecological circumstances, we 

examined whether multiple hypotheses explain the occurrence of interspecific territoriality in the 

species pairs. To do this, we added to the generalized linear model interactions between syntopy 

and variables that are proxies for resource or mate competition based on the following logic: 

maladaptive interspecific territoriality, arising from misdirected aggression, should not persist 

between species that overlap extensively in breeding habitat and encounter each other frequently, 

whereas interspecific territoriality that is adaptive because it enables coexistence between 

competitors could persist between such species (Figure 1A; Losin et al. 2016). Thus, the presence of 

species that engage in interspecific territoriality, are strong competitors, and are highly syntopic 

supports the view that interspecific territoriality is adaptive, and interspecific territoriality that is 

associated with low levels of syntopy supports the view that this behavior is maladaptive (Figure 1). 

To evaluate whether the misdirected aggression hypothesis and the reproductive 

interference hypothesis each explain a subset of the cases of interspecific territoriality, we included 

an interaction term between syntopy and hybridization. Under these two hypotheses, interspecific 

territoriality should primarily occur between non-hybridizing species with infrequent encounters or 

between hybridizing species that encounter each other frequently (Figure 1B). To test whether the 

misdirected aggression hypothesis and the resource competition hypothesis each explain a subset of 

the cases of interspecific territoriality, we included an interaction term between syntopy and the 

number of overlapping foraging guild axes. Under these two hypotheses, interspecific territoriality 

should primarily occur between species that encounter each other infrequently or between species 

with very similar ecological niches and breeding habitats (Figure 1C). Size asymmetry could be a 

proxy for exploitative resource competition (Losin et al. 2016), but also for whether one species is 

likely to dominate the other in aggressive interactions (Martin and Ghalambor 2014; Martin et al. 

2017; Miller et al. 2017; Chock et al. 2018). Since sister species are on average very phenotypically 

similar, mass difference may not be a strong proxy for species differences in niche overlap, but even 

a small difference in size could impact aggressive interactions. Thus, we assume that size asymmetry 

is a better proxy for asymmetry in aggressive dominance than for resource competition in our 

dataset, and include an interaction term between syntopy and mass difference to test whether the 

misdirected aggression and asymmetric competition hypotheses each explain a subset of the cases 

of interspecific territoriality. Under these two hypotheses, interspecific territoriality should primarily 

occur between species that encounter each other infrequently or that occupy the same breeding 

habitats and are asymmetric in size (Figure 1D). While it is possible that there could be additional or 
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more complex interactions that describe the occurrence of interspecific territoriality in these 

species, we selected these interactions based on our hypothesis framework. 

For each of these linear models, we ran a second generalized linear model that included 

patristic distance as a predictor variable to control for differences in time since species diverged.  

 

Modeling transitions to sympatry 

We used two approaches to test whether interspecific territoriality or the combination of 

interspecific territoriality and hybridization affects the degree to which species pairs are sympatric. 

The first approach assessed the effect of these behaviors on the percent of breeding range overlap 

using generalized linear models. The second discretized the percent of breeding range overlap into 

the categories of parapatry and sympatry, and estimated the probability of species pairs 

transitioning from parapatry to sympatry.  

In the first approach, we examined whether interspecific territoriality impacts sympatry 

using two generalized linear models with percent breeding range overlap as the response variable 

(using the R package betareg; Cribari-Neto and Zeileis 2010). The first model included interspecific 

territoriality, hybridization, and patristic distance as predictors to examine the effect of interspecific 

territoriality on sympatry while controlling for hybridization and divergence time, since extensive 

overlap in sympatry is positively associated with divergence time and the degree of reproductive 

isolation in other sister taxa (Weir and Price 2011; Pigot and Tobias 2013; Laiolo et al. 2017). In the 

second model, we added an interaction term between interspecific territoriality and hybridization to 

assess whether the effect of interspecific territoriality on the amount of sympatry depends on 

whether species hybridize. If interspecific territoriality is an overall costly behavior, the combination 

of hybridization and interspecific territoriality could hinder species’ ability to co-occur in extensive 

sympatry. If instead interspecific territoriality is an adaptive response to reproductive interference, it 

might enable hybridizing species to achieve broader sympatry than if they did not engage in 

interspecific territoriality. 

We complemented this approach by also constructing two sets of models based on Shi et al. 

2018 to estimate the probability of sister species transitioning from parapatry to sympatry. The first 

set of models assumes that the probability of achieving sympatry is affected by our covariates 

(either interspecific territoriality or the combination of interspecific territoriality and hybridization), 

but not divergence time. The second set of models assumes that divergence time does impact the 

probability of sympatry, with this effect potentially differing by the covariate. These models assume 

allopatric speciation, which is thought to be the predominant mode of speciation in birds (Mayr 

1942; Coyne and Orr 2004; Phillimore et al. 2008), and that following speciation, species transition 

from allopatry to parapatry before coming into broadly overlapping secondary sympatry (Cooney et 

al. 2017). Because these models require species pairs to be classified as either parapatric or 

sympatric, we tested a range of values of percent breeding range overlap (in 5% increments 

between 20% and 65%) to serve as a cutoff value between parapatric and sympatric distributions, as 

in Cooney et al. (2017). We only considered transitions from parapatry to sympatry and not from 

allopatry to sympatry because it is not possible for allopatric species pairs to exhibit behavioral 

interference.  

Finally, since the range of divergence times in a dataset can impact the generalization of 

how divergence time relates to sympatry from that dataset to other systems, we examined the 

range of phylogenetic distances in our dataset relative to other studies of sympatry in avian sister 
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species (Supplemental Analysis 5). To determine whether the species pairs in our dataset are older 

than average passerine sister species, we compared the phylogenetic distances between species 

pairs in our dataset to those of randomly sampled passerine sister species pairs (Supplemental 

Analysis 5, Figure S4). 

All data processing and statistical analyses were performed in R version 3.5.0 (R Core Team 

2019). All data and code to recreate analyses are deposited in the Dryad Digital Repository: 

https://doi.org/10.5068/D11T2D (Cowen et al. 2020).  

 

RESULTS 

Data Summary 

In our dataset of true North American passerine sister species (n = 75 pairs), 63 (84%) pairs 

overlap in breeding range, with average range overlap of 44.2% of the range of the species with the 

smaller range. Of those, 35 (56%) are sympatric, defined as having at least 20% breeding range 

overlap. Only 12 sister species pairs are allopatric, and the remaining 28 are parapatric (< 20% 

breeding range overlap). After replacing allopatric sister species with the most closely related 

sympatric or parapatric species pairs, we were left with 71 phylogenetically independent pairs of 

closely related species. We were able to classify 48 of the 71 species pairs as interspecifically 

territorial or not. Excluding species that lacked information on patristic distance or breeding range 

overlap, our final dataset consisted of 45 sympatric or parapatric species pairs. Of those, 21 pairs 

(47%) are interspecifically territorial.  

In general, the species pairs in our dataset have similar plumage and song and overlap 

greatly in foraging guild, and also have low coefficients of variation for these variables (Table 2; 

coefficient of nominal variation for foraging guild overlap = 0.53, with 73% of species pairs 

overlapping in all axes). The paired species vary most in morphological trait differences, syntopy, and 

sympatry (Table 2), and are relatively evenly divided across the categories of interspecifically 

territorial/non-interspecifically territorial and hybridizing/non-hybridizing (coefficient of nominal 

variation = 0.93 and 0.8, respectively). The average divergence time between species pairs is 4.7 Ma 

(range = 0.4 Ma – 34 Ma; Figure 2). 

To assess the likelihood of there being unreported cases of interspecific territoriality in our 

dataset, we examined whether study effort predicted the probability of species pairs being 

categorized as interspecifically territorial, and found that indeed it did. There were more records in 

the Zoological Records database for species pairs classified as interspecifically territorial than for 

species pairs classified as non-interspecifically territorial (range1 = 0 – 53; range2 = 3 – 105; median1 = 

7; median2 = 15; Mann-Whitney test, n1 = 24, n2 = 21, P = 0.015). This suggests that additional study 

of some of the species pairs currently classified as non-interspecifically territorial could uncover 

evidence that they do engage in interspecific territoriality. 

 

Ecological predictors of interspecific territoriality 

Interspecifically territorial species pairs are more closely related than non-interspecifically 

territorial species pairs (Table 2; Figure 2), but species pairs in these two categories do not differ 

significantly in territorial signals, morphology, syntopy, sympatry (Table 2), hybridization (15 of 21 

interspecifically territorial vs. 12 of 24 non-interspecifically territorial species pairs hybridize, Fisher’s 

exact test, P = 0.22), or foraging guild (15 of 21 interspecifically territorial vs. 18 of 24 non-

interspecifically territorial species pairs overlap in all foraging axes, Fisher’s exact test, P = 1).  
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The generalized linear models without interaction terms that we used to assess support for 

the four hypotheses separately (Table 1) yielded no significant predictors of interspecific 

territoriality (Tables S4, S5). However, in models with an interaction between hybridization and 

syntopy, the interaction term was significant: among hybridizing species, interspecifically territorial 

species are less syntopic than non-interspecifically territorial species, whereas among non-

hybridizing species, interspecifically territorial species are more syntopic than non-interspecifically 

territorial species (Figure 3A, Table 3, S6). The results for hybridizing species are consistent with the 

misdirected aggression hypothesis but not with the reproductive interference hypothesis (Table 1, 

Figure 1B), while the results for the non-hybridizing species are consistent with the resource 

competition or the asymmetric competition hypotheses (Figure 1C, 1D). 

The models with an interaction between foraging guild overlap and syntopy yielded no 

significant terms (Tables S7, S8). In the models with an interaction between mass difference and 

syntopy, however, the interaction term emerged as positively associated with interspecific 

territoriality, regardless of phylogenetic correction, suggesting support for the misdirected 

aggression and the asymmetric competition hypotheses (Figure 3B, Tables 4, S9).  

In contrast to Orians and Willson’s (1964) prediction, habitat complexity did not differ 

between interspecifically territorial and non-interspecifically territorial species pairs (Fisher’s exact 

test, P = 0.17), with most interspecifically territorial species pairs (32 out of 42 pairs we could score) 

occurring in complex or intermediate habitats. 

 

Transitions to sympatry 

The regression models we used to examine whether interspecific territoriality impacts the 

extent of breeding range sympatry suggested that the interaction of interspecific territoriality and 

hybridization may predict the percent of breeding range overlap; species that both are 

interspecifically territorial and hybridize appear to have narrower breeding range overlap relative to 

other species in the dataset, although this was not statistically significant (P = 0.07; Table S11; Figure 

4). Interspecific territoriality on its own, controlling for hybridization and patristic distance, did not 

predict the degree of breeding range overlap, nor did patristic distance on its own (Table S11). 

The approach we used to assess the probability of occurring in sympatry yielded similar 

results: the best model for describing the probability of sympatry included the interaction between 

interspecific territoriality and hybridization and did not include divergence time, regardless of the 

threshold of parapatry-sympatry considered (Tables S12-S18).  

The true sister species pairs in our dataset are not significantly older than random samples 

of passerine sister species pairs worldwide (Figure S4; Supplemental Analysis 5). 

 

DISCUSSION 

We found that interspecific territoriality occurs in almost half of all sympatric sister species 

of North American passerine birds. This finding alone suggests that interspecific interference 

competition ought to be an important consideration for researchers studying distributional patterns 

and diversification in birds. In this light, it is relevant to ask: is interspecific territoriality a 

maladaptive byproduct of intraspecific territoriality that reduces the prospects of species coexisting 

(Murray 1971) or instead is it an evolved (adaptive) mechanism of spatial resource partitioning that 

stabilizes coexistence (Grether et al. 2013)? Our results indicate that interspecific territoriality has 
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both maladaptive and adaptive origins, and has important consequences for whether species can be 

extensively sympatric. 

Consistent with all four hypotheses (Table 1), we found that interspecifically territorial sister 

species are more closely related than non-interspecifically territorial sister species, despite the 

shallow timescale involved. Beyond that, however, none of the foundational hypotheses’ specific 

predictions held up across the entire clade. Instead, we found evidence that multiple hypotheses 

together could explain the distribution of interspecific territoriality.  

 

Multiple origins of interspecific territoriality 

Our approach for evaluating support for multiple hypotheses (Figure 1) generated two key 

findings. First, we found that interspecifically territorial species pairs that are low in syntopy (i.e., 

overlap very little in habitat) are on average more similar in size than interspecifically territorial 

species pairs that frequently co-occur in the same habitat (Figure 3B). This result is consistent with 

the misdirected aggression and asymmetric competition hypotheses each explaining a subset of 

cases (Figure 1D). Support for these hypotheses implies that interspecific territoriality can arise 

between species that are phenotypically similar and rarely encounter each other, and can also arise 

between species that frequently encounter each other and compete for resources, especially when 

one of the species dominates and benefits from interspecific territorial interactions. This is the first 

evidence for either of these two hypotheses in a comparative study.  

Our interpretation that relatively large differences in body mass among highly syntopic 

species support the asymmetric competition hypothesis assumes that body size asymmetries are 

proxies for asymmetries in aggressive dominance, an assumption that warrants further empirical 

study. While larger species indeed often dominate aggressive interactions between closely related 

species (Martin and Ghalambor 2014; Martin et al. 2017; Chock et al. 2018; Freeman 2019), we 

lacked sufficient data to verify whether this was true of the species pairs in our study (Supplemental 

Analysis 4). We encourage future field studies of interspecific territoriality to document which 

species instigate and/or dominate observed interspecific territorial interactions, as this would more 

clearly characterize the role of aggressive asymmetries in the origin and maintenance of interspecific 

territoriality. Such data could also be valuable for predicting evolutionary and ecological outcomes of 

interspecific interactions (e.g., Martin and Bonier 2018), just as asymmetries in exploitative 

competition or reproductive interference can impact species coexistence (Tilman 1980; Amarasekare 

2002; Kishi and Nakazawa 2013). 

Even if size difference in closely related North American passerines does not predict which 

species dominates territorial interactions, size could still play an important role in the emergence of 

interspecific territoriality as an adaptive response to resource competition. For example, large 

differences in size could indicate asymmetric efficiency at exploiting a common limiting resource 

(Persson 1985), and interspecific territoriality could provide enough of an advantage to the less 

efficient resource exploiter for the two species to coexist (Grether et al. 2013). Alternatively, our 

finding that highly syntopic pairs of interspecifically territorial species tend to be more dissimilar in 

size than less syntopic species could represent divergence in morphology driven by ecological 

character displacement.  

The second key result from our study is that hybridizing species are more likely to be 

interspecifically territorial when they rarely encounter each other (Figure 3A). This does not support 

the hypothesis that interspecific territoriality is generally an adaptive response to reproductive 

interference among sister passerine birds. Instead, it suggests that many sister species engage in 
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high levels of behavioral interference (both interspecific territoriality and hybridization) that is 

overall costly and might eventually be eliminated by agonistic character displacement (Grether et al. 

2017). The presence of non-hybridizing interspecifically territorial species that frequently co-occur in 

time and habitat, however, suggests that interspecific territoriality may also arise as an adaptive 

response to resource competition among species that overlap broadly in breeding habitat.  

These two key findings together suggest that the combination of hybridization and 

interspecific territoriality in closely related species is an unstable state that only persists when 

species have low encounter rates, but that in the absence of hybridization, interspecific territoriality 

can mediate resource partitioning among highly syntopic species, especially when one species is 

much larger in body size than the other. This interpretation has an important caveat: if the 

misdirected aggression and resource competition hypotheses together accounted for the cases of 

interspecific territoriality we observed in sister passerine species, we would expect to see a positive 

interaction between foraging guild overlap and syntopy (Figure 1C), but we did not find such an 

association (Tables S7, S8). This might be due to low variation in the foraging guild metric, since most 

species pairs in our dataset overlapped in all three foraging guild axes. Moreover, foraging guild may 

be a poor predictor of actual resource competition between passerines, as recent work has shown 

that species in distinct foraging guilds can overlap substantially in resource use (Kent and Sherry 

2020).  

 

Origins, persistence, and impacts of interspecific territoriality in context 

At the level of the entire clade of North American passerine birds, in a study that included 

territoriality between species from different genera and even different families, Drury et al. (2020) 

found clear evidence that interspecific territoriality is an adaptive response to resource competition 

and reproductive interference. In this paper, we focused on the youngest sympatric species in this 

clade, and found evidence that the asymmetric competition and the misdirected aggression 

hypotheses together explain the origins of interspecific territoriality. 

That we found evidence for the misdirected aggression hypothesis while Drury et al. (2020) 

did not can be explained by the difference in divergence times considered in the two datasets (mean 

divergence time of the species pairs = 30.9 Ma in Drury et al. (2020) and 4.7 Ma in this paper). 

Although interspecific territoriality that originates as misdirected intraspecific aggression could occur 

in a dataset of mostly distantly related species, detecting it in a dataset of sister species is much 

more likely for two reasons. First, territoriality between species that arises due to misdirected 

aggression and is costly for both species is unlikely to persist over long evolutionary timescales as 

species interact frequently and evolve mechanisms to discriminate between conspecifics and 

heterospecifics (Figure 1A). Interspecific territoriality that does persist over long timescales is more 

likely to be adaptive for one or both species (Figure 1A). Second, species that come into contact after 

a long period of divergence in allopatry are unlikely to make mistakes in competitor recognition 

because territorial signals generally diverge over time. Thus, interspecific territoriality that arises 

after long divergence times would generally evolve de novo as an adaptive response to competition. 

By contrast, secondary contact between sister species could lead to misdirected aggression since 

these species are often quite similar phenotypically.  

Having shown that interspecific territoriality is common among North American passerines, 

we asked how it affects breeding season sympatry to determine whether it shapes species 

coexistence at larger spatial scales. Our “transitions to sympatry” analysis reveals that while neither 

interspecific territoriality nor hybridization alone prevents extensive sympatry (Figure 4, Table S11), 
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the combination of these two forms of behavioral interference might prevent closely related species 

from becoming extensively sympatric. Furthermore, we did not find that divergence time predicts 

whether species are in sympatry (Table S11). This contrasts with patterns found in other avian 

groups of similar age (e.g., ovenbirds, Tobias et al. 2014; Old World warblers, Price 2010; 

Supplemental Analysis 5), but might be consistent with evidence that waiting times to sympatry are 

relatively short in temperate North America (Weir and Price 2011; Weir and Price 2019).  

Taken together, our findings lend insight into the important role of interspecific territoriality 

in the early stages of secondary contact following allopatric speciation. Our results point to a 

possible stage in the speciation process of secondary contact between closely related species that 

treat each other as competitors and mates, thus remaining in parapatry until they diverge 

sufficiently in competitor and mate recognition. Other closely related species, however, have 

achieved breeding range sympatry and extensive fine-scale breeding range overlap along with, and 

perhaps in part because of, interspecific territoriality. We found that interspecific territoriality is 

common among closely related species of passerine birds, but that even at the tips of the phylogeny, 

the ecological circumstances associated with interspecific territoriality are diverse. Our work 

suggests that the evolutionary stability of interspecific territoriality may also vary across taxa, and 

calls for additional empirical research to further improve our understanding of how interspecific 

territoriality arises and contributes to the evolution and coexistence of animal species. 

Figures Captions and Tables 

 



 

 

 

This article is protected by copyright. All rights reserved. 

 

Figure 1. Predicted results if more than one hypothesis explains the pattern of interspecific 

territoriality observed across closely related species. Arrows identify outcomes consistent with a given 

hypothesis. (A) Whether maladaptive interspecific territoriality could persist depends on the degree 

of overlap in breeding habitat (i.e., syntopy). (B) If the misdirected aggression and reproductive 

interference hypotheses each account for a subset of cases of interspecific territoriality, interspecific 

territoriality should primarily be found between species that rarely encounter each other (low 

syntopy) or between hybridizing species that encounter each other frequently (high syntopy). The 

reproductive interference hypothesis further predicts that hybridization hinders  extensive co-

occurrence, resulting in low syntopy among hybridizing species that do not also engage in 

interspecific territoriality. (C) Under the misdirected aggression and the resource competition 

hypotheses, interspecific territoriality should primarily be found between species that encounter each 

other infrequently (low syntopy) or between species with similar ecological niches and breeding 

habitats (high syntopy). The resource competition hypothesis further predicts a negative relationship 

between niche overlap and syntopy among non-interspecifically territorial species. (D) Under the 

misdirected aggression and asymmetric competition hypotheses, interspecific territoriality occurs 

between species that either are high in syntopy, with one species dominating aggressive interactions, 

or that are low in syntopy. 
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Figure 2. Interspecifically territorial sister species (red) are separated by shorter patristic distances 

(shaded branches; Ma), on average, than non-interspecifically territorial sister species (dark gray).  
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Figure 3. Interaction plots showing that (A) interspecifically territorial species that hybridize are less 

syntopic than non-interspecifically territorial species that hybridize, while interspecifically territorial 

species that do not hybridize are more syntopic than non-interspecifically territorial species that do 

not hybridize; (B) interspecifically territorial species (red) are more similar in size when low in syntopy 

than when high in syntopy, while the reverse is true for non-interspecifically territorial species (gray). 

Shading represents 95% confidence intervals. Mass difference and syntopy are both scaled to have a 

mean of zero and standard deviation of 1. 

 

Figure 4. Interaction plot depicting the relationship between breeding range overlap and the 

interaction between interspecific territoriality and hybridization (also see Table S11).  

 

 
 
Table 1. Direction of association† between predictor variables and interspecific territoriality, as predicted by four 

hypotheses. 

 
Misdirected 
aggression 

Adaptive for 
resource 
competition 

Adaptive for 
reproductive 
interference 

Adaptive for 
asymmetric 
competition 

Patristic distance – – – – 

Plumage dissimilarity – – –  

Song similarity + + +  

Foraging guild overlap  +  + 

Bill length difference  –  – 
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Mass difference  –  + 

Hybridization +  +  

Syntopy – + + + 
†
+, positive association; –, negative association 

 

Table 2. Univariate comparisons between interspecifically territorial (I.T.) species pairs (N = 20) and non-

interspecifically territorial (non-I.T.) species pairs (N = 25), and coefficients of variation.  

  Non-I.T. pairs  I.T. pairs    

Variable Transformation Mean SE  Mean SE t Pt-test CV 

Patristic distance log 2.10 0.04  1.44 0.04 2.35 0.012 117.86 

Song similarity (SPCC)  0.34 0.01  0.40 0.01 -1.61 0.058 35.68 

Song dissimilarity (PCA)  5.77 0.08  4.91 0.09 1.53 0.067 35.33 

Mass difference log(x + 0.01) 1.16 0.07  0.69 0.08 0.89 0.189 332.87 

Plumage dissimilarity  1.76 0.04  1.78 0.04 -0.09 0.535 49.85 

Syntopy log(x + 0.01) -3.59 0.02  -3.57 0.04 -0.09 0.536 95.49 

  Median Range  Median Range  PMann-

Whitney 

CV 

Bill difference log(x + 0.01) 0.28 -4.61 – 2.94  -0.09 -4.61 – 1.51  0.120 159.06 

Sympatry sqrt 0.79 0.14 – 0.98  0.54 0.05 - 1  0.093 61.93 

 

 
Table 3. Generalized linear model predicting interspecific territoriality with interaction between syntopy and 

hybridization. 

Variable Estimate SE z P 

(Intercept) -3.31 2.38 -1.39 0.165 

Syntopy 5.60 2.81 2.00 0.046 

Hybridization 3.72 2.08 1.79 0.074 

Plumage dissimilarity 0.36 0.43 0.83 0.409 

Song dissimilarity (PCA) -0.32 0.50 -0.63 0.526 

Song similarity (SPCC) -0.23 0.55 -0.42 0.676 

Mass difference -0.15 0.41 -0.37 0.71 

Bill length difference -0.02 0.44 -0.04 0.965 

Guild overlap -0.19 1.23 -0.15 0.878 

Syntopy x hybridization -6.17 2.85 -2.16 0.031 

 

 

Table 4. Generalized linear model predicting interspecific territoriality with interaction between syntopy and mass 

difference. 

Variable Estimate SE z P 

(Intercept) -0.27 0.91 -0.29 0.769 

Syntopy -0.02 0.39 -0.06 0.956 

Mass difference -0.15 0.57 -0.27 0.791 

Guild overlap -0.64 1.06 -0.60 0.546 
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Hybridization 0.79 0.86 0.92 0.359 

Plumage dissimilarity 0.41 0.42 0.97 0.33 

Song dissimilarity (PCA) -0.42 0.39 -1.08 0.278 

similarity (SPCC) 0.17 0.50 0.33 0.74 

Bill length difference 0.06 0.50 0.12 0.907 

Syntopy x mass difference  1.80 0.75 2.41 0.016 
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