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Abstract
Aim: Global declines in the populations of migratory species have been attributed 
largely to climate change and anthropogenic habitat change. However, the relative 
contribution of these factors on species’ breeding and non-breeding ranges is un-
clear. Here, we present the first large-scale assessment of the relative importance of 
climatic conditions and land cover on both the breeding and non-breeding grounds in 
driving the long-term population trends of migratory species.
Location: Europe and Africa.
Methods: We use data on the long-term population trends of 61 short- and 39 long-
distance migratory species of European breeding birds. We analyse these population 
trends in relation to changes in climate and land cover across species’ breeding and 
non-breeding ranges over a 36-year period, along with species’ migratory behaviour.
Results: The population trends of European migratory birds appear to be more 
closely related to changes in climate than changes in land cover on their breeding 
grounds, but the converse is true on their non-breeding grounds. While improve-
ments in climate suitability across the breeding ranges of short-distance migrants led 
to increasing population trends, the same was not true for long-distance migrants. 
The combined effects of changes in climate and land cover account for approximately 
40% of the variation in migratory species’ population trends, suggesting that factors 
other than climate and land cover as we have measured them, such as habitat quality, 
also affect the population trends of migrant birds.
Main Conclusions: Over recent decades, population trends of most migrant species 
are most strongly related to climatic conditions on the breeding grounds but land 
cover change on the non-breeding grounds. This suggests that management to stem 
the declines of migrant birds requires an integrated approach that considers all pro-
cesses affecting migrant birds across their dynamic distributions throughout the year.
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1  | INTRODUC TION

Increasingly, climate change is implicated in an emerging global 
trend whereby migratory species are experiencing more rapid 
rates of population decline than their resident counterparts (Runge 
et  al.,  2015; Studds et al.,  2017; Wilcove & Wikelski,  2008). With 
large numbers of the world's vertebrates making long-distance 
movements (Somveille, Rodrigues, & Manica, 2018), the decline of 
migrant species poses a serious threat to global biodiversity and 
associated ecosystem services (Bairlein, 2016; Vickery et al., 2014). 
Understanding the causes of these declines is complicated by the de-
pendence of migrants on multiple habitats, including on their breed-
ing and non-breeding grounds, as well as at stopover sites (Robinson 
et al., 2009; Zurell, Graham, Gallien, Thuiller, & Zimmermann, 2018). 
The dependence of migrants on conditions in multiple areas, and 
on the phenology of events in these areas, renders them more 
vulnerable to environmental changes than their resident counter-
parts (Finch, Pearce-Higgins, Leech, & Evans, 2014; Runge, Martini, 
Possingham, Willis, & Fuller, 2014). Elucidating drivers of their pop-
ulation change is further complicated by the need to understand in 
which of the various parts of the annual life cycle the population is 
critically limited (Ockendon, Hewson, Johnston, & Atkinson, 2012). 
Both climate change and anthropogenic habitat change are potential 
drivers of declines, alongside other factors such as increased perse-
cution and hunting (Both, Bouwhuis, Lessells, & Visser, 2006; Jiguet 
et al., 2010; Kirby et al., 2008; Stephens et al., 2016; Studds et al., 
2017; Vickery et al., 2014).

Afro-Palaearctic long-distance migratory birds, which breed 
across Europe and spend the non-breeding season in sub-Saha-
ran Africa, are declining significantly faster than European breed-
ing-resident and short-distance migrant birds (Cresswell,  2014; 
Gregory, Skorpilova, Vorisek, & Butler,  2019; Sanderson, Donald, 
Pain, Burfield, & van Bommel,  2006; Vickery et  al.,  2014). Many 
of these long-distance migrants have shown continent-wide pat-
terns of sustained, often severe, decline since circa 1970. By con-
trast, many of their resident counterparts have undergone little or 
no decline during the same period (Sanderson et al., 2006; Vickery 
et  al.,  2014). Detailed monitoring in western Europe has provided 
a clear understanding of how changes in climate affect the popu-
lations of European breeding birds (Gregory et  al.,  2007; Thaxter, 
Joys, Gregory, Baillie, & Noble, 2010). Moreover, long-term trends 
in population sizes of birds in Europe have been related to climate 
trends on their breeding grounds (Stephens et al., 2016). Population 
declines in migratory species may be a consequence of asynchro-
nous responses to changes in climate, resulting in phenological mis-
match between, for example, the timing of breeding of insectivorous 
birds and their prey availability (Both et al., 2010; Møller, Rubolini, 
& Lehikoinen, 2008). Additionally, warmer winters may have im-
proved the overwinter survival rates of resident species, increasing 

competition for breeding resources, to the detriment of those mi-
gratory species that arrive at the breeding grounds last (Berthold, 
Fiedler, Schlenker, & Querner,  1998; Pearce-Higgins, Eglington, 
Martay, & Chamberlain,  2015). Climatic conditions on species’ 
non-breeding grounds have also been linked to long-term trends 
in the populations of migrant birds. In particular, rainfall across the 
Sahel region of Africa has been shown to affect overwinter survival 
(Peach, Baillie, & Underhill, 1991) and to influence the conditions of 
European breeding birds when they depart on spring migration, with 
potential carry-over effects on reproductive success (Ockendon, 
Leech, & Pearce-Higgins, 2013; Saino et al., 2011; Zwarts, Bijlsma, 
& van der kamp, & Wymenga, 2009). Land use change is also rec-
ognized as an important driver of population trends for some bird 
species (Sanderson et al., 2006, 2016; Sullivan, Newson, & Pearce-
Higgins,  2015). For example, across Europe, birds associated with 
farmland habitats have declined steeply since the 1950s, which 
has been largely attributed to the intensification of agricultural 
practices (Donald, Sanderson, Burfield, & van Bommel,  2006; 
Gregory et al., 2019). However, little is currently known about the 
role of land use changes at non-breeding grounds on population 
trends (Beresford et al., 2019; Cresswell, Wilson, Vickery, Jones, & 
Holt, 2007; Wilson & Cresswell, 2006). It has been suggested that be-
tween 1970 and 1990, Afro-Palaearctic migrants dependent on dry, 
open habitats on their non-breeding grounds declined significantly 
more than other migratory birds (Atkinson et al., 2014; Sanderson 
et al., 2006). This was linked to an extended drought across the Sahel 
during this period, which probably impacted the shallow-rooted veg-
etation that dominates these open habitats (Atkinson et al., 2014). 
The similarities in population trends among species with shared 
habitat affinities imply that changes to land cover can drive pop-
ulation declines. However, the relative effects on the populations 
of European long-distance migrants of long-term climatic and land 
cover changes on breeding and non-breeding grounds remain uncer-
tain (Ockendon et al., 2012; Vickery et al., 2014).

Here, we explore the potential contribution of long-term trends 
in (1) climate suitability and (2) land cover, on both breeding and 
non-breeding grounds, with the population trends of European 
breeding birds with different migratory strategies and habitat affini-
ties. First, we associate the breeding and non-breeding distributions 
of these birds, at a continental scale, with long-term mean climate 
data. Based on those associations, we identify temporal trends in 
climate suitability for individual species, separately across their 
breeding and non-breeding ranges. We then calculated the trend in 
the extent of suitable land cover for each species on their breed-
ing and non-breeding ranges. In order to determine the degree to 
which trends in breeding bird population sizes across Europe are di-
rectly attributable to changes in climate and land cover, we analyse 
the relationship between these climate suitability trends (CSTs), and 
land cover suitability trends (LCSTs), with long-term avian population 
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trends. Within this analysis, we control for species’ habitat affinities 
because similar trends among species with shared habitat associa-
tions may indicate that processes affecting the condition of specific 
habitats that are not captured within the LCSTs, for example agri-
cultural intensification, are also affecting populations. By analysing 
these effects separately for long- and short-distance migrants, we 
evaluate whether the drivers of population changes differ for differ-
ent types of migrant birds.

2  | METHODS

2.1 | Species data

Annual indices of abundance for 133 species of European migratory 
breeding birds, as defined by Snow, Perrins, Hillcoat, Gillmor, and 
Roselaar (1997), were taken from the Pan-European Common Bird 
Monitoring Scheme (PECBMS, http://www.ebcc.info/pecbm.html) 
for the period 1980–2016. Of these, we excluded species for which 
population monitoring commenced post-2000, along with any spe-
cies for which there had been a period of limited geographical cover-
age in population monitoring. We further excluded species whose 
European breeding populations migrate primarily to non-breeding 
areas outside of our Europe–Africa study area (i.e. Asia). This left 
100 migratory species with long-term population trends calcu-
lated from breeding ground monitoring across 28 European coun-
tries (see Appendix S1 in the Supporting Information, Table S1.1). 
Multinational population trends were calculated as the coefficients 
of log-linear Poisson regressions of the annual index of the size of a 
species’ European population across the 28 countries against cal-
endar year (Gregory et al., 2005). To account for potential sampling 
error in the estimation of species’ population trends in subsequent 
analyses, we also took the standard error of these regression co-
efficient values. Additional details on the calculation of population 
trends are provided in Appendix S1 in the supporting information. In 
addition, we calculated a multispecies population index separately 
for both short- and long-distance migrants (see below for defini-
tions). Using the annual indices of population size, we took a geomet-
ric mean for each year as the annual population index for all species 
within each group, giving each species an equal weight in the analy-
sis (Gregory et al., 2005).

Trait data for the 100 species were obtained principally from 
Gregory et  al.,  (2009), who derived logged mean mass data from 
Cramp (1977–1994) and migratory strategy from Snow et al. (1997). 
Species were classified into two groups according to their migratory 
behaviour: (1) short-distance migrants, which migrate principally 
to different parts of Europe and North Africa in the non-breeding 
season; (2) and long-distance migrants, which spend the non-breed-
ing season entirely in sub-Saharan Africa (see Appendix S1 in the 
Supporting Information, Table S1.2 for classifications). Each spe-
cies’ principal breeding range habitat was classified as farmland, 
woodland, wetland or other, following the classification of PECBMS 
(http://www.ebcc.info/pecbm.html). Non-breeding range habitat 

associations were taken principally from Atkinson et al. (2014), and 
for omitted species from Barshep, Erni, Underhill, and Altwegg 
(2017) and Cramp (1977–1994), and were classified as open country, 
shrub/woodland, wetland or other (see Table S1.2 for classifications 
and their source). We also calculated a continuous measure of migra-
tory dispersion for each species following the methods of Gilroy, Gill, 
Butchart, Jones, and Franco (2016). Migratory dispersion is mea-
sured as the relative difference in size between a species’ breeding 
and non-breeding ranges and, previously, has been linked to popula-
tion declines in migratory species (Koleček, Procházka, Ieronymidou, 
Burfield, & Reif, 2018). This measure indicates the ability of a spe-
cies to utilize a wider range of areas during the non-breeding season, 
which may confer increased population-scale resilience to area-spe-
cific threats (Gilroy et al., 2016; Runge et al., 2014).

Range extent data (used to fit species distribution models 
[SDMs]—see below) for breeding and non-breeding distributions 
for each species were obtained from BirdLife International and 
NatureServe (2016) for the 100 species. The distribution maps of 
each species’ breeding range were overlaid with a 0.5° x 0.5° grid 
covering both Europe and the part of Africa north of 20°N. A spe-
cies was considered present in a 0.5° grid cell if ≥10% of the cell in-
tersected with the species’ breeding distribution. The non-breeding 
ranges of the 39 long-distance migrants were similarly overlaid with 
a 0.5° grid and converted to presence–absence data for the part of 
Africa south of 20°N. For the 61 species of short-distance migrants 
(the non-breeding ranges for some of which extend into Africa), the 
non-breeding ranges were gridded for both Europe and all of Africa.

2.2 | Climate data

Data for three climatic variables, mean monthly temperature, pre-
cipitation and percentage cloud cover from 1951 to 2000 (the period 
during which the majority of data underlying the species’ range ex-
tent maps were collected), were obtained from the CRU TS 3.25 0.5° 
dataset (Harris, Jones, Osborn, & Lister, 2014). These data were used 
in conjunction with soil water capacity data and formulations, both 
from Prentice et al., (1992), to calculate five bioclimatic variables, at 
0.5° resolution, for all of Europe and Africa. Separate sets of biocli-
matic variables were calculated for the breeding and non-breeding 
seasons. Mean temperature of the warmest month (MTWA), mean 
temperature of the coldest month (MTCO) and total precipitation 
(TP) were assessed over months chosen to coincide as closely as 
possible with the times that the majority of species spend on their 
breeding (March–September) and non-breeding (August–February) 
ranges (Ponti, Arcones, Ferrer, & Vieites, 2019). We also included an-
nual measures of seasonality of temperature (ST) and precipitation 
(SP). This was to account for the role of significant variations in cli-
mate that may affect underlying habitat conditions, for example the 
periodicity of precipitation across the Sahel or seasonal variability 
across Europe. These variables have been shown to be informative in 
describing both breeding and non-breeding range extents (Doswald 
et  al.,  2009; Thuiller, Araujo, & Lavorel,  2004) and abundance 
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patterns (Green et al., 2008; Gregory et al., 2009; Howard, Stephens, 
Pearce-Higgins, Gregory, & Willis, 2014, 2015) of European breeding 
birds. We calculated the mean values of these bioclimatic variables 
for the period 1950–2000, as well as annual values from 1980 to 
2016, to match the species’ population monitoring period.

2.3 | Modelling species’ distributions

To model the relationship between the 1950 and 2000 mean bio-
climatic variables and species distributions, we used an ensemble 
modelling framework, combining four widely applied techniques: 
generalized linear models (GLMs), generalized additive models 
(GAMs), generalized boosted regression models (GBMs) and ran-
dom forests (RFs). These methods have all been shown to produce 
models that perform well when used in an ensemble SDM approach 
(Bagchi et al., 2013; Elith et al., 2006). Separate SDMs were built for 
a species’ breeding range and non-breeding range using the range-
specific bioclimatic variables. To ensure that model evaluation is ro-
bust to potential spatial autocorrelation (SAC), we used a “blocking” 
method (Bagchi et al., 2013), whereby we split the data into ten sam-
pling blocks based on ecoregions (Olson et al., 2001; http://www.
world​wildl​ife.org/scien​ce/data; Bagchi et  al.,  2013). We fitted the 
models to nine of the ten sampling blocks and tested model perfor-
mance on the omitted block. We repeated this ten times for each of 
the four SDM approaches to produce 40 models for both the breed-
ing and non-breeding ranges for each of the 100 species. Model fit 
was assessed using the area under the curve (AUC) of the receiver 
operating characteristic (ROC) plot (Brotons, Thuiller, Araujo, & 
Hirzel,  2004; Manel, Williams, & Ormerod,  2001). Additional de-
tails of the four SDM approaches, the methods utilized to account 
for SAC and our approach to assessing model fit can be found in 
Appendix S1 in the supporting information.

2.4 | Calculating trends in climate suitability

We applied the 40 SDMs for each species (10 block models x 4 mod-
elling techniques) to the annual bioclimatic data from the CRU TS 
3.25 0.5° dataset (Harris et al., 2014) to project climate suitability 
for each species for the years 1980 to 2016, for both breeding and 
non-breeding ranges. We then calculated an annual median pro-
jected climate suitability for each species for both the breeding and 
non-breeding ranges, using the projections from all 40 SDMs. Given 
that all SDMs performed well, with AUC > 0.7 for all species (see 
results), all projections were included in the calculations of median 
climate suitability. For the breeding range, this meant suitability from 
the 40 models was calculated across all cells of a species’ breeding 
range within the area covered by PECBMS (the region for which we 
have population trend data; Table S1.1). For some species, there is 
evidence of a high level of dispersal during the non-breeding season 
(Finch, Butler, Franco, & Cresswell, 2017). Therefore, when evalu-
ating climate suitability across the non-breeding ranges, we took 

the median climate suitability across species’ entire European and 
African non-breeding ranges.

After calculating median annual climate suitability for each spe-
cies, we used a generalized linear regression model, with a binomial 
error structure and a logit link, to regress climate suitability against 
year. This was restricted to the same time period for which popula-
tion index data were available for each species. The slope from this 
regression was termed the climate suitability trend (CST: following 
Stephens et al., 2016), which indicates the overall trend in climate 
suitability for a species. CST was evaluated separately for the breed-
ing and non-breeding grounds for each species, hereafter referred to 
as CSTb and CSTnb, respectively.

As with the population trends, we calculated the mean climate 
suitability for both short- and long-distance migrants. We first stan-
dardized CST values to have a value of 100 in 1980. We then took 
the geometric mean of all annual climate suitability values for each 
group of species, again giving each species an equal weight within 
the analysis. We calculated this metric separately for species’ breed-
ing and non-breeding grounds.

2.5 | Land cover suitability trend (LCST)

To quantify trends in the amount of suitable land cover within both 
species’ breeding and non-breeding ranges, we first obtained infor-
mation on species’ habitat preferences from BirdLife International. 
For each species, we identified the suitability of nine broad habi-
tat categories (shrubland, grassland, cropland, broadleaved forest, 
needle-leaved forest, wetlands and water bodies, urban, bare areas 
and sparsely vegetated), for both the breeding and non-breeding 
grounds (see Appendix S2 in the Supporting Information, Tables 
S2.1 and S2.2). We then calculated the area of land cover within 
a species’ range classified as suitable. To do this, we obtained 
global land cover data from the European Space Agency Climate 
Change Initiative (2017) (ESA CCI: https://www.esala​ndcov​er-cci.
org/?q=node/1). These data are available at a spatial resolution of 
300 m and consist of 24 annual maps of land cover from 1992 to 
2015, with each map comprising 22 land cover classes. We aggre-
gated these land cover classes to align with the nine broad habitat 
categories used to classify species habitat preferences (Tables S2.1 
and S2.2). Then, for each year, we calculated the proportion of land 
cover within a species’ range classified as suitable. Finally, we used 
a generalized linear regression model, with a binomial error struc-
ture and a logit link, to regress the proportion of suitable land cover 
against year. The slope from this regression was termed the land 
cover suitability trend (LCST) and indicates the overall trend in the 
amount of suitable land cover within a species range. We evalu-
ated LCST separately for both species’ breeding and non-breeding 
grounds (LCSTb and LCSTnb, respectively). For species, for which 
population index data were only available after 1992, the calcula-
tion of LCST was restricted to the same time period. Although these 
annual measures of land cover do not fully encompass the period of 
interest, they are, as far as we are aware, the best available at this 

http://www.worldwildlife.org/science/data
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scale. To assess the potential impact on our results of evaluating 
LCSTs over a shorter time period, we repeated all following analy-
ses using trend data restricted to the period between 1992 and 
2015. Finally, we calculated mean land cover suitability values for 
both short- and long-distance migrants. We first standardized LCST 
values to have a value of 100 in 1992. We then took the geometric 
mean of all annual land cover suitability values for each group of 
species each year, giving each species an equal weight within the 
analysis. We evaluated this metric separately for species' breeding 
and non-breeding grounds.

2.6 | Accounting for variable sampling effort

Given the inevitable discrepancy between recording efforts in many 
infrequently visited non-breeding regions and the well-monitored 
breeding grounds, there is the potential for bias between models 
based on breeding and non-breeding grounds due to more complete 
occurrence datasets from breeding grounds. To control for this, we 
developed an additional series of analyses, incorporating a random 
bootstrapped sampling approach to control for potential discrepan-
cies in recording effort. We used the total number of point occur-
rence records from the non-breeding range for a given species from 
the Global Biodiversity Information Facility database (GBIF: GBIF.
org, 2018; using all records up to 2016) to guide the size of a sub-
sample of cells to utilize in calculating CSTs and LCSTs for both the 
breeding and non-breeding ranges. Using the number of point oc-
currence records from across a species’ non-breeding range as our 
sample size (x), we randomly sampled x cells from each of a species’ 
breeding and non-breeding range. We then took the median climate 
suitability across the subsampled cells to recalculate CSTb and CSTnb. 
We also recalculated LCSTb and LCSTnb using the subsampled cells. 
We repeated this process 100 times to give 100 bootstrapped esti-
mates of CSTb, CSTnb, LCSTb and LCSTnb for each species, which we 
then used to repeat our assessment of the relationship between spe-
cies’ population trends and both CSTs and LCSTs, described below.

2.7 | Assessing correlates of species’ 
population trends

We used Markov Chain Monte Carlo generalized linear mixed mod-
els from the “MCMCglmm” R package (Hadfield, 2010) to assess the 
relationship between species’ population trends and potential ex-
planatory variables. This analysis was performed at a pan-European 
scale because, despite having national indices of abundance dur-
ing the breeding season, we currently lack data on where different 
European populations spend the non-breeding season. MCMCglmm 
takes a Bayesian approach to fitting generalized linear mixed models. 
It can account for the non-independence between species that can 
arise from common ancestry, by including a phylogenetic variance–
covariance matrix as a random effect. To account for sampling error 
in the estimation of species’ population trends, we also included the 

standard error of the trend estimates as an additional random effect. 
In addition to the random effects of phylogeny and population trend 
standard error, fixed effects within the model included terms for each 
species to control for differences in body size (logged mean mass of 
a species), migratory strategy (short- or long-distance), migratory dis-
persion and primary habitat association. As species’ primary breeding 
and non-breeding range habitat associations were significantly associ-
ated with each other for both short- (Χ2 = 157.2, df = 9, p < .01) and 
long-distance migrants (Χ2 = 31.6, df = 9, p < .01), we only included 
species’ primary breeding habitat associations as an explanatory 
variable. We included interactions between CSTb, CSTnb, LCSTb and 
LCSTnb, and migratory strategy, as we were interested in the poten-
tial for differing contributions of climate and land cover suitability to 
the population trends of short- and long-distance migrants. We as-
sumed that the response variable had a Gaussian error distribution 
and used non-informative priors with an inverse Wishart distribution 
(V = 1, ν = 0.002). Model outcomes were insensitive to the specifica-
tion of the non-informative priors. We ran the model for 220,000 it-
erations, with a burn-in period of 20,000 and a sampling interval of 20. 
Approximately 1,000 independent samples were generated for each 
model. We used Gelman–Rubin statistics and diagnostic plots to check 
for convergence of model chains and the independence of samples.

Rather than using one phylogenetic tree, and assuming this 
tree was error-free, we instead randomly selected 100 trees from 
birdtree.org (Jetz, Thomas, Joy, Hartmann, & Mooers, 2012) and fit-
ted the model to each of these trees. We then combined the poste-
rior outputs of the resulting 100 MCMCglmms to provide estimates 
of model coefficients that incorporate phylogenetic uncertainty. For 
each model, we calculated the percentage of variance explained by 
each of the fixed effects and assessed model performance using 
marginal R2, following the methods described in Nakagawa and 
Schielzeth (2013). All analyses were performed in R version 3.5.0 (R 
Core Team, 2019).

3  | RESULTS

3.1 | Species distribution models

SDMs fitted to the breeding and non-breeding ranges of all short- 
(61 species) and long-distance (39 species) migrants produced robust 
models for all species using all four SDM approaches. Model fit was 
very good across the breeding ranges (AUC on validation data: me-
dian = 0.98, IQR = 0.85 – 0.99; see Appendix S1 in the Supporting 
Information, Table S1.3 for individual model technique results). SDMs 
for species’ non-breeding ranges were also good, though median fit 
was slightly lower than for the breeding range models (AUC on valida-
tion data: median = 0.96, IQR = 0.78 – 0.99; Table S1.3). There was no 
significant difference in SDM performance between short- and long-
distance migrants for either the breeding (t test, t96.5 = 0.07, p = .94) or 
non-breeding grounds (t test, t73.60 = 1.30, p = .20). The mean annual 
projections from these models were used to calculate CST values for 
both the breeding and non-breeding grounds for all 100 species.
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3.2 | Predictors of population trends

On average, the populations of short-distance migrants have re-
mained relatively stable since 1980, while those of long-distance mi-
grants have declined steadily over the same period (Figure 1a). There 
was no difference in average climate suitability between short- and 
long-distance migrants on either their breeding or non-breeding 

grounds (Figure 1b and c). However, while climate suitability within 
species’ breeding grounds has declined steadily since 1980, the same 
cannot be said for species’ non-breeding grounds, with climate suit-
ability remaining relatively constant over time (Figure 1b and c). For 
both short- and long-distance migrants, the extent of suitable land 
cover across their breeding ranges has increased steadily since 1992 
(Figure  1d). Across species non-breeding ranges, however, while 

F I G U R E  1   Changes in populations and climatic suitability for 61 species of short-distance (yellow lines) and 39 species of long-distance 
(blue lines) migratory European breeding birds between 1980 and 2016. Changes in Pan-European population indices are shown in (a), while 
changes in climate suitability are shown for both breeding grounds (b) and non-breeding grounds (c), and changes in the extent of suitable 
land cover are shown for both breeding grounds (d) and non-breeding grounds (e). For all panels, solid lines indicate the geometric mean, and 
shading indicates the standard deviation. For both groups of species in panels a- c, values for 1980 are arbitrarily set to 100. In panels d and 
e, for both groups of species values for 1992 are arbitrarily set to 100. The horizontal dashed lines at values of 100 show the expectation if 
there is no trend
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there have been increases in land cover suitability for short-distance 
migrants, the suitability of land cover for long-distance migrants has 
steadily declined (Figure 1e).

Phylogenetically informed linear mixed models explained the 
population trends of the 100 European breeding migratory birds 
reasonably well (marginal R2  =  .40, S.D. ±0.02). When considered 
separately, the model-averaged parameter estimates explained the 
population trends of long-distance migrants less well than those of 
short-distance migrant species (R2 = .15 and R2 = .37, respectively). 
Our models indicated that higher CSTb and LCSTnb, greater body 
mass and increased dispersion during the non-breeding season were 
all positively related to species’ population trends (Figure 2). In con-
trast, an association with farmland and open habitats had a negative 
effect on species’ population trends (Figure 2). There was a signif-
icant interaction between CSTb and migratory strategy (Figure  2). 
CSTb was positively related to the population trends of short-dis-
tance migrants with a coefficient that was significantly greater than 
zero (β = 0.48, 95% credible intervals = 0.18 – 0.79, Figure 3). The re-
lationship between CSTb and the population trend of long-distance 
migrants, however, was non-significant (with a coefficient that over-
lapped zero; β = −0.03, 95% CI = −0.33 – 0.28, Figure 3). None of 

CSTnb, LCSTb or the interactions between CSTnb, LCSTb and LCSTnb, 
with migratory strategy, were identified as significant predictors of 
species’ population trends. The results from the analysis using 100 
bootstrap estimates of CSTb, CSTnb, LCSTb and LCSTnb were qualita-
tively similar to those of the main analysis (see Appendix S1, Figure 
S1.1), but the model had less explanatory power (marginal R2 = .29, 
S.D. ±0.01). The results from the analysis using data restricted to 
the period between 1992 and 2015 were also qualitatively similar 
to those in the main analysis (see Appendix S1, Figure S1.2), but 
again, the model had less explanatory power (marginal R2 = .31, S.D. 
±0.07).

4  | DISCUSSION

Until now, the relative contribution of changes in climate and land 
cover on the breeding and non-breeding grounds to the declines of 
European breeding long-distance migrants has been poorly under-
stood (Sanderson et  al.,  2006; Vickery et  al.,  2014). Here, we dis-
cuss our results in the light of three key findings: 1) the long-term 
population trends of migratory birds are more closely associated 

F I G U R E  2   Standardized coefficients (a) and percentage of variance explained (b) from MCMC generalized linear mixed models of the 
population trends of 100 European migratory birds since 1980 (marginal R2 = 0.40, S.D. ±0.02). In (a), the centre point indicates the mean, 
the thick bars indicate the posterior standard deviations, and the thin lines indicate the 95% credible intervals of the coefficient values 
produced by averaging 100 separate MCMCglmms. To standardize coefficient values, all predictors were z-transformed. The reference level 
for categorical variables includes “short-distance” for migratory strategy and “other” for both breeding and non-breeding habitat association. 
Overlap of CIs with the dashed line at zero indicates that the effect of the parameter is not statistically significant (i.e. p > .05). In (b), bars 
indicate the mean percentage of variance explained that is attributable to each variable, while thin lines indicate the standard deviation. 
Significant terms are also indicated in bold on the shared y-axis
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with changes in climate than changes in land cover on their breeding 
grounds, but the converse is true on their non-breeding grounds; 
2) climate trends on the breeding grounds explain more variation 
in long-term population trends for short-distance migrants than for 
long-distance migrants; and 3) our ability to explain species’ popula-
tion trends depends on their migratory strategy but nonetheless still 
only explains about 40% of observed variation in population trends. 
We discuss these three key findings in turn below.

4.1 | Importance of environmental conditions on the 
breeding and non-breeding grounds

This is the first large-scale assessment of the relative importance of 
climate and habitat, as measured by land cover on both the breed-
ing and non-breeding grounds for populations of migratory birds. 
We have demonstrated that the variables of greatest importance 
for driving the long-term population trends of migratory species dif-
fer between their breeding and non-breeding grounds. Our results 
highlight the importance of climatic conditions on species’ breeding 
grounds, with a positive relationship between population trend and 
breeding ground CST, even after accounting for phylogeny, migra-
tory behaviour, body mass and habitat. These results corroborate 
previous research demonstrating that interspecific variation in the 
recent population trends of European birds is correlated with climatic 
trends on species’ breeding grounds (Green et al., 2008; Stephens 

et al., 2016). By contrast, population trends on the breeding grounds 
were not related to land cover change, at least at the scale as which 
we assessed this (see below). This is despite the fact that since the 
1950s, there have been large-scale changes in both the extent and 
management intensity of land use across Europe. Particularly no-
table have been the increases in the extent of forested and urban 
areas alongside intensification of agricultural practices (Kuemmerle 
et al., 2016). By contrast, our results suggest that on species’ non-
breeding grounds, large-scale land cover change is of greater im-
portance. Our finding that there has been an approximately 5% 
reduction in the extent of suitable land cover across long-distance 
migrants, sub-Saharan non-breeding ranges, but an approximately 
2.5% increase for short-distance migrants, indicates that this results 
may be partially driven by extensive land cover change across Africa. 
Since the 1970s, there have been extensive changes in land man-
agement and land cover across Africa, but in particular the Sahel 
region (Cour, 2001), with large-scale expansion and intensification 
of agriculture, loss of wetlands as a consequence of dam construc-
tion and irrigation, and deforestation from clearance for agriculture, 
wood fuel and grazing (Adams, Small, & Vickery, 2014). Previously, 
it has been widely assumed that these large-scale changes in land 
cover are linked to the population declines of Afro-Palaearctic mi-
grant birds on their breeding grounds (Adams et al., 2014; Vickery 
et al., 2014). Until now, however, evidence for this has been mixed 
and largely limited to smaller-scale field studies (Adams et al., 2014). 
Our results provide evidence for a link between large-scale changes 

F I G U R E  3   Relationship between the 
annual percentage change in population 
size and trend in climate suitability (CST) 
across the breeding ground ranges of 
61 short-distance migrant species and 
39 long-distance migrant species. Lines 
indicate the mean non-standardized effect 
size from across the 100 separate MCMC 
generalized linear mixed models, while 
shaded areas indicate the 95% credible 
intervals. Solid line indicates a relationship 
that is significantly different from zero 
(i.e. p < .05), while dashed line indicates 
a relationship non-significantly different 
from zero
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in land cover across migratory species’ non-breeding ranges and 
their breeding population trends.

The apparent low importance of land cover suitability on spe-
cies' breeding grounds may be a consequence of the high spatial and 
temporal heterogeneity in large-scale changes in land cover across 
Europe. Changes in the extent of broad habitat categories across 
Europe show distinct spatial patterns with, for example, hotspots 
of cropland decline occurring mostly in Eastern Europe but crop-
land expansion occurring mostly in North-West Europe (Kuemmerle 
et al., 2016). When assessed across a large scale, these contrasting 
patterns may counteract one another to reduce the apparent im-
portance of large-scale land cover change in driving Europe-wide 
species’ population trends. The spatial heterogeneity in the popu-
lation monitoring periods, with most Eastern European countries 
having shorter monitoring periods than countries in the west, may 
further exacerbate these effects. In addition, our measure of land 
cover suitability only measures large-scale changes in broad habitat 
classifications and not changes in the intensity of land use manage-
ment. Despite, as mentioned above, some large-scale changes in the 
extent of some land cover types, since the 1950s, land use change 
in Europe has predominantly occurred along intensification gradi-
ents (Kuemmerle et al., 2016; Rounsevell et al., 2012); these changes 
would not be reflected in our measure of land cover suitability.

The lack of a climate signal at non-breeding grounds on breeding 
populations may be influenced, in part, by the fact that some spe-
cies in our analysis are somewhat itinerant during the non-breeding 
season, potentially overwintering in multiple discrete areas during 
different periods of the non-breeding season. For example, some 
sub-Saharan migrants, such as willow warblers (Phylloscopus troch-
ilus), move southwards through the non-breeding range over the 
course of the European winter (Cresswell, Boyd, & Stevens, 2008; 
Salewski & Jones, 2006). With such species only using non-breed-
ing ranges transiently, mean climatic conditions across non-breed-
ing areas for the entire period may provide misleading estimates 
of climate suitability. Further data on the intra-seasonal use of the 
non-breeding range by individual species are required to develop a 
more nuanced measure of changing climatic suitability in dynamic 
non-breeding ranges. Such data are not currently available for most 
species. Migratory connectivity, the extent to which migrant pop-
ulations spread out and mix during the non-breeding season, may 
also have influenced this result. Low migratory connectivity, where 
individual populations of a species spread out and mix over a larger 
area during the non-breeding season, is common in long-distance 
migrants (Lemke et  al.,  2013). Low connectivity should provide 
greater resilience to climate change by facilitating rapid range shifts 
(Gilroy et al., 2016). However, if the extent of suitable habitat de-
clines, the proportion of populations that spread out over a large 
area during the non-breeding season, and that reach the remaining 
suitable habitat, will also decline (Finch et  al.,  2017). This may, in 
turn, decouple the relationship between climate suitability trends on 
the non-breeding ranges and population trends. Currently, we lack 
the data required to model the precise relationship between popula-
tion trends and migratory connectivity (Finch et al., 2017).

The weak evidence for a link between trends in non-breeding 
climate suitability and long-term population trends emerges despite 
the wealth of published evidence linking fluctuations in non-breed-
ing grounds' weather conditions, particularly rainfall, to overwin-
ter survival (Johnston et al., 2016) and population size (Ockendon, 
Johnston, & Baillie, 2014). Although events such as droughts have 
substantial impacts on species, their irregular occurrence means 
that the overall relationship between long-term climatic condi-
tions on the non-breeding grounds and migrant population trends 
is weak (Nevoux et al., 2008a,2008b). In addition, given that we 
focus on breeding ground population trends, the relationship with 
conditions on the breeding ranges is likely to be stronger than with 
conditions on non-breeding ranges. Non-breeding ranges may en-
compass areas utilized by populations that breed outside of the area 
covered by PECBMS, and so, climate suitability evaluated across the 
entire non-breeding range may be less directly linked to trends in 
breeding populations. This relationship may be further diluted for 
species containing populations that demonstrate different migratory 
behaviours. In such cases, the likely stronger relationship between 
population trends and conditions on the breeding grounds for more 
resident populations may mask the relationship with conditions on 
the non-breeding grounds of migratory populations. This result may 
also, in part, be driven by our use of gridded species distribution 
data. Species’ range maps are often derived from point observations 
and delineate broad range boundaries (extent of occurrence, sensu 
Gaston, 2003) rather than maps of occupancy. Given the discrepan-
cies in recording efforts between Europe and Africa, there is an in-
creased probability of false positives in species’ gridded data across 
non-breeding grounds. However, by analysing our data at a relatively 
coarse scale, our characterizations of species’ distributions are less 
prone to false positives (Hurlbert & Jetz, 2007). Furthermore, our 
results were also robust to the inclusion of sampling effort, suggest-
ing that the weak relationship between non-breeding ground CST 
and the long-term population trends of European breeding migra-
tory birds was not a consequence of variable sampling effort across 
species’ ranges.

Conditions across the Sahel, a key environment in the non-breed-
ing season for many long-distance trans-Saharan migrants, are in-
tricately linked to seasonal precipitation (Ockendon et  al.,  2014; 
Vickery et al., 2014). When rainfall in the Sahel is higher, resources 
for migrant birds are more plentiful. From the 1960s, drought condi-
tions predominated in the Sahel (Nicholson, 2000). Although rainfall 
across some of this region has increased since the 1990s (Fontaine, 
Roucou, Gaetani, & Marteau,  2011), there are strong regional dif-
ferences in the extent and direction of this “re-greening” trend 
(Kaptué, Prihodko, & Hanan, 2015). Habitat changes resulting from 
the lengthy period of drought have been widely linked to population 
declines of long-distance migrant birds, observed since the 1970s 
(Sanderson et al., 2006). Improving conditions since the 1990s may 
have led to the stabilization of, and increases in, some populations 
(Baillie et al., 2010; Nevoux et al., 2008a,2008b). In addition, spatial 
heterogeneity in changes in climate across Africa may have resulted 
in contrasting directional population trends between species that 
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overwinter in different regions. For example, it has been shown that 
species that winter in the humid tropical zone have recently declined, 
while migrants that winter in the arid Sahelian zone show more sta-
ble population trends (Ockendon et al., 2012; Thaxter et al., 2010). 
These contrasting patterns may counteract one another to weaken 
the apparent relationship between the population trends of migra-
tory birds and long-term trends in climate on their non-breeding 
grounds. Thus, while there is strong evidence that annual fluctua-
tions or short-term trends in the abundance of migrants are linked to 
precipitation across the non-breeding grounds, our results suggest 
that the long-term population trends of most long-distance migrants 
are more strongly associated with long-term trends in climate suit-
ability on their breeding ranges than on their wintering grounds.

4.2 | The effect of breeding ground climate 
suitability on trends of long-distance versus short-
distance migrants

The relationship between CST across migrant species’ breeding 
grounds and their population trends is strongly dependent upon 
migratory strategy. While improving trends in climate suitability 
across the breeding grounds correspond with increasing population 
trends for short-distance migrants, this was not the case for long-
distance migrants. A number of mechanisms could underlie this pat-
tern. Long-distance migrants are likely to be more susceptible to the 
potential effects of phenological mismatch upon their reproductive 
success than short-distance migrants (Møller et al., 2008; Saether & 
Engen, 2010). Because of the later breeding, and potentially slower 
rates of nesting advancement in some long-distance migrants, an 
increasing proportion of individuals appear to be mis-timing their 
breeding relative to peak availability of key prey species, which has 
advanced in response to warming spring conditions on the breed-
ing grounds (Both et  al.,  2006, 2010; Mayor et  al.,  2017; Saino 
et  al.,  2011). However, the evidence for phenological mismatch 
driving large-scale declines in the breeding success of mismatched 
migrants is limited. This suggests that there is not a causal link be-
tween changes in migrant arrival times and long-term population 
trends or that any such link occurs through changes in post-breeding 
survival rates, rather than productivity (Franks et al., 2017). Climate 
change may also disrupt competitive relationships on the breed-
ing grounds (Bohning-Gaese & Bauer, 1996; Vickery et  al., 2014). 
It has been suggested that warmer winters may improve overwin-
ter survival of short-distance migrants that remain in Europe, while 
warmer springs may also boost their productivity (Pearce-Higgins 
et al., 2015). This may account for the close relationship between 
climate suitability trends on the breeding grounds and short-dis-
tance migrant population trends, particularly given that the breed-
ing and non-breeding ranges of short-distance migrants are closer 
than their long-distance migrant counterparts. Increases in resident 
and short-distance migrant populations may lead to long-distant 
migrants facing greater competition for resources in breeding areas 
(Both & Visser, 2001).

4.3 | Explaining the population trends of short- and 
long-distance migrants

Breeding and non-breeding ground CST were better at explaining 
the population trends of short-distance migrants compared with 
long-distance migrants (our models explained only 15% of variation 
in trends for the latter). This may be suggestive of other factors driv-
ing population trends of long-distance migrants, or that our ability 
to detect the effect of CST on long-distance migrants was reduced 
by uncertainty over their winter distributions and their potentially 
more dispersed distribution at this time, as outlined above. Given 
the complexity of the annual cycle of long-distance migrants, it is 
perhaps unsurprising that CST and habitat only explained a small 
proportion of the variance in the population trends of these birds 
(Robinson et al., 2009). By using multiple landscapes throughout the 
annual cycle, long-distance migrants are more likely to be exposed 
to land use changes during at least part of the year than are other 
species (Runge et al., 2014). Furthermore, their use of stopover sites 
during migration can expose long-distance migrants to a greater 
number of location-specific threats, such as habitat degradation and 
hunting (Runge et  al.,  2014). Long-range movements made during 
extended migrations also increase the likelihood and associated risks 
of encountering new, unfamiliar environments (Rotics et al., 2017). 
The enhanced energetic costs of long-distance migration may also 
have a detrimental effect on the survival of Afro-Palaearctic mi-
grants, with possible carry-over effects (Ryan Norris & Marra, 2007). 
Indeed, it has been suggested that there is an inverse relationship 
between energy expenditure and survival in birds (Sala, Wilson, & 
Quintana,  2015). Notably, some species, including Eurasian black-
cap (Sylvia atricapilla) and common chiffchaff (Phylloscopus col-
lybita), have shown changes in their migratory behaviours, with 
short-stopping and overwintering closer to breeding grounds be-
coming increasingly common (Elmberg, Hessel, Fox, & Dalby, 2014; 
Sutherland, 1998), often resulting in markedly improved population 
trends (Berthold & Terrill, 1988; Rotics et al., 2017; Visser, Perdeck, 
van Balen, & Both, 2009). It may also be that the variables included 
in our models are better proxies for the conditions experienced dur-
ing migrations and on stopovers by short- rather than long-distance 
migrants. As noted above, the breeding and non-breeding ranges 
of short-distance migrants are closer together than those of long-
distance migrants. Consequently, the conditions that short-distance 
migrants experience during migration may be, in part, captured by 
our measures of breeding and non-breeding ground climate suitabil-
ity and land cover. In contrast, the same measures are less likely to 
encapsulate the conditions experienced by long-distance migrants 
during their migrations.

4.4 | Future directions

Detailed knowledge of the destinations of birds that migrate be-
yond Europe during the non-breeding season, and the specific 
habitats that they utilize, is currently lacking for the vast majority 
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of passerine species included in our analysis, especially in terms 
of linking specific breeding populations to non-breeding localities. 
Furthermore, we lack nuanced data on trends in the conditions of 
different habitat types, particularly on the non-breeding grounds. 
Consequently, population-specific drivers of migrant declines are lit-
tle studied at present (Cresswell, 2014). Recent advances in tracking, 
remote sensing technology and the development of genoscapes are 
enhancing our understanding of migration by providing information 
on migrant non-breeding ranges, and on the connectivity of breed-
ing and non-breeding sites (Finch et al., 2015; Renfrew et al., 2013; 
Robinson et al., 2010; Ruegg et al., 2014; Trierweiler et al., 2014), en-
abling migration routes to be linked to adult survival and population 
trends (Hewson et al. 2016). Currently, however, such data are avail-
able for only relatively small numbers of individuals, and for few spe-
cies and populations. Expansion of this monitoring will enhance our 
understanding of specific habitat use on the non-breeding grounds 
and of linkages between migratory end-points (Vickery et al., 2014). 
Our pan-European analysis provides valuable insight into the large-
scale drivers of the population trends of migratory breeding birds. 
Future linkage of population-specific breeding and wintering areas, 
migration routes and stopover locations, as well as improved data on 
trends in habitat conditions, will enable a better understanding of 
the mechanisms driving the declines of long-distance migrants at a 
finer scale (Ockendon et al., 2012).

We have demonstrated that, at a continental scale, the pop-
ulation trends of European breeding migratory birds are more 
closely associated with long-term climate change than land cover 
changes on their breeding grounds, but the converse is true on 
their non-breeding grounds. Importantly, we have shown that, 
in recent decades, long-distance migrants have benefited less 
than short-distance migrants from any improvements in climate 
suitability across their breeding grounds. Nonetheless, our un-
derstanding of the drivers of population trends of long-distance 
migrants remains incomplete because we lack crucial informa-
tion on migration stopover locations (and associated threats) and 
on the linkages between breeding and non-breeding localities. 
Population-level studies into the use of non-breeding areas by mi-
grant species are urgently required if we are to understand the 
drivers of migrant population dynamics and to prevent, or reverse, 
further declines.
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