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Homotopy ribbon concordance and Alexander polynomials

Stefan Friedl and Mark Powell

Abstract. We show that if a link J in the 3-sphere is homotopy ribbon
concordant to a link L, then the Alexander polynomial of L divides the
Alexander polynomial of J .
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1. Introduction. Let I := [0, 1]. An oriented, ordered m-component link J in
S3 is homotopy ribbon concordant to an oriented, ordered m-component link
L if there is a concordance C ∼= ⊔m

S1 × I, locally flatly embedded in S3 × I,
restricting to J ⊂ S3 × {0} and −L ⊂ S3 × {1}, such that the induced map
on fundamental groups of exteriors

π1(S3\νJ) � π1((S3 × I)\νC)

is surjective and the induced map

π1(S3\νL) � π1((S3 × I)\νC)

is injective. Here νJ , νL, and νC denote open tubular neighbourhoods. When
J is homotopy ribbon concordant to L, we write J ≥top L. From now on, we
write

XJ := S3\νJ, XL := S3\νL, and XC := (S3 × I)\νC.

The notion of homotopy ribbon concordance is a natural homotopy group
analogue of the notion of smooth ribbon concordance initially introduced by
Gordon [7] for knots: we say the link J is smoothly ribbon concordant to the
link L, written J ≥sm L, if there is a smooth concordance from J to L such
that the restriction of the projection map S3 × I → I to C yields a Morse
function on C without minima. The exterior of such a concordance admits a
handle decomposition relative to XJ with only 2- and 3-handles, from which it
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is easy to see that the induced map π1(XJ ) → π1(XC) is surjective. Gordon’s
argument [7, Lemma 3.1] shows that π1(XL) → π1(XC) is injective. Thus a
smooth ribbon concordance is a homotopy ribbon concordance.

We define the Alexander polynomial ΔJ(t1, . . . , tm) ∈ Z[t±1
1 , . . . , t±1

m ] of an
oriented, ordered m-component link J to be the order of the torsion submodule
of the Alexander module H1(XJ ;Z[Zm]). Here the precise coefficient system
ϕ : π1(XJ) → Z

m is determined by the oriented meridians and the ordering
of L.

Theorem 1.1. Suppose that J ≥top L. Then ΔL | ΔJ .

For knots and for ≥sm instead of ≥top, Theorem 1.1 is a consequence of a
more general theorem of Gilmer [6]. However Gilmer’s proof does not extend
to the topological category.

Further classical work on smooth ribbon concordance includes [6,15,16],
and [20].

We want to explain a fairly simple proof of Theorem 1.1, thus we will not
prove the most general result possible. But we expect that our argument can
be generalised to twisted Alexander polynomials [8,10,11] and higher order
Alexander polynomials [1], provided one uses a unitary representation that
extends over the ribbon concordance exterior. Our proof can also be gener-
alised to concordances between links in homology spheres. Having not found a
convincing application, we have not carried out either of these generalisations
in this short note.

A number of articles have recently appeared on the relation of smooth
ribbon concordance to Heegaard-Floer and Khovanov homology [9,14,17,19,
21]. These techniques of course do not apply to locally flat concordances. We
thought it might be of interest to show how to establish, in many cases and
with minimal machinery, that two concordant links are not ribbon concordant
in both categories.

Remark 1.2. It is straightforward to apply Theorem 1.1 to construct examples
of concordant knots that are not homotopy ribbon concordant. For instance
(this example was given by Gordon [7], but with a different proof), let K be a
trefoil and let J be the figure eight knot. Then K# − K and J# − J are both
slice, so they are concordant. But the Alexander polynomials are coprime, so
there is no homotopy ribbon concordance between these knots.

Remark 1.3. Perhaps somewhat surprisingly, the condition that π1(XL) →
π1(XC) is injective is not needed anywhere in our proof of Theorem 1.1.

Gordon conjectured that smooth ribbon concordance gives a partial order
on knots. This conjecture is still open: in order to prove it, one would have to
show that if J is smoothly ribbon concordant to K and K is smoothly ribbon
concordant to J , then K and J are isotopic.

In the topological category, by work of Freedman [5, Theorem 11.7B], there
is a concordance C with π1(XC) ∼= Z from the unknot U to K for every Alexan-
der polynomial one knot K. So in order to make the analogous conjecture that
≥top is a partial order, one certainly needs that π1(XK) → π1(XC) is injective,



Homotopy ribbon concordance

and we have included it in the definition. Thus, the concordance C is not a
homotopy ribbon concordance.

We conclude this introduction with the following conjecture that is the
topological analogue of Gordon’s Conjecture.

Conjecture 1.4. The relation ≥top is a partial order on the set of knots.

2. Twisted homology and cohomology. As preparation for the proofs in the
following section, we recall the definitions of twisted (co-)homology modules.

Given a group π and a left Zπ-module A, we write A for the right Zπ-
module that has the same underlying abelian group but for which the right
action of Zπ is defined by a·g := g−1 ·a for a ∈ A and g ∈ π. The same notation
is also used with the roles of left and right reversed and g · a := a · g−1. Here
is the definition of twisted homology and cohomology groups.

Definition 2.1. Let X be a connected topological space that admits a universal
cover p : X̃ → X. Write π := π1(X). Let Y be a subset of X and let A be a
right Zπ-module. Let π act on X̃ by deck transformations, which is naturally
a left action. Thus, the singular chain complex C∗(X̃, p−1(Y )) becomes a left
Zπ-module chain complex. Define the twisted chain complex

C∗(X,Y ;A) :=
(
A ⊗Zπ C∗(X̃, p−1(Y )), Id ⊗∂∗

)
.

The corresponding twisted homology groups are Hk(X,Y ;A). With δk =
Hom(∂k, Id) define the twisted cochain complex to be

C∗(X,Y ;A) :=
(
Homright-Zπ

(
C∗(X̃, p−1(Y )), A

)
, δ∗).

The corresponding twisted cohomology groups are Hk(X,Y ;A).

If R is some ring and A is an (R,Zπ)-bimodule, then the above twisted
homology and cohomology groups are naturally left R-modules.

In this article, X will be one of XJ , XL, or XC , and we will have A = Z[Zm],
considered as a (Z[Zm],Zπ)-bimodule, with the left action by left multiplica-
tion and with the right Zπ action induced by the homomorphism

π = π1(X) → H1(X;Z)
∼=−→ Z

m.

Here the first map is the Hurewicz map and the isomorphism is determined
by the orientations and the ordering of the link components. We refer to the
Z[Zm]-modules H1(XB ;Z[Zm]), for B ∈ {J, L,C}, as the Alexander module
of J , L, and C respectively. We shall also make use of the analogous twisted
homology and cohomology modules of the pairs (XC ,XJ ) and (XC ,XL).

3. Injection and surjection of Alexander modules. In this section, we will
prove several results on the interplay between Alexander modules and ho-
motopy ribbon concordance. The combination of these results will imply The-
orem 1.1.
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Proposition 3.1. If C is a homotopy ribbon concordance from J to L, then the
induced map

H1(XJ ;Z[Zm]) → H1(XC ;Z[Zm])

is surjective.

First proof of Proposition 3.1. Consider the following commutative diagram

1 �� KJ := ker(π1(XJ ) → Z
m)

��

�� π1(XJ ) ��

����

Z
m ��

=
��

0

1 �� KC := ker(π1(XC) → Z
m) �� π1(XC) �� Zm �� 0.

Since the middle map is an epimorphism, we see that the map on the left is
an epimorphism. For any group epimorphism G → H, the induced map on
abelianisations Gab → Hab is an epimorphism, so in particular, the induced
map Kab

J → Kab
C is an epimorphism. Note that KJ and KC are the funda-

mental groups of the universal abelian covering spaces XJ and XC of XJ and
XC respectively. The Hurewicz theorem identifies the abelianisation of the
fundamental group of a path connected space with the first homology, so that

Kab
J

��

∼=
��

Kab
C

∼=
��

H1(XJ ;Z) �� H1(XC ;Z)

commutes. It follows that the map on the bottom row is an epimorphism. But
by the topologists’ Shapiro lemma [3, p. 100] the homology groups H1(XJ ;Z)
and H1(XC ;Z) are naturally isomorphic to the twisted homology groups
H1(XJ ;Z[Zm]) and H1(XC ;Z[Zm]) respectively. �

Here is another proof using homological algebra, for which the generalisa-
tion to twisted coefficients would be easier.

Second proof of Proposition 3.1. We prove the somewhat stronger statement
that H1(XC ,XJ ;Z[Zm]) = 0. Consider the long exact sequence of the pair
with Zπ := Z[π1(XC)] coefficients, where π := π1(XC):

H1(XC ;Zπ) → H1(XC ,XJ ;Zπ) → H0(XJ ;Zπ)

→ H0(XC ;Zπ) → H0(XC ,XJ ;Zπ) → 0.

Since π = π1(XC), we have H1(XC ;Zπ) = 0 and H0(XC ;Zπ) ∼= Z. Since
π1(XJ ) → π is surjective, the pull-back cover

XJ
��

��

X̃C

��
XJ

�� XC ,

where X̃C → XC is the universal cover, is precisely the connected cover of
XJ corresponding to the subgroup ker(π1(XJ) → π1(XC)). It follows that
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H0(XJ ;Zπ) ∼= Z and the map H0(XJ ;Zπ) → H0(XC ;Zπ) is an isomorphism.
We deduce that

H1(XC ,XJ ;Zπ) = 0 = H0(XC ,XJ ;Zπ).

Next, apply the universal coefficient spectral sequence for homology (see [18,
Theorem 10.90])

TorZ[Zm]
p (Hq(XC ,XJ ;Zπ),Z[Zm]) ⇒ Hp+q(XC ,XJ ;Z[Zm])

to change to Z[Zm] coefficients. The terms on the 1-line (p + q = 1) of the E2

page are

Z[Zm] ⊗Zπ H1(XC ,XJ ;Zπ) = 0 and TorZπ
1 (H0(XC ,XJ ;Zπ),Z[Zm]) = 0.

It follows that the 1-line on the E∞ page vanishes too, so that H1(XC ,
XJ ;Z[Zm]) = 0 as desired. This completes the proof of the proposition. �

We continue with the following variation on Proposition 3.1.

Proposition 3.2. If C is a homotopy ribbon concordance from J to L, then the
induced map

TH1(XJ ;Z[Zm]) → TH1(XC ;Z[Zm])

between the Z[Zm]-torsion submodules is surjective.

Proof. First, the fact that XJ → XC induces a Z-homology isomorphism im-
plies that Hi(XC ,XJ ;Z) = 0 for all i. By the chain homotopy lifting [2, Propo-
sition 2.10], this implies that

Hi(XC ,XJ ;Q(Zm)) = 0

for all i. This in turn implies that the right vertical map in the next commu-
tative diagram is an isomorphism:

0 �� TH1(XJ ;Z[Zm]) ��

��

H1(XJ ;Z[Zm])

����

�� H1(XJ ;Q(Zm))
∼=
��

0 �� TH1(XC ;Z[Zm]) �� H1(XC ;Z[Zm]) �� H1(XC ;Q(Zm)).

Since Q(Zm) is flat over Z[Zm], the horizontal sequences are exact. By Propo-
sition 3.1, the middle map is an epimorphism. A straightforward diagram chase
shows that the left vertical map is also an epimorphism. �

The following corollary is an immediate consequence of Proposition 3.2
and of the multiplicativity of orders in short exact sequences of torsion Z[Zm]-
modules [12, Lemma 5].

Corollary 3.3. The orders of the torsion submodules of the homologies satisfy

ord TH1(XC ;Z[Zm]) | ord TH1(XJ ;Z[Zm])
︸ ︷︷ ︸

=ΔJ

.

We continue with the following proposition that relates the Alexander mod-
ules of J and C.
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Proposition 3.4. If C is a homotopy ribbon concordance from J to L, then the
induced map

H1(XL;Z[Zm]) → H1(XC ;Z[Zm])

is injective.

In the proof of Proposition 3.4, we shall make use of the next lemma. The
proof of the lemma is a straightforward check and is omitted.

Lemma 3.5. Let π be a group, let C∗ be a chain complex of free left Z[π]-
modules and let ϕ : π → Z

m be a homomorphism. The map ϕ induces a
(Z[Zm],Z[π])-bimodule structure on Z[Zm]. The map

Homright-Z[π](C∗;Z[Zm]) → HomZ[Zm](Z[Zm] ⊗Z[π] C∗;Z[Zm])
f 	→ (p ⊗ σ 	→ p · f(σ))

is well-defined and is an isomorphism of Z[Zm]-cochain complexes.

Proof of Proposition 3.4. We show that H2(XC ,XL;Z[Zm]) = 0. As in the
proof of Proposition 3.2, Hi(XC ,XL;Q(Zm)) = 0 for all i. Since commutative
localisation is flat, this implies in particular that Hi(XC ,XL;Z[Zm]) is Z[Zm]-
torsion for all i.

Now by the Poincaré-Lefschetz duality (see e.g. [4, Theorem A.15] for a
proof with twisted coefficients in the topological category),

H2(XC ,XL;Z[Zm]) ∼= H2(XC ,XJ ;Z[Zm]).

As above, write π := π1(XC). Now

H2(XC ,XJ ;Z[Zm]) ∼= H2(HomZ[Zm](Z[Zm] ⊗Zπ C∗(XC ,XL;Zπ),Z[Zm]))

by Lemma 3.5. We can compute the right hand side of this using the universal
coefficient spectral sequence for cohomology [13, Theorem 2.3], which combined
with the equation above gives a spectral sequence

Extp
Z[Zm](Hq(XC ,XJ ;Z[Zm]),Z[Zm]) ⇒ Hp+q(XC ,XJ ;Z[Zm]).

We shall show that all the terms on the 2-line (p + q = 2) vanish. First, since
H2(XC ,XJ ;Z[Zm]) is torsion, we have

Ext0
Z[Zm](H2(XC , XJ ;Z[Z

m]),Z[Zm]) ∼= HomZ[Zm](H2(XC , XJ ;Z[Z
m]),Z[Zm]) = 0.

We showed in the proof of Proposition 3.1 that H1(XC ,XJ ;Z[Zm]) = 0. There-
fore

Ext1
Z[Zm](H1(XC ,XJ ;Z[Zm]),Z[Zm]) = 0.

Finally H0(XC ,XJ ;Z[Zm]) = 0, so

Ext2
Z[Zm](H0(XC ,XJ ;Z[Zm]),Z[Zm]) = 0.

This completes the proof that all the terms on the 2-line vanish, so we see
that

H2(XC ,XL;Z[Zm]) ∼= H2(XC ,XJ ;Z[Zm]) = 0
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which implies that H2(XC ,XL;Z[Zm]) = 0 as desired. It then follows from the
long exact sequence of the pair (XC ,XL) that the map

H1(XL;Z[Zm]) → H1(XC ;Z[Zm])

is injective. �

Using the aforementioned multiplicativity of orders in short exact sequences
of torsion Z[Zm]-modules, we immediately obtain the following corollary.

Corollary 3.6. The orders of the torsion submodules of the homologies satisfy

ord TH1(XL;Z[Zm])
︸ ︷︷ ︸

=ΔL

| ordTH1(XC ;Z[Zm]).

4. Proof of Theorem 1.1. By Corollary 3.6, we have that ΔL = ordTH1(XL;
Z[Zm]) divides ΔC := ordTH1(XC ;Z[Zm]). That is, ΔC = ΔL · p for some
p ∈ Z[Zm]. On the other hand, by Corollary 3.3, for some q ∈ Z[Zm], we have
that ΔC · q = ΔJ . Therefore

ΔJ = ΔC · q = ΔL · p · q

and so ΔL | ΔJ as desired. This completes the proof of Theorem 1.1.
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