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Abstract—Zero Shot Learning (ZSL), a type of structured
multi-output learning, has attracted much attention due to its
requirement of no training data for target classes. Conventional
ZSL methods usually project visual features into semantic space
and assign labels by finding their nearest prototypes. However,
this type of Nearest Neighbor Search (NNS) based methods often
suffer from great performance degradation because of the non-
uniform variances between different categories. In this paper,
we propose a probabilistic framework by taking covariance
into account to deal with the problem mentioned above. In
this framework, we define a new latent space, which has two
characteristics. The first is the features in this space should gather
within classes and scatter between classes, which is implemented
by triplet learning, the second is the prototypes of unseen classes
are synthesized with nonnegative coefficients which are generated
by Nonnegative Matrix Factorization (NMF) of relations between
the seen classes and unseen classes in attribute space. During
training, the learned parameters are the projection model for
triplet network and the nonnegative coefficients between unseen
classes and seen classes. In the testing phase, visual features are
projected into latent space and assigned with the labels that have
the maximum probability among unseen classes for classic ZSL
or within all classes for Generalized ZSL. Extensive experiments
are conducted on four popular datasets, and the results show
that the proposed method can outperform the state-of-the-art
methods in most circumstances.

Index Terms—Nonnegative Matrix Factorization (NMF),
Triplet Network, Zero Shot Learning (ZSL), Prototype Synthesis.

I. INTRODUCTION

RECENT efforts on image classification research have
been focusing on large-scale image recognition issues,

such as the challenge on ImageNet [1]. Since the latest
Convolutional Neural Network (CNN) based deep learning
methods have achieved significant improvement and reached
the accuracy of over 95% [2, 3], a question is raised that are we
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Fig. 1. Illustration of the drawback of NNS based method: the new input
data which should belong to class A is misclassified to class B by NNS based
methods due to the shorter distance to B.

already able to solve large-scale classification problems. This
problem can be answered based on two conditions: 1) Can
the training set include all classes over the world and contain
enough training samples? 2) Can the training model be ex-
tended without retraining to the classes which are not included
in the training set and still retain high performance? The first
condition is almost impossible to be reached because there are
8.7 million classes only in animal species [4]. Therefore, many
researchers try to fulfill the second requirement with Transfer
Learning [5] and Zero Shot Learning (ZSL) [6, 7].

ZSL aims to recognize the categories which have no labeled
data available during training. This is usually realized by
introducing auxiliary semantic information, such as attribute
vectors [8] and word embeddings [9], which are often used as
the prototypes of ZSL for final classification. To this end, ZSL
usually learns to generate structured vectors in attribute space,
which are then used to find the best prototypes as the test
samples’ labels. From this perspective, ZSL can be regarded
as a type of Structured Multi-output Learning (SML). During
training, the relationship between visual features and semantic
attributes is learned with only the data from seen classes. The
prediction is conducted by directly applying the learned model
on the data of unseen classes. The most popular ZSL methods
are based on Nearest Neighbor Search (NNS), which projects
visual feature into attribute space and find the nearest attribute
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Fig. 2. Illustration of the prototype synthesis in latent space. Each prototype
of unseen classes, including the mean and the variance, is synthesized by
nonnegative prototypes of the seen classes. The middle bottom part is the
method for synthesis.

vector as its label, or projects attribute prototypes into feature
space as the feature prototypes which are then exploited for
comparing with input visual features to find their class labels.

However, these NNS based methods often suffer from
great performance degradation due to the neglect of variances
between different classes. For example, in Fig. 1, there are
two classes (denoted as blue and yellow) which have different
variances, the new input feature (illustrated as a green square)
is closer to the yellow class than the blue one. In the conven-
tional NNS based methods, this new data should be classified
as the yellow class, but in fact, it should belong to the blue
class because it has a higher probability to be assigned with
the blue label than the yellow one by considering the class
variances.

Verma et al. first proposed a simple exponential framework
for ZSL [10, 11], which treats each class distribution as
an exponential family distribution, and the mean and the
variance of each seen/unseen category are defined as a linear
projection of the corresponding predefined class attribute. The
projection is learned with only the seen classes and can be
exploited to predict the parameters of the class-conditional
distribution of each unseen class by utilizing the attributes of
unseen classes. Then, the classification of the input unseen
data can be conducted by finding the maximum probability in
visual space. Wang et al. proposed an end-to-end Variational
AutoEncoder (VAE) network based ZSL method (VZSL) [12],
which represents each seen/unseen class using a class-specific
latent-space distribution conditioned on class attributes. These
latent-space distributions are utilized as a prior for a supervised
VAE, which can facilitate to learn discriminative feature repre-
sentations for the inputs. Although these two methods with the
probabilistic framework can achieve significant improvement
comparing to traditional NNS based methods, there still exists
some problems that may hinder them to obtain better results:

1) This framework defines a linear projection from attribute
space to feature space to fit the prototypes, which can be
denoted as µ = Wµas and σ2 = Wσ2as, where µ and
σ2 are the mean and the variance of seen classes in visual
feature space respectively, and they can also be considered as
the prototypes of the seen classes. as is the corresponding
class level attribute, and Wµ and Wσ2 are its projection

parameters, and directly calculated by optimizing the Least
Square Error (LSE) loss, that is to say, µ and σ2 are
weighted linear combination of attributes. However, there is
no constraint for Wµ and Wσ2 , since direct optimization with
LSE might lead to negative values for Wµ and Wσ2 , i.e.,
the synthesized unseen prototypes sometimes may come from
negative attribute, which is unreasonable for realistic scenarios.
Besides, no constraint for the projection parameters also leads
to over-fitting, which obtains good results on training data, but
leads to bad performance on test data.

2) In the equation σ2 = Wσ2as, Wσ2 is a matrix, and
as is a vector, so the result σ2 should be a vector. Thus, the
covariance of the synthesized prototype can only be considered
as diag(σ2

1 , · · · , σ2
dx
), which means that the entries of the

whole matrix except the diagonal are all zeros. It is known that
the diagonal matrix assumes that the elements of the features
are independent of each other, which is a strong assumption
and ignores the correlation between attributes. VZSL [12] uses
a nonlinear deep network to generate a diagonal covariance
matrix, but the problem remains unresolved.

3) As it is known that the distribution of seen data is
usually different from that of unseen data, thus using the model
generated with only seen data to approximate the unseen
data often leads to domain shift problem [13]. The methods
proposed by Verma et al. [10] and Wang et al. [12] utilize only
the seen data to compute the projection matrix or network
parameters and apply them on unseen prototype synthesis,
which will inevitably cause that problem.

4) Verma et al. [10] directly used the original visual features
to compute the prototypes of seen classes. However, the dis-
tribution of these features often overlapped between different
classes, which will be verified in the final experiments, i.e.,
many instances may have high probabilities to two or more
classes, which will easily lead to the wrong classification.
The method VZSL [12] also has such a problem. Therefore,
to reduce the overlapped area of the data, it is necessary to
find another space, where the processed samples are more
discriminative.

To deal with these problems, in this paper, we propose a
novel probabilistic method with Latent Nonnegative Proto-
types Synthesis (LNPS) for unseen classes. In this method,
we make three great efforts, the first one is the definition of a
latent space, where the original features are projected into it
by triplet learning, which can make the projected data in this
space has less overlapped areas, and to be more discriminative,
this effort can well solve the fourth problem mentioned above.
Second, to mitigate the domain shift problem, we design a
nonnegative combination model to synthesize the unseen pro-
totypes from the seen data, and the nonnegative coefficients are
generated with the relationship between the attributes of seen
classes and unseen classes, which is illustrated in Fig. 2. For
example, the prototype of ‘alpaca’, including the mean and
the variance, is synthesized with the prototypes of ‘giraffe’,
‘deer’, ‘tiger’ and so on. This effort has built connections
between the seen classes and the unseen classes, which can
well alleviate the domain shift problem, and improve the
performance on the more realistic Generalized ZSL (GZSL)
setting significantly. Third, we make the prototype of each
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category in the latent space as a Gaussian distribution, which
consists of a mean vector and a variation matrix, and find the
maximum probability of a test sample with respect to all the
synthesized prototypes. Such effort constrains the prediction
within a probabilistic framework in the latent space, thus
can circumvent the problem caused by the NNS when class
distributions are overlapping.

Our contributions are briefly listed as follows:

• We design a latent space for zero shot classification with
triplet network. In this latent space, features belonging to
the same category are gathered together, otherwise they
are scattered among the classes, which can greatly reduce
the overlapped areas, and make the projected data more
discriminative.

• We build relationships between the seen classes and the
unseen classes to solve the domain shift problem. In this
manipulation, Nonnegative Matrix Factorization (NMF)
is utilized to learn the nonnegative coefficients to generate
the unseen attributes from the seen attributes, and then
the coefficients are used to synthesize unseen prototypes
from the seen prototypes in latent space.

• Extensive experiments are conducted on four popular
datasets for both ZSL and GZSL, the results show that
the proposed method can outperform the state-of-the-art
methods in most circumstances, especially on the more
realistic GZSL setting.

The main content of this paper is organized as follows: In
section II we briefly introduce the existing methods for ZSL.
Section III describes the proposed method in detail. Section
IV gives the experimental results of comparison with existing
methods for both conventional ZSL and GZSL. Finally in
section V, we conclude this paper.

II. RELATED WORK

According to the usage of unseen data during training,
ZSL methods can be coarsely divided into two categories:
Inductive ZSL, which assumes that the unseen data should be
strictly inaccessible during training, and Transductive ZSL,
which utilizes the unlabeled data of unseen classes as part of
the training set.

Inductive ZSL Since visual attribute learning [14] has been
proposed, many researchers conduct their work to discover the
intermediate attribute classifiers for zero-shot learning. One
of the most popular frameworks is compatibility learning,
which learns linear or non-linear mapping functions with
only using seen data and attributes, and then applying on
unseen data. DAP [15] is one of the earliest compatibility
frameworks, which learns probabilistic attribute classifiers and
estimates the label by integrating the ranks of the learned
classifiers. ALE [16], SJE [17], and DEVISE [18] employ
bilinear compatibility function to project features into semantic
embedding space, where the features and attributes belong to
the same class with depending on the correlation is maximal or
minimal. Embarrassingly Simple Zero Shot Learning (ESZSL)
[19] adds an additional regularization term to the unregularized
risk minimization equation.

To improve the performance and reduce the usage of manual
attributes, some hybrid methods are proposed, e.g. Combina-
tion of Semantic Embeddings (CONSE) [20] and Semantic
Similarity Embedding (SSE) [21] exploits seen classes to
construct the attributes of unseen classes.

Synthetic learning is a novel type of method, which typically
synthesizes pseudo features from semantic attributes. The
classifiers are trained by using conventional algorithms such
as Decision Tree (DT) [22] or Support Vector Machine (SVM)
[23]. Some well-known methods have a similar structure
as the standard one. For example, Synthesised Classifiers
(SYNC) [24], Unseen Visual Data Synthesis (UVDS) [8] and
Generating Pseudo Feature Representation (GPFR) [25]. The
most relevant method to ours is the exponential framework
GFZSL [10, 11], which treats each class distribution as an
exponential family distribution, and defines the mean and
variance of visual prototype for each category as the projection
of the class attribute. Besides, Wang et al. proposed an end-
to-end VAE based VZSL method [12], which represents each
seen/unseen class using a class-specific latent-space distribu-
tion conditioned on class attributes. These latent-space dis-
tributions are utilized as a prior for a supervised VAE, which
can facilitate to learn discriminative feature representations for
the inputs. However, both GFZSL and VZSL assume that all
dimensions of the prototype variance are independent of each
other. In addition, they may generate prototypes with negative
coefficients for unseen classes, which will not happen in real
feature representations.

Since the distribution of seen data often differs from that
of the unseen data, thus just using the model generated with
only seen data inevitably leads to the domain shift problem,
i.e., if the projection model from visual feature to semantic
embedding is learned only from the seen classes, the projection
of unseen class image is likely to be shifted due to the bias
distribution of the training seen classes. Sometimes this bias
might be far away from the correct unseen class prototype,
leading to an error of the subsequent nearest neighbor search.
Therefore, the best way to solve this problem is to include un-
labeled unseen data into training, which is called transductive
ZSL.

The earliest concept of transductive ZSL was proposed
by Y. Fu et al. [26], who learned a multi-label regression
to generalize the model to unseen classes by utilizing both
seen and unseen data. Semi-supervised framework [27] takes
both labeled and unlabelled data as input, and jointly learns a
multi-class classification model on all classes. The framework
can consistently learn both the label representations and the
model parameters across the seen classes and unseen classes.
Unsupervised Domain Adaptation (UDA) [28] casts the visual-
embedding projection learning problem as a sparse coding
problem, which sets each dimension of the semantic em-
bedding space corresponds to a dictionary basis vector. The
coefficients/sparse code of each visual feature vector is its
projection in the semantic embedding space. Y. Guo et al. [29]
proposed a method to solve transductive ZSL with a shared
model space (SMS) with replacing the shared attribute space in
existing works. Recently, Y. Li et al. [30] exploits the intrinsic
relationship between the semantic space manifold and the
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latent features with the trained triplet network, produces the coefficient matrix H , synthesizes the prototypes for the unseen classes, and classifies the new
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transferability of visual-semantic mapping, then formalizing
their connection and cast zero-shot recognition as a joint
optimization problem. J. Song et al. proposed a deep Quasi-
Fully Supervised Learning network (QFSL) [31] by designing
two independent objective functions for seen data and unseen
data and integrates them into a whole during the training
phase. Verma et al. extended GFZSL to transductive mode by
setting the predicted unseen prototypes as the initial values,
and utilizing a clustering approach with the test data to find
better unseen visual prototypes. VZSL also adopts the similar
strategy for transductive setting. Furthermore, VZSL extends
the learned model to the few-shot setting by giving labels to
several test samples of each unseen class.
GZSL According to the assumption of whether the ascription
of test data is known, the ZSL task can be classified into
two categories: Classical ZSL and Generalized ZSL. Classical
ZSL assumes the ascription of test data is known in advance,
thus the nearest neighbor searching can be conducted on only
unseen classes. Chao et al. [32] suggests that the classical
ZSL is incompatible under the actual situation because we
cannot obtain the knowledge of whether the test data belongs
to unseen classes beforehand in most scenarios. Therefore,
they propose a new task—Generalized ZSL, which carries
out the nearest neighbor searching on both seen and unseen
classes. Subsequently, in CVPR2017, Y. Xian et al. [33] put
forward a new standard split of several popular datasets for
GZSL testing and released a benchmark of some recent ZSL
methods, which make the later researchers more convenient to
fairly compare their research results.

III. METHODOLOGY

A. Problem Definition

Let S = {s1, · · · , sp} denotes a set of seen classes and
U = {u1, · · · , uq} denotes a set of unseen classes, where p
and q are the number of seen and unseen classes respectively.

The two sets are disjoint, that is to say, S ∩ U = ∅. Besides,
As = {as1, · · · ,asp} ∈ Rda×p and Au = {au1 , · · · ,auq } ∈
Rda×q represent for the corresponding seen and unseen class
level semantic representations, such as attributes or word
embeddings, where da is the dimension of attribute vector.

Given a set of labeled training data of seen classes Xs =
{xs1, · · · ,xsi , · · · ,xsNs

} ∈ Rdx×Ns , where dx is the dimen-
sionality of a single feature vector xsi , and Ns is the number
of training data. Each feature xsi is simultaneously associated
with a label yi ∈ S and its corresponding attribute ayi ∈ As.
Let Xu = {xu1 , · · · ,xui , · · · ,xuNu

} ∈ Rdx×Nu represents for
a set of test data, which is not assigned with its corresponding
labels and semantic representations, where Nu is the number
of test data. The objective of ZSL is to predict the labels of
the test data Xu by learning a classifier F : Xu → U with
the training data Xs and the whole attribute set As ∪Au.

B. The Probabilistic Framework

As the problems described in the section of the introduc-
tion, the NNS based methods might cause great performance
degradation due to their neglect of data distribution, thus
the classification should be determined in the probabilistic
framework. Furthermore, for the sake of circumventing a large
number of overlapping areas in original visual space, the
features should be mapped into a latent space, where the
features gather together within a class and spread out between
classes. Therefore, for a feature vector xui in original visual
space, it should be first mapped into latent space as zui , and
then the classification can be conducted with the multivariate
Gaussian distribution,

yui =argmax
j∈U

N (zui |µuj ,Σu
j )

=argmax
j∈U

1

(2π)
dz
2

1

|Σu
j |

1
2

exp{−1

2
(zui − µuj )T (Σu

j )
−1(zui − µuj )},

(1)
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where, µuj and Σu
j are the mean vector and covariance

matrix respectively of each unseen prototype, and dz is the
dimensionality of the vector in latent space.

According to Eq. 1, there are two things left to complete
for this framework, one is to find a projection function G :
Xu → Zu to map the original features into latent space,
where the projected features are more discriminative; another
is to synthesize the Gaussian distribution parameters µuj and
Σu
j of each unseen prototype in latent space.
For the former one, the best way is adopting the triplet

based metric learning method, thus, we exploit the labeled
training data Xs and their corresponding label S to generate
triplets, and learn a mapping function G′ : Xs → Zs, which
is then used as G when computing Zu. For the latter one,
since we have already obtained the seen attributes As and the
unseen attributes Au, it is feasible to compute nonnegative
coefficients H ∈ Rs×u(Hij > 0) to synthesis Au from
As, which can be addressed by applying Non-negative Matrix
Factorization (NMF). Furthermore, if Zs has been generated
with the previous manipulation, it is easy to obtain the mean
vector µsi and covariance matrix Σs

i of each seen prototype
in latent space. With the precomputed H , calculating the
distribution of unseen prototypes will be an easy operation.

The whole framework is illustrated in Fig. 3 and the details
are clarified in the following several subsections.

C. Triplet Network

Since the data distribution of each class in visual feature
space is often overlapped with each other, which makes the
features difficult to be classified, it is necessary to define a
latent space to project the original features into it, where
the data points are more discriminative. The latent space
should have two characteristics, one is the data should be
gathered within a class and scattered between classes, another
is to avoid the curse of dimensionality, the data points in
latent space should have less dimensionality than that in
original feature space. The best way to fulfill the above two
requirements is metric learning [34, 35], such as Siamese
network and triplet network.

Siamese network exploits pairwise samples, including sim-
ilar and dissimilar pairs, it encourages the network to pull
together similar pairs and push away dissimilar pairs, while
triplet network uses triplets, it conducts the same work as
the Siamese network within one sample. Lots of experiments
have proved that the triplet network is better than the Siamese
network in most situations. Therefore, in our method, we adopt
the triplet network. There are three important elements in the
triplet network, including objective function, triplet selection,
and network architecture, which are described detailedly as
follows.
Objective

The latent embedding is denoted as z = G′(x), which
embeds a visual feature x into a low dimensional latent space.
Here we intend to ensure that a visual feature xai (anchor) of a
special class is closer to the feature xpi (positive) of the same
class than it is to any feature xni (positive) of any other class.
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Fig. 4. Illustration of the architecture of the triplet network.

Since the triplet model in FaceNet [36] has achieved great
success in face recognition, we adopt the concept and define,

‖G′(xai )− G′(x
p
i )‖

2
2 + α < ‖G′(xai )− G′(xni )‖22, (2)

where, α is a margin, and (xai ,x
p
i ,x

n
i ) is a triplet sample.

Therefore, the objective loss function can be defined as,

L =

Ns∑
i=1

max(0,‖G′(xai )− G′(x
p
i )‖

2
2

− ‖G′(xai )− G′(xni )‖22 + α).

(3)

Triplet Selection
Choosing suitable triplets to use is very important for

achieving good performance. Inspired by FaceNet [36], we
adopt the semi-hard mining strategy to select triplets, which
is described as,

‖G′(xai )− G′(x
p
i )‖

2
2 <‖G′(xai )− G′(xni )‖22
<‖G′(xai )− G′(x

p
i )‖

2
2 + α.

(4)

The inequality 4 is much more stable than the hard negative
strategy, which often leads to a bad local minimum early
during training [36].
Architecture

As deep learning has achieved great success in metric learn-
ing methods, we also adopt the deep concept into our frame-
work. We use the visual features extracted with ResNet101
[2] and append two full connection layers behind it. The
appended two layers have the dimensionality of 1024 and β
(determined by a different dataset with cross-validation, which
will be explained in the experimental part) respectively, and
a nonlinear activation layer (ReLU) between them, which can
be found in Fig. 4.

D. Latent Nonnegative Prototype Synthesis (LNPS)

According to Eq. 1, since we have obtained the projected
model from visual space to latent space, the remaining work
is to obtain the mean vector µui and the covariance matrix
Σu
i of each unseen prototype. Conventional method such as

that proposed by Verma et al. [10] optimizes direct linear
projection matrix Wµ and WΣ from attribute to µsi and Σs

i ,
and applies it to the unseen class to compute µui and Σu

i ,
which can achieve obvious improvement. However, Wµ and
WΣ are optimized with only seen data and seen attributes,
which often suffer from the domain shift problem. Besides,
there is no constraint on Wµ and WΣ, which has a large
opportunity to have some entries of them to be smaller than
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zero, which is unreasonable for feature synthesis and often
leads to over-fitting.

To circumvent these problems, we build a connection be-
tween the attributes of seen classes and unseen classes, and
make the nonnegative constraint on the parameters, which can
be represented as,

Au = AsH

s.t. Hij > 0,
(5)

where, H is the synthesis coefficient matrix, and Hij is the
entry of H in row i and column j.
Optimization

Due to the nonnegative constraint, Eq. 5 is not convex, thus,
it can not be solved with a closed-form solution. Here, we
adopt the concept of NMF to minimize the LSE loss of each
entry, and define the following loss function,

J (H) =
1

2

∑
i,j

(Au
ij − (AsH)ij). (6)

Since (AsH)ij can be represented as,

(AsH)ij =
∑
k

As
ikHkj , (7)

thence,
∂(AsH)ij
∂Hkj

= As
ik. (8)

We make derivative of Eq. 6 with respected to Hkj , and
obtain,

∂(J (H))

∂Hkj
=

∑
i

As
ik((A

sH)ij −Au
ij)

=
∑
i

As
ik(A

sH)ij −
∑
i

As
ikA

u
ij

= ((As)TAsH)kj − ((As)TAu)kj .

(9)

Then we can use the Gradient Descent (GD) to compute
Hkj , which can be denoted as,

Hkj =Hkj − λ · [((As)TAsH)kj − ((As)TAu)kj ], (10)

where, λ is the learning rate.
For Eq. 10, we set,

λ =
Hkj

((As)TAsH)kj
, (11)

then, it can be simplified as,

Hkj =Hkj ·
((As)TAu)kj
((As)TAsH)kj

. (12)

Eq. 12 is a typical iterative process, which can guarantee
Hkj is nonnegative during optimization, and the convergence
proof can be found in [37].
Synthesis

Due to the fact that the class attributes annotated by human
experts are mostly according to their visual appearance, thus
we assume that the distribution of interclass similarity in visual
and attribute spaces are consistent. Furthermore, the triplet
network is applied to reduce the intraclass variance so as
to further alleviate interclass similarity shift. To verify our
assumption, the normalized similarity matrices of the seen
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Fig. 5. Illustration of the similarity of seen classes of AWA in both latent
space and attribute space.

classes of AWA in both latent space and attribute space are
shown in Fig. 5. Yellow indicates high similarity and blue
is the opposite. It is clear that the distributions of interclass
similarity in latent and attribute spaces are consistent. Since
Coefficient MatrixH aims to capture the interclass similarities
between unseen and seen classes, but the latent feature of
unseen classes is not available before the ZSL test, we can
estimate it from attribute space and apply it to the latent feature
space as an approximate alternative.

In the last subsection, we have obtained the projection
function G from visual space to latent space, thus, it is easy to
get the projected features Zu and Zs, which are then exploited
to compute the seen prototypes,

µsc =

Ns∑
i

zsi · 1(`(zsi ) == c), where c ∈ S

Σs
c =

1

Nc

Ns∑
i

((zsi − µsc)(zsi − µsc)T ) · 1(`(zsi ) == c),

(13)
where, `(zsi ) is the label function of zsi , and 1(·) is the
indicator function when the condition is satisfied the output
is 1, otherwise 0. Ns is the number of all seen data, and
Nc =

∑Ns

i 1(`(zsi ) == c) denotes the number of features
falling into the cth category.

Similar to the attribute synthesis, we exploit the same
coefficient matrix H to synthesize the unseen prototypes in
latent space, 

µuc =

p∑
i

µsi ·Hic

Σu
c =(

p∑
i

Hic) · (
p∑
i

Hic

Σs
i

)−1,

(14)

where, c ∈ U . Given an input test data xui , we can map it
into latent space with the function G(·), which is learned with
triplet network described in last subsection, and get zui =
G(xui ). According to Eq. 1, it is easy to obtain the label of
the new unseen data xui .

E. Transductive Setting

In standard ZSL setting, the parameters to estimate the
unseen classes are learned only from the data of seen classes,
and this setting is often called Inductive Setting. But in realistic
scenarios, the distribution of unseen data often differs from
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that of seen classes, which will lead to great performance
degradation due to the domain shift problem. In our proposed
method, we exploit the unseen attributes in the training phase
to creatively construct the relationship between seen classes
and unseen classes, which can alleviate the domain shift
problem to a certain degree. However, only one attribute
vector of each unseen class cannot thoroughly capture the
distribution, thus it is unable to solve the domain shift problem
perfectly.

Sometimes, we may have the opportunity to access the
unlabeled data from unseen classes. Therefore, we can include
them in the training phase to obtain its real distribution, which
will definitely improve the performance. This setting is named
Transductive Setting. In our work, the objective is to leverage
the unlabeled unseen data to further improve the estimation
{µuc ,Σu

c }, c ∈ U upon the inductive results.
Suppose the given unlabeled data of each category follows

the Gaussian distribution independently, the entire data set can
be modeled with a Gaussian Mixture Model (GMM) [38],
which can be represented as,

p(zui ) =

q∑
k=1

πkN (zui |µuk ,Σu
k), (15)

where, πk is the mixing coefficient, and follows two con-
straints, which are 0 6 πk 6 1 and

∑q
k=1 = 1. The log of

the likelihood function of whole dataset of the unseen classes
is given by,

ln p(zui |π,µu,Σu) =

Nu∑
n=1

ln

q∑
k=1

πkN (zui |µuk ,Σu
k). (16)

Maximizing the formulation 16 can be addressed by an ele-
gant and powerful method, namely Expectation-Maximization
(EM) algorithm [38], which can be expressed as the following
procedure,
• Initialize the mean vectors µuk , k ∈ U and covariance

matrices Σu
k , k ∈ U with the synthesized results from

inductive setting in last subsection. Initialize the mixing
coefficients πk = 1

q , and evaluate the initial value of the
log likelihood with Eq. 16.

• E-step. Estimate the expected values using the current
parameters,

γ(`nk) =
πkN (zun|µuk ,Σu

k)∑q
j=1 πkN (zun|µuj ,Σu

j )
, (17)

where, `nk means assigning the nth data point with the
kth label.

• M-step. Re-evaluate the parameters using the current
expected values,

µuk =
1

Nk

Nu∑
n=1

γ(`nk)z
u
n, (18)

Σu
k =

1

Nk

Nu∑
n=1

γ(`nk)(z
u
n − µuk)(zun − µuk)T , (19)

πk =
Nk
Nu

, (20)

where,

Nk =

Nu∑
n=1

γ(`nk). (21)

• Evaluate the log-likelihood with Eq. 16 and check for
convergence of either the log-likelihood or the parame-
ters. If the convergence criterion is not satisfied, return
to E-step.

After the EM step, we can leverage the converged parame-
ters and Eq. 1 to predict the label of new input unseen features.

F. Computational Complexity

In this subsection, we discuss the computational complexity
of our method. Since our method mainly consists of a triplet
network, prototype synthesis, and GMM, we analyze them
separately. For the triplet network, we assume the neurons
in each layer is n for simplicity. Since the forward process
mainly contains the matrix multiplication, the computational
complexity for the forward network is O(`n3), where ` is the
number of layers. The backpropagation part mainly contains
error propagation and gradient computation, complexity of the
error propagation in all layers is O(`n3) too, and if we assume
that there are n gradient iterations, the total complexity of
backpropagation is n × O(`n3) = O(`n4). Combing both
forward and backward processes, we can conclude the compu-
tational complexity of the triplet network is O(`n4) in a single
iteration. For prototype synthesis, the computation of NMF
mainly contains matrix multiplication and matrix element-
wise division. Since the dimension of the attribute is da, and
if we assume the iteration number is m, the computational
complexity of prototype synthesis is O(md3

a). For the process
of EM, the main computation of E-step is the probability
computation, which has the complexity of O(iqβNu), where,
i is the iteration number for EM. The main computation
of M-step is the calculation of the covariance, which has
the complexity of O(iβ2Nu). Therefore, the computational
complexity of GMM is O(iβ(β + q)Nu).

IV. EXPERIMENTS

To verify the effectiveness of our method, we use four
popular datasets to evaluate our model for ZSL, and compare
it with a number of state-of-the-art baselines. We conduct our
experiments on two settings, including inductive setting and
transductive setting, and report the results on classical ZSL
and GZSL respectively. In this section, we will first briefly
introduce the four datasets, and then show the performance of
our method comparing to some baselines, at last, the detailed
analysis will be demonstrated to show the importance of some
hyper-parameters.

A. Datasets and Settings

Datasets
Similar to many other ZSL methods [33, 41, 42], we also

use the same four popular datasets. For the sake of fair
comparison, we leverage the same split like that in [33], and
the statistics of the datasets are summarized in Tab. I. The
description of the datasets is as follows,
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TABLE I
THE SUMMARIZATION OF THE FOUR POPULAR DATASETS USED IN OUR EXPERIMENTS.

Dataset Attribute Dim Samples Seen/Unseen Class Test samples (unseen) Test samples (seen) Train (seen)
SUN [39] 102 14,340 645/102 1,440 2,580 10,320
CUB [39] 312 11,788 150/50 2,967 1,764 7,057
AWA [15] 85 30,475 40/10 5,685 4,958 19,832
aPY [40] 64 15,339 20/12 7,924 1,483 5,932

• SUN attribute (SUN): The SUN dataset [39] contains
14,340 images with 645 seen classes (training set) and
72 unseen classes (test set). There are 20 images in each
class, which is also associated with a 102-dimensional
real value class-attribute vector. Among the seen classes,
we select 4 images from each class to build the seen test
set, and the left is composed of the training set of seen
classes.

• Caltech-UCSD Birds-200-2011 (CUB-200): The CUB-
200 [43] is a fine-grained dataset, which contains 11,788
images with 150 seen classes (training set) and 50 un-
seen class (test set). Each image has a real value 312-
dimensional class-attribute vector, specifying the pres-
ence or absence of various attributes of that image. The
attribute vectors for all images in a class are averaged
to construct its continuous class-attribute vector. Besides,
the data of seen classes are divided into two parts, one
containing 7,057 images is used for seen train, and the
other containing 1,764 images is employed for the seen
test.

• Animal with Attribute (AwA): The AwA dataset is
a coarse-grained dataset [15], which contains 30,475
images with 40 seen classes (training set) and 10 unseen
classes (test set). Each class has a predefined real-value
85-dimensional class-attribute vector. The set of unseen
classes has 5,685 images, and the set of seen classes has
24,790 images, among which 4,958 images are used for
the seen test, and the remaining is used for training.

• a Pascal & Yahoo attribute (aPY): aPY [40] is also
a coarse-grained dataset, which contains 15,339 images
with 32 classes, and 20 of them (Pascal set) are used
as seen classes and the left 12 (Yahoo set) are treated
as unseen classes. Besides, each class is associated with
a 64-dimensional attribute. Among the data of 20 seen
classes, 5,932 images are used for seen train, and the left
1,438 are for the seen test.

Settings
We strictly evaluate our methods by using standard class-

level attributes provided by [33]. For the sake of fairness,
and also the convenience of comparison, the split of the
datasets also follows that proposed by [33]. The images are
first processed with the pre-trained ResNet101 network [2]
to extract 2048 dimensional features before being sent to the
triplet network. The learning rate of the deep triplet network is
set as 1×10−4, the iteration number is selected as 1×105, and
the batch size is set as 200. Because the different dataset is
often suitable with different parameters, we utilize the cross-
validation to find the optimal dimension β of each dataset. We
hereby compare the difference between ZSL cross-validation
to conventional machine learning approaches. Compared to

inner-splits of training samples within each class, the ZSL
problem requires inter-splits by in turn regarding part of seen
classes as unseen. In our experiments, we randomly select
20% of the seen classes as unseen classes for validation and
pick the parameter of the best performance of the average of 5
executions. The optimal dimension β of latent space for each
dataset is reported in Tab. II for both ZSL and GZSL.

TABLE II
THE OPTIMAL DIMENSIONS OF LATENT SPACE FOR TRIPLET NETWORK.

Dataset SUN CUB AWA aPY
ZSL 1024 512 256 32

GZSL 1024 512 256 32

B. Comparison with Baselines

Conventional ZSL metric often focuses on the average
accuracy of all test data, but it has a drawback that if there
is a big class occupies more than 50% of the data, then the
result will be determined only by this class, such as the class
‘person’ in aPY contains over 60% of the dataset, thus the
class ‘person’ will dominate the entire result. However, the
purpose of ZSL is to achieve good performance on all unseen
categories, so it is better to compute the accuracies in each
class, and then average them as the final result.

Besides, the ZSL metric assumes that the test data in
advance are known belonging to unseen classes, and will
be tested only on unseen classes, which is unreasonable in
realistic scenarios. We usually do not know the ascription of
the test data in advance, thus it is necessary to find the best
assignment on both seen and unseen classes. Furthermore,
the model should be not only suitable for unseen classes but
also should maintain the performance on seen classes. This
metric is called Generalized ZSL (GZSL), which is described
as follows,
• Seen test accuracy tr: Average per-class classification

accuracy for seen test samples;
• Unseen test accuracy ts: Average per-class classification

accuracy for unseen test samples;
• Harmonic accuracy H: traditional arithmetic mean H =

(tr+ ts)/2, which computes the average value of tr and
ts, can still generate good results when one of tr and
ts is high and the other is very low. However, very low
accuracy on single metric often means the trained model
fails, thus here we use harmonic accuracy H = (2× tr×
ts)/(tr + ts) [33] to replace the arithmetic mean.

We compare our algorithm with 20 recently proposed
inductive and transductive methods. The inductive methods
include DAP [15], CONSE [20], CMT [44], SSE [21], LATEM
[45], ALE [16], DEVISE [18], SJE [17], ESZSL [19], SYNC
[24], SAE [46] CVAEZSL [47], PRESERVE model [48],
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TABLE III
COMPARISON WITH STATE-OF-THE-ART BASELINES ON GZSL SETTING. ’-’ MEANS NOT REPORTED OR NOT AVAILABLE.

SUN CUB AWA aPY
Method ts tr H ts tr H ts tr H ts tr H
DAP [15] 4.2 25.1 7.5 1.7 67.9 3.3 0.0 88.7 0.0 4.8 78.3 9.0
CONSE [20] 6.8 39.9 11.6 1.6 72.2 3.1 0.4 88.6 0.8 0.0 91.2 0.0
CMT [44] 8.1 21.8 11.8 7.2 49.8 12.6 0.9 87.6 1.8 1.4 85.2 2.8
SSE [21] 2.1 36.4 4.0 8.5 46.9 14.4 7.0 80.5 12.9 0.2 78.9 0.4
LATEM [45] 14.7 28.8 19.5 15.2 57.3 24.0 7.3 71.7 13.3 0.1 73.0 0.2
ALE [16] 21.8 33.1 26.3 23.7 62.8 34.4 16.8 76.1 27.5 4.6 73.7 8.7
DEVISE [18] 16.9 27.4 20.9 23.8 53.0 32.8 13.4 68.7 22.4 4.9 76.9 9.2
SJE [17] 14.7 30.5 19.8 23.5 59.2 33.6 11.3 74.6 19.6 3.7 55.7 6.9
ESZSL [19] 11.0 27.9 15.8 12.6 63.8 21.0 6.6 75.6 12.1 2.4 70.1 4.6
SAE [46] 8.8 18.0 11.8 7.8 54.0 13.6 1.8 77.1 3.5 0.4 80.9 0.9
SYNC [24] 7.0 43.3 13.4 11.5 70.9 19.8 8.9 87.3 16.2 7.4 66.3 13.3
CVAE-ZSL [47] - - 26.7 - - 34.5 - - 47.2 - - -
PRESERVE [48] 20.8 37.2 26.7 24.6 54.3 33.9 - - - 13.5 51.4 21.4
CDL [49] 21.5 34.7 26.5 23.5 55.2 32.9 28.1 73.5 40.6 19.8 48.6 28.1
GFZSL [10] 0.0 39.6 0.0 0.0 45.7 0.0 1.8 80.3 3.5 0.0 83.3 0.0
LAGO [50] 18.8 33.1 23.9 21.8 73.6 33.7 23.8 67.0 35.1 - - -
PSEUDO [51] 19.0 32.7 24.0 23.0 51.6 31.8 22.4 80.6 35.1 15.4 71.3 25.4
KERNEL [52] 21.0 31.0 25.1 24.2 63.9 35.1 18.3 79.3 29.8 11.9 76.3 20.5
TVN [6] 18.2 28.9 22.3 21.6 47.5 29.7 18.2 87.5 30.2 8.8 59.1 15.4
VZSL [12] 15.2 23.8 18.6 17.1 37.1 23.8 22.3 77.5 34.6 8.4 75.5 15.1
Our Method 39.7 38.9 39.3 37.8 58.2 45.9 37.0 84.7 51.4 25.9 79.5 39.1

TABLE IV
COMPARISON WITH STATE-OF-THE-ART ZSL BASELINES ON BOTH

INDUCTIVE SETTING AND TRANSDUCTIVE SETTING.

Dataset SUN CUB AWA aPY Average
DAP [15] 39.9 40.0 44.1 33.8 39.5
CONSE [20] 38.8 34.3 45.6 26.9 36.4
CMT [44] 39.9 34.6 39.5 28.0 35.5
SSE [21] 51.5 43.9 60.1 34.0 47.4
LATEM [45] 13.0 49.3 55.1 35.2 48.7
ALE [16] 58.1 54.9 59.9 39.7 53.2
DEVISE [18] 56.5 52.0 54.2 39.8 50.6
SJE [17] 53.7 53.9 65.6 32.9 51.5
ESZSL [19] 54.5 53.9 58.2 38.3 51.2
SYNC [24] 56.3 55.6 54.0 23.9 47.5
SAE [46] 40.3 33.3 53.0 8.3 36.2
GFZSL [10] 60.6 49.3 68.3 38.4 54.2
TVN [6] 59.3 54.9 64.7 40.9 55.0
VZSL [12] 52.0 43.8 63.7 30.3 47.5
Our Method 60.4 53.2 67.4 42.8 56.0
QFSL [31] 63.7 56.2 60.4 38.6 54.7
GFZSL-Trans [10] 59.4 45.2 74.7 35.9 53.8
VZSL-Trans [12] 57.6 49.3 69.1 35.7 52.9
Our Transductive 61.5 59.3 82.2 44.4 61.9

Coupled Dictionary Learning (CDL) [49], Probabilistic AND-
OR Attribute Grouping Model (LAGO) [50], Pseudo Transfer
(PSEUDO) [51], KERNEL model [52], Triple Verification
Network (TVN) [6], and Conditional Variational ZSL (VZSL)
[12]. The transductive methods include GFZSL-Trans [10],
VZSL-Trans [12] and QFSL [31], and all the results are
recorded in Tab. IV and Tab. III, among which VZSL and
QFSL are implemented by us according to the algorithms
described in their original papers, and the others are directly
cited from [33] or the results reported by themselves. Besides,
since we have already known the ascription of the test data
in transductive setting, we do not report the performances of
transductive methods such as QFSL [31] and GFZSL-Trans
[10] on GZSL.
Comparison on ZSL

We conduct experiments on all the four datasets for the
metric ZSL and report the results in Tab. IV. From the table,

we can discover that our method of inductive setting can
achieve the best performance on aPY, and exceed DEVISE,
the best method on the corresponding dataset, by 3.0%. On
the datasets SUN, AWA and CUB, our method can achieve the
second, second and fifth place and lower than the best methods
by 2.1%, 0.9% and 2.4% respectively. In the transductive
setting, our method can reach the first place on three datasets,
including CUB, AWA and aPY, and obtain 3.1%, 7.5% and
4.6% higher compared with the best methods QFSL, GFZSL-
Trans and DEVISE respectively.

Although our method gets a bit worse performance than
the best methods on SUN, AWA and CUB (on the inductive
setting), the average performance on all dataset is much
higher than the best baselines, no matter on inductive setting
or transductive setting. Concretely, our method can achieve
56.0% on inductive setting and 61.9% on the transductive
setting and surpass the best method TVN and QFSL by 1.0%
and 7.2% respectively.

In our opinion, the standard to evaluate a method cannot
only rely on the performance on a single dataset, while it
should depend on as many datasets as possible and take the
best performance of the average score as the winner. Therefore,
we argue that our method can outperform the state-of-the-art
methods of ZSL.
Comparison on GZSL

In conventional ZSL, we assume that the search range is
fixed on the unseen classes, which is unrealistic because it
is unable to know whether the new sample belongs to the
seen classes or the unseen classes in advance. Therefore, the
more realistic way is to test on all classes, i.e., GZSL. In this
subsection, we conduct the experiments and give the analysis
on GZSL.

Since the transductive setting assumes that the ascription
of the test to seen classes or unseen classes, it is pointless to
report the result on GZSL. The experiments on GZSL are also
carried out on the four datasets, and the results are shown in
Tab. III.
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From Tab. III, it can be observed that our method can
achieve the best performance on ts and H on all four datasets.
Specifically, as for the metric ts, we can achieve 17.9%,
13.6%, 8.9%, and 6.1% higher than the best baselines; for
the harmonic accuracy H , 12.6%, 10.8%, 4.2%, and 11.0%
improvement can be obtained compared to the best methods
on each dataset.

As for ts, the seen test accuracy, although our method
cannot reach the first place on any dataset, it can still keep
the performance on the upper-middle level. Some methods
such as DAP and CONSE can get the highest score on ts
on the datasets CUB, AWA and aPY, but they almost get no
correct recognition for the unseen test set, which finally leads
to bad performance on H . This phenomenon reveals that those
methods are over-fitting on seen classes, thus they perform
badly on unseen classes.

Besides, we further compare the results in Tab. III and Tab.
IV. It is observed that although our method cannot get the best
performances on ZSL on datasets SUN, CUB and AWA, it can
surpass the best methods by a large margin on GZSL. Since
we all have known that GZSL is more reasonable than ZSL
in realistic scenarios due to the ascription of the input data to
seen or unseen classes is usually unknown, we can conclude
that our method is superior to the state-of-the-art methods.

-50 -40 -30 -20 -10 0 10 20 30 40 50
-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60

(a) seen classes of AWA

-30 -20 -10 0 10 20 30
-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20 25 30
-20

-15

-10

-5

0

5

10

15

20

(b) unseen classes of AWA

Fig. 6. t-SNE illustration of data points of AWA before and after the triplet
network. The left column shows the data points unprocessed, and the right
column demonstrates the processed data points. Points with same color belong
to same category. (best view in color)

C. Ablation Study

In this section, we will give some detailed analysis of several
hyperparameters, such as the effect of triplet network, the
dimension of the latent space β and the influence of the LNPS.
Effect of Triplet Network

Since we have claimed that directly using visual features
extracted from ResNet will cause the overlap between the
distribution of each class and lead to performance degradation,

with Triplet with Siamese without T/S
SUN 60.4 58.5 52.3SUN 60.4 58.5 52.3
CUB 53.2 51.3 35
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Fig. 7. Results with Triplet Network (T), Siamese Network (S) and Neither
of them on ZSL.
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Fig. 8. Results on ZSL with different layers of Triplet Network (TN).
TABLE V

RESULTS OF OUR METHOD WITH PROBABILISTIC FRAMEWORK AND NNS
ON BOTH ZSL AND GZSL. ‘IND’ MEANS INDUCTIVE SETTING, AND

‘TRANS’ MEANS TRANSDUCTIVE SETTING. ‘NNS’ STANDS FOR METHOD
WITH NNS, AND ‘PRO’ REPRESENTS METHOD WITH PROBABILISTIC

FRAMEWORK.

ZSL GZSL
Datasets Methods Ind Trans ts tr H

SUN NNS 58.9 60.2 21.8 42.5 28.8
Pro 60.4 61.5 39.7 38.9 39.3

CUB NNS 50.2 55.7 26.0 67.1 37.4
Pro 53.2 59.3 37.8 58.2 45.9

AWA NNS 63.7 79.5 27.8 83.9 41.9
Pro 67.4 82.2 37.0 84.7 51.4

aPY NNS 41.2 43.2 23.6 79.9 36.5
Pro 42.8 44.4 25.9 79.5 39.1

we exploit a triplet network to process the visual features.
Here, we demonstrate three issues, the first one is can the
triplet network reduce the overlapped area between each class,
the second one is how much does the triplet network affect
the performance, and the last one is whether the proposed
two-layer full connection network is the optimal choice.

In Fig. 6, we take AWA as an example and illustrate the data
points before and after the process of triplet network with t-
SNE [53]. The upper row shows the data points of seen classes,
and the bottom row shows the data points of unseen classes.
From this figure, we can clearly observe that the points belong
to the same category gather together and the overlap between
classes is greatly reduced for both seen classes and unseen
classes.

Since we have claimed that the process of triplet network
can improve the performance of ZSL, we conduct experiments
on all four datasets to verify whether the triplet network
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Fig. 9. Different coefficients generated with Matching Pursuit (MP) and Nonnegative Matrix Factorization (NMF) In this figure, we choose the class ‘Giraffe’
in AWA as an example.
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(a) unseen test on inductive ZSL
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(b) unseen test on transductive ZSL
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(c) unseen test on GZSL

16 32 64 128 256 512 1024 2048
Dimensions

10

20

30

40

50

60

H
ar

m
on

ic
 A

cc
ur

ac
y 

on
 G

Z
S

L 
(%

)

SUN CUB AWA aPY

(d) harmonic accuracy on GZSL

Fig. 10. Results on both ZSL and GZSL with different dimensions of latent
space.

has a positive effect. Besides, we also experiment with the
Siamese network to show our method is better than it too, and
the results are recorded in Fig. 7. From the figure, we can
discover that our method with triplet network can improve the
performance significantly, especially on CUB, comparing to
that with neither of triplet and Siamese networks. The reason
for this phenomenon is that CUB is a fine-grained dataset,
where the data points are very similar in visual space, thus
there are many overlapped areas. After the process of triplet
network, the data points gather together within a class and
spread out between classes, i.e., the data points are more
discriminative. APY is a coarse-grained dataset and also has
a little improvement, which further proved that the triplet
network in our method plays an important role in improving
the final performance. Furthermore, we can also find that our
model with the triplet network slightly outperforms that with
the Siamese network, which is caused by the fact that the
Siamese network cannot deal with both negative and positive

samples simultaneously.
To answer the third question, we design an experiment by

modifying the layers of triplet network and report the results
on four datasets in Fig. 8. In this experiment, besides the
proposed two-layer model, we compose another three network
architectures, including one-layer (2048 → β), three-layer
(2048 → 1024(ReLU) → 1024(ReLU) → β) and four-layer
(2048 → 1024(ReLU) → 1024(ReLU) → 1024(ReLU) →
β). From the figure, we can find the best results always appear
in the two-layer model on all four datasets, which reveals
the two-layer model is optimal, and the one-layer model
suffers from under-fitting due to the few parameters, while
the three/four-layer model falls into over-fitting because of its
excessive parameters.
Effect of probabilistic framework

Since we have claimed that our method with the proba-
bilistic framework is better than that with NNS in Fig. 1, we
experiment with NNS to show the superiority of our model.
In this experiment, we use NNS instead of the probability
framework to determine the label of test samples in the final
classification stage, and the result is recorded in Tab. V. From
this table, we can clearly observe that our method with the
probabilistic model can exceed that with NNS by a large
margin on both ZSL and GZSL.
Different Dimensions of Latent Space The dimension of
latent space is determined by cross-validation, and optimal
values are recorded in Tab. II. However, we also argue that
it is necessary to find out how much does the dimension of
latent space affect the final results. Thus, in this subsection, we
experiment with different dimensions of latent space to analyze
the influence on the performance on four datasets. In this ex-
periment, we set β = {16, 32, 64, 128, 256, 512, 1024, 2048}
respectively and illustrate the classification accuracies in Fig.
10. From this figure, we can discover that the final results on
the real unseen test are consistent with the optimal parameters
of cross-validation in most circumstances. In addition, the
dimension of latent space plays a more important role on SUN
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Fig. 11. Results on both ZSL and GZSL with different synthesis methods NMF and MP.
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Fig. 12. Comparison with GFZSL (preprocessed with Triplet Network) on
ZSL.

and CUB than on AWA and aPY. Concretely, the classification
accuracy increases when the dimension of latent space grows
on the dataset SUN, while the performance on aPY is affected
limitedly when the dimension of latent space changes. This
phenomenon is caused by that SUN has more categories than
aPY, so it needs more dimensions to represent discriminative
information. Besides, when the dimension reaches 1024, the
performance does not change significantly, because 1024-
dimensional feature can preserve enough discriminative infor-
mation.
Influence of LNPS

The main creative part of our method is LNPS, thus we
try to prove its superiority from multi perspectives in this
subsection.

The Eq. 5 is solved by NMF, which can guarantee that
the coefficients are non-negative. However, there is another
method, namely Matching Pursuit (MP) [54], can also be used
to generate the nonnegative coefficients. Concretely, MP first
finds the most similar attributes asc of aui and their coefficient
κ by addressing the following formulation,

c = argmin
j∈S

‖aui − κasj‖22

suject to κ > 0,
(22)

and then sets the residual aui − κasj as aui to find the next
asc and κ with the formulation (22) until convergence (such
as when residual reaches a very small value). Therefore, we
conduct experiments on both MP and NMF to find which
one is better. We first exploit MP and NMF to generate the
coefficients on AWA, and choose the class ‘Giraffe’ as an
example, whose coefficients are drawn in Fig. 9. From the
figure, we can observe that the coefficients generated by MP
haves only three non-zero values, and among these values there

is a big one 0.8 corresponding to the class ‘deer’, while the
coefficients produced by NMF have seven non-zero values, and
all the values are not so big and nearly equal to each other.
The phenomenon produced by MP will lead to a very serious
problem that the synthesized unseen prototype of ‘Giraffe’ is
very similar to the seen class ‘deer’, which will subsequently
influence the classification, especially on GZSL.

We illustrate the result with NMF and MP via a histogram
in Fig. 11, from which we can find that the results on ZSL
with MP are a little worse than that with NMF, while the
performance with MP on GZSL is lower than that with NMF
by a large margin. This phenomenon is caused by the reason
that MP tries to find the most similar seen classes, among
which the first seen class contributes the most, while NMF
attempts to synthesize the unseen class with multi reasonable
seen classes. When testing on ZSL, the search range is only
focused on the unseen classes, so the performances with MP
and NMF are both significant. However, when testing on
GZSL, the search range is extended to all the classes, thus
the new test sample of unseen classes will be misclassified
to be the similar seen class by the method with MP, while
the method with NMF will not make such error because the
synthesized unseen class is not very similar to any of the seen
classes. For example, many instances of the class ‘Giraffe’
will be misclassified to the category ‘deer’ when testing on
GZSL according to Fig. 9.

In addition, to verify the importance of our proposed LNPS,
we also design another experiment comparing our method
with GFZSL [10]. In our experiments, we first employ the
triplet network to preprocess the input data before applying
GFZSL, and the results are demonstrated in Fig. 12. In this
figure, we can observe that our method can outperform the
GFZSL significantly on CUB, AWA and aPY, except that the
performance on SUN has a little degradation. Since the two
experiments use the same preprocessing, we can argue that
the probabilistic model of our method is better than that of
GFZSL.
Results on Few Shot Learning

To be more generalizable, we extend our method on Few
Shot Learning (FSL) and conduct an experiment to show
its effect. In this experiment, we set the number of labeled
samples as {2, 5, 10, 15, 20}, and report the results on the
datasets of AWA and CUB. The experiment includes both our
method and VZSL [12], and the results are shown in Fig.
13. From this figure, it can be clearly discovered that our
method can significantly outperform VZSL under each number



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 13

2 5 10 15 20
Number of labeled data

50

55

60

65

70

75

80

A
cc

ur
ac

y 
on

 F
S

L 
(%

)
CUB

VZSL
Ours

(a) CUB

2 5 10 15 20
Number of labeled data

68

70

72

74

76

78

80

82

84

86

88

90

A
cc

ur
ac

y 
on

 F
S

L 
(%

)

AWA
VZSL
Ours

(b) AWA

Fig. 13. Results of our method on FSL compared with VZSL [12].

of labeled data. The superiority of our method mainly comes
from the nonnegative synthesis of the unseen prototypes.
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Fig. 14. Results with attribute and Word2Vec respectively on AWA.

Task/Modality Shift Problem
Task-shift is an inevitable issue in the ZSL problem because

the disjoint seen/unseen distribution in the visual modality
needs to be reconciled by an extra auxiliary domain. Although
semantic attributes or Word2Vec [55] representation is widely
adopted, they both suffer from the severe visual-semantic gap.
From the experimental results in Fig. 14 it can be seen that
Word2Vec suffers from more task-shift than visual attributes
and the performance is remarkably degraded. This is because
the semantic attribute is more associated with the visual
appearance, such as color, stripe, and leg, whereas Word2Vec
captures more relationships between categories with text de-
scription rather than the visual features. Therefore, we can treat
semantic attribute as another type of visual representation and
the task shift problem has a slight impact on final performance.
However, such task-shift results in that the prototypes in the
original attribute space are still not totally consistent with
that in the visual feature space. Therefore, our latent visual
feature is directly extracted from the visual image by deep
network using the triple network as a constraint to maximumly
mitigate the visual-semantic discrepancy. Evidence can be
clearly observed in Tab. III, Tab. IV and Fig. 7, where
the performance of using the synthesized prototype in the
latent feature modality significantly outperforms that of using
original visual prototypes. Therefore, the task-shift problem is
alleviated by the proposed prototypes in the latent space.

V. CONCLUSION

In this paper, to alleviate the misclassification problem in
traditional NNS based methods, we have proposed a proba-

bilistic framework for ZSL. In this method, the visual features
of seen classes are first used to train a triplet network to gather
within a class and scatter between classes in latent space,
and then further be leveraged to generate seen prototypes.
The most creative part of the proposed work is the latent
nonnegative prototypes synthesis of unseen classes, which
exploits the relations between seen attributes and unseen
attributes to compute the synthesis coefficients, which is sub-
sequently utilized to synthesize prototypes of unseen classes.
In addition, we also extend our method on the transductive
setting. Extensive results on both ZSL and GZSL have proved
that our method can outperform most state-of-the-art methods
on four popular datasets, and the detailed analysis of some
hyper-parameters also shows the superiority of the proposed
method.
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