Electronic Supplementary Information (ESI)

Opening the Egg Box: NMR spectroscopic analysis of the interactions between s-block cations and kelp monosaccharides

J. S. Rowbotham,* H. C. Greenwell, and P. W. Dyer*

*Correspondence: jack.rowbotham@chem.ox.ac.uk, p.w.dyer@durham.ac.uk

1 Contents

1	Cont	tents1
2	Mat	erials and methods 2
	2.1	Reagents and solutions2
	2.2	¹ H and ¹³ C NMR spectroscopy – experimental parameters
	2.3	¹ H and ¹³ C NMR spectroscopy – general data processing4
	2.4	^{1}H and ^{13}C NMR spectroscopy – coordination chemical shifts ($\Delta\delta)$
	2.5	¹ H and ¹³ C NMR spectroscopy – changes to isomeric equilibria6
	2.6	Calculating binding constants for Ca ²⁺ /mono-uronate complexes
3	Supj	plementary data 10
	3.1	Calcium-uronate binding in the presence of different counter anions
	3.2	Calcium-uronate binding at different ionic strengths11
	3.3	Tables of $\Delta\delta$ values for metal-uronate solutions
	3.4	Tables of equilibrium populations for metal-uronate solutions16
	3.5	Representative spectra for Ca ²⁺ /L-guluronate NMR titrations
	3.6	Raw data for Ca ²⁺ /uronate NMR spectroscopic titrations
	3.6.	1 Raw data for ¹³ C NMR titrations22
	3.6.	2 Raw data for ¹ H NMR titrations24
4	Sup	plementary references

2 Materials and methods

2.1 Reagents and solutions

All chemicals were purchased from Sigma-Aldrich, with the exception of D₂O (99.8 %) from Apollo Scientific, and used as received unless otherwise stated. Norell[®] XR-55-7 NMR tubes (5.0 mm) were used throughout.

Sodium salts of L-guluronate (**GulA**) and D-mannuronate (**ManA**) were prepared from alginate obtained from *Laminaria digitata*, according to the methods described previously.¹ Sodium salts of D-glucuronate (**GlcA**) and -D-galacturonate (**GalA**) were obtained from commercial vendors (Sigma-Aldrich). All non-uronates were exchanged with D₂O and adjusted to the correct concentration using previously described procedures.¹

D₂O solutions of NaCl, KCl, CaCl₂, Ca(NO₃)₂, SrCl₂, BaCl₂ (1.2 M) were made up by dissolving the appropriate mass of the hydrated metal salt in D₂O, evaporating at 150 °C for 3 hours, and then redissolving the anhydrous salt in the required volume of fresh D₂O. A solution of MgCl₂ in D₂O (1.2 M) was made by dissolving the anhydrous metal salt directly into the required volume of liquid and then re-adjusting the pD to 7.9 with small additions of DCl. A solution of Cal₂ in D₂O was made by dissolving the anhydrous metal salt directly of La solution of Cal₂ in D₂O was made by dissolving the anhydrous metal salt directly not the required volume of liquid and then re-adjusting the pD to 7.9 with small additions of DCl. A solution of Cal₂ in D₂O was made by dissolving the anhydrous metal salt directly into the required volume of liquid under an inert N₂ atmosphere, with no further adjustments.

The pD of solutions was measured using a Sigma-Aldrich micro pH combination electrode (glass body, 183 mm L, 3.5 mm OD) connected to an Orion Star[™] A111 pH-meter, calibrated with standard H₂O buffers. The pD was then calculated by adding 0.4 units to the reading of the meter. Whilst the pD of metal-free solutions can be determined quite accurately, those with extremely high ionic strengths can cause difficulties.^{2,3} Hence, whilst the pD values of the blank (metal-free) solutions were measured directly from the meter, the pD of metal-rich solutions were double-checked with Fisherbrand[™] pH-Fix Test Strips. In addition, preliminary experiments indicated that, for studies conducted at pD 7.9, small variations of the pD (between pD 6.4 to 9.4) had no measurable effects with regards to the relative chemical shifts and peak ratios.

¹H and ¹³C NMR spectra were acquired on a Bruker Avance NMR spectrometer according to the parameters described in Table S.1. A flame-sealed glass capillary (1.0 mm OD) containing CHCl₃ in CDCl₃ (5:95 vol.%) was inserted co-axially into each solution to provide an external reference signal.^{4,5}

Bruker Avance-40	0 MHz	
Experiment	¹Н	¹³ C*
RF frequency (MHz)	400.13	100.62
Temperature (K)	295 ± 2	295 ± 2
Number of scans	8	1024
Pulse width (μs)	10.0	8.00
Spectral width (Hz)	8000	24000
Acquisition time (s)	4.09	1.36
Relaxation delay (s)	1.00	2.00

Table S.1 NMR spectrometer acquisition parameters

*proton decoupled

Metal/uronate screening: D_2O solutions of sodium uronate (100 μ L, 260 mM, pD 7.9) were combined with those of a chosen metal salt (500 μ L, 1.2 M, pD 7.9) and shaken together to yield the analyte solution (600 μ L, 1.0 M metal, 43 mM uronate, pD 7.9). After 12 hours at room temperature, the ¹H NMR spectrum was acquired. The pD of the solution was then reduced to 1.4 by the addition of 25 μ l of 2.5 M DCl, and the spectrum was re-acquired after 12 hours. Preliminary experiments (and literature examples)⁶ indicated that the pyranose anomeric equilibrium settles very quickly after a metal ion has been added (on the order of minutes), with no further changes being detected on standing at pD 7.9 for a number of months. On leaving the solutions to stand for 48 hours at pD 1.4 however, the solutions of **GulA**, **GlcA**, and **ManA** begin to give rise to additional sets of smaller peaks in their ¹H NMR spectra. These peaks correspond to the spontaneous lactonisation of the uronates in the acidified conditions.¹ Lactone formation occurs at a much slower rate (days to weeks) than changes to the anomeric equilibria (minutes), and so the effects of metal ions on lactonisation were not considered further.

Calcium/uronate titrations: D_2O solutions of **GulA**, **ManA**, and **GlcA** (500 µL, 260 mM, pD 7.9) were titrated with small amounts of CaCl₂ (6.5 M in D_2O) to give [Ca²⁺] concentrations ranging from 0.00 to 1.30 M. Following each addition, the solution was shaken, and allowed to stand at room temperature for a minimum of 1 hour prior to the acquisition of ¹H and ¹³C NMR spectra. The small changes in the concentration of the solution with the increasing volume were found to be negligible. The experiment could not be performed for **GalA** because addition of CaCl₂ led to the formation of a white precipitate after a few hours, preventing suitable NMR spectra from being acquired.

2.3 ¹H and ¹³C NMR spectroscopy – general data processing

Data processing was carried out in MestReNova 10.0.2-15465. Peak integration was performed manually on only clearly defined signals using the "sum" mode in MestreNova to generate the absolute integral without any additional correction. In cases where the centre of a peak was hard to determine in the 1D ¹H NMR spectrum due to overlap with neighbouring signals, a suitable cross peak in the ¹H-¹H COSY spectrum was used to determine the peak centroid position. The ¹H and ¹³C NMR assignments of **GuIA** and **ManA** were as reported previously, and those for **GaIA** and **GicA** are given in Tables S.2 and S.3. In addition to the 1D spectral acquisitions, 2D NMR spectroscopic experiments (¹H-¹H COSY and ¹H-¹³C HSQC) were performed at suitable intervals to confirm the identity of peaks following significant changes to the spectra and when interchange between signals had taken place.

Table S.2 ¹H NMR spectroscopic assignments of sodium mono-uronate salts in D₂O (0.26 ± 0.02 M) at 400 MHz, pD 7.9, and 295 K (relative to CHCl₃ in CDCl₃, δ = 7.26 ppm).

<i>δ</i> (ppm)	Na-D-glucop	yranuronate	Na-D-galacto	oyranuronate	
J (Hz)	α	β	α	β	
<i>δ</i> H1	5.24, d	4.64 <i>,</i> d	5.27, d	4.53, d	
J _{1,2}	3.8	8.0	3.5	7.9	
δH2	3.57, dd	3.28, m⁵	3.78, dd	3.46, dd	
J _{1,2}	3.8	n.d.	3.8	7.9	
J _{2,3}	9.8	n.d.	10.4	9.9	
δНЗ	3.72, m ^c	3.51 <i>, p</i> t ^d	3.87, dd	3.65, dd	
J _{2,3}	n.d.	n.d	10.1	10.0	
J _{3,4}	n.d.	n.d	3.5	3.5	
δH4	3.49, m ^d	3.51, m ^d	4.24, dd	4.17, dd	
J _{3,4}	n.d.	n.d.	3.6	3.5	
J _{4,5}	n.d.	n.d.	1.5	1.2	
<i>δ</i> H5	4.08 <i>,</i> d	3.73, m ^c	4.37, d	4.02, d	
J _{4,5}	10.1	n.d.	1.3	1.4	

Key: d = doublet, dd = doublet of doublets, pt = pseudo-triplet, m = multiplet, n.d. = not determined

 $^{\rm a}$ Scalar couplings (J) are quoted with a precision of \pm 0.1 Hz.

^b Complex multiplet due to strong coupling between β H3 and β H4 at pD 7.9. At pD 1.4, β H2 gives dd with $J_{1,2} = J_{2,3} = 9.1$ Hz.

^c α H3 and β H5 give overlapping signals at pD 7.9. At pD 1.4, β H5 gives d with $J_{4,5}$ = 9.6 Hz, and α H3 gives pt with $J_{2,3}$ = $J_{3,4}$ = 9.6 Hz.

^d β H3, β H4, and α H4 overlap considerably, and cannot be resolved at pD 7.9. β H3 gives pt with $J_{2,3} = J_{3,4} = 9.6$ Hz when pD = 1.4.

Table S.3	¹³ C{ ¹ H} NM	R spectral a	issignments	of sodium	mono-urona	te salts in	D ₂ O (0.26	± 0.02 M	i) at
400 MHz,	pD 7.9, and	295 ± 2 K	(relative to ($CDCI_3, \delta = 7$	7.16 ppm).				

<i>δ</i> (ppm)	Na-D-gluco	pyranuronate		Na-D-galacto	pyranuronate	
	α	β		α	β	
δC1	92.31	96.07		92.35	96.15	
δC2	71.50	74.20		68.19	71.74	
δC3	72.77	75.75		69.51	73.05	
δC4	72.30	72.04	I	70.97	70.51	
δC5	72.07	76.44		71.54	75.69	
δC6	177.13	176.16		176.18	175.32	

2.4 ¹H and ¹³C NMR spectroscopy – coordination chemical shifts ($\Delta\delta$)

The experiments conducted in this work were aimed at discerning the site of metal binding to uronate monomers through measuring changes in the chemical shift (*i.e.* coordination chemical shift, $\Delta\delta$) of both their ¹H and ¹³C signals upon the addition of a metal ion. Here, the $\Delta\delta$ value for a particular nucleus (**n**) following the addition of a metal salt to the solution is defined as:

$$\Delta \delta(\mathbf{n}) = \delta(\mathbf{n})_{\text{in the presence of metal salt}} - \delta(\mathbf{n})_{\text{in metal-free solution}}$$

Changes to $\delta(\mathbf{n})$ arise as the binding cation distorts the electron cloud surrounding \mathbf{n} . However, the observed coordination chemical shift ($\Delta \delta_{obs}$) of \mathbf{n} upon the addition of a metal salt is also effected by "bulk effects" such as the electric fields of non-binding anions and cations.^{7–9}

To simplify interpretation, $\Delta \delta_{obs}$ for a particular proton (HX) can be measured relative to that of another proton on the same molecule (HY). Such a treatment gives rise to the parameter known as $\Delta \delta_{rel}$, defined as:

$$\Delta \delta_{\rm rel} = \Delta \delta_{\rm obs}({\rm H}X) - \Delta \delta_{\rm obs}({\rm H}Y)$$

In this work, the reference proton (HY) was chosen to be H4. The choice of reference proton was based on the observation that in all pyranose anomers of **GuIA**, **ManA**, **GICA**, and **GaIA**, H4 usually gave rise to the largest negative $\Delta \delta_{obs}$ values.

On its own, $\Delta \delta_{rel}$ is not a useful parameter with which to analyse the coordination mode of a particular cation to a particular saccharide; for this the original $\Delta \delta_{obs}$ values must be consulted. However, $\Delta \delta_{rel}$ does facilitate rapid screening of interactions between many different metals with many different uronates by application of the following assumption: if the $\Delta \delta_{rel}$ values for all protons on a uronate anomer in the presence of a selected cation are zero (or close to zero) then that the metal ion is not selectively binding to a particular arrangement of hydroxyl oxygens around the saccharide ring.

Hence, the $\Delta \delta_{rel}$ parameter simplifies the "bulk" effects that occur in the NMR spectra upon the inclusion of a metal salt, allowing for interactions of interest to be rapidly discerned from tables of chemical shift data. For completeness, the tabulated forms of both $\Delta \delta_{obs}$ and $\Delta \delta_{rel}$ for all protons in all pyranose anomers of **GulA**, **ManA**, **GlcA**, and **GalA** under the different conditions are given in Section 3.3.

2.5 ¹H and ¹³C NMR spectroscopy – changes to isomeric equilibria

In the discussions below, the following abbreviations are used:

- %P = the mol% of pyranose species in solution
- %F = the mol% of furanose species in solution

 $\% \alpha P$ = the mol% of α -pyranose species in solution

 $\%\beta P$ = the mol% of β -pyranose species in solution

 α/β = the ratio of % α P:% β P

 $\%\alpha F$ = the mol% of α -furanose species in solution

 $\%\beta F$ = the mol% of β -furanose species in solution

 $\sigma\%\alpha P$ = the error in $\%\alpha P$

 $\sigma\%\beta$ P = the error in $\%\beta$ P

 σ %F = the error in %F

Hence, the following relationships are assumed to be true:

 $\% \alpha P + \% \beta P = \% P$

 $\% \alpha F + \% \beta F = \% F$

%P + %F = 100 %

Whilst other authors have relied solely on the ratio of anomeric ¹H NMR signals to determine the α/β ratio, the spectra acquired in the preparation of this manuscript were sufficiently well resolved to enable utilisation of signals arising from other protons too. Hence, for each well-resolved signal arising from a proton on a particular conformer, a value for the mol% of that conformer in the solution can be obtained. For example, the integral of the signal of H1 of an α -pyranose conformer measured against a standard reference peak ($f\alpha P(H1)$), could subsequently be translated into a mol% value (% $\alpha P(1)$) according to Equation (E.1):

$$\%\alpha^{P(1)} = \frac{\int \alpha^{P(H1)}}{\left(\frac{\int \alpha^{P(H1)} + \int \alpha^{P(H2)} + \dots \int \alpha^{P(Hi)}\right)}{i} + \left(\frac{\int \beta^{P(H1)} + \int \beta^{P(H2)} + \dots \int \beta^{P(Hj)}}{j}\right) + \int \alpha^{F(H)} + \int \beta^{F(H)} X \ \text{[Eq. E.1]}$$

Where $\int \beta P(H1)$, $\int \beta P(H2)$, and $\int \beta P(Hj)$ represent the integral of signals arising from the β -pyranose anomer, and $\alpha F(H)$ and $\beta F(H)$ represent the integral of single signals arising from the α - and β -furanose anomers.

Integrating other signals from the same α -anomer ($f\alpha P(H2)$, $f\alpha P(H3)$, ... $f\alpha P(Hi)$) in an analogous fashion to $f\alpha P(H1)$, gives a total of *i* repeat measurements for $\% \alpha P(\% \alpha P(1), (\% \alpha P(2)...(\% \alpha P(i)))$. Averaging $\% \alpha P(1)$ -(*i*) to give a mean value for $\% \alpha P$ helps to reduce errors from small variations in the peak areas, baseline, spectral distortions, and so on. However, to minimise possible errors in $\% \alpha P$ arising from minor fluctuations in temperature, pH, concentrations, ionic strength, *etc.* the entire set of experiments were repeated. The repeat run gave rise to a second set of values for $\% \alpha P$: one for Run 1 and one for Run 2. The values from both runs were then combined to give an average value of the mol% of α -pyranose in that particular sample according to Equation E.2:

$$\% \alpha P = \frac{\text{Run 1} [\% \alpha P(1) + \% \alpha P(2) + ... \% \alpha P(i)] + \text{Run 2} [\% \alpha P(1) + \% \alpha P(2) + ... \% \alpha P(i)]}{2i}$$
[Eq. E.2]

The uncertainty in the value of $\% \alpha P$ ($\sigma \% \alpha P$) could then be obtained from Equation E.3:

$$\sigma\%\alpha P = \frac{\%\alpha P(\max \text{ value}) - \%\alpha P(\min \text{ value})}{2\sqrt{2i}}$$
[Eq. E.3]

An identical treatment can then be carried out using peaks assigned to the β -pyranose anomer, giving rise to a value for % β P and associated uncertainty σ % β P. The α - and β - furanose peaks account for a small percentage of the species in solution (< 10 mol%) and so such an extensive treatment as was carried out for the pyranose configurations was not carried out. Instead, only two peaks (one for the α - and one for the β -furanose anomers) were integrated and summed together in order to give a single value for %F (and σ %F) in each sample.

When $\%\alpha P$ and $\%\beta P$ had been calculated, a value for the $\%\alpha P$: $\%\beta P$ ratio (referred to as α/β in the text) can be calculated according to Equation E.4

$$\alpha/\beta = \frac{\%\alpha P}{\%\beta P}$$
 [Eq. E.4]

 α/β has an associated uncertainty, $\sigma(\alpha/\beta)$, calculated according to Equation E.5:

$$\sigma(\alpha/\beta) = \frac{\%\alpha P}{\%\beta P} \sqrt{\left(\frac{\sigma\alpha P\%}{\%\alpha P}\right)^2 + \left(\frac{\sigma\%\beta P}{\%\beta P}\right)^2}$$
[Eq. E.5]

2.6 Calculating binding constants for Ca²⁺/mono-uronate complexes

CaCl₂ was added to samples of uronate using the titration procedures described in ESI Section 2.2, leading to changes in the corresponding NMR spectra (see exemplar data for L-guluronate in ESI Section 3.5, and fully tabulated raw data in Section 3.6). Plotting the resulting chemical shift data against the calcium concentration ([Ca²⁺]) gave rise to the data in Figures 4 and 5 presented in the main manuscript. From the ¹³C NMR spectral data, it is possible to calculate tentative binding constants between the uronate ligand and Ca²⁺ metal by using the open access *Bindfit* modelling software, available from <u>http://supramolecular.org</u>.^{10,11}

In the experiments the total concentration of uronate was known (0.26 M), but the exact concentration of the α - and β -pyranose anomers present needed to be determined for each uronate, at each different concentration of Ca²⁺. Hence, to generate the input files for the fitting algorithm, the concentration of each anomer was therefore calculated by using the ratio of peak integrals in the ¹H NMR spectra, as described in Section 2.5 (full data given in Section 3.6). Using this approach, it was possible to accurately determine the specific [Ca²⁺]/[ligand] ratio for every level of the titration, and therefore binding constants could be calculated for the individual anomers present in the same solution. For the calculations, a 1:1 Ca²⁺:ligand complex was assumed, giving rise to the binding constant denoted $K_{1,1}$. Good agreement was found between experimental and fitted data for $K_{1,1}$ using the values for carbons C2-C4 for all of the anomers studied. It was found, however, that the data arising from carbons associated with the carboxylate and ring oxygens (C1, C5, C6) often did not fit well with the other carbons, which is consistent with the hypothesis that more than one binding mode is operative for the calcium-uronate systems. Results for $K_{1,1}$ arising from the data from C2-C4 were as follows (with links to the *Bindfit* calculations):

*K*_{1,1}(Ca²⁺/α-GlcA): 0.38 M⁻¹; *Error*: ± 1.15 % http://app.supramolecular.org/bindfit/view/97947742-9941-4dae-b6e1-6d7a47a8c28f

 $K_{1,1}$ (Ca²⁺/ β -GlcA): 0.25 M⁻¹; Error: ± 1.06 % http://app.supramolecular.org/bindfit/view/2c8e3d3c-cbfb-4ada-bf8b-13096825da12

*K*_{1,1}(Ca²⁺/α-GulA): 2.20 M⁻¹; *Error:* ± 2.35 % http://app.supramolecular.org/bindfit/view/525ed927-9f35-40ed-9484-f80544b795fe

*K*_{1,1}(Ca²⁺/β-GulA): 0.61 M⁻¹; *Error*: ± 1.97 % http://app.supramolecular.org/bindfit/view/7a6b7ac3-fb80-42a3-8f7b-d4fc2667fb28

 $K_{1,1}(Ca^{2+}/\alpha-ManA): 0.30 \text{ M}^{-1}; Error: \pm 1.40 \%$ http://app.supramolecular.org/bindfit/view/a7304828-355c-483f-9d74-ceff192ee032

 $K_{1,1}(Ca^{2+}/\beta-ManA): 0.26 \text{ M}^{-1}; Error: \pm 1.47 \%$ http://app.supramolecular.org/bindfit/view/1fb3318b-b575-4799-b351-21c61db8cf1d Results from fitting the chemical shift data for carbons C1, C5, and C6 are not shown as they were found to have large errors (>~10%), and often did not fit well to a 1:1 assumption. Despite the poor fit, it is interesting to note that the C6 data typically gave rise to $K_{1,1}$ values that were much higher than those calculated from the C2-C4 data above. This finding is consistent with the idea that the carboxylate binding-modes are typically stronger than the hydroxyl-only binding modes at pH 7. However, more granular data and more careful control of the ionic strength of the solution are recommended for a more quantitative evaluation of this effect in future.

Data from the ¹H NMR spectroscopic titrations were also fitted using *Bindfit* in a similar manner to the ¹³C NMR spectral data. However, the much smaller chemical shift changes for the proton data lead to larger errors in the data and the fits were generally of a poorer quality. The ¹³C fittings reported above were therefore deemed to be more reliable.

3 Supplementary data

3.1 Calcium-uronate binding in the presence of different counter anions

All of the experiments described in the manuscript were conducted with the addition of metal chloride salts as the source of metal ions. In order to verify that the metal-uronate binding interactions described in the paper were not unique to chloride solutions, additional experiments were conducted using calcium iodide and nitrate salts as alternatives (see Figure S.1 below). Aside from the change in anion, the experiments were otherwise identical to those shown in Figure 3 of the main manuscript. The results in Figure S.1 show that the effects of Ca²⁺ on the uronate α/β ratios relative to the metal-free case, were broadly replicated when I⁻ and NO₃⁻ were used in place of Cl⁻. Patterns of changes to chemical shifts were also largely unchanged in going from Cl⁻ to I⁻ to NO₃⁻ (see Tables in Section 3.3)

Figure S.1 The α/β ratio of four sodium mono-uronates recorded in 1.0 M solutions of different calcium salts at 295 K and pD 7.9.

3.2 Calcium-uronate binding at different ionic strengths

The role of the ionic strength (*I*) was not explored extensively in this work as it has already been well documented that diluting a metal-saccharide solution decreases the degree of complexation.¹² In the experiments shown in Figure 3 of the main manuscript, a constant [metal]:[uronate] ratio (1:23) was used, meaning that the ionic strength of the solutions containing divalent cations (*I* = 6.09 M) were higher than those of the monovalent cations (*I* = 2.09 M). An experiment was also conducted whereby the Ca²⁺ concentration was reduced from 1.0 M to 0.2 M (giving a lower [metal]:[uronate] ratio of 1:4.6) to give a solution of much lower ionic strength (*I* = 1.29 M). As anticipated, where there had previously been changes to the α/β ratio on inclusion of Ca²⁺ (1.0 M), such differences were much smaller at the lower concentration (0.2 M) (see Figure S.2). In the case of **GuIA** and **GaIA**, however, the influence Ca²⁺ ions at the lower concentration (0.2 M) was still much larger than the impact of including monovalent cations (such as Na⁺) at a higher concentration (1.0 M).

Figure S.2 The α/β ratio of four sodium mono-uronates recorded in different concentration solutions of metal salts at 295 K and pD 7.9.

3.3 Tables of $\Delta \delta$ values for metal-uronate solutions

Solution	рD			alph	a pyra	nose				beta	a pyrar	nose		
				Abcolu	to change	in chom	ical shift	comr	ared to r	notal fro	a colution	(18.)		
				Absolu	te thange			comp		netal-net	e solution			
καH1 κH2 κH3 κH4 κH5 βH1 βH2 βH3 βH4 βH5 No metal 7.9 0.00														
No metal	7.9		0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	
1.0 M NaCl	7.9		-0.03	-0.04	-0.04	-0.07	-0.04		-0.05	-0.05	-0.04	-0.06	-0.05	
1.0 M KCl	7.9		-0.05	-0.06	-0.05	-0.08	-0.06		-0.06	-0.06	-0.06	-0.07	-0.06	
1.0 M CaCl ₂	7.9		0.17	0.09	0.02	-0.10	0.10		-0.02	-0.03	-0.07	-0.08	-0.01	
1.0 M SrCl ₂	7.9		0.12	0.04	-0.02	-0.16	0.05		-0.05	-0.06	-0.09	-0.12	-0.04	
1.0 M BaCl ₂	7.9		0.07	-0.01	-0.07	-0.20	0.02		-0.03	-0.08	-0.12	-0.16	-0.04	
1.0 M MgCl ₂	7.9		-0.02	-0.08	-0.07	-0.09	-0.04		-0.09	-0.09	-0.09	-0.10	-0.08	
1.0 M Ca(NO ₃) ₂	7.9		0.22	0.13	0.08	-0.01	0.17		0.05	0.04	0.02	0.00	0.06	
1.0 M Cal ₂	7.9		0.08	0.00	-0.05	-0.21	0.00		-0.09	-0.12	-0.14	-0.18	-0.08	
				- ·										
				Change Ir	chemica	al shift co	mpared t	o me	tal-free s	olution re	elative to	H4 (Δð _{rel}	1	
			αH1	αH2	αH3	αH4	αH5		β H1	β H2	βнз	β H4	β H5	
No metal	7.9		0.00	0.00	0.00	-	0.00		0.00	0.00	0.00	-	0.00	
1.0 M NaCl	7.9		0.04	0.03	0.04	-	0.04		0.01	0.01	0.02	-	0.02	
1.0 M KCl	7.9		0.03	0.02	0.03	-	0.01		0.01	0.01	0.01	-	0.01	
1.0 M CaCl ₂	7.9		0.27	0.19	0.13	-	0.20		0.05	0.04	0.01	-	0.07	
1.0 M SrCl ₂	7.9		0.28	0.20	0.14	-	0.22		0.07	0.06	0.03	-	0.08	
1.0 M BaCl ₂	7.9		0.28	0.20	0.14	-	0.22		0.12	0.07	0.03	-	0.11	
1.0 M MgCl ₂	7.9		0.06	0.00	0.02	-	0.04		0.01	0.00	0.01	-	0.02	
1.0 M Ca(NO ₃) ₂	7.9		0.24	0.15	0.09	-	0.19		0.05	0.04	0.02	-	0.06	
1.0 M Cal ₂	7.9		0.28	0.21	0.15	-	0.21		0.09	0.06	0.05	-	0.10	

Table S.4 $\Delta \delta_{obs}$ and $\Delta \delta_{rel}$ values for Na-L-guluronate (**GulA**) in metal chloride salts at pD 7.9

Table S.5 $\Delta \delta_{obs}$ and $\Delta \delta_{rel}$ values for Na-L-guluronate (GulA) in metal chloride salts at pD 1.4

Solution	рD	D alpha pyranose beta pyranose											
				<u>Absolu</u>	te change	e in chem	ical shift	comp	pared to r	netal-fre	e solutior	n (Δδ _{obs})	
			αH1	αH2	αH3	αH4	αH5		β H1	<i>β</i> H2	βнз	β H4	β H5
No metal	1.4		0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00
1.0 M NaCl	1.4		-0.04	-0.04	-0.04	-0.06	-0.04		-0.05	-0.05	-0.04	-0.05	-0.04
1.0 M KCl	1.4		-0.05	-0.06	-0.06	-0.07	-0.06		-0.06	-0.06	-0.06	-0.06	-0.05
1.0 M CaCl ₂	1.4		0.01	0.04	-0.01	-0.12	0.00		-0.09	-0.09	-0.08	-0.10	-0.09
1.0 M SrCl ₂	1.4		-0.02	0.00	-0.06	-0.16	-0.03		-0.11	-0.12	-0.10	-0.12	-0.11
1.0 M BaCl ₂	1.4		-0.04	-0.05	-0.10	-0.19	-0.06		-0.10	-0.13	-0.14	-0.15	-0.11
1.0 M MgCl ₂	1.4		-0.10	-0.10	-0.09	-0.10	-0.12		-0.10	-0.10	-0.10	-0.10	-0.10
1.0 M ZnCl ₂	1.4		-0.10	-0.11	-0.11	-0.12	-0.15		-0.12	-0.13	-0.12	-0.12	-0.13
				Change ir	n chemica	ll shift co	mpared t	o me	tal-free s	olution re	elative to	<u>Η4 (Δδ_{rel}</u>	<u>)</u>
			αH1	αH2	αH3	αH4	αH5		β H1	<i>β</i> H2	βнз	β H4	β H5
No metal	1.4		0.00	0.00	0.00	-	0.00		0.00	0.00	0.00	-	0.00
1.0 M NaCl	1.4		0.02	0.02	0.02	-	0.02		0.00	-0.01	0.00	-	0.01
1.0 M KCl	1.4		0.02	0.01	0.01	-	0.01		0.00	0.00	0.00	-	0.01
1.0 M CaCl ₂	1.4		0.13	0.15	0.10	-	0.11		0.01	0.00	0.02	-	0.01
1.0 M SrCl ₂	1.4		0.14	0.16	0.10	-	0.12		0.01	0.00	0.02	-	0.01
1.0 M BaCl ₂	1.4		0.15	0.15	0.10	-	0.14		0.04	0.01	0.01	-	0.04
1.0 M MgCl ₂	1.4		0.00	0.00	0.01	-	-0.02		-0.01	-0.01	-0.01	-	0.00
1.0 M ZnCl ₂	1.4		0.02	0.01	0.01	-	-0.03		0.00	0.00	0.00	-	-0.01

Solution	pD alpha pyranose beta pyranose												
				<u>Absolu</u>	te change	e in chem	ical shift	comp	ared to n	netal-free	e solutior	n (Δδ _{obs})	
			αH1	αH2	αH3	αH4	αH5		β H1	<i>β</i> H2	βнз	<i>β</i> H4	β H5
No metal 7.9 0.00													0.00
1.0 M NaCl	7.9		-0.05	-0.04	-0.05	-0.07	-0.05		-0.03	-0.03	-0.02	-0.06	-0.04
1.0 M KCl	7.9		-0.06	-0.05	-0.06	-0.08	-0.07		-0.04	-0.05	-0.05	-0.08	-0.06
1.0 M CaCl ₂	7.9		0.03	-0.03	-0.06	-0.11	0.01		0.01	-0.03	-0.02	-0.06	-0.01
1.0 M SrCl ₂	7.9		-0.02	-0.08	-0.10	-0.15	-0.05		-0.03	-0.07	-0.06	-0.10	-0.05
1.0 M BaCl ₂	7.9		-0.06	-0.11	-0.13	-0.16	-0.09		-0.02	-0.08	-0.08	-0.11	-0.07
1.0 M MgCl ₂	7.9		-0.07	-0.06	-0.08	-0.10	-0.06		-0.06	-0.07	-0.05	-0.11	-0.03
1.0 M Ca(NO ₃) ₂	7.9		0.09	0.03	0.01	-0.03	0.08		0.04	0.03	0.03	0.00	0.03
1.0 M Cal ₂	7.9		-0.02	-0.09	-0.14	-0.19	-0.06		0.01	-0.08	-0.03	-0.17	0.00
			9	Change ir	n chemica	al shift co	mpared t	o me	tal-free s	olution re	elative to	H4 (Δδ _{rel}	1
			αH1	αH2	αH3	αH4	αH5		β H1	<i>β</i> H2	βнз	β H4	<i>β</i> H5
No metal	7.9		0.00	0.00	0.00	-	0.00		0.00	0.00	0.00	-	0.00
1.0 M NaCl	7.9		0.02	0.03	0.02	-	0.02		0.04	0.03	0.04	-	0.03
1.0 M KCl	7.9		0.02	0.03	0.02	-	0.01		0.04	0.03	0.02	-	0.02
1.0 M CaCl ₂	7.9		0.14	0.08	0.05	-	0.12		0.08	0.04	0.04	-	0.05
1.0 M SrCl ₂	7.9		0.12	0.07	0.04	-	0.10		0.08	0.04	0.05	-	0.06
1.0 M BaCl ₂	7.9		0.10	0.05	0.03	-	0.07		0.10	0.03	0.04	-	0.04
1.0 M MgCl ₂	7.9		0.04	0.04	0.03	-	0.04		0.05	0.04	0.05	-	0.07
1.0 M Ca(NO ₃) ₂	7.9		0.12	0.06	0.04	-	0.10		0.04	0.03	0.03	-	0.04
1.0 M Cal ₂	7.9		0.17	0.10	0.05	-	0.14		0.18	0.09	0.14	-	0.17

Table S.6 $\Delta \delta_{obs}$ and $\Delta \delta_{rel}$ values for Na-D-mannuronate (ManA) in metal chloride salts at pD 7.9

Table S.7 $\Delta \delta_{obs}$ and $\Delta \delta_{rel}$ values for Na-D-mannuronate (ManA) in metal chloride salts at pD 1.4

Solution	рD	alpha pyranose beta pyranose											
				<u>Absolu</u>	te change	in chem	ical shift	comp	ared to r	netal-free	e solutior	<u>ι (Δδ_{obs})</u>	
			αH1	αH2	αH3	αH4	αH5		β H1	<i>β</i> H2	βнз	<i>β</i> H4	β H5
No metal	1.4		0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00
1.0 M NaCl	1.4		-0.04	-0.04	-0.04	-0.05	-0.04		-0.02	-0.03	-0.02	-0.06	-0.02
1.0 M KCl	1.4		-0.06	-0.06	-0.07	-0.06	-0.06		-0.04	-0.05	-0.04	-0.08	-0.02
1.0 M CaCl ₂	1.4		-0.08	-0.08	-0.10	-0.09	-0.09		-0.04	-0.06	-0.04	-0.10	-0.05
1.0 M SrCl ₂	1.4		-0.11	-0.11	-0.13	-0.13	-0.12		-0.07	-0.09	-0.08	-0.13	-0.07
1.0 M BaCl ₂	1.4		-0.13	-0.14	-0.16	-0.16	-0.13		-0.07	-0.11	-0.10	-0.15	-0.06
1.0 M MgCl ₂	1.4		-0.09	-0.08	-0.10	-0.10	-0.09		-0.06	-0.07	-0.06	-0.11	-0.06
1.0 M ZnCl ₂	1.4		-0.08	-0.09	-0.10	-0.13	-0.13		-0.07	-0.09	-0.07	-0.13	-0.10
			<u>!</u>	Change ir	n chemica	I shift co	mpared t	o me	tal-free s	olution re	elative to	H4 (Δδ _{rel}	<u>)</u>
			αH1	αH2	αH3	αH4	αH5		β H1	<i>β</i> H2	βнз	β H4	β H5
No metal	1.4		0.00	0.00	0.00	-	0.00		0.00	0.00	0.00	-	0.00
1.0 M NaCl	1.4		0.01	0.01	0.01	-	0.01		0.04	0.03	0.03	-	0.04
1.0 M KCl	1.4		0.00	0.00	-0.01	-	0.00		0.04	0.03	0.04	-	0.05
1.0 M CaCl ₂	1.4		0.01	0.02	0.00	-	0.01		0.05	0.04	0.05	-	0.05
1.0 M SrCl ₂	1.4		0.02	0.02	0.00	-	0.02		0.06	0.04	0.05	-	0.06
1.0 M BaCl ₂	1.4		0.03	0.02	0.00	-	0.02		0.08	0.04	0.04	-	0.08
1.0 M MgCl ₂	1.4		0.01	0.02	0.00	-	0.01		0.05	0.04	0.06	-	0.05
1.0 M ZnCl ₂	1.4		0.05	0.04	0.03	-	0.00		0.06	0.04	0.06	-	0.04

Solution	рD	pD alpha pyranose beta pyranose													
				<u>Absolu</u>	te change	in chem	ical shift	comp	ared to r	netal-free	e solutior	n (Δδ _{obs})			
	Λ αH1 αH2 αH3 αH4 αH5 βH1 βH2 βH3 βH4 βH5 No metal 7.9 0.00														
No metal 7.9 0.00															
1.0 M NaCl	7.9		-0.04	-0.05	-0.06	-0.06	-0.06		-0.04	-0.05	-0.05	-0.05	-0.04		
1.0 M KCl	7.9		-0.06	-0.06	-0.07	-0.07	-0.06		-0.05	-0.07	-0.06	-0.06	-0.05		
1.0 M CaCl ₂	7.9		0.00	-0.06	-0.08	-0.07	-0.03		-0.06	-0.08	-0.08	-0.08	-0.03		
1.0 M SrCl ₂	7.9		-0.04	-0.09	-0.12	-0.11	-0.08		-0.09	-0.11	-0.11	-0.11	-0.07		
1.0 M BaCl ₂	7.9		-0.08	-0.12	-0.14	-0.13	-0.12		-0.09	-0.12	-0.13	-0.13	-0.08		
1.0 M MgCl ₂	7.9		-0.07	-0.08	-0.10	-0.09	-0.07		-0.07	-0.09	-0.08	-0.09	-0.05		
1.0 M Ca(NO ₃) ₂	7.9		0.07	0.00	0.00	0.00	0.05		0.00	-0.01	0.00	0.00	0.03		
1.0 M Cal ₂	7.9		-0.06	-0.12	-0.15	-0.13	-0.10		-0.06	-0.14	-0.09	-0.14	-0.04		
			9	Change ir	n chemica	ll shift co	mpared t	o me	tal-free s	olution re	elative to	<u>H4 (Δδ_{rel}</u>)		
			αH1	αH2	αH3	αH4	αH5		β H1	<i>β</i> H2	βнз	β H4	β H5		
No metal	7.9		0.00	0.00	0.00	-	0.00		0.00	0.00	0.00	-	0.00		
1.0 M NaCl	7.9		0.02	0.02	0.01	-	0.01		0.02	0.00	0.00	-	0.02		
1.0 M KCl	7.9		0.01	0.01	-0.01	-	0.00		0.01	0.00	0.00	-	0.01		
1.0 M CaCl ₂	7.9		0.08	0.02	-0.01	-	0.05		0.03	0.00	0.00	-	0.05		
1.0 M SrCl ₂	7.9		0.06	0.02	-0.01	-	0.03		0.02	0.00	0.00	-	0.04		
1.0 M BaCl ₂	7.9		0.05	0.01	-0.01	-	0.01		0.03	0.01	0.00	-	0.05		
1.0 M MgCl ₂	7.9		0.02	0.00	-0.01	-	0.01		0.02	-0.01	0.01	-	0.04		
1.0 M Ca(NO ₃) ₂	7.9		0.07	0.00	0.00	-	0.06		0.00	-0.01	0.00	-	0.03		
1.0 M Cal ₂	7.9		0.03	0.01	-0.01	-	0.01		0.04	0.00	0.02	-	0.05		

Table S.8 $\Delta \delta_{obs}$ and $\Delta \delta_{rel}$ values for Na-D-glucuronate (GlcA) in metal chloride salts at pD 7.9

Table S.9 $\Delta \delta_{obs}$ and $\Delta \delta_{rel}$ values for Na-D-glucuronate (GlcA) in metal chloride salts at pD 1.4

Solution	pD alpha pyranose beta pyranose												
				<u>Absolu</u>	te change	<u>e in chem</u>	ical shift	comp	pared to r	netal-fre	e solutior	<u>η (Δδ_{obs})</u>	
			αH1	αH2	αH3	αH4	αH5		β H1	<i>β</i> H2	βнз	β H4	β H5
No metal	1.4		0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00
1.0 M NaCl	1.4		-0.04	-0.05	-0.05	-0.05	-0.05		-0.04	-0.05	-0.04	-0.05	-0.03
1.0 M KCl	1.4		-0.05	-0.06	-0.07	-0.06	-0.06		-0.05	-0.06	-0.05	-0.06	-0.04
1.0 M CaCl ₂	1.4		-0.08	-0.08	-0.10	-0.09	-0.11		-0.08	-0.09	-0.08	-0.10	-0.08
1.0 M SrCl ₂	1.4		-0.11	-0.11	-0.13	-0.12	-0.14		-0.11	-0.12	-0.11	-0.13	-0.11
1.0 M BaCl ₂	1.4		-0.13	-0.13	-0.15	-0.14	-0.16		-0.13	-0.14	-0.13	-0.15	-0.12
1.0 M MgCl ₂	1.4		-0.08	-0.08	-0.10	-0.08	-0.11		-0.07	-0.09	-0.07	-0.10	-0.07
1.0 M ZnCl ₂	1.4		-0.08	-0.09	-0.11	-0.10	-0.13		-0.08	-0.10	-0.09	-0.11	-0.10
			1	Change ir	n chemica	l shift co	mpared t	o me	tal-free s	olution r	elative to	H4 (Δδ _{rel}	<u>)</u>
			αH1	αH2	αH3	αH4	αH5		β H1	<i>β</i> H2	βнз	β H4	β H5
No metal	1.4		0.00	0.00	0.00	-	0.00		0.00	0.00	0.00	-	0.00
1.0 M NaCl	1.4		0.01	0.00	-0.01	-	0.00		0.02	0.01	0.02	-	0.02
1.0 M KCl	1.4		0.01	0.00	-0.01	-	0.00		0.02	0.00	0.01	-	0.02
1.0 M CaCl ₂	1.4		0.01	0.01	-0.01	-	-0.02		0.02	0.01	0.03	-	0.03
1.0 M SrCl ₂	1.4		0.01	0.00	-0.01	-	-0.02		0.02	0.01	0.03	-	0.03
1.0 M BaCl ₂	1.4		0.01	0.00	-0.01	-	-0.02		0.02	0.01	0.02	-	0.03
1.0 M MgCl ₂	1.4		0.00	0.00	-0.01	-	-0.02		0.03	0.01	0.03	-	0.03
1.0 M ZnCl ₂	1.4		0.02	0.01	-0.01	-	-0.03		0.03	0.01	0.03	-	0.01

Solution	рD	pD alpha pyranose be											
				<u>Absolu</u>	te change	e in chem	ical shift	comp	ared to r	netal-free	e solutior	n (Δδ _{obs})	
			αH1	αH2	αH3	αH4	αH5		β H1	<i>β</i> H2	βнз	β H4	β H5
No metal	7.9		0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00
1.0 M NaCl	7.9		-0.04	-0.06	-0.05	-0.06	-0.04		-0.02	-0.06	-0.03	-0.06	-0.03
1.0 M KCI	7.9		-0.04	-0.06	-0.06	-0.07	-0.05		-0.03	-0.07	-0.04	-0.07	-0.03
1.0 M CaCl ₂	7.9		0.11	-0.05	-0.05	-0.07	0.06		0.02	-0.05	-0.03	-0.07	0.05
1.0 M SrCl ₂	7.9		0.05	-0.10	-0.10	-0.12	0.00		-0.01	-0.08	-0.07	-0.13	0.00
1.0 M BaCl ₂	7.9		0.01	-0.12	-0.13	-0.16	-0.04		0.00	-0.10	-0.10	-0.16	0.00
1.0 M MgCl ₂	7.9		-0.01	-0.09	-0.07	-0.08	-0.01		-0.05	-0.10	-0.05	-0.09	-0.03
1.0 M Ca(NO ₃) ₂	7.9		0.15	0.00	0.01	0.00	0.12		0.05	0.01	0.01	-0.01	0.07
1.0 M Cal ₂	7.9		0.02	-0.15	-0.13	-0.16	-0.02		0.01	-0.12	-0.06	-0.12	-0.01
			<u>.</u>	Change ir	n chemica	ll shift co	mpared t	o me	tal-free s	olution re	elative to	H4 (Δδ _{rel}	<u>)</u>
			αH1	αH2	αH3	αH4	αH5		β H1	βH2	βнз	β H4	<i>β</i> H5
No metal	7.9		0.00	0.00	0.00	-	0.00		0.00	0.00	0.00	-	0.00
1.0 M NaCl	7.9		0.03	0.01	0.01	-	0.02		0.04	0.00	0.03	-	0.04
1.0 M KCl	7.9		0.02	0.01	0.01	-	0.02		0.04	0.00	0.03	-	0.03
1.0 M CaCl ₂	7.9		0.18	0.01	0.02	-	0.13		0.09	0.02	0.04	-	0.12
1.0 M SrCl ₂	7.9		0.17	0.02	0.03	-	0.12		0.11	0.04	0.05	-	0.13
1.0 M BaCl ₂	7.9		0.17	0.04	0.03	-	0.12		0.16	0.06	0.06	-	0.16
1.0 M MgCl ₂	7.9		0.07	-0.01	0.01	-	0.07		0.03	-0.02	0.03	-	0.05
1.0 M Ca(NO ₃) ₂	7.9		0.15	0.00	0.01	-	0.12		0.05	0.02	0.01	-	0.07
1.0 M Cal ₂	7.9		0.18	0.01	0.03	-	0.14		0.17	0.04	0.10	-	0.15

Table S.10 $\Delta \delta_{obs}$ and $\Delta \delta_{rel}$ values for Na-D-galacturonate (GalA) in metal chloride salts at pD 7.9

Table S.11 $\Delta \delta_{obs}$ and $\Delta \delta_{rel}$ values for Na-D-galacturonate (GalA) in metal chloride salts at pD 1.4

Solution	рD	alpha pyranose							beta pyranose			
			<u>Absolu</u>	te change	e in chem	ical shift	comp	pared to r	netal-fre	e solutior	n (Δδ _{obs})	
		αH1	αH2	αH3	αH4	αH5		βH1	<i>β</i> H2	βНЗ	<i>β</i> H4	β H5
No metal	1.4	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00
1.0 M NaCl	1.4	-0.04	-0.06	-0.05	-0.05	-0.04		-0.03	-0.06	-0.03	-0.05	-0.02
1.0 M KCl	1.4	-0.04	-0.06	-0.05	-0.06	-0.05		-0.03	-0.07	-0.03	-0.05	-0.02
1.0 M CaCl ₂	1.4	-0.04	-0.08	-0.07	-0.08	-0.08		-0.05	-0.09	-0.05	-0.08	-0.05
1.0 M SrCl ₂	1.4	-0.07	-0.12	-0.11	-0.12	-0.10		-0.08	-0.13	-0.09	-0.12	-0.08
1.0 M BaCl ₂	1.4	-0.08	-0.15	-0.13	-0.15	-0.12		-0.07	-0.14	-0.11	-0.15	-0.09
1.0 M MgCl ₂	1.4	-0.08	-0.10	-0.09	-0.09	-0.09		-0.06	-0.11	-0.06	-0.09	-0.06
1.0 M ZnCl ₂	1.4	-0.07	-0.12	-0.11	-0.12	-0.15		-0.08	-0.13	-0.08	-0.12	-0.10
		9	Change ir	n chemica	ll shift co	mpared t	o me	tal-free s	olution r	elative to	H4 (Δδ _{rel}	<u>)</u>
		αH1	αH2	αH3	αH4	αH5		βH1	β H2	βнз	<i>β</i> H4	β H5
No metal	1.4	0.00	0.00	0.00	-	0.00		0.00	0.00	0.00	-	0.00
1.0 M NaCl	1.4	0.01	-0.01	0.00	-	0.01		0.02	-0.01	0.02	-	0.03
1.0 M KCl	1.4	0.01	0.00	0.00	-	0.01		0.03	-0.01	0.02	-	0.03
1.0 M CaCl ₂	1.4	0.04	0.00	0.01	-	0.00		0.03	-0.01	0.03	-	0.03
1.0 M SrCl ₂	1.4	0.05	0.00	0.01	-	0.02		0.04	-0.01	0.03	-	0.04
1.0 M BaCl ₂	1.4	0.07	0.00	0.02	-	0.03		0.07	0.01	0.04	-	0.06
1.0 M MgCl ₂	1.4	0.01	-0.01	0.00	-	0.00		0.03	-0.02	0.03	-	0.03
1.0 M ZnCl ₂	1.4	0.05	0.00	0.01	-	-0.03		0.04	-0.01	0.04	-	0.02

3.4 Tables of equilibrium populations for metal-uronate solutions

	L-guluronate (GulA)										
Solution	pD -	%αP	±σ	%βΡ	±σ	- / %F	±σ	α/β	±σ		
No metal	7.9	16.6		78.6			0.9	0.21	0.00		
1.0 M NaCl	7.9	18.9		77.6		3.6		0.24			
1.0 M KCl	7.9	15.6		80.7				0.19			
1.0 M MgCl ₂	7.9	19.6		74.4		6.0		0.26			
1.0 M SrCl ₂	7.9	51.3		42.6		6.2		1.20	0.02		
1.0 M BaCl₂	7.9	35.1		60.8				0.58	0.00		
1.0 M CaCl₂	7.9	54.7		36.6		9.0		1.50	0.03		
1.0 M Cal ₂	7.9	56.2		32.7		11.1		1.72	0.02		
1.0 M Ca(NO ₃) ₂	7.9	48.5		40.7		10.8		1.19	0.05		
No metal		16.7		79.0		4.2		0.21	0.00		
1.0 M NaCl		19.0		77.5		3.5		0.25	0.00		
1.0 M KCl		16.1		81.0		3.0		0.20	0.00		
1.0 M MgCl ₂		16.7		77.6		5.7		0.21	0.00		
1.0 M SrCl ₂		49.0		46.4		4.6		1.05			
1.0 M BaCl ₂		39.2		57.4				0.68			
1.0 M CaCl ₂		50.4		45.4			0.6	1.11	0.02		
1.0 M ZnCl ₂		17.8		76.8		5.4		0.23			

Table S.12 Equilibrium populations of isomers of L-guluronate (GulA) under various conditions (295 K)

D-mannuronate (ManA)												
Solution	рD	%αP	±σ	%βΡ	±σ	%F	±σ	α/β	±σ			
No metal	7.9	67.1	0.8	28.4	0.3	4.7	0.5	2.36	0.04			
1.0 M NaCl	7.9	63.7	0.6	31.1	0.4	5.3	1.2	2.05	0.03			
1.0 M KCl	7.9	61.6	0.3	34.7	0.3	3.7	0.2	1.77	0.02			
1.0 M MgCl ₂	7.9	64.8	0.7	28.2	0.1	6.7	0.4	2.29	0.03			
1.0 M SrCl ₂	7.9	61.8	0.5	29.5	0.1	8.6	1.1	2.10	0.02			
1.0 M BaCl ₂	7.9	54.7	0.6	40.2	0.4	5.2	0.2	1.36	0.02			
1.0 M CaCl ₂	7.9	63.1	0.6	25.4	0.3	11.4	0.3	2.48	0.04			
1.0 M Cal ₂	7.9	58.9	0.7	28.9	0.6	12.2	0.4	2.04	0.05			
1.0 M Ca(NO ₃) ₂	7.9	61.4	0.5	24.6	0.1	14.0	0.5	2.49	0.02			
No metal	1.4	72.3	0.9	23.6	0.4	4.1	0.9	3.06	0.07			
1.0 M NaCl	1.4	67.6	0.5	26.8	0.4	5.7	0.4	2.52	0.05			
1.0 M KCl	1.4	65.1	1.5	29.5	0.1	5.4	0.1	2.21	0.05			
1.0 M MgCl ₂	1.4	67.7	0.5	27.4	0.5	4.6	0.4	2.47	0.05			
1.0 M SrCl ₂	1.4	62.9	0.9	27.2	0.4	9.8	0.2	2.31	0.05			
1.0 M BaCl ₂	1.4	60.2	1.0	31.8	0.3	8.1	0.4	1.90	0.04			
1.0 M CaCl ₂	1.4	64.3	1.0	25.7	0.3	10.0	0.5	2.50	0.05			
1.0 M ZnCl ₂	1.4	68.3	0.8	25.9	0.4	5.8	0.5	2.64	0.05			

Table S.13 Equilibrium populations of isomers of D-mannuronate (ManA) under various conditions (295 K)

	D-g	glucı	llou	nate	(Gl	cA)			
Solution	рD	%αP	±σ	%βΡ	±σ	%F	±σ	α/β	±σ
No metal	7.9	42.4	0.7	56.2	0.2	1.4	0.1	0.75	0.01
1.0 M NaCl	7.9	42.2	0.7	56.6	0.6	1.2	0.1	0.75	0.01
1.0 M KCl	7.9	40.0	0.8	58.3	0.5	1.7	0.3	0.69	0.01
1.0 M MgCl ₂	7.9	43.4	0.9	52.8	0.3	3.7	0.3	0.82	0.02
1.0 M SrCl ₂	7.9	46.9	0.6	48.3	0.1	4.8	0.2	0.97	0.01
1.0 M BaCl ₂	7.9	41.5	0.4	55.2	0.7	3.3	0.3	0.75	0.01
1.0 M CaCl₂	7.9	47.0	0.6	45.8	0.3	7.1	0.0	1.03	0.01
1.0 M Cal ₂	7.9	46.9	0.8	44.7	0.5	8.4	0.1	1.05	0.02
1.0 M Ca(NO ₃) ₂	7.9	47.2	0.5	46.5	0.2	6.2	0.4	1.02	0.01
									0.01
No metal	1.4	47.2	0.6	49.9	0.2	2.9	0.2	0.95	0.01
1.0 M NaCl	1.4	47.0	0.6	49.9	0.2	3.1	0.2	0.94	0.01
1.0 M KCl		45.6	0.6	51.5	0.2	2.8	0.4	0.89	0.01
1.0 M MgCl ₂		48.0	0.6	48.6	0.3	3.4	0.3	0.99	0.01
1.0 M SrCl ₂		47.9	1.0	47.6	0.6	4.4	0.1	1.01	0.02
1.0 M BaCl ₂		47.8	1.0	47.2	0.7	4.8	0.4	1.01	0.03
1.0 M CaCl ₂		46.5	0.6	48.6	0.2	4.8	0.5	0.96	0.01
1.0 M ZnCl ₂		47.2	1.0	48.7	0.9	4.1	0.5	0.97	0.03

 Table S.14 Equilibrium populations of isomers of D-glucuronate (GIcA) under various conditions (295 K)

	D-ga	alact	uro	nate	e (G	alA)			
Solution	рD	%αP	±σ	%βΡ	±σ	%F	±σ	α/β	±σ
No metal	7.9	37.5	0.2	53.5	0.4	9.1	0.2	0.70	0.01
1.0 M NaCl	7.9	36.2	0.3	56.6	0.4	7.2	0.1	0.64	0.01
1.0 M KCl	7.9	33.3	0.3	59.7	0.6	7.1	0.2	0.56	0.01
1.0 M MgCl₂	7.9	38.1	0.4	49.5	0.7	12.4	0.0	0.77	0.01
1.0 M SrCl₂	7.9	46.6	0.4	45.6	0.4	7.8	0.4	1.02	0.01
1.0 M BaCl₂	7.9	36.0	0.2	59.0	0.5	5.0	0.3	0.61	0.01
1.0 M CaCl ₂	7.9	48.9	0.2	39.4	0.4	11.7	0.3	1.24	0.01
1.0 M Cal ₂	7.9	47.7	1.0	40.4	1.0	12.0	0.9	1.18	0.04
1.0 M Ca(NO ₃) ₂	7.9	48.1	0.2	40.3	0.5	11.6	0.3	1.19	0.01
No metal	1.4	42.4	0.2	47.7	0.3	9.8	0.4	0.89	0.01
1.0 M NaCl	1.4	40.8	0.3	50.7	0.7	8.5	0.2	0.80	0.01
1.0 M KCl	1.4	38.1	0.2	54.1	0.7	7.8	0.1	0.70	0.01
1.0 M MgCl₂	1.4	40.1	0.8	50.6	0.9	9.5	0.6	0.79	0.02
1.0 M SrCl₂	1.4	43.2	0.3	48.0	0.3	8.8	0.2	0.90	0.01
1.0 M BaCl₂	1.4	40.9	0.4	51.4	0.5	7.7	0.5	0.80	0.01
1.0 M CaCl₂	1.4	43.2	0.3_	47.5	0.7_	9.4	0.2	0.91	0.01
1.0 M ZnCl₂	1.4	42.0	0.3	48.5	1.3	9.6	0.5	0.87	0.02

Table S.15 Equilibrium populations of isomers of D-galacturonate (GalA) under various conditions (295 K)

3.5 Representative spectra for Ca²⁺/L-guluronate NMR titrations

Figure S.3 ¹³C NMR spectra of sodium L-guluronate (0.26 M) in the presence of different concentrations of CaCl₂ (0.00 – 1.30 M). Spectra recorded in D₂O at pD 7.9, 295K, 100 MHz. Signals measured relative to the signal arising from external reference (not shown): <u>CDCl₃ δ = 77.160 ppm.</u>

Figure S.4 ¹H NMR spectra of sodium L-guluronate (0.26 M) in the presence of different concentrations of CaCl₂ (0.00 – 1.30 M). Spectra recorded in D₂O at pD 7.9, 295K, 400 MHz. Signals measured relative to the signal arising from external reference (not shown): C<u>H</u>Cl₃ in CDCl₃ δ = 7.260 ppm.

3.6 Raw data for Ca²⁺/uronate NMR spectroscopic titrations

	$[C_2]$ [anomoril* Change to ¹³ C NMR chemical shift (nnm)										
	[Са]	[anomer] [*]	C1					66			
	0,0000	0.0435	0.000	0.000			0.000	0.000			
	0.0325	0.0475	-0.070	-0.143	-0.117	-0.033	0.026	0.020			
	0.0650	0.0530	-0.114	-0.253	-0.206	-0.059	0.053	0.047			
nIA	0.1300	0.0588	-0.204	-0.432	-0.353	-0.115	0.080	0.069			
ש- מ	0.1950	0.0688	-0.283	-0.570	-0.472	-0.162	0.113	0.090			
te (0.2600	0.0769	-0.358	-0.695	-0.582	-0.206	0.129	0.109			
ona	0.3900	0.0881	-0.483	-0.878	-0.755	-0.281	0.157	0.133			
lure	0.5200	0.0996	-0.574	-1.009	-0.878	-0.337	0.181	0.158			
ng	0.6500	0.1106	-0.649	-1.113	-0.982	-0.389	0.197	0.168			
α-Γ	0.7800	0.1130	-0.706	-1.194	-1.064	-0.429	0.217	0.179			
	1.0400	0.1340	-0.796	-1.312	-1.187	-0.496	0.254	0.189			
	1.3000	0.1503	-0.870	-1.415	-1.295	-0.553	0.285	0.206			
		I									
	0.0000	0.2165	0.000	0.000	0.000	0.000	0.000	0.000			
	0.0325	0.2125	0.009	-0.021	-0.018	-0.018	0.021	0.013			
۵	0.0650	0.2070	0.026	-0.028	-0.026	-0.027	0.049	0.037			
Ing	0.1300	0.2012	0.044	-0.058	-0.056	-0.056	0.079	0.058			
(B-C	0.1950	0.1912	0.066	-0.076	-0.076	-0.080	0.115	0.083			
ate	0.2600	0.1831	0.074	-0.103	-0.102	-0.106	0.140	0.100			
, one	0.3900	0.1719	0.093	-0.145	-0.142	-0.157	0.178	0.129			
nlu	0.5200	0.1604	0.103	-0.179	-0.172	-0.197	0.211	0.148			
- -	0.6500	0.1494	0.106	-0.215	-0.202	-0.239	0.229	0.159			
β-	0.7800	0.1470	0.110	-0.244	-0.227	-0.276	0.246	0.167			
	1.0400	0.1260	0.116	-0.292	-0.267	-0.343	0.278	0.180			
	1.3000	0.1097	0.118	-0.340	-0.304	-0.410	0.302	0.190			
		1									
	0.0000	0.1769	0.000	0.000	0.000	0.000	0.000	0.000			
7	0.0325	0.1781	0.001	-0.009	-0.003	-0.007	-0.032	0.006			
an4	0.0650	0.1793	0.002	-0.009	-0.006	-0.013	-0.041	0.014			
۲- ۲	0.1300	0.1806	0.000	-0.029	-0.016	-0.033	-0.084	0.027			
e (o	0.1950	0.1793	-0.008	-0.051	-0.031	-0.059	-0.139	0.033			
nat	0.2600	0.1806	-0.010	-0.064	-0.038	-0.074	-0.212	0.041			
nro	0.3900	0.1818	-0.023	-0.102	-0.061	-0.112	-0.353	0.047			
nn	0.5200	0.1806	-0.034	-0.131	-0.080	-0.145	-0.465	0.052			
-me	0.6500	0.1844	-0.047	-0.160	-0.093	-0.174	-0.547	0.052			
α-D	0.7800	0.1857	-0.057	-0.188	-0.108	-0.199	-0.629	0.046			
	1.0400	0.1857	-0.081	-0.236	-0.133	-0.247	-0.735	0.044			
	1.3000	0.1818	-0.104	-0.282	-0.156	-0.288	-0.837	0.024			

3.6.1 Raw data for ¹³C NMR titrations

	0.0000	0.0831	0.000	0.000	0.000	0.000	0.000	0.000
(0.0325	0.0819	-0.002	-0.004	-0.011	-0.005	-0.028	0.006
anA	0.0650	0.0807	-0.003	-0.004	-0.011	-0.008	-0.020	0.008
-W	0.1300	0.0794	-0.013	-0.018	-0.036	-0.023	-0.063	0.020
e (β	0.1950	0.0807	-0.028	-0.035	-0.055	-0.040	-0.104	0.039
nate	0.2600	0.0794	-0.036	-0.044	-0.068	-0.051	-0.158	0.042
ıroı	0.3900	0.0782	-0.066	-0.069	-0.108	-0.080	-0.270	0.060
านน	0.5200	0.0794	-0.092	-0.091	-0.137	-0.104	-0.349	0.058
ma	0.6500	0.0756	-0.117	-0.112	-0.166	-0.128	-0.415	0.058
-D-	0.7800	0.0743	-0.139	-0.130	-0.191	-0.148	-0.477	0.059
β	1.0400	0.0743	-0.183	-0.164	-0.234	-0.190	-0.566	0.057
	1.3000	0.0782	-0.227	-0.199	-0.275	-0.225	-0.646	0.056
	0.0000	0.1092	0.000	0.000	0.000	0.000	0.000	0.000
(0.0650	0.1106	-0.005	-0.036	-0.007	-0.040	-0.049	0.022
ilcA	0.1300	0.1111	-0.007	-0.063	-0.008	-0.065	-0.096	0.036
<i>α</i> -G	0.1950	0.1121	-0.012	-0.092	-0.013	-0.091	-0.130	0.049
te (0.2600	0.1140	-0.019	-0.120	-0.017	-0.118	-0.167	0.053
ona	0.3900	0.1182	-0.029	-0.163	-0.025	-0.163	-0.233	0.058
curc	0.5200	0.1204	-0.041	-0.207	-0.029	-0.203	-0.288	0.060
gluc	0.6500	0.1209	-0.053	-0.249	-0.039	-0.244	-0.344	0.055
-D-	0.7800	0.1244	-0.065	-0.287	-0.045	-0.280	-0.393	0.051
ø	1.0400	0.1281	-0.091	-0.366	-0.056	-0.352	-0.486	0.040
	1.3000	0.1313	-0.110	-0.434	-0.064	-0.415	-0.573	0.023
	0.0000	0.1508	0.000	0.000	0.000	0.000	0.000	0.000
(0.0650	0.1494	-0.013	-0.022	-0.013	-0.022	-0.047	0.023
ilcA	0.1300	0.1489	-0.021	-0.035	-0.020	-0.032	-0.088	0.041
β-G	0.1950	0.1479	-0.032	-0.052	-0.032	-0.044	-0.120	0.058
te (0.2600	0.1460	-0.045	-0.069	-0.043	-0.058	-0.157	0.066
ona	0.3900	0.1418	-0.067	-0.095	-0.058	-0.083	-0.224	0.076
curd	0.5200	0.1396	-0.088	-0.120	-0.077	-0.104	-0.282	0.087
gluc	0.6500	0.1391	-0.113	-0.147	-0.095	-0.127	-0.340	0.086
- - -	0.7800	0.1356	-0.133	-0.172	-0.107	-0.147	-0.390	0.089
β	1.0400	0.1319	-0.178	-0.225	-0.142	-0.190	-0.493	0.088
	1.3000	0.1287	-0.212	-0.269	-0.165	-0.227	-0.590	0.081

*The nominal total concentration of uronate in solution was 0.26 M. The value "[anomer]" is the actual concentration of the named uronate anomer, calculated at each value of [Ca²⁺].

	[Ca]	[anomer]*	Change to ¹ H NMR chemical shift (ppm)								
	/ M	/ M	H1	H2	H3	H4	H5				
	0.0000	0.0435	0.000	0.000	0.000	0.000	0.000				
	0.0325	0.0475	0.027	0.018	0.015	0.004	0.022				
Â	0.0650	0.0530	0.038	0.024	0.020	0.005	0.031				
Gul	0.1300	0.0588	0.059	0.035	0.028	0.002	0.045				
- <i>w</i>)	0.1950	0.0688	0.087	0.052	0.039	0.000	0.065				
ate	0.2600	0.0769	0.107	0.063	0.046	-0.003	0.079				
O	0.3900	0.0881	0.124	0.072	0.052	-0.013	0.087				
In	0.5200	0.0996	0.147	0.087	0.056	-0.018	0.104				
<mark>ل</mark> م	0.6500	0.1106	0.158	0.092	0.058	-0.028	0.108				
ά-	0.7800	0.1130	0.163	0.093	0.057	-0.039	0.108				
	1.0400	0.1340	0.167	0.092	0.053	-0.051	0.108				
	1.3000	0.1503	0.175	0.092	0.047	-0.067	0.108				
		·									
	0.0000	0.2165	0.000	0.000	0.000	0.000	0.000				
	0.0325	0.2125	0.007	0.005	0.000	0.000	0.006				
Â	0.0650	0.2070	0.009	0.008	0.003	0.003	0.010				
Bulz	0.1300	0.2012	0.008	0.007	0.002	0.002	0.012				
(B-	0.1950	0.1912	0.011	0.010	0.000	0.000	0.016				
ate	0.2600	0.1831	0.013	0.010	-0.002	-0.002	0.019				
ons	0.3900	0.1719	0.010	0.006	-0.007	-0.007	0.018				
Inr	0.5200	0.1604	0.013	0.008	-0.009	-0.013	0.022				
۲- 19-	0.6500	0.1494	0.010	0.004	-0.014	-0.020	0.019				
β-	0.7800	0.1470	0.005	-0.002	-0.022	-0.027	0.015				
	1.0400	0.1260	-0.002	-0.008	-0.031	-0.037	0.010				
	1.3000	0.1097	-0.006	-0.014	-0.039	-0.050	0.007				
	•	·									
	0.0000	0.1769	0.000	0.000	0.000	0.000	0.000				
3	0.0325	0.1781	0.005	0.002	0.000	-0.001	0.005				
Ane	0.0650	0.1793	0.009	0.005	0.005	0.003	0.007				
Š	0.1300	0.1806	0.014	0.005	0.003	-0.001	0.009				
ς (α	0.1950	0.1793	0.023	0.007	0.002	-0.003	0.015				
late	0.2600	0.1806	0.027	0.006	0.001	-0.008	0.018				
Iror	0.3900	0.1818	0.035	0.005	-0.003	-0.016	0.022				
nuu	0.5200	0.1806	0.039	0.002	-0.010	-0.028	0.023				
ma	0.6500	0.1844	0.043	-0.002	-0.015	-0.038	0.023				
Ą	0.7800	0.1857	0.046	-0.005	-0.020	-0.047	0.023				
ø	1.0400	0.1857	0.047	-0.012	-0.031	-0.062	0.022				
	1.3000	0.1818	0.048	-0.020	-0.042	-0.080	0.021				

3.6.2 Raw data for ¹H NMR titrations

	0.0000	0.0831	0.000	0.000	0.000	0.000	0.000
~	0.0325	0.0819	0.003	0.002	0.001	0.000	0.002
Ane	0.0650	0.0807	0.006	0.005	0.006	0.004	0.006
Ě	0.1300	0.0794	0.008	0.005	0.005	0.002	0.008
g);	0.1950	0.0807	0.013	0.008	0.009	0.002	0.014
late	0.2600	0.0794	0.015	0.008	0.011	-0.001	0.015
Iror	0.3900	0.0782	0.018	0.006	0.013	-0.006	0.014
nuu	0.5200	0.0794	0.019	0.002	0.013	-0.011	0.010
mai	0.6500	0.0756	0.019	-0.001	0.011	-0.019	0.005
Ā	0.7800	0.0743	0.020	-0.003	0.006	-0.025	-0.002
Ø	1.0400	0.0743	0.018	-0.009	0.002	-0.035	-0.008
	1.3000	0.0782	0.016	-0.018	-0.008	-0.043	-0.021
	0.0000	0.1092	0.000	0.000	0.000	0.000	0.000
	0.0650	0.1106	0.006	-0.001	-0.003	-0.004	0.004
ilcA	0.1300	0.1111	0.010	-0.003	-0.004	-0.006	0.006
α-0	0.1950	0.1121	0.014	-0.004	-0.005	-0.006	0.007
te (0.2600	0.1140	0.015	-0.007	-0.009	-0.011	0.008
ona	0.3900	0.1182	0.015	-0.015	-0.019	-0.021	0.002
cure	0.5200	0.1204	0.017	-0.020	-0.025	-0.027	0.002
glu	0.6500	0.1209	0.018	-0.023	-0.031	-0.031	0.001
- - -	0.7800	0.1244	0.017	-0.028	-0.038	-0.038	-0.004
σ	1.0400	0.1281	0.021	-0.033	-0.047	-0.043	-0.004
	1.3000	0.1313	0.019	-0.041	-0.059	-0.057	-0.010
	0.0000	0.1508	0.000	0.000	0.000	0.000	0.000
2	0.0650	0.1494	-0.001	-0.003	-0.005	-0.003	0.003
JIC∕	0.1300	0.1489	-0.002	-0.006	-0.005	-0.004	0.002
[β-6]	0.1950	0.1479	-0.003	-0.008	-0.008	-0.008	-0.001
te (0.2600	0.1460	-0.005	-0.012	-0.012	-0.011	-0.001
ona	0.3900	0.1418	-0.013	-0.022	-0.023	-0.023	-0.003
cur	0.5200	0.1396	-0.017	-0.029	-0.029	-0.029	-0.005
glu	0.6500	0.1391	-0.021	-0.035	-0.034	-0.034	-0.006
-D-	0.7800	0.1356	-0.027	-0.043	-0.042	-0.042	-0.009
đ	1.0400	0.1319	-0.030	-0.050	-0.048	-0.048	-0.013
	1.3000	0.1287	-0.039	-0.061	-0.055	-0.055	-0.018

*The nominal total concentration of uronate in solution was 0.26 M. The value "[anomer]" is the actual concentration of the named uronate anomer, calculated at each value of $[Ca^{2+}]$.

4 Supplementary references

- 1 J. S. Rowbotham, J. A. Aguilar, A. M. Kenwright, H. C. Greenwell and P. W. Dyer, *Carbohydr. Res.*, 2020, **495**, 108087.
- 2 A. K. Covington and M. Whitfield, *Pure Appl. Chem.*, 1988, **60**, 865–870.
- 3 Y. Marcus, *Pure Appl. Chem.*, 1989, **61**, 1133–1138.
- 4 H. E. Gottlieb, V. Kotlyar and A. Nudelman, *J. Org. Chem.*, 1997, **62**, 7512–7515.
- 5 G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, *Organometallics*, 2010, **29**, 2176–2179.
- 6 H. S. Isbell, Bur. Stand. J. Res., 1930, 5, 741–755.
- J. Burgess, in *Metal ions in solution*, Ellis Horwood Limited, Chichester, 1978, pp. 38–74.
- J. Davies, S. Ormondroyd and M. C. R. Symons, *Trans. Faraday Soc.*, 1971, **67**, 3465–3473.
- 9 J. B. Hasted, D. M. Ritson and C. H. Collie, J. Chem. Phys., 1948, 16, 1–21.
- 10 D. Brynn Hibbert and P. Thordarson, *Chem. Commun.*, 2016, **52**, 12792–12805.
- 11 P. Thordarson, *Chem. Soc. Rev.*, 2011, **40**, 1305–1323.
- 12 H. S. Isbell, Bur. Stand. J. Res., 1932, 8, 1–8.