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Abstract: Iraq, a country in the Middle East, has suffered severe drought events in the past two
decades due to a significant decrease in annual precipitation. Water storage by building dams can
mitigate drought impacts and assure water supply. This study was designed to identify suitable
sites to build new dams within the Al-Khabur River Basin (KhRB). Both the fuzzy analytic hierarchy
process (AHP) and the weighted sum method (WSM) were used and compared to select suitable dam
sites. A total of 14 layers were used as input dataset (i.e., lithology, tectonic zones, distance to active
faults, distance to lineaments, soil type, land cover, hypsometry, slope gradient, average precipitation,
stream width, Curve Number Grid, distance to major roads, distance to towns and cities, and distance
to villages). Landsat-8/Operational Land Imager (OLI) and QuickBird optical images were used in
the study. Three types of accuracies were tested: overall, suitable pixels by number, and suitable
pixels by weight. Based on these criteria, we determined that 11 sites are suitable for locating dams
for runoff harvesting. Results were compared to the location of 21 preselected dams proposed by
the Ministry of Agricultural and Water Resources (MAWR). Three of these dam sites coincide with
those proposed by the MAWR. The overall accuracies of the 11 dams ranged between 76.2% and
91.8%. The two most suitable dam sites are located in the center of the study area, with favorable
geology, adequate storage capacity, and in close proximity to the population centers. Of the two
selection methods, the AHP method performed better as its overall accuracy is greater than that of
the WSM. We argue that when stream discharge data are not available, use of high spatial resolution
QuickBird imageries to determine stream width for discharge estimation is acceptable and can be
used for preliminary dam site selection. The study offers a valuable and relatively inexpensive tool to
decision-makers for eliminating sites having severe limitations (less suitable sites) and focusing on
those with the least restriction (more suitable sites) for dam construction.
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1. Introduction

The world’s population has reached 7.6 billion [1], and more than one-third of people in the
world (2.1 billion) live in drylands [2]. Iraq is an example of a semi-arid country, which experienced
a significant population increase of 308% in four decades: from ~12.46 million in 1977 to ~38.275
million in 2017 [1]. Water availability varies widely in Iraq: annual discharge of Iraqi rivers was
between 28.16 billion m3 in a dry year (1999) and 159.89 billion m3 in a wet year (1969), with an average
of 76.88 billion m3 [3]. Availability of water in the Tigris and the Euphrates rivers within Iraq has
decreased due to impoundment by large dams in Turkey, Iran, and Syria, resulting in increased drought
events. Twenty-one dams planned for construction as part of the Southeastern Anatolia Project (GAP)
will affect water availability in the Tigris River and its tributaries. The Tigris River is estimated to lose
80% of its water from completion of GAP [4]. In addition, Iran has also started construction of several
dams on the Tigris tributary, such as the Silveh Dam [5] and the Sardasht Dam [6], on the Nirawan
River. These dams will become operational in the coming years, preventing a substantial quantity
of the Nirawan River water from reaching Iraq. On the other hand, since 1981, only one hydraulic
impoundment structure, the Mosul Dam, has been built on the Al-Khabur River within Iraq, that
became fully operational on 24 July 1986. This multi-purpose dam was designed for flood control,
irrigation, and electric power generation [7].

During the last four decades, geographic information systems (GIS) and remote sensing (RS)
have been increasingly used for evaluation of potential sites for engineering projects [8–10]. GIS is a
robust tool because of its ability to process and analyze huge volumes of data from various sources [10].
Most of these studies have used several multi-criteria decision-making (MCDM) methods to determine
the most appropriate location for dam sites. The most common and widely used MCDM approaches
are the fuzzy analytic hierarchy process (AHP) [11], and the weighted sum method (WSM) [12] due
to their straightforward handling approach. Of these, AHP has been reported to be one of the best
and most widely used approaches to handle multiple and heterogeneous factors [13], and has been
successfully applied in many engineering site evaluations, including dams [14,15].

Prior to 2003, the Iraqi government had encouraged dam construction for water supply and
electric power generation, and several sites were then recommended. As a result, the Ministry of
Agricultural and Water Resources (MAWR) in the Kurdistan Region had preselected 21 dams for
construction [16]. However, the location of these dams was based more on political consideration
than technical. The Mosul Dam is a case in point, which suffers from both subsidence and siltation
problems [17,18].

It is also important to note that one of the primary water management strategies to counter the
impacts of flood and drought is construction of dams [14]. Besides geology, there are six key factors,
which must be taken into account while evaluating dam sites: precipitation, hydrology, topography,
land cover, soil types, and socioeconomics [19]. Socioeconomic aspects along with the local and regional
environment—important factors in dam site selection—were not taken into account and are beyond
the scope of this study. Additionally, this study excludes the northern part of the drainage basin that
lies outside Iraq. These factors must be given due consideration during detailed site investigations for
design and construction of the dams.

This study employed 14 predictive factors to evaluate dam sites, including suitable reservoir
areas for water harvesting. The objectives of the study were two-fold: (1) to compare and evaluate the
efficacy of two common MCDA methods, namely AHP and WSM, and (2) to find the most suitable
sites for the construction of dams using GIS. Accordingly, we evaluated a number of potential dam
sites in part of the Al-Khabur River Basin (KhRB) that lies in the Iraqi Kurdistan region (Figure 1).
We used 14 thematic layers to evaluate the methods’ performance. These layers include: (1) lithology,
(2) tectonic zones, (3) distance to active faults, (4) distance to lineaments, (5) soil type, (6) land cover,
(7) hypsometry, (8) slope gradient, (9) average precipitation, (10) stream width, (11) Curve Number (CN)
Grid, (12) distance to major roads, (13) distance to towns and cities, and (14) the distance to villages.
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2. Study Area

The study area lies in part of the KhRB, within the Duhok governorate in the northwestern part
of Iraq between latitude 36◦55′33” N and 37◦22′59” N, and longitude 42◦21′1” E and 43◦28′56” E
(Figure 1). The study area covers about 2599 km2 and encompasses Zakho city, Sarsing, and Batufa
town, and includes over 487 villages. According to Iraqi government documents, the population of
Zakho in July 2018 was 212,000 [20]. Twenty-one dams have been suggested for construction in the
study area (Table A1), almost all of them can be classified (based on [21]) as large dams. These dams
are estimated to store about 520 million m3 of water [16].
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Figure 1. Location map of the Al-Khabur River Basin (KhRB).

The study area, which includes the sixth-order Al-Khabur River, carries all runoff following
precipitation events in the Al-Khabur basin. The area shows significant seasonal variations in
precipitation, temperature, and potential evaporation, and is characterized by wet winters and dry
summers (Figure 2). The bulk of the annual precipitation (586 mm) occurs from October to May. For
the 2001–2005 period, the highest average monthly precipitation, with an average value of 134.3 mm,
occurred in January. July was marked by the highest average monthly evaporation rate, with an
average value of 354.7 mm. Monthly mean temperature varied between 8.47 (January) and 33.96 ◦C
(July). The hottest average monthly temperature of 41.31 ◦C was recorded in July, and the coldest
average monthly temperature of 4.17 ◦C in January. Al-Khabur River is fed by rainfall and snowmelt,
resulting in peak discharge in spring and low discharges in summer and early fall.
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3. Methodology

3.1. Preparation of Input

We selected and stored 14 predictive factors as thematic maps. We reviewed 10 of the
high-quality papers, which were published between 2009 and 2019 (Table A2), all dealing with
dam site selection [14,23–31]. More than 70% of these papers have used land cover [14,23–30],
soil type [14,23–30], slope gradient [14,23,24,26,28–31], precipitation [14,23,24,26,28–31], and CN
grid [23,25–28,30,31] as significant predictive factors for dam site selection. Fifty percent of the papers
used different factors to calculate stream order [23–25,30], and between 40% and 20% of the papers used
elevation [25,27,30,31], lithology [14,29,31], tectonic zone [14,29,31], distance to active fault [14,29,31],
distance to lineaments [23,30,31], distance to villages [14,29,30], distance to towns and cities [14,29],
discharge [14,31], and distance to roads [14,30] as predictive factors. However, less than 10% of these
papers used distance to deposits of geologic materials (borrow areas) [14], total dissolved solids
(TDS) [31], evaporation [29], and volume of depressions factors [25]. We selected 14 of these key factors
for this study, while the other four factors (i.e., distance to borrow areas, total dissolved solids (TDS),
evaporation, and volume of depressions) were excluded, as they are not commonly used. At the same
time, two factors, distance to roads, and stream width, although not commonly used, were evaluated
experimentally. In other words, we eliminated factors that decrease the accuracy of dam site selection,
and retained those that increase the accuracy of dam site selection. We used >3 order streams for their
high storage capacity.

The pixel sizes of the thematic maps were resampled to obtain the exact spatial resolution as the
pixel size of the digital elevation model (DEM) from the Shuttle Radar Topography Mission (SRTM)
(i.e., 30 m spatial resolution). The predictive input factors are either continuous or discrete. Factors
such as elevation, distance to road, and slope gradient, are continuous, while soil, land cover, and
lithology are discrete (Table 1). We used spatial analyst tools of ArcGIS to convert the continuous to
discrete factors. To do that, we classified each continuous input factor into five major classes, which
are: most suitable, suitable, moderately suitable, less suitable, and not suitable. The weight of the
five main classes are 1, 3, 5, 7, and 9, where the not suitable is 1 and the most suitable is 9. We used
the natural breaks method because it allows to reduce the variance within classes and maximizes the
variance between classes [32]. The number and boundary of classes can significantly influence the
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results of the statistical methods [33]. The classes in the discrete input factors were assigned to have
the same five classes (i.e., most suitable, suitable, moderately suitable, less suitable, and not suitable).

Table 1. Factors’ relations towards the suitable dam site evaluation.

No. Factor Relationship
Type Type of Data Relation

Intensity Data Source

1 Lithology No relation Discrete Very strong Iraq Geological
Survey

2 Tectonic zones No relation Discrete Very weak Iraq Geological
Survey

3 Distance to active fault
(m) Inverse Continuous Weak Iraq Geological

Survey

4 Distance to the
lineaments Inverse Continuous Weak USGS/Landsat-8

5 Soil No relation Discrete Moderate FAO/HWSD
6 Land cover No relation Discrete Weak USGS/Landsat-8
7 Elevation No relation Continuous Moderate USGS/SRTM
8 Slope gradient (◦) Inverse Continuous Strong DEM
9 Precipitation Direct Continuous Moderate NASA/TRMM

10 Stream width Direct Continuous Strong QuickBird
11 CN grid Direct Continuous Moderate DEM
12 Distance to road Inverse Continuous Very weak HIC

13 Distance to towns and
cities (m) Inverse Continuous Very weak HIC

14 Distance to villages (m) Inverse Continuous Very weak HIC

USGS-United States Geological Survey; FAO-Food and Agriculture Organization of the United Nations;
HWSD-Harmonized World Soil Database; NASA-National Aeronautics and Space Administration; TRMM-Tropical
Rainfall Measuring Mission; and HIC-Humanitarian Information Centre for Iraq.

3.2. Suitable Dam Site Selection Model

Although several MCDM methods are available, there is no specific method that could be
considered most suitable for all types of decision-making situations [34–36]. A big criticism of MCDM
is the fact that different approaches can yield different results if applied to the same problem [37]. The
determination of a suitable MCDM method is thus not an easy task and the focus should be on careful
selection of the method [34]. The literature presents several practical applications of comparative
analyses of different MCDM methods [11,12,38–46]. In this study, we used WSM and AHP to determine
suitable locations for dams.

3.2.1. Weighted Sum Method (WSM)

WSM does not take into account the significant deficiencies that can occur as input factors [47],
given that all factors have equal weight. In the first step, we classified each factor into five classes.
These were 1, 3, 5, 7, and 9 for the not suitable, less suitable, moderately suitable, suitable, and most
suitable for dam site selection, respectively. The weight of these five classes was determined according
to the suitability of each class to locate the dam, as shown in Table A3 (column “Rank”) and Table 1
(column “Relation intensity”). We relied mainly on previous literature, such as References [9,14,30],
and our own expert opinion to compute the weights for the factors. The next step is summation of all
factors following Equation (1), suggested by Fishburn [12].

WSM =
n∑

i=1

w jai j (1)

where n is the number of factors, ai j is the actual value of the i of the j criterion, and w j is the weight of
the j criterion.
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3.2.2. Analytic Hierarchy Process (AHP)

In 1990, Saaty proposed the AHP method, an easy-to-use method that calculates the index weight
by comparing the predictive factors with each other [48]. It is one of the most commonly used methods
for dam site selection. The GIS environment was used to determine suitable sites for dam, and ratings
of each predictive factor are provided on a five-point continuous scale. The weight of each predictive
factor was estimated depending on the relation intensity of the factors that influence dam site selection
(Table 1). These weights have been computed depending mainly on the previous literature, such as
References [9,14,30], and our own expert opinion. The map of suitable sites for dams is computed by
the raster overlay algorithm, using Equation (2) [49]:

AHP =
n∑

i=1

xiwi (2)

where xi is the value of predictive factor i (where i = (predictive factors listed in Table 1)), wi is the
weight for predictive factor i, and n is the number of predictive factors. We correlated all predictive
factors used by normalizing their scales and units, using the following equation (Equation (3)):

Zi =
Xi −Xmin

Xmax −Xmin
(3)

where Zi is the normalized value of pixel, Xi is the value of pixel, Xmin is the minimum value of pixel,
and Xmax is the maximum value of pixel.

As the dam sites are located within the river courses, we made sets of buffer zones (250, 500, and
1000 m) around the drainage networks. The two maps (i.e., WSM and AHP) were intersected with
these three buffer zones. The pixels within these three zones that received average value ≥moderately
suitable, were selected for dam site location.

3.2.3. Accuracy Assessment and Dam Site Selection

We followed Noori [14] by modifying the segmentation accuracy assessment [50] to evaluate the
results of AHP and WSM methods. The method used the identified number of segments to calculate
the summation of distances from suitable pixels to the reference point. Initially, the 21 large dams
(Table A1) proposed by MAWR were used as reference points [16]. Thereafter, the resulting maps
of WSM and AHP methods were categorized into five classes: most suitable, suitable, moderately
suitable, less suitable, and not suitable for location of dams. We created sets of buffer zones (250, 500,
and 1000 m) around the reference points. The total pixels’ number, the suitable pixels’ numbers, and
the distance between the reference and the pixels within the buffer, were calculated. Finally, overall
accuracy (OA) of the suitable pixels was calculated using Equations (4), (5), and (6):

As =
Ns∑

N
(4)

Aw =

∑
W∑
N

(5)

OA =
As + Aw

2
(6)

where As is the accuracy of the suitable pixels by number, Ns is the number of suitable pixels,
∑

N is
the total pixels, Aw is the accuracy of the suitable pixel by weight,

∑
W is the summation of weights of

the total pixels, and OA is the overall accuracy.
In order to refine our approach, we also applied the threshold operation. The selection of the

threshold values for the suitable method was determined experimentally. The final thresholded raster of
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the suitable method was then used to locate the areas representing potential dam sites. These locations
have been determined using shapefile of point feature type.

4. Predictive factors

4.1. Geological Factors

Structural, tectonic, and lithological variabilities affect the strength and stability of geologic
materials [33,51]. Accordingly, we used four geological factors as input parameters: (1) lithology,
(2) tectonic zones, (3) distance to active fault, and (4) distance to lineaments.

Two geological maps from published reports of Sissakian [52] and Al-Mousawi [53], at a scale of
1:250,000, were used in this study. These maps were scanned at 300 dots per inch (dpi) and georeferenced
to the Universal Transverse Mercator (UTM) coordinate system (zone 38 north). The lithological units,
tectonic units, and faults were digitized in a GIS database. The lithology and tectonic zones shapefiles
were converted to raster format using a spatial resolution of 30 m.

Lithology of the study area includes 24 rock units (Figure 3). This raster layer was used as the
lithological factor. The Ordovician period includes one unit (i.e., Khabour Formation) consisting of
sandstone and shale rocks. Rock units of the Carboniferous–Jurassic periods consist of limestone,
shale, marl, and siltstone. Rocks of the Cretaceous period comprise limestone, marl, dolostone, and
sandstone. The Tertiary period units consist of clastic rocks such as sandstone, conglomerate, siltstone,
claystone, and marl. Quaternary sediments (Table 2) include residual soil, slope debris, and flood plain
deposits [52,54].

According to Foad [53], the study area is located within the Unstable Shelf, which is a part of
the Zagros Fold-and-Thrust Belt. This belt is approximately 2000 km long, extending from southeast
Turkey through Iraq to southern Iran [55–60]. The unstable shelf includes the Imbricated Zone (IZ)
and the High Folded Zone (HFZ). The IZ and HFZ cover 24% and 76% of the study area, respectively.
The IZ lies to the north of the study area, and the HFZ is located to the south (Figure 3).ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW                                                              
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Table 2. Brief descriptions of geological formations and lithological units in the study area.

No. Lithological Unit Epoch Suitability Description

1 Flood Plain Holocene Not suitable Silt, clay, and sand

2 Slope Pleistocene-Holocene Not suitable Rock fragments cemented by
calcareous materials

3 Residual Soil Holocene Not suitable Clayey, with limestone rock
fragments

4 Bai Hassan Pliocene Less suitable Conglomerate, claystone,
sandstone, and siltstone

5 Mukdadiyah Late Miocene-Early
Pliocene Not suitable Pebbly sandstone, siltstone, and

claystone

6 Injana Late Miocene Moderately
suitable

Sandstone, siltstone, and
claystone

7 Fatha Middle Miocene Not suitable Claystone, marl, limestone,
gypsum, and siltstone

8 Pilaspi Middle-Late Eocene Suitable Bedded dolostone, and limestone
9 Kolosh Early Paleocene Not suitable Black clastics

10 Shiranish Late Cretaceous Less suitable Marl, marly limestone, and
limestone

11 Aqra-Bekhme Late Cretaceous Most suitable Limestone

12 Mergi Late Cretaceous Moderately
suitable Limestone and marl

13 Qamchuqa Early Cretaceous Suitable Massive and bedded dolostone
and limestone

14 Garagu Late Cretaceous Suitable Marl, sandstone, and limestone
15 Sarmord Early Cretaceous Suitable Limestone and marl

16
Chia, Gara, Barsarin,

Naokelekan and
Sargelu

Late Jurassic Less suitable Limestone, sandstone, marl, and
shale

17 Sehkaniyan and Sarki Early Jurassic Moderately
suitable Limestone and shale

18 Kura China and Baluti Late Triassic Suitable Limestone and shale

19 Geli Khane Middle Triassic Suitable Limestone, shale, marl, and
siltstone

20 Beduh Early Triassic Not suitable Limestone, shale, and marl
21 Mirga Mir Early Triassic Less suitable Limestone and shale
22 Chia Zairi Late-Early Permian Not suitable Limestone and shale
23 Harur Early Carboniferous Less suitable Limestone and shale
24 Ora Early Carboniferous Not suitable Limestone, shale, and marl
25 Kaista Late Devonian Less suitable Siltstone, limestone, and shale

26 Khabour Late- Early
Ordovician Not suitable Sandstone and shale

Distance to lineaments and active faults have been used as predictive factors because they represent
potential weakness zones. Since highly faulted areas are not suitable for dam construction [61], dam
sites should be located at least 100 m away from lineaments and active faults [14]. Based on these
requirements, we implemented all parameters shown in Table 3 [62]. The result was exported as a
shapefile and modified within the ArcGIS [63] environment.

We obtained information on active faults by digitizing the two series of geological maps mentioned
above [52,54]. The study area includes 53 fault segments, four of which are normal faults, and 11 are
thrust faults, while the rest are unclassified (Figure 3). The total length of the faults is ~297.1 km.
Interestingly, 10 of them are >2 km in length. The main direction of the thrust faults is NW–SE,
while the main directions of the rest of the faults are NE–SW (Figure 3). Distance to the faults ranges
between 0 and 34.02 km (Figure 4A). The faults shapefile was used to prepare the raster of faults factor.
The Euclidean distance to the closest faults was calculated for each cell.

According to Javhar et al. [62], the best band for lineaments extraction from Landsat-8/Operational
Land Imager (OLI) is the spectral band 5 (near infrared: 0.85–0.88 µm). Therefore, we used this spectral
band acquired on 24 September 2018 [64] to extract the lineaments. The scene was cropped to cover
the study area. The lineaments were mapped using lineament extraction tool available in the PCI
Geomatica software [65].
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Table 3. Threshold parameters and values of lineament extraction [62].

Parameters Value

RADI (in pixels) 8
GTHR (in range, 0–255) 60

LTHR (in pixels) 20
FTHR (in pixels) 3

ATHR (in degrees) 15
DTHR (in pixels) 20

RADI-radius of filter in pixels; GTHR-threshold for edge gradien; LTHR-threshold for curve length; FTHR-threshold
for fitting line error; ATHR-threshold for angular difference; and DTHR-threshold for linking distance.

The lineaments shapefile was used to prepare the raster of lineament factors. The Euclidean
distance to the closest lineament was calculated for each cell (Figure 4A). The study area includes
2045 lineaments, most of them trending in NE–SW and NW–SE direction. The total length of faults
is ~2114.9 km. More than 63.2% of the lineaments are <1 km in length. The distance of pixels to the
lineaments ranges between 0 and 3.394 km (Figure 4B).
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Figure 4. Maps of (A) distance to faults, (B) distance to lineaments.

4.2. Environmental Factors

Soil types were obtained from Harmonized World Soil Database (HWSD) [66]. This database
consists of a 1 km (or 30 arc-second) raster image. Clay soils were considered more suitable because of
their low permeability and greater water-holding capacity [67–69]. Four groups of soil are exposed in
the study area (black dots; Figure 5), which are classified as leptosols, luvisols, vertisols, and calcisols
(Figures 5 and 6A; Table 4). Leptosols soil group includes three sub groups (A, B, and C in Table 4).
Figure 5 shows the texture of the soil types in the study area. The most suitable soil type for dam
location is vertisols, composed of 43% clay.
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Table 4. Soil group types in the study area.

Soil Group Soil Type Suitability

Leptosols A Lithosols and Eutric Cambisols Not suitable
Leptosols B Lithosols, Rendzinas, and Calcic Xerosols Not suitable

Leptosols C Lithosols, Calcaric Regoso, and Calcic
Xerosols Not suitable

Luvisols Chromic Luvisols, Calcic Cambisols,
Lithosols, and Calcaric Regoso Moderately suitable

Vertisols Chromic Vertisols, and Calcic Xerosols Most suitable

Calcisols Calcic Xerosols, Rendzinas, and Chromic
Vertisols Less suitable

We performed a supervised classification using the Support Vector Machine (SVM) algorithm
proposed by Vapnik [71] to discriminate the seven major land cover classes. The selected land cover
classes are orchard or tree farm class, mountain brush mixture of oak brush class, cultivated land or
bare land class, water body class, road class, built-up land class, and bare land class (Figure 6B). SVM
is a supervised nonparametric method developed from statistical machine learning. It is used to solve
complicated class distributions in multi and hyperspectral data [72]. Input data layers contain the
seven multispectral reflectance bands of Landsat-8/OLI acquired on 24 September 2018, with a spatial
resolution of 30 m. A radial basis function was selected as kernel type, and the penalty parameter was
100. The gamma in kernel function was the inverse of the band numbers used in the data input [72,73].
Such procedures are in agreement with previous research conducted by Othman and Gloaguen [74]
and Yang [73]. In addition to fieldwork, we used the QuickBird images to select both training and
validating datasets for the seven major land cover classes. A total of 615 pixels was selected randomly
for training. Another dataset consisting of 310 pixels was used for validation to calculate the OA and
Kappa coefficient (K). The classification accuracy was estimated by defining the OA [75] and the K [76],
which is a measure of agreement between the classified map and the true reference data. The realized
OA and K are 93.08% and 0.8850, respectively.
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4.3. Topographical Factors

We used two topographic attributes, elevation and slope gradient. Using the DEM/SRTM,
we classified moderate elevation lands as most suitable, and the low and high elevation lands less
suitable for locating dam sites [14] because low lands are prone to flooding [77,78]. We mosaiced
four scenes of SRTM, with a spatial resolution of 1 arc-second. The data was reprojected to UTM
Z38N, resulting in a spatial resolution of 30 m. We resampled the DEM using the neighbor resampling
method. The range of elevation in the study area was between 335 and 2418 m above sea level (a.s.l.;
Figure 7A). The mean elevation was 988 m a.s.l.
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In addition, DEM was also used to extract slope attribute. The steepness of slopes is a major
factor in dam site selection. Lands with gentle slopes are more suitable for dam sites location, and
vice versa [79]. Hamzeh [80] stated that areas with slope > 15◦ are unsuitable for dam sites [19]. Slope
gradient in the study area ranged between flat and 79.3◦ (Figure 7B), with an average slope gradient of
13.8◦. We determined slope pixels between 0◦ and 2◦ to be most suitable and slope pixels > 30◦ to be
not suitable for dam site location.

4.4. Hydrological Factors

We also used the TRMM data to determine precipitation in the study area. The TRMM [81]
was a joint space mission between NASA and the Japan Aerospace Exploration Agency (JAXA).
It was designed to measure the rainfall of tropical and subtropical regions of the world. The type
of data used is TRMM (3B43-V7), which combines monthly precipitation with a spatial resolution
of 0.25◦ × 0.25◦ [82]. We calculated the average of annual precipitation using the monthly TRMM
(3B43-V7) data acquired from September 2002–August 2017. Thirty pixels were selected to cover the
study area and the surrounding regions to create distribution of the precipitation factor. To obtain a
continuous coverage, we converted these pixels to points, then, we interpolated point-wise precipitation
data using an inverse distance weighting (IDW) method.

Approximately 50% of the runoff in the entire KhRB enters the streams inside the Iraqi portion
of the basin [83]. Therefore, besides precipitation, river discharge is a significant factor that controls
the amount of water stored in the dam reservoir. Lack of hydrological information is made worse in
the Al-Khabur mountainous region due to either a total lack of river gauges or poor quality of the
limited in-situ monitoring data. Therefore, we measured stream width of the stream networks as an
alternative to in-situ river discharge data.

Suitability of TRMM data in the study area was evaluated by making a comparison with the
observed precipitation dataset of the Zakho meteorological station. The data from 62 recorded
precipitation measurements, covering the period from September 2002 to December 2007, were used.
We found that there is a strong linear relationship between the monthly TRMM dataset and the
observed precipitation, where the coefficient of determination (R2) is 0.853 and the p-value is <0.05
(Figure 8A). The slope and intercept were 0.9124 and 9.5485, respectively. The TRMM 3B43-V7 is
a valuable tool for mapping water resources that shows good agreement with the ground stations’
data [84]. Precipitation varies from 562.85 mm·yr−1 in the southern part of the study area to 785 mm·yr−1

in the north (Figure 8B).
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Drainage network was extracted using tectonics from digital elevation models (TecDEM) 2.2,
a MATLAB-based software, which permits the extraction of geomorphologic indices from DEM [85–87].
Ramakrishnan [23], Grum [24], Tiwari [25], and Singhai [30] used stream order to estimate the storage
capacity of the sub-basins (Table A2). We selected streams belonging to order 3 or higher for locating
dam sites. The long streams were split into multi segments to be less than 10 km. The width of each
stream was measured using 23 cloud-free QuickBird scenes, acquired between 24 and 28 July 2005.
We used these older scenes because no recent QuickBird data was available. We considered areas
that have no streams or those where streams width is <60 cm (the spatial resolution of QuickBird
imagery)to be unacceptable for dam construction (Figure 9A). Three buffer maps (250, 500, and 1000 m)
were created for locating dam sites in the study area.

DEM was used to calculate the CN grid. CN is an empirical parameter commonly used in
hydrology for predicting direct runoff or infiltration from rainfall excess [88–91]. It is a dimensionless
parameter and ranges from 0 to 100.

We estimated the CN per pixel by matching the rainfall, soil group, and land cover maps
(Equations (7) and (8); [30]. The Geospatial Hydrologic Modeling Extension, HEC-GeoHMS tool, has
been used [92].

Q =
(P− Ia)

2

P− Ia + S
(7)

S =
(25, 400

CN

)
− 254 (8)

where Q is runoff (mm), P is rainfall (mm), Ia is the initial abstraction, or the amount of water before
runoff, which has generally been assumed that Ia = 0.2S, and S is the potential maximum soil moisture
retention after runoff begins. The S is calculated using Equation (2) and denoted as per the CN [93,94].

The CN value of 100 (S = 0) represents low runoff potential that suggests an impermeable
catchment having the maximum runoff-generation capability. A CN value of 0 represents increasing
runoff potential of S (i.e., S = ∞), which suggests an infinitely abstracting catchment having zero
runoff-generation capability [19]. As shown in Figure 9B, the CN at the KhRB ranges from 30 to 100.
The central area of KhRB represents higher runoff potential, with lower runoff potential in the northern
and southern parts of KhRB.
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4.5. Socioeconomics Factors

We used three socioeconomics factors: (1) distance to roads (m), (2) distance to towns and
cities (m), and (3) distance to villages (m). The informatic layers of roads, villages, towns, and
cities were obtained from United Nations Office for the coordination of Humanitarian Affairs-Iraq
(UNOCHA-IRAQ) [95]. Although the distance to roads has a low impact on dam site suitability,
existence of roads and settlements near proposed dam sites contribute to reducing transportation
cost [14]. Buffers surrounding the villages, towns, cities, and roads were used to calculate the distance
to villages, towns, cities, and roads (Figures 10 and 11). The farthest distances between each pixel in
the study area and the roads, towns, and villages are about 11.5, 19.3, and 5.4 km, respectively.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW                                                              
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5. Results

We tested 14 different combinations of predictive factors in order to select the best individual
combination for the WSM and AHP models. The relationships between dam sites and dam sites’
predictive factors using WSM and AHP models are shown in Table A3.

Each factor has a specific predictive weight that varies between WSM and AHP. The predictive
weight in the two models represents the normalized WSM and AHP ranks, respectively. The ranges of
the predictive factor weights can be calculated by applying the prediction model Equations (3) and (4).

5.1. Identification of Suitable Sites for Dams by the WSM and AHP Models

Dam site selection maps have been prepared using two different models (Figure 12). The predictive
factors were evaluated qualitatively by adding and removing the predictive factors (experimental
method) to select the significant factors and to enhance the prediction accuracy of the dam site selection
maps. In other words, we removed the factors that decrease the accuracy of dam site selection and
retained those that increase the accuracy of dam site selection.

Qualitative evaluation shows that, for the AHP method, the most significant subfactors are:
Aqra-Bekhme lithology, soil type of Chromic Vertisols, and Calcic Xerosols, land cover, type of water,
distance to faults > 1000 m, distance to faults > 3000 m, areas having elevation between 700 and 800 m
a.s.l., flat areas, rivers that have width > 10m, areas that have CN > 87, distance to roads < 1000 m,
distance to cities and towns > 2500 m, and distance to villages > 1000 m (Table A3).

Statistical models based on the AHP and the WSM method revealed the most suitable areas for
dam site location. Suitability of dam sites using the WSM and AHP models are shown in Figure 12.
These maps display the suitable and the most suitable areas in magenta and blue color respectively,
and are located mainly in the center of the study area. The range of the data distribution of the 1000
m buffer for the WSM and AHP is between 0 and 1. The mean of the AHP suitability map is greater
than the mean of the WSM suitability map, and the standard deviation of the AHP model is less
than the standard deviation of the WSM model in all selected buffer zones (1000, 500, and 250). The
mean of the WSM and AHP data are 0.47 and 0.56 respectively, while the standard deviation is 0.2
and 0.14, respectively. The most suitable area of the WSM and the AHP models are 4,918,500 m2 and
10,188,900 m2, respectively. The difference between the AHP and WSM map shows that the suitability
value is higher in almost all pixels that are present in the AHP model, with only a few pixels showing
the opposite (Figure 13).
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5.2. Classification Accuracy of the Two Adopted Models with Previosly Recommended Sites

Figure 14 shows the accuracy of suitable pixels by number, the accuracy of suitable pixels by
weight, and the OA for three buffer zones used (i.e., 250, 500, and 1000 m), which are described in
Table A4 for the two models. The OA is evaluated using the accuracy of suitable pixels by number, and
the accuracy of suitable pixels by weight.

The average of OA for the AHP model is higher than the OA for WSM, 58.27 and 52.78, respectively.
The AHP model shows that the best-planned dams are located at sites labeled number 7, 12, and 21,
respectively. However, the WSM model shows that the best-planned dams are at number 21, 16, and 8.
Both WSM and AHP models indicate that the planned dams numbered 1, 4, 6, 9, 10, 15, and 19 are
either not suitable or less suitable. In addition, the most unsuitable planned dams are at 15, 9, and 19
(Figure 14, Table A1, and Figure A1).

We applied the threshold operation to the AHP raster, which ranged between 0 and 1. The suitable
selected threshold value for the AHP raster was 0.8. The selection of the threshold values for the AHP
raster was determined experimentally. The final thresholded AHP raster included 11 groups of pixels,
which were used to generate areas representing suitable dam sites.
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6. Discussion

Selecting suitable sites using GIS techniques is a complex task due to the influence of many factors
that affect the location of dams. Careful consideration of predictive factors is required to adequately
assess the weightings of these factors according to specific site conditions. Published literature indicates
that dam site selection involves consideration of important variables such as geology, hydrology, slope,
runoff, drainage order, environmental, and socioeconomics aspects as effective factors [23]. Almost
all of these factors were applied in other areas having similar characteristics of climate, environment,
morphology, and geology as the Greater Zab River [14] and Duhok governorate [8] in northern Iraq, and
Sistan and Baluchestan provinces of Iran [96]. We used another factor, stream width, as an alternative to
discharge measurement beside the above-mentioned factors to improve the value of the methodology
used. The discharge can be measured by multiplying the velocity by the width and the average depth
of the stream [97]. Due to the lack of gauging stations to measure the discharge, stream width has been
used as a factor to select the dam site. To the best of our knowledge, this study is the first one to use
stream width as a proxy to stream discharge in a GIS-based application for dam site selection. We
believe that measuring stream width using high-resolution imaging is a reliable factor to estimate river
discharges. In our opinion, it is much better than other suggested factors, such as stream density [31,92]
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that does not estimate the discharge, and lumps together all drainages in the area regardless of whether
they are dry, seasonal, or perennial.

Although the CN grid is not indicative of runoff, several studies on dam site selection have used
it as a predictive factor [9,23,25–28,30,31]. Al-Ruzouq [31] and Mugo [9] used the drainage density
as an expression of runoff and considered the CN grid as a predictive factor. Our study emphasizes
combining more than one factor as an expression of runoff.

Noori [14] found an inverse relationship between site suitability and distance to villages, towns,
and cities. Sayl [29] determined the distance of selected dam site to villages, towns, and cities to be
250 m. In this study, we used the inverse relation between site suitability and distance to villages,
towns, and cities. At the same time, we deemed areas located <250 m from villages, towns, and cities
as not suitable for dam sites. The closet village and city to the 11 dam sites, are located 485 and 3600 m
away, respectively.

The AHP model is a robust tool for solving decision problems and system analysis as it simplifies
complex decisions to a series of pairwise comparisons [98], while the WSM model is a simple
multicriteria decision-making approach [99]. The boxplot (Figure 15) of the mean of all buffer zones
for the 21 dam sites for each of the WSM and AHP models shows that the AHP method is better than
WSM. The suitability of the AHP method is affirmed from the distribution of its weighted factors,
which is far above 50% of the OA (Figure 15; right), as compared to that of WSM that falls close to 50%
(Figure 15; left). Our study confirms the results of Tscheikner-Gratl et al. [100] that the AHP better than
WSM. However, it disagrees with Mulliner et al. [34], who stated that WSM was nearly similar to AHP,
and Adamczak et al. [101], who concluded that WSM has greater efficiency than AHP.

Different lithologic units influence quality of the reservoir water, dam foundation, reservoir
characteristics, and stability of the dam in the event of rapid discharge [99]. Accordingly, the geotechnical
constraints of the rock units in the Al-Khabur basin make lithology a major predictive factor (Table A3).

Drought events occur regularly in the Al-Khabur area, due to: lack of rain in the summer,
high runoff caused by varied topography, and significant evaporation due to high temperatures.
These environmental condition calls for careful planning and proper management of the available
water resources. Unlike the Mosul Dam where the unfavorable evaporite beds contribute to active
karstification threatening the stability of the dam [17], we have examined areas with favorable geology
for dam construction. We excluded sites downstream of Mosul Dam because of similar geology
(presence of gypsum and anhydrite beds), and focused on areas upstream of the Mosul Dam, where
different rock types are exposed.

Based on this study, 11 sites were determined to be suitable for dam location (Figure A2, Figure 16,
and Table 5). Three of these correspond to three of the 21 dams that have been suggested by MAWR.
Overall accuracies of the 11 sites range between 76.2% and 91.8%. The most suitable site coincides with
dam number 8 (#8), located in the southeastern part of the study area, which has the largest reservoir,
covering an area of 14.86 km2, and capable of holding 1.182 km3 of water (Table 6). In addition, mean
river depth at dam site #8 is about 80 m, which means lower evaporation, as greater reservoir depth
results in slower evaporation rate. No village will be inundated as a result of the construction of this
dam. The dam site is located on the Mukdadiyah Formation comprising pebbly sandstone, siltstone,
and claystone that generally have favorable engineering properties. The only drawback of this dam
site is its length of 1367 m, which would add to construction cost.

Dam site #9 has the highest mean depth of 87 m, but its reservoir is smaller, while dam site #6 has
the lowest mean depth (12.5 m) and also the smallest reservoir capacity. Similarly, dam sites #2, #3,
and #10 have smaller reservoir capacities (Table 6). Based on these considerations, we have excluded
sites #2, #3, #8, #9, and #10.

This study identifies suitable locations for dams that should be selected for detailed site
investigations prior to construction. Allocating resources on sites that have been found to be
more suitable would entail significant cost savings, as opposed to sites having severe limitations.



ISPRS Int. J. Geo-Inf. 2020, 9, 244 18 of 34

These multipurpose dams will provide water for drinking and irrigation, electric power generation,
and flood control. Benefits would include economic development of the country, including higher crop
yield and increased power generation capacity for Iraq, that currently suffers from a critical shortage
of electric power. Additionally, it would prevent flooding events that are common in parts of the
study area.

The criteria used for dam site selection by the MAWR were based on superficial field surveys
and cursory GIS analysis that lacked scientific information. Critical data, such as stream and river
discharge, basin size and storage capacity, geology of dam foundation and reservoir area, and related
local and regional geotechnical characteristics, were not taken into account. This study was designed
to include all key factors (Table 1) to identify suitable dam and safe sites.
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Table 5. Suggested dam’s coordinates, the accuracy of the suitable pixels by number (AS), the accuracy
of the suitable pixel by weight (AW), and the overall accuracy (OA) of dam site suggested using
AHP model.

Dam Coordinates Buffer 100 Buffer 500 Buffer 250

No. X Y As Aw OA As Aw OA As Aw OA

1 43.061066 37.10736 99.7 69.7 84.7 99.7 69.4 84.5 99.6 70.1 84.8
2 43.05568 37.18427 100 81.5 90.8 100 83.5 91.8 100 82.8 91.4
3 42.98572 37.14923 100 79.6 89.8 100 80.7 90.4 100 81.2 90.6
4 42.774496 37.28125 93.5 66.6 80.1 94.5 68.8 81.7 100 72.2 86.1
5 43.208654 37.20219 89.7 65.1 77.4 92.2 67.1 79.7 100 69.2 84.6
6 42.907832 37.15043 100 73.5 86.8 100 74.9 87.5 100 74.6 87.3
7 42.914868 37.02736 99.4 67.7 83.6 98.5 67.7 83.1 97.3 68.4 82.8
8 43.136919 37.10535 95.9 69 82.4 99.3 72.8 86.1 99.1 72.2 85.6
9 42.747988 37.30821 91.5 63.5 77.5 89.2 63.2 76.2 100 60 80

10 42.953957 37.09876 99.1 68.3 83.7 98.1 68.7 83.4 96.8 66.7 81.7
11 43.08669 37.13489 99.6 68.3 83.9 100 71 85.5 100 73.7 86.9

Table 6. Characteristics of the suggested dam sites.

Dam
No.

Dam
Width (m)

Lake Area
(km2) Volume (m3)

Depth (m) Basin Area
(km2)

Dam Profile
Nv

Mean Min Max X Start Y Start X End Y End

1 1109.9 8.61 226,654,026 26.33 624 670 2420.5 327929 4108249 327382 4109214 8
2 509.6 1.31 37,026,508 28.31 732 783 103.8 327516 4116203 327218 4116616 1
3 850 2.35 53,640,739 22.8 648 723 74.3 321553 4113344 320703 4113308 4
4 1069 3.44 274,350,307 79.85 716 845 149.7 303129 4128682 302214 4128066 1
5 667 5.34 421,706,403 78.91 748 864 266.9 340979 4118449 341072 4119110 2
6 443 0.46 5,769,178 12.57 606 627 26.3 314325 4113532 313951 4113768 0
7 817 4.39 191,423,581 43.58 604 668 219.9 314213 4099620 314786 4100203 1
8 1367 14.86 1,182,091,212 79.53 677 788 276.9 333616 4107771 334842 4108377 0
9 1148 3.93 341,654,356 86.99 626 751 184 299868 4131249 300953 4131627 1

10 372 1.6 55,823,171 34.97 579 631 35.6 318013 4107669 318314 4107887 0
11 737 6.04 199,256,701 32.97 648 706 1963.5 330258 4111289 329802 4111868 3

In Table 6, Nv is the number of villages that will be inundated.

7. Conclusions

This study serves as a good example of integration of remote sensing images, GIS, and geotechnics
in water resources development. We used both AHP and WSM methods for selecting the most suitable
locations for dams. Fourteen major factors in dam site suitability analyses were generated from various
remote sensing and ancillary data. For the first time, this study used the stream width, measured from
high-resolution images instead of the river discharge measurements, as a predictive factor for dam site
selection. Twenty-one dam sites, proposed by MAWR, were used as reference sites. We also evaluated
the accuracy of the AHP and WSM techniques. For all 21 dams, the overall accuracy of the AHP
method was found to be greater than the WSM. Eleven dam sites were found suitable for potential
runoff harvesting. Three of these 11 sites correspond to the dam sites that have been suggested by
the MAWR. For both models, the accuracy of the 11 sites ranged between 76.2% and 91.8%. The
difference between AHP and WSM map shows that the suitability is higher in almost all the pixels
that are present in the AHP model, while a few pixels show the opposite. This study offers a useful
and inexpensive tool to decision-makers for preliminary screening of potential dam sites, eliminating
sites with severe limitations, and directing geotechnical exploration activities at sites with minimum
limitations. This method can be applied for the rest of the hydrological basins in the Kurdistan region.

Based on these analyses, 11 dam sites were determined to be more suitable. However, 10 sites,
numbers 1, 4, 5, 6 and 15, 16, 17, 18, and 19, that are located in the Al-Khabur River basin, should be
avoided because of heavy solutioning activities and faster reservoir siltation rates. Site #8 appeared
most suitable for dam location because of its large reservoir capacity, low evaporation rate, and no
villages within its reservoir.
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It must be emphasized that this study should not be used for selecting the final site without
conducting detailed on-site geotechnical investigations at the suggested locations. Nonetheless, by
eliminating sites with serious geological and other constraints, the study has identified sites that
appear more suitable where additional exploration should be carried out for design and construction
of the dam.
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Appendix A

Table A1. Proposed sites of dams in the study area [16].

No. Site Name River order Stream Latitude Longitude Main Purpose Type of Project Priority
Status

Catchment
Area (km2)

Dam Height
(m)

Storage Capacity
(million m3)

1 Base Khabur (1) 37.1713 43.0946 Irrigation/Energy Multi-Purpose dam First 1962 75 101
2 Sbna2 Sibna (2) 37.0589 43.2306 Irrigation/Energy Agriculture reservoir First 138.42 38 5.95
3 Parzoor Jalal Barzoor (2) 37.2114 42.7036 Irrigation Agriculture reservoir First 14.6 28 1.6
4 Khizawa Khabur (1) 37.2055 42.9689 Irrigation/Energy Agriculture reservoir Second 46.85 34 2.8
5 Zakho Khabur (1) 37.072 42.8018 Irrigation/Energy Agriculture reservoir Second 3366.82 18 17.1
6 Barkawar Khabur (1) 37.0838 42.7894 Irrigation/Energy Agriculture reservoir Second 3380.93 13 4.3
7 Khuk-sindi Divro (2) 37.165 42.9384 Irrigation Agriculture reservoir Second 11.6 16 1.2
8 Bakirman Unk (2) 37.1353 42.5923 Irrigation Agriculture reservoir Second 9.12 16 1
9 Kunduk Shiv a Basagha (4) 37.2797 42.8938 Irrigation Agriculture reservoir Second 36.95 30 2
10 Suria Av-a Zariza (2) 37.2238 43.0755 Irrigation/Energy Agriculture reservoir Third 83 22 5
11 Daldal Mangesh (3) 37.0309 43.0423 Irrigation Agriculture reservoir Third 35.6 17 1.8
12 Chiran Rogarm (2) 37.0244 42.936 Irrigation/Energy Agriculture reservoir Third 206 26 9
13 Navkandalak Divro (2) 37.1399 42.8776 Irrigation/Energy Agriculture reservoir Third 48.4 25 3
14 Darjalal Shiv-a Jalal (2) 37.2114 42.7514 Irrigation Agriculture reservoir Third 16.5 13 0.6

15 Begova Khabur (1) 37.26 43.133 Irrigation/Energy Multi-Purpose dam,
limited storage Fourth 1495 85 169

16 Jamik-Chalki Khabur (1) 37.2383 43.169 Energy Run-of-river
hydropower Fourth 1584.24 48 40

17 Kovky Khabur (1) 37.1075 43.061 Energy Run-of-river
hydropower Fourth 2430.3 19 14

18 Bajla Khabur (1) 37.0947 42.912 Irrigation/Energy Run-of-river
hydropower Fourth 2646.21 41 104.6

19 Khwalish Khabur (1) 37.099 42.7739 Energy Run-of-river
hydropower Fourth 3406.23 24 10

20 Cham Sermo Khabur (1) 37.1317 42.703 Energy Run-of-river
hydropower Fourth 3184.59 20 26.2

21 Darkar Ajam Seasonal stream (3) 37.2036 42.827 Irrigation Agriculture reservoir Existing
dam 4.42 15 0.15
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Table A2. Rate of the selected factors used for dam site selection in the KhRB versus all factors used elsewhere.
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[14] * * * * * * * * * * * *
[23] * * * * * * *
[24] * * * * *
[25] * * * * * *
[26] * * * * *
[27] * * * *
[28] * * * * *
[29] * * * * * * * * * *
[30] * * * * * * * * * *
[31] * * * * * * * * * * *
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Table A3. Decision rules for used factors and finalized weights of criteria obtained from WSM and AHP method.

Factor/Subfactor Suitability Rank Factor
Weight

Normalized
AHP Rank

Normalized
SWM Rank Factor/Sub–Factor Suitability Rank Factor

Weight
Normalized
AHP Rank

Normalized
SWM Rank

1. Lithology Orchard or tree farm Suitable 7 3 1.024 1.683

Lake and River Not suitable 1 9 0.439 0.240 Mountain brush mixture of
oak brush Suitable 7 3 1.024 1.683

Flood Plain Not suitable 1 9 0.439 0.240 Water Most suitable 9 3 1.317 2.163

Slope Not suitable 1 9 0.439 0.240 Cultivated land or bare land Suitable 7 3 1.024 1.683

Residual Soil Not suitable 1 9 0.439 0.240 7. Elevation (m)

Bai Hassan Less suitable 3 9 1.317 0.721 <500 Not suitable 1 5 0.244 0.240

Mukdadiyah Not suitable 1 9 0.439 0.240 500–600 Less suitable 3 5 0.732 0.721

Injana Moderately suitable 5 9 2.195 1.202 600–700 Suitable 7 5 1.707 1.683

Fatha Not suitable 1 9 0.439 0.240 700–800 Most suitable 9 5 2.195 2.163

Pilaspi Suitable 7 9 3.073 1.683 800–900 Moderately suitable 5 5 1.220 1.202

Kolosh Not suitable 1 9 0.439 0.240 900–1000 Less suitable 3 5 0.732 0.721

Shiranish Less suitable 3 9 1.317 0.721 >1000 Not suitable 1 5 0.244 0.240

Aqra–Bekhme Most suitable 9 9 3.951 2.163 8. Slope (◦)

Mergi Moderately suitable 5 9 2.195 1.202 0–2 Most suitable 9 7 3.073 2.164

Qamchuqa Suitable 7 9 3.073 1.683 2–10 Suitable 7 7 2.390 1.682

Garagu Suitable 7 9 3.073 1.683 10–20 Moderately suitable 5 7 1.707 1.202

Sarmord Suitable 7 9 3.073 1.683 20–30 Less suitable 3 7 1.024 0.721

Chia Gara, Barsarin,
Naokelekan, Sargelu Less suitable 3 9 1.317 0.721 >30 Not suitable 1 7 0.342 0.240

Sehkaniyan & Sarki Moderately suitable 5 9 2.195 1.202 9. Precipitation (mm/yr)

Kura China & Baluti Suitable 7 9 3.073 1.683 <630 Not suitable 1 5 0.244 0.240

Geli Khane Suitable 7 9 3.073 1.683 630–665 Less suitable 3 5 0.732 0.721

Beduh Not suitable 1 9 0.439 0.240 665–700 Moderately suitable 5 5 1.220 1.202

Mirga Mir Less suitable 3 9 1.317 0.721 700–730 Suitable 7 5 1.707 1.683

Chia Zairi Not suitable 1 9 0.439 0.240 >730 Most suitable 9 5 2.195 2.164

Harur Less suitable 3 9 1.317 0.721 10. Stream width (m)

Ora Not suitable 1 9 0.439 0.240 <0.6 Not suitable 1 7 0.342 0.240

Kaista Less suitable 3 9 1.317 0.721 0.6–1 Less suitable 3 7 1.024 0.721

Khabour Not suitable 1 9 0.439 0.240 1–2 Moderately suitable 5 7 1.707 1.202
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Table A3. Cont.

Factor/Subfactor Suitability Rank Factor
Weight

Normalized
AHP Rank

Normalized
SWM Rank Factor/Sub–Factor Suitability Rank Factor

Weight
Normalized
AHP Rank

Normalized
SWM Rank

2. Tectonic zones 2–10 Suitable 7 7 2.390 1.683

Imbricated Zone Less suitable 3 1 0.146 0.721 >10 Most suitable 9 7 3.073 2.164

High Folded Zone Moderately suitable 5 1 0.244 1.202 11. Curve Number (CN)

3. Distance to the active fault (m) >31 Not suitable 1 5 0.244 0.240

0–1000 Not suitable 1 3 0.146 0.240 31–68 Less suitable 3 5 0.732 0.721

1000–2000 Less suitable 3 3 0.439 0.721 68–80 Moderately suitable 5 5 1.220 1.202

2000–5000 Moderately suitable 5 3 0.732 1.202 80–87 Suitable 7 5 1.707 1.683

5000–10,000 Suitable 7 3 1.024 1.683 >87 Most suitable 9 5 2.195 2.164

>10,000 Most suitable 9 3 1.317 2.163 12. Distance to the road (m)

4. Distance to the lineaments (m) <1000 Most suitable 9 1 0.439 2.164

0–500 Not suitable 1 3 0.146 0.240 1000–2500 Suitable 7 1 0.342 1.683

500–1000 Less suitable 3 3 0.439 0.721 2500–5000 Moderately suitable 5 1 0.244 1.202

1000–2000 Moderately suitable 5 3 0.732 1.202 5000–7500 Less suitable 3 1 0.146 0.721

2000–3000 Suitable 7 3 1.024 1.683 >7500 Not suitable 1 1 0.049 0.240

>3000 Most suitable 9 3 1.317 2.163 13. Distance to the towns and cities (m)

5. Soil type 250–2500 Most suitable 9 1 0.439 2.164

Lithosols and Eutric
Cambisols Not suitable 1 5 0.244 0.240 2500–5000 Suitable 7 1 0.342 1.683

Lithosols, Rendzinas, and
Calcic Xerosols Not suitable 1 5 0.244 0.240 5000–10,000 Moderately suitable 5 1 0.244 1.202

Lithosols, Calcaric Regoso,
and Calcic Xerosols Not suitable 1 5 0.244 0.240 10,000–12,500 Less suitable 3 1 0.146 0.721

Chromic Luvisols, Calcic
Cambisols, Lithosols,&

Calcaric Regoso
Moderately suitable 5 5 1.220 1.202 >12,500 and 0–250 Not suitable 1 1 0.049 0.240

Chromic Vertisols, and
Calcic Xerosols Most suitable 9 5 2.195 2.163 14. Distance to the villages (m)

Calcic Xerosols,
Rendzinas, and Chromic

Vertisols
Less suitable 3 5 0.732 0.721 250–1000 Most suitable 9 1 0.439 2.164

6. Land cover 1000–1500 Suitable 7 1 0.342 1.683

Built–up Not suitable 1 3 0.146 0.240 1500–2000 Moderately suitable 5 1 0.244 1.202

Bare land Suitable 7 3 1.024 1.683 2000–3000 Less suitable 3 1 0.146 0.721

Road Not suitable 1 3 0.146 0.240 >3000 and 0–250 Not suitable 1 1 0.049 0.240
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Table A4. The overall accuracy of dam site selection using WSM and AHP models.

Dam Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Bu

ff
er

10
00

m

Np 3492 3501 3485 3496 3500 3483 3489 3493 3493 3491 3486 3503 3490 3500 3487 3493 3489 3484 3495 3486 3501
Sp (WSM) 1075 2361 3056 754 2072 1205 3396 3493 40 181 3300 3385 2238 3450 133 3452 3076 2291 565 3385 3501
Sp (AHP) 2178 2338 3092 1059 2682 1369 3489 1820 579 1257 2852 3476 3468 3246 431 2897 3480 3072 1240 2106 3446
As (WSM) 30.78 67.44 87.69 21.57 59.20 34.60 97.33 100.00 1.15 5.18 94.66 96.63 64.13 98.57 3.81 98.83 88.16 65.76 16.17 97.10 100.00
As (AHP) 62.37 66.78 88.72 30.29 76.63 39.31 100.00 52.10 16.58 36.01 81.81 99.23 99.37 92.74 12.36 82.94 99.74 88.17 35.48 60.41 98.43

Aw (WSM) 54.43 53.06 57.22 42.94 55.72 48.52 75.23 49.22 38.21 45.02 60.42 68.48 67.49 59.96 37.07 59.11 68.40 57.45 46.82 51.26 66.02
Aw (AHP) 43.87 52.78 55.41 41.90 49.92 46.55 59.07 62.39 32.49 38.59 63.14 58.92 54.10 60.81 28.86 64.42 58.91 51.95 42.22 61.56 74.42
OA (WSM) 37.33 60.11 71.55 31.73 54.56 40.57 78.20 81.19 16.82 21.89 78.90 77.78 59.11 79.69 16.34 81.62 73.54 58.85 29.19 79.33 87.21
OA (AHP) 58.40 59.92 72.97 36.62 66.18 43.91 87.61 50.66 27.39 40.51 71.12 83.85 83.43 76.35 24.71 71.02 84.07 72.81 41.15 55.84 82.22

Bu
ff

er
50

0
m

NP 872 873 875 870 875 873 871 871 870 874 876 875 871 874 873 873 874 875 873 874 871
Sp (WSM) 141 568 570 155 601 115 870 871 0 105 754 873 404 858 13 870 835 462 14 853 871
Sp (AHP) 511 551 663 211 731 227 871 332 134 373 666 875 858 723 125 775 871 714 192 500 852
As (WSM) 16.17 65.06 65.14 17.82 68.69 13.17 99.89 100.00 0.00 12.01 86.07 99.77 46.38 98.17 1.49 99.66 95.54 52.80 1.60 97.60 100.00
As (AHP) 58.60 63.12 75.77 24.25 83.54 26.00 100.00 38.12 15.40 42.68 76.03 100.00 98.51 82.72 14.32 88.77 99.66 81.60 21.99 57.21 97.82

Aw (WSM) 52.62 53.00 54.60 42.11 57.33 45.48 73.95 45.92 36.05 46.72 58.20 68.01 63.45 58.02 38.18 60.80 68.96 54.48 43.01 50.29 62.44
Aw (AHP) 42.61 52.24 51.39 42.52 51.81 43.46 58.88 59.79 30.25 40.00 61.85 59.11 50.32 60.35 29.14 65.70 59.62 50.00 37.48 61.03 71.84
OA (WSM) 29.39 58.65 58.27 30.17 60.25 28.32 79.38 79.90 15.12 26.01 73.96 79.44 48.35 79.26 15.31 82.68 77.58 51.40 19.54 79.31 85.92
OA (AHP) 55.61 58.06 65.19 33.18 70.43 35.74 86.97 42.02 25.72 44.70 67.11 84.00 80.98 70.37 26.25 74.79 84.31 68.04 32.50 53.75 80.13

Bu
ff

er
25

0
m

NP 220 217 219 219 214 220 217 216 219 219 221 216 214 217 219 216 219 218 219 220 217
Sp (WSM) 41 177 86 67 157 7 217 216 0 14 201 216 60 209 0 216 202 110 0 219 217
Sp (AHP) 41 177 86 67 157 7 217 216 0 14 201 216 60 209 0 216 202 110 0 219 217
As (WSM) 18.64 81.57 39.27 30.59 73.36 3.18 100.00 100.00 0.00 6.39 90.95 100.00 28.04 96.31 0.00 100.00 92.24 50.46 0.00 99.55 100.00
As (AHP) 18.64 81.57 39.27 30.59 73.36 3.18 100.00 100.00 0.00 6.39 90.95 100.00 28.04 96.31 0.00 100.00 92.24 50.46 0.00 99.55 100.00

Aw (WSM) 43.13 53.81 47.68 46.52 52.94 41.84 58.60 59.45 30.63 38.38 58.80 59.99 48.29 57.90 30.48 66.07 59.96 49.33 34.90 61.40 69.90
Aw (AHP) 43.13 53.81 47.68 46.52 52.94 41.84 58.60 59.45 30.63 38.38 58.80 59.99 48.29 57.90 30.48 66.07 59.96 50.03 34.90 61.40 69.90
OA (WSM) 30.88 67.69 43.48 38.56 63.15 22.51 79.30 79.72 15.31 22.39 74.87 79.99 38.16 77.11 15.24 83.03 76.10 49.89 17.45 80.47 84.95
OA (AHP) 30.88 67.69 43.48 38.56 63.15 22.51 79.30 79.72 15.31 22.39 74.87 79.99 38.16 77.11 15.24 83.03 76.10 50.25 17.45 80.47 84.95

M
ea

n
of

al
lb

uff
er

zo
ne

s OA (AHP) 48.30 61.89 60.55 36.12 66.59 34.05 84.63 57.47 22.81 35.87 71.04 82.62 67.52 74.61 22.07 76.28 81.49 63.70 30.37 63.35 82.43

OA (WSM) 32.53 62.15 57.77 33.49 59.32 30.47 78.96 80.27 15.75 23.43 75.91 79.07 48.54 78.69 15.63 82.44 75.74 53.38 22.06 79.70 86.03

Note: Np is the number of pixels, and the Sp is the WSM suitable pixels.
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