Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

SUPPORTING INFORMATION

for

Mono and dinuclear iridium(III) complexes featuring bis-tridentate coordination and Schiff-base bridging ligands:

the beneficial effect of a second metal ion on luminescence efficiency

Emma V. Puttock, Amit Sil, Dmitry S. Yufit and J. A. Gareth Williams*

Department of Chemistry, Durham University, Durham, DH1 3LE, U.K. * E-mail: j.a.g.williams@durham.ac.uk Synthesis and characterisation of H₂L⁷

3,5-Di-tert-butyl-2-hydroxybenzaldehyde (84 mg, 0.36 mmol) was added slowly to a stirring solution of 4,6-di(1-methylhydrazino)pyrimidine (30 mg, 0.18 mmol) in MeOH (1 mL). The yellow solution was stirred under argon at reflux for 1 hour before cooling to ambient temperature. The resulting lemon slurry was filtered and washed with cold methanol to yield 68mg of a white powder (0.11 mmol, 61% yield). ¹H NMR (CDCl₃, 700 MHz): 11.50 (2H, s, H^{OH}), 8.54 (1H, s, H³), 7.99 (2H, s, H^{imine}), 7.33 (2H, d, J = 2.5, H^{5'}), 7.11 (2H, d, J = 2.5, H^{3'}), 6.78 (1H, s, H⁶), 3.67 (6H, s, H^{NMe}), 1.41 (18H, s, H^{8'}), 1.33 (18H, s, H^{10'}). ¹³C NMR (CDCl₃, 176 MHz): 162.2 (C²), 157.6 (C⁶), 154.5 (C^{1'}), 143.6 (C^{imine}), 140.9 (C^{4'}), 136.8 (C^{6'}), 125.8 (C^{5'}), 125.5 (C^{3'}), 117.9 (C^{2'}), 86.2 (C³), 35.3 (C^{9'}), 34.3 (C^{7'}), 31.7 (C^{10'}), 30.4 (C^{NMe}), 29.8 (C^{8'}). MS (ES+): *m/z* 601 [M+H]⁺; HRMS (ES+): *m/z* 601.4253 [M+H]⁺; calculated for [C₃₆H₅₃N₆O₂]⁺ 601.4230.

Synthesis and characterisation of [Ir(dpyx)HL⁷]PF₆

 H_2L^7 (30 mg, 0.05 mmol) and $[Ir(dpyx)Cl(\mu-Cl)]_2$ (26 mg, 0.025 mmol) were heated to 195°C in ethylene glycol (1.5 mL) for 90 min under argon. The resulting slurry was allowed to cool to ambient temperature, then H_2O (5 mL) was added and an orange-brown solid isolated by filtration. This material was dissolved in the minimum volume of hot DMSO and added dropwise into a saturated aqueous solution of KPF₆. The resulting precipitate was separated by centrifugation and washed with H_2O to yield the yellow mononuclear complex (29 mg, 0.024 mmol, 48% yield).

¹H NMR (CD₃CN, 700 MHz): 11.37 (1H, s), 8.92 (1H, s), 8.20 (2H, d, J = 8), 8.16 (1H, s), 7.82 – 7.78 (4H, m), 7.55 (1H, d, J = 2.5), 7.42 (1H, d, J = 2), 7.32 (1H, d, J = 2), 7.22 (1H, d, J = 3), 7.15 (1H, s), 7.11 (1H, s), 7.04 (2H, ddd, J = 7, 5 and 1), 6.58 (1H, s), 4.10 (3H, s), 3.48 (3H, s), 1.49 (9H, s), 1.30 (18H, s), 0.70 (9H, s). ¹³C NMR (CD₃CN, 176 MHz): 171.2, 159.9, 159.6, 159.4, 158.9, 155.3, 151.4, 142.6, 141.8, 141.6, 140.4, 139.3, 139.2, 137.6, 137.3, 132.3, 130.1, 128.6, 127.5, 127.3, 124.6, 123.5, 119.3, 118.7, 118.3, 84.8, 35.9, 35.8, 34.9, 34.6, 33.6, 31.7, 31.7, 30.6, 29.8, 29.2, 22.5. MS (ES+): m/z 1052 [M+H]⁺; HRMS (ES+): m/z 1049.4940 [M]⁺; calculated for [C₅₄H₆₆N₈O₂Ir]⁺ 1049.4915.

Figure S1 Crystal packing in the ditopic proligands H_2L^5 (left) and H_2L^7 (right). Hydrogen atoms are omitted for clarity.

Figure S2 Crystal packing for the complex $[Ir(dpyx)L^4]PF_6$, with H atoms omitted for clarity.

Figure S3 Crystal packing for $[{Ir(dpyx)_2}L^5](PF_6)_2$, with H atoms omitted for clarity.

Figure S4 The molecular structure (left) and crystal packing (right) of the dinuclear complexes $[{Ir(dpyx)_2}L^6](PF_6)_2$ (top) and $[{Ir(dpyF)_2}L^6](PF_6)_2$ (bottom); hydrogen atoms omitted for clarity.

Bond lengths	$[Ir(dpyx)L^4]^+$	$[{Ir(dpyx)_2}L^5]^{2+}$	$[{Ir(dpyx)_2}L^6]^{2+}$	[{Ir(dpyF) ₂ }L ⁶] ²⁺
(Å)				
and angles (°) ^(a)				
Ir1–C	1.948(2)	1.971(10)	1.952(5)	1.945(9)
Ir1–N(hyd)	2.078(1)	2.066(8)	2.079(5)	2.076(7)
$Ir1-N(py[m]^{NNO})$	2.019(1)	2.017(7)	2.027(5)	2.025(7)
Ir1–N4(py ^{NCN})	2.035(1)	2.049(9)	2.045(5)	2.057(7)
Ir1–N5(py ^{NCN})	2.053(1)	2.023(8)	2.051(5)	2.051(8)
Ir1–O	2.033(1)	2.013(7)	2.026(4)	2.024(6)
Ir2–C		1.966(9)	1.947(5)	1.945(9)
Ir2–N(hyd)		2.074(7)	2.079(5)	2.068(7)
Ir2–N(pym)		2.007(8)	2.029(5)	1.997(7)
Ir2–N9(py ^{NCN})		2.051(8)	2.053(5)	2.021(8)
Ir2–N10(py ^{NCN})		2.073(8)	2.055(5)	2.057(7)
Ir2–O		2.036(7)	2.029(4)	2.008(6)
N4-Ir1-N5	161.42(6)	161.3(4)	160.9(2)	159.2(3)
N(pym)-Ir1-O	171.70(5)	172.1(3)	171.6(2)	171.6(3)
N(hyd)-Ir1-C	175.57(6)	177.7(4)	176.0(2)	177.0(3)
N9-Ir2-N10		161.2(3)	160.4(2)	161.2(3)
N(pym)-Ir2-O		171.5(3)	171.4(2)	172.0(3)
N(hyd)-Ir2-C		176.2(3)	178.2(2)	178.6(3)
Ir1…Ir2	8.804 ^(b)	5.984 ^(c)	6.021 ^(c)	5.943 ^(c)

Table S1 Selected bond lengths and angles in the mono- and dinuclear iridium(III)complexes, determined by X-ray diffraction analysis of crystals at 120 K.

(a) N(hyd) = hydrazone nitrogen; N(pym) = pyrimidine nitrogen; N(py[m]^{NNO}) = nitrogen of the pyridine ring of the N^N^O ligand for $[Ir(dpyx)L^4]^+$ and nitrogen of the pyrimidine ring bonded to Ir1 for the dinuclear complexes. (b) Intermolecular Ir…Ir distance. (c) Intramolecular Ir…Ir distance.

Figure S5 Comparison of the emission spectra of the mononuclear complexes $[Ir(dpyx)L^1]PF_6$ and $[Ir(dpyx)HL^5]PF_6$ with that of dinuclear $[{Ir(dpyx)}_2L^5](PF_6)_2$ in CH_2Cl_2 at 295 K, showing the 0,1 vibrational component to be more intense than the 0,0 for the mononuclear complexes and vice versa for the dinuclear complex.

Figure S6 Absorption and emission spectra of $[Ir(dpyx)HL^7]PF_6$ in CH_2Cl_2 at 295 K (black and red lines respectively) and the emission spectrum in EPA at 77 K (blue line).

NMR Spectra

Figure S8 13 C NMR (176 MHz, CDCl₃) spectrum of H₂L⁵.

Figure S10 ¹H NMR (700 MHz, DMSO-d6) spectrum of [Ir(dpyx)L¹]PF₆.

Figure S11 ¹³C NMR (176 MHz, DMSO-d6) spectrum of [Ir(dpyx)L¹]PF₆.

Figure S12 ¹H NMR (700 MHz, CD₃CN) spectrum of $[Ir(dpyx)L^2]PF_6$.

Figure S14 ¹H NMR (700 MHz, CD₃CN) spectrum of $[Ir(dpyx)L^3]PF_6$.

Figure S16 ¹H NMR (700 MHz, CD₃CN) spectrum of $[Ir(dpyx)L^4]PF_6$.

Figure S18 ¹H NMR (700 MHz, CD₃CN) spectrum of [Ir(dpyx)HL⁵]PF₆.

Figure S19¹³C NMR (176 MHz, CD₃CN) spectrum of [Ir(dpyx)HL⁵]PF₆.

Figure S20 ¹H NMR (700 MHz, CD₃CN) spectrum of [Ir(dpyx)HL⁶]PF₆.

Figure S21¹³C NMR (176 MHz, CD₃CN) spectrum of [Ir(dpyx)HL⁶]PF₆.

Figure S22 ¹H NMR (700 MHz, CD₃CN) spectrum of [Ir(dpyF)HL⁶]PF₆.

-175.66 -170.01 -170.02 -126.29 -151.57 -156.20 -156.20 -156.20 -156.20 -156.20 -156.20 -156.20 -156.20 -126.20 -126.20 -126.20 -126.20 -126.20 -126.20 -126.20 -126.20 -126.20 -126.20 -126.20 -126.20100 90 f1 (ppm)

Figure S24 ¹³C NMR (176 MHz, CD₃CN) spectrum of [{**Ir(dpyx**)}₂L⁵](**PF**₆)₂.

Figure S26 ¹³C NMR (176 MHz, CD₃CN) spectrum of $[{Ir(dpyx)}_2L^6](PF_6)_2$.

Figure S27 ¹H NMR (700 MHz, CD₃CN) spectrum of $[{Ir(dpyF)}_2L^6](PF_6)_2$.