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A conceptual hydraulic conductivity model for unsaturated soils at low degree of saturation and 1 

application to the study of capillary barrier systems 2 

by Riccardo Scarfone1*, Simon J. Wheeler2* & Marti Lloret-Cabot3 3 

Abstract: Accurate modelling and prediction of the variation of hydraulic conductivity of unsaturated soils at 4 

very low degree of saturation has important implications in various engineering problems. Physical processes 5 

underlying the hydraulic behaviour of unsaturated soils (retention behaviour and variation of hydraulic 6 

conductivity) are firstly explained and then a consistent set of new definitions for key transition hydraulic 7 

states is proposed. This lays the foundation for the presentation of a new predictive hydraulic conductivity 8 

model, accurate for the full range of degree of saturation and applicable to relatively coarse-grained soils (i.e. 9 

gravels, sands and silts). The hydraulic conductivity is divided into two components: a bulk water component 10 

and a liquid film component; each of which varies with degree of saturation or suction. The model is then 11 

validated against experimental data. Finally, the new hydraulic conductivity model is applied to the numerical 12 

study of the hydraulic behaviour of capillary barrier systems (CBSs). The new model is able to predict the 13 

behaviour of CBSs better than conventional models and the numerical modelling highlights the role of liquid 14 

film flow, which is often neglected. 15 

1. Introduction 16 

The hydraulic properties of unsaturated soils are described by the soil water retention curve (SWRC), namely 17 

the relationship between degree of liquid saturation Sl and suction s, and the soil hydraulic conductivity curve 18 

(SHCC), namely the relationship between hydraulic conductivity k and either degree of saturation or suction. 19 

Many hydraulic constitutive models describing mathematically the SWRC and the SHCC have been proposed. 20 

Conventionally, water retention models are empirical and their parameter values for a given soil are typically 21 

calibrated with experimental data. On the other hand, models for the SHCC generally rely on information from 22 
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the SWRC model, typically with the saturated hydraulic conductivity ks as the only additional parameter value 23 

required to fully define the SHCC. Direct experimental measurements of unsaturated hydraulic conductivity 24 

over the full range of degree of saturation or suction are relatively rare (and normally limited to the research 25 

field), because they are time-consuming, technically complex and expensive.  26 

The conventional water retention models proposed by Brooks and Corey (1964), van Genuchten (1980) 27 

and Kosugi (1996) are amongst the most well-known. All three of these empirical models for the SWRC can 28 

generally provide a good match to the SWRC at high and moderate values of degree of saturation, but they 29 

cannot accurately represent the SWRC at low values of Sl. All three models predict that Sl tends asymptotically 30 

to a minimum value, termed the “residual degree of saturation” Slr, as suction tends to infinity. However, 31 

experimental results (Campbell and Shiozawa 1992), supported by thermodynamic considerations (Richards 32 

1965), show that the value of Sl reduces to zero at a finite value of suction of approximately 1 GPa. Hence, 33 

some more recently proposed SWRC models are specifically intended to extend the range of application to 34 

lower degree of saturation. Some of these models involve new mathematical expressions (Fredlund and Xing 35 

1994) whereas others are modified forms of previous conventional models (Campbell and Shiozawa 1992; 36 

Rossi and Nimmo 1994; Fayer and Simmons 1995; Zhang 2011; Khlosi et al. 2006; Peters 2013; Iden and 37 

Durner 2014; Peters 2014). 38 

Similar to the water retention models, many conventional models for the SHCC provide realistic modelling 39 

of the variation of hydraulic conductivity at medium and high values of the degree of saturation but they do 40 

not perform well at low values of degree of saturation. Among these, Brooks and Corey (1964) proposed a 41 

semi-empirical model for the prediction of the SHCC, utilizing the similitude between the character of the 42 

SWRC and the SHCC. Burdine (1953) and Mualem (1976b) proposed statistical models making use of the fact 43 

that the unsaturated hydraulic conductivity depends on the pore-size distribution. They modelled the soil pores 44 

as a bundle of cylindrical tubes, with each individual tube either filled or empty of water with the liquid flow 45 

attributed to the former. However, these models are inappropriate at low values of degree of saturation where 46 

few if any pores are entirely filled with water and these do not form continuous liquid paths. In these conditions, 47 

the liquid flow occurs only within thin liquid films covering the surfaces of the soil particles and in meniscus 48 

water bridges at the inter-particle contacts. More recently, SHCC models incorporating the role of liquid films 49 

have been developed. Although these models have been shown to represent well the SHCC at very low degree 50 

of saturation (as well as at moderate and high values of Sl), most of them are mathematically complex (Tuller 51 
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and Or 2001), not predictive (Peters and Durner 2008; Peters 2013) or involve parameter values that must be 52 

determined from experimental data that are difficult to obtain with sufficient accuracy (Lebeau and Konrad 53 

2010). 54 

Accurate representation of the hydraulic properties of unsaturated soils at low degree of saturation is 55 

particularly important for coarse-grained soils, which tend to desaturate easily (i.e. at low values of suction). 56 

The thickness of liquid films, which decreases with increasing suction, is higher at low values of suction and 57 

hence higher water fluxes occur within the liquid films. When very fine soils (e.g. clays) desaturate, i.e. at very 58 

high values of suction, the liquid films are so thin that the molecular attractions inhibit liquid movement within 59 

the liquid films (Kemper 1961). Thus, a model for the SHCC able to represent accurately the behaviour of 60 

unsaturated soils over the full range of Sl, but which also remains predictive and simple to apply, is proposed 61 

in this paper for relatively coarse-grained soils (i.e. gravels, sands and silts). 62 

Modelling the hydraulic behaviour of unsaturated soils at low values of degree of saturation is important in 63 

a variety of applications. One of these is the modelling of the hydraulic behaviour of the coarser layer of a 64 

capillary barrier system (Scarfone et al. 2018), which is typically at very low degree of saturation. Capillary 65 

barrier systems (CBSs) are geotechnical structures made of a finer-grained layer (F.L.) overlying a coarser-66 

grained layer (C.L.), placed over the original soil with the aim of reducing or limiting the percolation of 67 

rainwater into the underlying ground (Stormont and Anderson 1999). Under typical operating conditions, the 68 

coarser layer is at very low degree of saturation (much lower values of Sl than the finer layer). As a 69 

consequence, in contrast to saturated conditions, the coarser layer will typically be much less hydraulically 70 

conductive than the finer layer. Hence, prior to significant water breakthrough into the coarser layer, the coarser 71 

layer acts as an almost impermeable barrier, whereas the infiltrating rainwater is stored in the overlying finer 72 

layer. However, as increasing amounts of infiltrating rainwater are stored in the finer layer, the suction at the 73 

interface between the two layers decreases. If this suction at the interface decreases sufficiently, the coarser 74 

layer becomes conductive and breakthrough of water from the finer layer into the coarser layer occurs, making 75 

the CBS fail. 76 

The failure of the barrier (i.e. the breakthrough phenomenon) has been studied extensively (Baker and Hillel 77 

1990; Stormont and Anderson 1999; Yang et al. 2004; Yang et al. 2006). Breakthrough occurs when the liquid 78 

phase filling the pores first forms continuous liquid paths across the interface between the finer layer and the 79 

coarser layer. This occurs when the suction at the interface attains the breakthrough value of the coarser layer, 80 
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corresponding to the point at which the hydraulic conductivity of the coarser layer increases dramatically. 81 

Experimental studies also showed that no significant water movement is observed across the interface before 82 

breakthrough and, when breakthrough occurs, it is always a relatively sudden phenomenon compared to the 83 

overall period of rainfall infiltration.  When the infiltration rate is very low, the water breakthrough from the 84 

finer layer to the coarser layer may occur in the form of fingering instead of a homogeneous advancing wetting 85 

front (Baker and Hillel 1990). In the interest of simplicity, the phenomenon of fingering is not considered in 86 

this work, but it is thought to only influence post-breakthrough behaviour, rather than the conditions when 87 

breakthrough occurs. 88 

In this paper, an overview of the hydraulic behaviour of unsaturated soils is initially given and some key 89 

transition points on the SWRC and on the SHCC are identified and defined. This serves as the physical basis 90 

for the development of a new hydraulic constitutive model, which is presented and validated against 91 

experimental data. This new hydraulic constitutive model is intended for relatively coarse-grained soils (i.e. 92 

gravels, sands and silts). The impact of this new model is then assessed in the numerical study of the hydraulic 93 

behaviour of a CBS, carried out by means of the CODE_BRIGHT finite element software (Olivella et al. 94 

1996). 95 

2. Hydraulic behaviour of unsaturated soils 96 

The definition and explanation of liquid-gas arrangement states at key transition points is often unclear and 97 

inconsistent in the literature. For instance, the “residual degree of saturation” is defined in different ways by 98 

different authors (Vanapalli et al. 1998): the horizontal asymptote of the SWRC (Brooks and Corey 1964), the 99 

degree of saturation at s=1500 kPa (van Genuchten 1980), the degree of saturation corresponding to the 100 

maximum amount of water in a soil not contributing to liquid flow (Luckner et al. 1989) or simply a fitting 101 

parameter (van Genuchten 1980; Kosugi 1996; Luckner et al. 1989). Similar lack of clarity applies to the 102 

definition of the “water-entry” value (Hillel and Baker 1988; Bouwer 1966). Therefore, it is important to give 103 

a consistent and clear explanation and definition of the different liquid-gas arrangement states at key transition 104 

points on the SWRC and SHCC, as a basis for subsequent development of hydraulic constitutive models. 105 

An unsaturated soil is made of three phases: the liquid phase, the gas phase and the solid phase. Liquid pore 106 

water is divided into three forms: bulk water, meniscus water and liquid film water (see Fig. 1). Bulk water is 107 

the water occupying those void spaces that are completely flooded, whereas meniscus water is the water 108 

bridges which surround the  inter-particle contact points that are not covered by bulk water (Wheeler and 109 
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Karube 1996). Liquid film water consists of thin liquid films covering the surfaces of the soil particles when 110 

pores are filled with air. Liquid films surrounding different soil particles are connected by means of the 111 

meniscus water bridges at the inter-particle contacts. The presence of liquid film water is governed by 112 

adsorptive forces (Israelachvili 2011), mainly ionic-electrostatic and molecular, and its contribution is often 113 

neglected during modelling of water retention and hydraulic conductivity. In contrast to clays, where liquid 114 

films occur only at high values of suction and the films are then so thin that they are tightly bound to the 115 

surfaces of soil particles, liquid films can occur at relatively low values of suction in coarser-grained soils and 116 

the films are then sufficiently thick that they behave as free water in terms of mobility. Therefore, advective 117 

liquid flow occurs within adsorbed liquid films in relatively coarse-grained soils (Kemper 1961; Tuller and Or 118 

2001; Lebeau and Konrad 2010). 119 

The SWRC of a soil is directly related to the liquid-gas distribution states. Fig. 2a shows a typical main 120 

wetting curve and a typical main drying curve in a semi-logarithmic plot. These two curves differ because the 121 

water retention behaviour of unsaturated soils is typically hysteretic (Haines 1930). Fig. 2a shows also the 122 

relationship between SWRCs and pore-water forms in unsaturated soils and some key transition points on the 123 

SWRCs are highlighted. As shown in Fig. 2a, different gas-liquid distribution states can be identified, 124 

depending on the degree of saturation: they are defined as capillary state, funicular state and pendular state 125 

(Schubert et al. 1975). In the capillary state, at low suction, the soil is saturated (Sl = 1), all the pores are filled 126 

with liquid water and only bulk water is present. For intermediate values of degree of saturation and suction, 127 

in the funicular state, gas and liquid phases coexist. In this case, liquid water is present in the forms of bulk 128 

water, meniscus water bridges and liquid films. For low degree of saturation and high suction, the soil is in the 129 

pendular state, all the pores contain air, there is no bulk water left and liquid water is present only in the forms 130 

of meniscus water bridges and liquid films. 131 

Following a drying path starting from a saturated state (see the main drying curve shown in Fig. 2a), the 132 

soil is in the capillary state until suction is increased up to the air-entry value (AE). At this point, air starts 133 

entering the voids, firstly into the voids with the largest entry throats, and the soil enters the funicular state. As 134 

the suction increases from the air-entry value, air breaks through into more voids, with smaller and smaller 135 

entry throats. The degree of saturation gradually falls, mainly because the volume of bulk water decreases but 136 

also because, although the number of meniscus water bridges and the area of particle surfaces covered by liquid 137 

films both increase as new pores fill with air, the volume of each individual meniscus water bridge decreases 138 



6 
 

with increasing suction (Fisher 1926) and the thickness of the liquid films also decreases with increasing 139 

suction (Tokunaga 2009). When the degree of saturation reduces to the air-continuity value (AC), the gas phase 140 

starts forming continuous gas paths within the soil. At the bulk-water discontinuity point (BWD), although 141 

bulk water is still present in the soil, it occupies so few voids that the bulk water no longer forms continuous 142 

liquid paths. Decreasing the degree of saturation further, the bulk water-exclusion point (BWEX) represents 143 

the filling of the last voids with air, so that there is no longer any bulk water, and this corresponds to the 144 

transition from the funicular state to the pendular state. From this point onwards, a large increase in suction 145 

corresponds to a small decrease in degree of saturation, due only to the reduction in size of meniscus water 146 

bridges and reduction in thickness of liquid films. Ultimately, the soil completely dries for a suction value sdry 147 

of approximately 1 GPa (Richards 1965; Campbell and Shiozawa 1992). Lu and Khorshidi (2015) used a water 148 

vapor sorption-based method to show that the value of sdry ranges between about 0.5 GPa and 1 GPa for 149 

different soils.  150 

Similar concepts apply to a wetting path starting from a dry state (see the main wetting curve shown in Fig. 151 

2a). At the bulk water-entry point (BWE), bulk water starts filling the smallest voids, representing a transition 152 

from the pendular state to the funicular state. At the bulk water-continuity point (BWC), sufficient voids are 153 

filled with bulk water to form a continuous liquid path, whereas at the air-discontinuity point (AD) the gas 154 

phase becomes discontinuous. Eventually, at the air-exclusion point (AEX), air is totally removed and the soil 155 

enters the capillary state. When a main wetting SWRC is obtained experimentally, air can remain trapped in 156 

the soil and complete saturation may not be reached even when zero suction is imposed on the external 157 

boundary of the soil sample. In this case, the wetting SWRC appears to be approximately horizontal from the 158 

point AD where the gas phase becomes discontinuous, as shown by the dashed line in Fig. 2a. However, this 159 

dashed line does not represent true equilibrium states, because the trapped air is at elevated pressure (i.e. the 160 

internal value of suction within the soil sample is greater than the value applied at the boundary) and the 161 

trapped air is then expelled very slowly by the  processes of air dissolution and diffusion in the liquid phase. 162 

Points AE, AEX, BWEX and BWE are directly related to the shape of the SWRC. AE and AEX can be 163 

identified as the points where the main drying curve and main wetting curve respectively diverge from a fully 164 

saturated condition (Sl=1). Since the degree of saturation has been shown to decrease approximately linearly 165 

with the logarithm of suction in the pendular state (i.e. no bulk water) (Campbell and Shiozawa 1992), BWEX 166 

and BWE can be identified as the points where the two curves (in the semi-logarithmic plot) diverge from an 167 
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approximately linear relationship at low degree of saturation (see Fig. 2a). In contrast, the points AC, AD, 168 

BWD and BWC are not related to the shape of the SWRC. BWD and BWC are related to the shape of the 169 

SHCC (see Fig. 2b), as they represent transitions between states where bulk water flow occurs (in which case 170 

this completely dominates the hydraulic conductivity) and states where liquid water flow occurs only through 171 

liquid films. AC and AD are only important in the variation of gas conductivity, with the gas conductivity as 172 

zero for suction values lower than these points. 173 

In the literature, there is often no distinction between the bulk water-exclusion point BWEX, bulk water-174 

entry point BWE, bulk water-continuity point BWC and bulk water-discontinuity point BWD (see Fig. 2). 175 

They are all often defined as the “residual” point, which is typically identified as the bend in the SWRC at low 176 

degree of saturation, when plotted in semi-logarithmic form (Vanapalli et al. 1998; Tami et al. 2004; Zhan and 177 

Ng 2004). 178 

Liquid water flow in unsaturated soils may occur within continuous liquid paths formed by the bulk water 179 

and/or by the thin liquid films, connected to each other at the inter-particle contacts by means of meniscus 180 

water bridges. Thus, the hydraulic conductivity k of unsaturated soils can be split in two components: the bulk 181 

water component kBulk and the liquid film component kFilm. The film flow component is ignored in many SHCC 182 

models, which assume that liquid water flows only through pores filled with bulk water. This assumption is 183 

reasonable for very fine soils (e.g. clays) because, in these soils, flow through voids filled with bulk water 184 

completely dominates liquid flow up to very high values of suction (e.g. >10 MPa for a clay) and at these very 185 

high values of suction, the thickness of the adsorbed liquid films, which decreases with increasing suction, is 186 

so small (e.g. <1 nm) that the attractive molecular forces between water molecules and the surfaces of the soil 187 

particles impede any mobility of the water within the liquid films. However, for coarser soils (e.g. sands), the 188 

contribution of adsorbed liquid films to liquid flow becomes dominant at much lower values of suction than 189 

in fine-grained soils (e.g. 10 kPa), and at these values of suction the thickness of the films may be orders of 190 

magnitude higher (e.g. >20 nm). In this case, the molecular attractions, strong only in the first molecular layers 191 

next to the soil particle surfaces, do not impede the liquid film flow (Kemper 1961; Tuller and Or 2001; Lebeau 192 

and Konrad 2010). Whereas the role of adsorbed liquid films in contributing to hydraulic conductivity is more 193 

important for coarser-grained soils than for clays, the contribution of liquid films to water retention behaviour 194 

and mechanical behaviour is most important in clays (Lu and Likos 2006). 195 
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The value of hydraulic conductivity depends on the number and the size of the continuous liquid paths 196 

formed by the water. In particular, the more and larger are these liquid paths, the higher is the hydraulic 197 

conductivity. Fig. 2b shows typical main drying and main wetting SHCCs in a log-log plot. The difference 198 

between these two curves is mainly due to the water retention hysteresis, because the hydraulic conductivity 199 

variation generally shows very little hysteresis when k is plotted against Sl. In the capillary state, the soil is 200 

saturated (Sl = 1) and thus, the hydraulic conductivity is equal to the saturated value ks. In this condition, kFilm 201 

= 0 and k = kBulk = ks. In the funicular state, as suction increases, kBulk reduces from the saturated value, because 202 

the continuous flow channels formed by bulk water are fewer and fewer and restricted to the smaller channels 203 

and voids. Moreover, the lengths of the continuous flow channels also increase because the tortuosity of these 204 

paths increases. Although kFilm is greater than zero in this condition, it is negligible if compared to kBulk in 205 

almost all the funicular range. In the pendular state, no bulk water is present within the soil. More precisely, it 206 

is at the bulk water-discontinuity point BWD during drying that kBulk falls to zero or at the bulk water-continuity 207 

point BWC during wetting that kBulk starts increasing from zero (see Fig. 2b), because at these points the liquid 208 

paths formed by the bulk water become respectively discontinuous or continuous. For suctions above the bulk 209 

water-discontinuity point (during drying) or the bulk water-continuity point (during wetting), the hydraulic 210 

conductivity is very small (several orders of magnitude smaller than the saturated value) and related only to 211 

the liquid paths formed by the thin liquid films connected by meniscus water bridges at the inter-particle 212 

contacts, so that kBulk = 0 and k = kFilm. Moreover, as suction increases, the hydraulic conductivity k = kFilm 213 

decreases (see Fig. 2b), because the thickness of liquid films and the size of liquid bridges both decrease with 214 

increasing suction.  215 

3. New hydraulic constitutive model 216 

This Section presents a SWRC model and a SHCC model that are both suitable for use in relatively coarse-217 

grained soils (gravels, sands and silts) over the full range of degree of saturation. The SWRC model is an 218 

existing (but non-conventional) model proposed by Fayer and Simmons (1995), whereas the SHCC model is 219 

new. The performances of these models are qualitatively compared with those of the conventional van 220 

Genuchten (1980) SWRC model and Mualem (1976b) SHCC model. 221 

3.1 SWRC 222 

The van Genuchten (1980) (VG) model is one of the most widely used SWRC models. It relates the effective 223 

degree of saturation Sle to the suction s: 224 
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( )1
m

n

leS s
−

 = +
 

           (1) 225 

where α, n and m are parameters of the model (soil constants). Parameters m and n are often correlated as m=1-226 

1/n (van Genuchten 1980). The degree of saturation Sl is then calculated as: 227 

( )l lr ls lr leS S S S S= + −            (2) 228 

where Slr and Sls are two further constants, representing the residual degree of saturation and the maximum 229 

degree of saturation (at s=0) respectively. According to Eqs. 1 and 2, the residual degree of saturation Slr is the 230 

value of Sl as s tends to infinity. More typically, however, it is simply treated as a fitting parameter of the VG 231 

model, to optimise the fit to the experimental variation of Sl in the funicular range. In this paper, the term 232 

residual degree of saturation is only used to refer to this fitting parameter, used exclusively in the conventional 233 

van Genuchten model. The maximum degree of saturation Sls appearing in Eq. 2 is typically assumed as Sls = 234 

1, to represent achievement of saturated conditions at s =0. 235 

As stated earlier, the van Genuchten model is not accurate at low values of degree of saturation. Therefore, 236 

an alternative SWRC model, the modified van Genuchten (modVG) model proposed by Fayer and Simmons 237 

(1995), is used in this study. In the modVG model, the variation of degree of saturation is still given by Eqs. 2 238 

and 1, but Slr is no longer a constant and instead Slr varies with suction according to: 239 

ln
dry

lr

s
S

s


 
=  

 
           (3) 240 

where sdry is the suction at which Sl goes to zero and  is a fitting parameter, obtained by fitting the model to 241 

SWRC data at low degrees of saturation. The parameter sdry is typically assumed as sdry = 1 GPa. 242 

A comparison between the performance of the VG model and the modVG model is shown in Fig. 3a, where 243 

the two models are employed to fit experimental data over the full range of Sl. The experimental data set is for 244 

Shonai sand (Mehta et al. 1994) and will be discussed in more detail in Section 3.3 (soil 6). The SWRCs 245 

obtained with the VG model and the modVG model are almost coincident in the capillary and funicular states, 246 

where both models fit the experimental data well. However, the modVG model is able to represent effectively 247 

also the pendular state, where the degree of saturation decreases approximately linearly with the logarithm of 248 

suction down to a completely dry state (Campbell and Shiozawa 1992). 249 

3.2 SHCC 250 
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The Mualem (1976b) (M) model is commonly used to describe the SHCC, in particular when it is coupled 251 

with the van Genuchten (1980) model for the SWRC. In the Mualem model, the soil is assumed as a 252 

homogeneous porous medium with a certain statistical pore size distribution, which is indirectly related to the 253 

shape of the SWRC. The water is assumed to flow only in bulk water-filled pores which are modelled as 254 

bundles of cylindrical capillary tubes of different radii. If the Mualem model is coupled with the van Genuchten 255 

SWRC model, the hydraulic conductivity k is given by: 256 

( )
2

11 1
m

m

s le lek k S S = − −
  

         (4) 257 

where ks is the saturated hydraulic conductivity. This means that, once the SWRC is defined by the VG model, 258 

only one extra parameter is needed (i.e. ks) for the description of the SHCC by the M model. 259 

The accuracy of the Mualem model, when coupled with the van Genuchten model, deteriorates as the degree 260 

of saturation decreases, failing completely when the degree of saturation is so low that the bulk water is 261 

discontinuous. The model has two main weaknesses. Firstly, the model is not able to represent the liquid flow 262 

occurring in the liquid films and in the meniscus water bridges at very low values of degree of saturation. 263 

Secondly, applying Eq. 1 (the VG SWRC model) in Eq. 4 (the M SHCC model), the hydraulic conductivity 264 

goes to zero only when suction tends to infinity. This is physically unreasonable if this model is used only to 265 

represent the bulk water component of the hydraulic conductivity, as kBulk must, in reality, go to zero at the 266 

BWD point during drying and diverge from zero at the BWC point during wetting. 267 

Due to these shortcomings of the conventional M model, a new hydraulic conductivity model, that is more 268 

accurate than the M model at low degree of saturation, is now proposed. In the new model, the hydraulic 269 

conductivity k is considered as the sum of two terms, as proposed by (Peters 2013): 270 

Bulk Filmk k k= +            (5) 271 

The bulk water component of the SHCC kBulk is modelled with an expression similar to the M model (Eq. 272 

4) but the variable Sle occurring twice in Eq. 4 is replaced by two different variables. The term √𝑆𝑙𝑒 occurring 273 

in the right hand-side of Eq. 4 was introduced by Mulalem (1976b) to model the increase of tortuosity and 274 

decrease of connectivity between bulk water-filled pores with decreasing degree of saturation. According to 275 

Eq. 1, Sle goes to zero only when suction goes to infinity, which produces unreasonable results in Eq. 4. In 276 

reality, the connectivity of the bulk water is lost for suction values equal to or higher than the BWD point 277 

(drying) or the BWC point (wetting). Thus, a new term √𝑆𝑙
𝐶 is used instead of √𝑆𝑙𝑒, where 𝑆𝑙

𝐶 is defined by: 278 
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             for wetting
1

l l BWCC

l

l BWC

S S
S

S

−
=

−
   (6) 279 

where Sl,BWD and Sl,BWC are the values of degree of saturation at the BWD point and at the BWC point 280 

respectively. The second appearance of Sle in the right hand-side of Eq. 4 was introduced by Mualem (1976b) 281 

to model the decrease of the number and size of pores filled with bulk water with decreasing degree of 282 

saturation. Again, using Sle from Eq. 1 is unreasonable, because this implies that the quantity of bulk water 283 

goes to zero only when suction goes to infinity. In reality, the volume of the bulk water is zero for suction 284 

values equal to or higher than the BWEX point (drying) or the BWE point (wetting). Thus, a new variable 𝑆𝑙
𝐵 285 

is used instead: 286 

,

,

             for drying
1

l l BWEXB

l

l BWEX

S S
S

S

−
=

−
                       

,

,

             for wetting
1

l l BWEB

l

l BWE

S S
S

S

−
=

−
   (7) 287 

where Sl,BWEX and Sl,BWE are the values of the degree of saturation at the BWEX and BWE points respectively. 288 

Thus, the bulk water component of the relative hydraulic conductivity can be expressed with a new modified 289 

version of the Mualem model (modM model), as follows: 290 

( )( )
2

1

1 1
m

m
Bulk C B

s l lk k S S
 

= − − 
 

         (8) 291 

The values of Sl,BWD, Sl,BWC, Sl,BWEX and Sl,BWE (for use in Eqs. 6 and 7) may be difficult to identify 292 

experimentally. Akin and Likos (2017) identified the BWE point (which they defined as the adsorption-293 

capillary transition point) as the change in slope of water sorption isotherms (i.e. curves of water content plotted 294 

against relative humidity obtained under isothermal conditions). Identification of the values of Sl,BWD and Sl,BWC 295 

may be particularly challenging, given that these values should strictly be determined from high quality 296 

experimental SHCC data at low values of Sl and this type of data is rarely available.  However, in the absence 297 

of more precise data, a simplified pragmatic procedure can be used, which assumes Sl,BWD = Sl,BWEX and Sl,BWC 298 

= Sl,BWE. This simplified graphical procedure, which uses only the SWRC, is similar to that suggested by 299 

Vanapalli et al. (1999) and is illustrated in Fig. 4. With the fitted SWRC (based on the modVG model of Eqs. 300 

1-3) presented in a semi-logarithmic plot, the intersection point of the tangent through the inflection point of 301 

the main drying curve and the straight line formed by the final linear portion of the main drying curve defines 302 

a suction sBWD/BWEX (see Fig. 4). The value of Sl,BWD = Sl,BWEX is then taken as the value of Sl on the fitted main 303 

drying curve at the suction sBWD/BWEX (see Fig. 4). A corresponding procedure using the main wetting curve 304 
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gives the value of Sl,BWC = Sl,BWE (see Fig. 4). Assuming Sl,BWD = Sl,BWEX means that 𝑆𝑙
𝐶 = 𝑆𝑙

𝐵 during drying and, 305 

similarly, assuming Sl,BWC = Sl,BWE means that 𝑆𝑙
𝐶 = 𝑆𝑙

𝐵 during wetting (see Eqs. 6 and 7). This simplified 306 

procedure is likely to underestimate the values of Sl,BWD and Sl,BWC and overestimate the values of Sl,BWEX and 307 

Sl,BWE (see Fig. 2), resulting in overestimation of 𝑆𝑙
𝐶 and underestimation of 𝑆𝑙

𝐵. These errors will therefore 308 

partially compensate when Eq. 8 is used to determine the value of kBulk. 309 

In order to model the liquid film component of the hydraulic conductivity kFilm, a predictive semi-empirical 310 

model is proposed (LF model). In the pendular state, where the flow occurs only within the liquid films, the 311 

relationship between hydraulic conductivity and suction has been shown to be approximately linear in the log-312 

log plot, with a slope of approximately -1.5 (Tokunaga 2009; Lebeau and Konrad 2010; Zhang 2011; Peters 313 

2013). This slope of -1.5 has a theoretical basis from Tokunaga (2009), who derived an analytical expression 314 

for the liquid flow occurring within liquid films in an idealized soil consisting of identically-sized smooth 315 

spherical particles, for the situation where none of the voids are filled with bulk water and hence all of the 316 

particles are covered by liquid films. The slope of -1.5 was subsequently validated against experimental data 317 

from different types of natural soils, including sands, loams and a sandy clay (Lebeau and Konrad 2010; Zhang 318 

2011; Peters 2013). This would suggest the following relationship within the pendular range: 319 

𝑘𝐹𝑖𝑙𝑚 = 𝐶𝐹𝑖𝑙𝑚 ⋅ s−1.5          (9) 320 

where CFilm is a model parameter (soil constant). Eq. 9 would represent the liquid film component of the 321 

hydraulic conductivity if there was no bulk water over the full range of s. However, increasing amounts of 322 

liquid film are replaced by bulk water in the funicular range and hence kFilm should drop to zero at full 323 

saturation, whereas Eq. 9 gives kFilm tending to infinity as s tends to zero. In practice, accurate modelling of 324 

kFilm is unnecessary within the funicular and capillary states, because liquid flow in these states is completely 325 

dominated by bulk water flow. A pragmatic approach is therefore proposed, which involves the introduction 326 

of a dummy parameter a: 327 

 ( )
1.5Film Filmk C a s

−
=  +          (10) 328 

The effect of the dummy parameter a should be negligible in the range of suction where liquid films govern 329 

the liquid flow (Tokunaga, 2009). The value of a must be small enough that it does not affect the linearity of 330 

the log-log plot at very low values of Sl (in the pendular range), but large enough that the predicted value of 331 
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kFilm is negligible compared to kBulk at high values of Sl. Using a value of the parameter a between sBWD/100 and 332 

sBWD/10 for drying and between sBWC/100 and sBWC/10 for wetting is typically acceptable.  333 

If high quality experimental SHCC data at low values of Sl are available for the particular soil, these can be 334 

used to determine the value of the soil constant CFilm in Eq. 10. However, such data are rarely available, because 335 

the hydraulic conductivity in this range is very low and thus not easy to measure. In the absence of such data, 336 

the value of CFilm can be estimated from knowledge of a representative particle size of the soil and of the 337 

porosity . Tokunaga (2009) showed analytically that, for a soil made of identical spherical particles of 338 

diameter D, the value of kFilm at a given value of s varies linearly with (1-)/D. Hence, the following relationship 339 

is proposed for the estimation of the parameter CFilm: 340 

1Film

DC X
D

−
=           (11) 341 

where D is a representative particle size for the soil and XD is a model parameter (a soil constant). The effective 342 

particle size D10 is suggested for the parameter D, because liquid film flow is likely to be predominantly 343 

controlled by the size of the smaller soil particles (because of their high specific surface area). This was 344 

confirmed by finding a better statistical correlation of experimental data from different soils when using D10, 345 

rather than when using D50 or D90 (see Section 3.3). However, values of D10 are not always available (e.g. when 346 

the fines content is high and hence D10 is very small) and, in this case, the value of D50 can be used instead. 347 

The parameter XD accounts for factors not appearing in Eq. 11, such as differences in particle shapes, particle-348 

size distribution and soil fabric between different soils. However, the value of XD is expected to vary over a 349 

limited range for different coarse-grained soils, and hence, in the absence of data to determine a soil-specific 350 

value for XD, a default value, applicable to all coarse-grained soils, can be assumed. The choice of this default 351 

value for XD will depend upon whether D10 or D50 is used for D in Eq. 11, as described below in Section 3.3. 352 

A comparison between the hydraulic conductivity models presented above is shown in Fig. 3b, with the 353 

models used to predict the bulk water component of the hydraulic conductivity of the Shonai sand (Mehta et 354 

al. 1994) (see soil 6 in Section 3.3) and to fit the liquid film component. Fig. 3b is plotted in terms of relative 355 

hydraulic conductivity kr, defined as kr=k/ks. At high values of Sl, the conventional M model and the new 356 

modM+LF model lead to very similar SHCCs but, as Sl decreases, greater differences arise between the two 357 

models. In particular, around the BWC point the conventional M model overestimates the hydraulic 358 

conductivity (by about two orders of magnitude for the Shonai sand), whereas the new modM+LF model 359 
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predicts much lower values of k, because kBulk goes to zero at the BWC point. The overestimation of k in this 360 

region by the conventional M model is most evident for coarse-grained soils (Reinson et al. 2005). In contrast, 361 

at high values of suction the conventional M model underestimates the hydraulic conductivity, because it does 362 

not take into account the role of liquid film flow. Finally, it can be seen that in the new modM+LF model the 363 

hydraulic conductivity is governed almost entirely by kBulk at relatively low suction values and almost entirely 364 

by kFilm at relatively high suction values. The predicted transition between the two, occurring around the BWC 365 

point, is sharper and more distinct for coarser soils.  366 

Fig. 5 shows a qualitative comparison between the predicted SHCCs from the new SHCC model for two 367 

soils: a coarser-grained soil and a finer-grained soil. The coarser soil has a higher saturated hydraulic 368 

conductivity but transitions between capillary, funicular and pendular states occur at lower values of suction 369 

than in the finer soil and, thus, the liquid film component of the hydraulic conductivity becomes dominant at 370 

a lower value of suction. Comparing the two soils in the suction range where the hydraulic conductivity is 371 

governed by the liquid film component, it can be seen that, at the same value of suction (points Af and Ac in 372 

Fig. 5), the hydraulic conductivity is higher for the finer soil. At the same value of suction, the thickness of the 373 

adsorbed liquid films is the same for the two soils but the finer soil has a higher specific surface area and thus 374 

a higher number of liquid film flow channels. This effect is represented by the dependence of CFilm on 375 

representative particle size D in Eq. 11. However, at the two different suction values where the liquid film 376 

component of the hydraulic conductivity becomes dominant over the bulk water component for the two soils 377 

(points Bf and Bc in Fig. 5), the hydraulic conductivity of the coarser soil is higher than that of the finer soil, 378 

because the thickness of the adsorbed liquid films is much greater at point Bc than at point Bf. This explains 379 

why considering the contribution of liquid film flow to hydraulic conductivity is more relevant for coarser-380 

grained soils than for finer-grained soils. 381 

At extremely high suction values, approaching sdry, the liquid film flow becomes so small that water 382 

movement will be dominated by vapor flow (i.e. diffusion of water within the gas phase) (Peters, 2013). 383 

However, unlike the advective liquid water flux, which is governed by Darcy’s law, the diffusive flux of water 384 

vapor within the gas phase is a different physical process, governed by Fick’s law. Thus, flow of water vapor 385 

cannot be included in the hydraulic conductivity k. Some numerical codes, including CODE_BRIGHT, include 386 

both vapor diffusion, modelled by Fick’s law, and advective liquid flux, modelled by Darcy’s law. In this way, 387 

the two different phenomena of advective liquid water flux and diffusive water vapor flux are both correctly 388 
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modelled. The distinction is particularly important when coupled thermo-hydraulic problems are analysed. It 389 

is worth mentioning that experimental measurements of k at very low values of Sl must always be treated with 390 

caution because it can be difficult to distinguish water movements due to liquid flow and water movements 391 

due to vapor flow, unless experiments are specifically designed with this purpose. 392 

It is possible that water movements due to liquid flow and water movements due to vapor flow are not 393 

entirely separate physical processes at a continuum scale (i.e. at a scale significantly larger than individual soil 394 

particles or voids) once the bulk water is discontinuous, because water might move by series/parallel flow in 395 

the form of vapour through gas-filled voids and in the form of liquid water across meniscus water bridges, as 396 

described by Philip and de Vries (1957) (vapour condensing on one side of each meniscus water bridge and 397 

evaporating on the other side of the meniscus water bridge). This mechanism is relevant for non-isothermal 398 

flows being driven by temperature gradients. The model presented in this paper cannot account for this type 399 

of combined liquid/vapour flow, with transfers between liquid and vapour phases occurring repeatedly at a 400 

length scale of the order of the void size. Consideration of this phenomenon would lead to a greater amount of 401 

water vapour flow than that predicted considering liquid water flow and water vapour flow as separate 402 

phenomena, with an increase typically lower than one order of magnitude (Philip and de Vries 1957; Cass et 403 

al. 1984). This aspect may be relevant for high temperature gradients and at high values of suction where water 404 

movement within liquid films is comparable or lower than water movement due to vapour transfer but it is 405 

likely to be negligible at relatively low values of suction, just above sBWC or sBWD, where water movement 406 

within liquid films is several orders of magnitude greater than water movement due to vapour transfer. 407 

It should be noted that the proposed new hydraulic constitutive model has a small element of inconsistency, 408 

in that the modVG SWRC model predicts that the value of Sl reduces to zero (i.e. no liquid water present in 409 

the soil) at a finite (but extremely high) value of suction sdry, whereas the proposed modM+LF SHCC model 410 

predicts that the hydraulic conductivity only goes to zero as suction tends to infinity. For most practical 411 

problems this inconsistency has negligible effects because, at very high suction values approaching sdry, water 412 

movement is dominated by vapor diffusion.  413 

3.3 Experimental validation of the model 414 

Data from tests on 11 relatively coarse-grained soil samples were used for experimental validation of the 415 

new hydraulic model. Properties of these soils (soil type, reference, saturated hydraulic conductivity ks and 416 

porosity) are shown in Table 1. The experimental data come from three different sources: a journal paper 417 
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(Mehta et al. 1994), the unsaturated soil hydraulic database UNSODA (Nemes et al. 2001) and an unsaturated 418 

soil hydraulic catalogue (Mualem 1976a). Experimental data defining the SWRC and the SHCC were available 419 

for all 11 soils. For soil 8, unlike the other soils, the SHCC data points were only available in the k:Sl plot, but 420 

they were converted to the k:s plot by using the modVG model for the SWRC. This operation was considered 421 

reasonable, because the modVG model was able to fit the experimental SWRC points extremely well over the 422 

full range of suction for this soil. 423 

Experimental SHCC data in the suction range where hydraulic conductivity was governed by the liquid 424 

film component (low values of Sl) were available for soils 1-10. For these soils, the expression for kFilm given 425 

by Eq. 10 (LF model) was fitted to the experimental SHCC data points in the suction range where these points 426 

could be approximated by a straight line with slope -1.5 in the log-log scale, as shown in Fig. 6 (which is 427 

plotted in terms of relative hydraulic conductivity kr). In this fitting operation, the slope of the straight line in 428 

the log-log plot was fixed a priori to -1.5 whereas the parameter CFilm was fitted. In all 10 soils, the LF model 429 

fits the experimental data very well. This confirms the validity of Eq. 10, including the value of the exponent 430 

(-1.5). The resulting values of the parameter CFilm are shown in Table 2. The units employed for CFilm in Table 431 

2 are appropriate if suction s and parameter a are expressed in kPa and kFilm is required in units of m/s. 432 

Among soils 1-10, values of D10 were available for soils 1-6 and values of D50 were available for soils 1-8 433 

(see Table 1). For each of these soils, the fitted value of CFilm shown in Table 2 was combined with the soil 434 

porosity  and the appropriate value of D10 or D50 to back-calculate a corresponding soil-specific value of the 435 

parameter XD (see Table 2), by using Eq. 11. The units employed for XD in Table 2 are appropriate if suction s 436 

and parameter a are expressed in kPa, representative particle size D (i.e. D10 or D50) is expressed in mm and 437 

kFilm is required in units of m/s. When using D10, the geometric mean of the 6 soil-specific values of XD listed 438 

in Table 2 was calculated as 2.35 x 10-9 mm.ms-1.kPa1.5 (see Table 2), and this is recommended as a general 439 

default value of XD to use in Eq. 11 (with a value of D10) in cases where experimental values of k in the pendular 440 

range (low values of Sl) are not available. If a value for D10 is not available, but D50 is known, the corresponding 441 

default value of XD is 1.08 x 10-8 mm.ms-1.kPa1.5 (see Table 2). However, it is preferable to use D10, if possible, 442 

because statistical analysis showed that the variance in the D10 soil-specific values of XD shown in Table 2 is 443 

less than the variance in the D50 soil-specific values of XD. The statistical analysis of the D10 soil-specific values 444 

of XD indicated a 95% confidence level that the value of XD for a soil should fall between a lower bound of 0.2 445 

times the default value and an upper bound of 5 times the default value. 446 
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Experimental and modelled SWRCs and SHCCs for all the 11 soils are shown in Fig. 7, with the SHCCs 447 

plotted in terms of relative hydraulic conductivity kr. In the graphs representing the SWRCs, the experimental 448 

points are compared to the conventional VG model and the proposed modVG model, both fitted to the 449 

experimental SWRC points. In both cases, the constraint m=1-1/n was used and the parameter Sls was set as 450 

Sls=1. Values of the remaining model parameters are shown in Table 3. In the graphs representing the SHCCs, 451 

the experimental points are compared to the conventional M model (coupled with the VG model) and the new 452 

modM+LF model (coupled with the modVG model for the prediction of kBulk). In the kBulk component (i.e. 453 

modM) of the new SHCC model, the value of the parameter sBWD = sBWEX for each soil (see Table 3), and hence 454 

the value of  Sl,BWD = Sl,BWEX, was obtained from the SWRC using the graphical construction described in 455 

Section 3.2 (see Fig. 4). In the kFilm (i.e. LF) component of the new SHCC model, the value of CFilm was taken 456 

either as a fitted value, from Table 2, where SHCC data from the pendular range were available (soils 1-10), 457 

or as a predicted value, calculated from Eq. 11, using the appropriate default value of XD (see Table 2) and the 458 

value of D10, where this was available (soils 1-6, 11), or the value of D50 (soils 7, 8). 459 

For soils where SWRC data were available in the pendular range (i.e. soils 3, 6, 9 and 10), the modVG 460 

model fits the experimental data much better than the VG model (see Fig. 7). However, in the capillary and 461 

funicular ranges, the two models are indistinguishable.  462 

Fig. 7 also shows that in general the modM model predicts kBulk better than the M model. Exceptions are 463 

soil 3 where the two models lead to very similar results and soils 1 and 2 where both models are not in a good 464 

agreement with the experimental data. This mis-match for soils 1 and 2 is probably related to an underlying 465 

weakness of the Mualem approach or to inaccurate experimental determination of the value of ks (note that the 466 

experimental values of k within the funicular range have not been used at all in determining the parameter 467 

values in the modM+LF model). The difference between the M model and the modM model may lead to 468 

significant differences of hydraulic conductivity for certain values of suction. For instance, at the BWD point 469 

of soil 10 (s=8 kPa), the conventional M model overestimates the hydraulic conductivity by approximately 470 

three orders of magnitude.  471 

Fig. 7 shows that the liquid film branch of the SHCCs for the different soils is very well modelled by Eq. 472 

10 when this is fitted to experimental data (i.e. using a fitted value of CFilm). Moreover, it can be seen that, in 473 

the absence of experimental data of hydraulic conductivity at very low degree of saturation, kFilm may be 474 

predicted adequately by Eqs. 10 and 11, if an appropriate default value of XD, presented in Table 2, is used. 475 
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For soil 11, experimental SHCC points were not available at very low degree of saturation and the liquid 476 

film component of the SHCC model could only be predicted. This is an example of how the predictive SHCC 477 

model should be used in the absence of experimental data. 478 

4. Numerical application to the study of capillary barrier systems 479 

The new hydraulic constitutive models for unsaturated soils (modVG for SWRC and modM+LF for SHCC) 480 

were implemented in the CODE_BRIGHT finite element code (Olivella et al. 1994, 1996). Numerical 481 

simulations of one-dimensional infiltration tests on a capillary barrier were then performed with the new 482 

hydraulic constitutive models and with the conventional (VG-M) models. The aims of these analyses were: i) 483 

to show that the new improved hydraulic models are able to describe better the properties of the breakthrough 484 

condition from the finer layer to the coarser layer and ii) to assess the role of liquid films in the behaviour of 485 

CBSs. Only isothermal liquid transport was considered in the analyses, with the solid phase considered as non-486 

deformable and the gas phase as non-mobile. Thus, constant and uniform values of temperature (T = 20 °C), 487 

displacements of the solid phase (u = 0m) and gas pressure (ua = 0kPa) were imposed. The influence of vapor 488 

diffusion within the gas phase was investigated by performing two versions of each simulation: the first with 489 

vapor diffusion not considered and the second with vapor diffusion included. 490 

4.1 Material and methods 491 

The numerical model was a vertical column of soil made of two layers: an upper layer, 0.5m thick, 492 

representing the finer layer (F.L.) of a CBS and a lower layer, 0.75m thick, representing the coarser layer (C.L.) 493 

(see Fig. 8a). The thickness of the coarser layer was unrealistically high in order to have the bottom boundary 494 

sufficiently far from the interface so that the phenomenon of breakthrough was not affected by any influence 495 

of the bottom boundary. The materials forming the two layers were each modelled by defining the hydraulic 496 

constitutive models (SWRC and SHCC) and the porosity. Each of the two layers was considered as a uniform 497 

material. The parameters chosen to model the finer layer were representative of a silty sand whereas those of 498 

the coarser layer were representative of a pea gravel. The finer layer was modelled using the conventional van 499 

Genuchten-Mualem (VG-M) model because, in the analyses, this layer was never at very low degree of 500 

saturation. The coarser layer was modelled using the following combinations of models: i) van Genuchten-501 

Mualem (VG-M); ii) modified van Genuchten-modified Mualem (modVG-modM); and iii) modified van 502 

Genuchten-modified Mualem + liquid film (modVG-modM+LF). For the modVG-modM+LF modelling, the 503 

value of XD was taken as the default value of 2.35 x 10-9 mm.ms-1.kPa1.5 in all the analyses presented here, but 504 
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some further simulations were performed using XD values 5 times larger and 5 times smaller, to explore the 505 

impact of uncertainty in the value of this parameter. The parameter values of the materials are shown in Table 506 

4 and the SWRCs and SHCCs are shown in Fig. 8b and Fig. 8c respectively. 507 

The initial condition for the numerical analyses was a hydrostatic pore-water pressure profile, with uw = 0 508 

kPa (s = 0 kPa) at the bottom boundary, uw = -12.5 kPa (s = 12.5 kPa) at the top, and a linear variation between. 509 

In this initial condition, the coarser layer was at very low degree of saturation (lower than Sl,BWC). 510 

For the bottom boundary condition, a constant value of the pore-water pressure equal to the initial value 511 

was imposed, namely uw= 0 kPa. For the top boundary condition, a constant value of vertical water flux (the 512 

infiltration rate) was imposed. In order to assess the influence of the infiltration rate, two values of water flux 513 

were considered: i1 = 10-6 m/s and i2 = 10-8 m/s. The value of i1 was chosen so that it was comparable with the 514 

saturated hydraulic conductivity of the finer layer (3x10-6 m/s) whereas i2 was two orders of magnitude smaller 515 

than i1 and representative of a low rainfall intensity. 516 

4.2 Results and discussion 517 

The results of the numerical analyses of the infiltration process in a CBS are presented here in order to 518 

highlight the influence of the SHCC models used for the coarser layer and the influence of the liquid film 519 

conductivity, which is commonly neglected.  520 

In this set of analyses, the fitted value of Slr of the coarser layer in the VG model is close to 0 and therefore 521 

the VG and modVG models lead to very similar SWRCs (see Fig. 8b). Hence, the choice between them does 522 

not significantly affect the results of the analyses in this case and all the differences which are shown below 523 

are attributable to the use of different SHCCs, rather than to the use of different SWRCs. The results shown in 524 

Figs. 9 and 10 are for the simulations with vapor diffusion excluded, but vapor diffusion was found to have 525 

negligible effect in most cases, as discussed later. 526 

Fig. 9 shows the predicted time histories of the effective vertical velocity of the liquid phase (flow rate per 527 

unit plan area) predicted at the interface between the finer and coarser layers, obtained using different 528 

infiltration rates and different hydraulic constitutive models for the coarser layer. In all the simulations, the 529 

effective water velocity at the interface is initially equal to zero. A wetting front then starts moving downwards 530 

from the ground surface until it reaches the interface (located at 0.5m below the top boundary). The suction at 531 

the interface then decreases and some time later water starts moving across the interface (breakthrough). The 532 
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estimated times at breakthrough are indicated by symbols in Fig. 9. Soon after breakthrough, the water velocity 533 

across the interface becomes equal to the infiltration rate applied at the surface (see Fig. 9). 534 

It can be seen from Fig. 9 that the predicted breakthrough takes different forms, depending on the infiltration 535 

rate and on the model used to describe the hydraulic behaviour of the coarser layer. At the lower infiltration 536 

rate i2, the use of the conventional VG-M model to describe the behaviour of the coarser layer results in 537 

prediction that breakthrough would be a relatively gradual phenomenon. In contrast, when the new modVG-538 

modM or modVG-modM+LF models are used for the coarser layer, the numerical simulations show 539 

breakthrough as a relatively sudden phenomenon at both infiltration rates. These predictions with the new 540 

models are a better qualitative match to experimental observations (Stormont and Anderson 1999), which show 541 

that breakthrough is always a very sudden phenomenon, irrespective of the infiltration rate. Inspection of Fig. 542 

9 also shows that, particularly at the lower infiltration rate i2, use of the conventional VG-M model results in 543 

prediction of an earlier time to breakthrough than is predicted by the new modVG-modM or modVG-544 

modM+LF models. This means that the conventional VG-M model predicts a lower water storage capacity of 545 

the finer layer prior to breakthrough than the new models. 546 

The analysis of the suction profile at breakthrough is very important in the study of a CBS because it allows 547 

the water content profile at breakthrough to be obtained by means of the SWRC, and this allows the water 548 

storage capacity of the barrier to be calculated, where the water storage capacity is defined as the maximum 549 

amount of water that can be stored in the barrier before breakthrough occurs (Stormont and Morris 1998). 550 

According to experimental observations, starting from initial conditions when the barrier is generally at low 551 

water contents (relatively high suction values), the rainwater infiltrating from the surface causes changes in 552 

the suction profile in the finer layer. The infiltrating rainwater is initially stored entirely within the finer layer, 553 

which causes the water content to increase and the suction to decrease. When the suction at the interface 554 

approaches the BWC value of the coarser layer, this becomes hydraulically conductive and water breaks 555 

through from the finer layer to the coarser layer. 556 

Figs. 10a and 10b show the suction profiles at the time of breakthrough predicted by the numerical analyses 557 

for infiltration rates i1 and i2 respectively. Also shown, for comparison, are the initial suction profile and a 558 

simple empirical suction profile in the finer layer at the time of breakthrough. The latter was obtained by 559 

imposing the BWC value of the coarser layer (0.7 kPa) at the interface and above this a hydrostatic profile up 560 

to a limiting suction value corresponding to the suction at which the hydraulic conductivity of the finer layer 561 
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is equal to the applied infiltration rate (this limiting suction is reached only in the case of the higher infiltration 562 

rate i1). Various authors (e.g. Stormont and Morris 1998) observed experimentally that the suction profile in 563 

the finer layer at the time of breakthrough was always very close to this empirical approximation. From Figs. 564 

10a and 10b, it can be seen that the use of the conventional VG-M model leads to results that are different to 565 

the experimental observations from the literature and, again, these differences are more significant for low 566 

infiltration rates. In particular, with the VG-M model, breakthrough is predicted when the suction value at the 567 

interface is higher than the BWC suction value of the coarser layer and, furthermore, this predicted suction 568 

value at the interface varies with the infiltration rate (whereas experimental observations indicate that the 569 

suction value at the interface at the time of breakthrough is independent of infiltration rate). By contrast, these 570 

inconsistencies with experimental observations are not seen if the new modVG-modM or modVG-modM+LF 571 

models are used for the coarser layer. The numerical results for the suction profile in the finer layer at the time 572 

of breakthrough (see Figs. 10a and 10b) are then almost identical to the simplified empirical suction profile at 573 

breakthrough, which was reported to be a good approximation of experimental observations. Using the 574 

modVG-modM model, breakthrough is predicted to occur when the suction at the interface exactly reaches the 575 

BWC value of the coarser layer, when bulk water starts forming continuous liquid networks across the 576 

interface. In addition, the liquid film flow, included in the modVG-modM+LF model, does not affect the 577 

suction profiles in the finer layer at the time of breakthrough (see Figs. 10a and 10b). 578 

The liquid film component of the SHCC may, however, affect significantly the suction profile in the coarser 579 

layer at the time of breakthrough. Using the modVG-modM model, the predicted suction profile in the coarser 580 

layer at the time of breakthrough is identical to the initial suction profile (see Figs. 10a and 10b), because only 581 

bulk water flow is included in the model and this does not start across the interface until the time of 582 

breakthrough. By contrast, when the modVG-modM+LF model, which includes the liquid film flow, is used, 583 

the predicted suction profile in the coarser layer at the time of breakthrough is substantially different to the 584 

initial suction profile, particularly at the lower infiltration rate (see Fig. 10b), because even before breakthrough 585 

of bulk water occurs, a small amount of water flows across the interface through the continuous liquid film 586 

networks. This causes a very small increase in the degree of saturation in the coarser layer immediately below 587 

the interface (almost insignificant, as shown in the degree of saturation profiles in Figs. 10c and 10d) but a 588 

large decrease in suction (Figs. 10a and 10b). This is explained by the shape of the SWRC at low degree of 589 

saturation (below Sl,BWE), where a small increase of Sl corresponds to a large decrease in suction. The predicted 590 
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changes in the suction profile in the coarser layer prior to breakthrough may have important consequences 591 

when CBSs are used for suction control purposes (e.g. Rahardjo et al. 2012).  592 

The values of Sl predicted in the finer layer with the VG-M model are smaller than those predicted by the 593 

new models (see Figs. 10c and 10d). This can be explained by the fact that, with the VG-M model, 594 

breakthrough occurred earlier and at higher suction values. 595 

Additional simulations were performed to investigate the sensitivity of results to the choice of value for the 596 

parameter XD, which controls the film flow in the coarser layer if the value of CFilm is determined from Eq. 11. 597 

These additional simulations used values of XD that were 5 times larger and 5 times smaller than the default 598 

value listed in Table 4 (see Fig. 8), covering the 95% confidence interval described in Section 3.3. The results 599 

indicated that, within this range, the value of XD had little influence on the predicted time history of water 600 

velocity at the interface (including the phenomenon of breakthrough) or the predicted suction profile in the 601 

finer layer at the time of breakthrough. The value of XD did however affect significantly the predicted suction 602 

profile in the coarser layer at the time of breakthrough for the lower infiltration rate i2. This was expected, 603 

because of the previous conclusion that, at the lower infiltration rate, film flow significantly affects the 604 

predicted suction profile in the coarser layer at the time of breakthrough (compare the modVG-modM and 605 

modVG-modM+LF curves in Fig. 10b). Although the suction profile at the time of breakthrough was 606 

significantly affected by the value of XD, the corresponding degree of saturation profile was only slightly 607 

affected. 608 

As mentioned before, the role of vapor diffusion was investigated by performing two versions of each 609 

numerical simulation, with vapor diffusion either included or excluded. Vapour diffusion had no noticeable 610 

effect in the simulations where the coarser layer was represented by either the conventional VG-M model or 611 

the new modVG-modM+LF model. In both these cases, although only small amounts of liquid water flow into 612 

the coarser layer occurred prior to breakthrough, even these small liquid water flows were much greater than 613 

the water flows due to vapor diffusion (Peters 2013). The effect of vapor diffusion had a small but noticeable 614 

effect on the results of the simulations employing the modVG-modM model (particularly for the low 615 

infiltration rate). With this modVG-modM model, the value of kBulk reduces to zero at the BWC point and there 616 

is no liquid film flow. This means that, with this model, vapor diffusion was the only possible mechanism for 617 

water flow into the coarser layer prior to breakthrough.  Although the simulations demonstrated that, with the 618 

coarser layer represented by either the conventional VG-M model or the new modVG-modM+LF model, vapor 619 
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diffusion had no noticeable effect on the behaviour of a CBS subjected to a constant rate of infiltration, this 620 

does not mean that vapor diffusion will be unimportant in all problems involving unsaturated soils. In 621 

particular, water vapor diffusion is likely to be of crucial importance in highly non-isothermal problems, such 622 

as nuclear waste disposal (Gens, 2010). 623 

5. Conclusions 624 

Key transition points on the soil water retention curve (SWRC) and soil hydraulic conductivity curve 625 

(SHCC) have been identified and defined. This serves as the physical basis for the development of a new 626 

predictive hydraulic conductivity model, intended for use over the full range of degree of liquid saturation Sl, 627 

particularly for relatively coarse-grained soils (gravels, sands and silts). The new hydraulic conductivity model 628 

avoids some inconsistencies in conventional hydraulic conductivity models (e.g. the van Genuchten-Mualem 629 

model) which are apparent at low values of Sl. 630 

In the new model, the hydraulic conductivity is split into two components: the bulk water component and 631 

the liquid film component. The bulk water component is represented by a new modified version of the Mualem 632 

model, able to capture the fact that bulk water flow ceases when the bulk water network becomes 633 

discontinuous. As in the conventional Mualem model, the bulk water component of hydraulic conductivity in 634 

the new model can be predicted simply from knowledge of the saturated hydraulic conductivity ks and 635 

information about the SWRC. The liquid film component of hydraulic conductivity is represented by a semi-636 

empirical relationship. This relationship involves a soil constant that can either be evaluated by fitting 637 

experimental values of hydraulic conductivity in the low degree of saturation range (where water flow is only 638 

in the liquid films) or it can be estimated from the effective particle size D10 and the porosity . This means 639 

that, in the absence of experimental measurements of hydraulic conductivity under unsaturated conditions, the 640 

new model can be used to predict the SHCC over the full range of Sl based solely on knowledge of the SWRC 641 

and the values of ks, D10 and . The new model has been validated against experimental data. 642 

The new hydraulic constitutive model has been implemented in the CODE_BRIGHT finite element 643 

software and applied in a numerical study of the hydraulic behaviour of capillary barrier systems. The new 644 

model is able to predict the phenomenon of water breakthrough from the finer layer to the coarser layer of a 645 

capillary barrier system much better than the conventional van Genuchten-Mualem model. Moreover, the new 646 

model is able to capture the role of the liquid film flow, which is often neglected in numerical modelling. The 647 

simulations presented in the paper show that the liquid film flow can have a significant influence on the 648 
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variation of suction in the coarser layer of a capillary barrier system, even prior to breakthrough, particularly 649 

at low infiltration rates. 650 

The new hydraulic constitutive model is expected to find many other applications in situations where liquid 651 

flow occurs in coarse-grained soils at very low degree of saturation, such as during evaporation from a ground 652 

surface consisting of a coarse-grained soil. 653 
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List of tables 774 

Table 1. General properties of soils 1-11 775 

Soil n° Soil type Reference* 
ks  

[m/s] 
 

D10  

[mm] 

D50 

[mm] 

1 Sand N (4660) 7.240x10-5 0.46 0.0647 0.3013 

2 Sand N (4661) 1.320x10-4 0.43 0.0722 0.3113 

3 Sand N (4650) 6.791x10-5 0.38 0.0722 0.3195 

4 Loamy sand N (4011) 2.176x10-6 0.419 0.0174 0.1121 

5 Loamy sand N (4062) 1.508x10-6 0.32 0.0265 0.1041 

6 Shonai Sand Me 1.093x10-4 0.43 0.1317 0.3099 

7 Sandy Loam N (4172) 3.738x10-6 0.42 - 0.0915 

8 Silt Loam N (4182) 7.014x10-6 0.435 - 0.0296 

9 Gilat Loam Mu 2.000x10-6 0.44 - - 

10 Rehovot Sand Mu 1.330x10-4 0.40 - - 

11 Grenoble 3 Sand N (4442) 5.000x10-5 0.385 0.1409 0.2859 

* N (ID code): Nemes et al. (2001); Me: Mehta et al. (1994); Mu: Mualem (1976a). 776 

Table 2. Fitted values of CFilm and XD for soils 1-10 777 

Soil n° 
CFilm 

[m s-1.kPa1.5] 

XD (D10) 

[mm.m s-1.kPa1.5] 

XD (D50) 

[mm.m s-1.kPa1.5] 

1 6.842x10-8 8.20x10-9 3.82x10-8 

2 4.0919x10-8 5.18x10-9 2.23x10-8 

3 3.0120x10-8 3.51x10-9 1.55x10-8 

4 3.9372x10-8 1.18x10-9 7.60x10-9 

5 3.8297x10-8 1.49x10-9 5.86x10-9 

6 2.7805x10-9 6.42x10-10 1.51x10-9 

7 1.6153x10-7 - 2.55x10-8 

8 1.5310x10-7 - 8.02x10-9 

9 3.3616x10-8 - - 

10 7.3879x10-10 - - 

Default - 2.35x10-9 1.08x10-8 

Table 3. Model parameter values for soils 1-11 778 

Soil 

n° 
n (VG) 

 (VG) 
[kPa-1] 

Slr 

(VG) 

n 

(modVG) 
 (modVG)  (modVG) 

sBWD (modM) 

[kPa] 

1 1.4153 2.2105 0.0864 1.4643 2.3245 0.0125 50 

2 1.7129 1.3388 0.0780 1.7820 1.3553 0.0096 12 

3 2.198 0.4434 0.0810 2.4487 0.4398 0.0108 40 

4 1.6767 0.2348 0.1314 1.8519 0.2371 0.0204 40 

5 1.3739 0.2826 0.0000 1.3739 0.2826 0.0000 400 

6 3.9820 0.4598 0.0762 4.6368 0.4641 0.0105 4.7 

7 1.2844 0.2253 0.0000 1.2844 0.2253 0.0000 200 

8 1.2664 0.2286 0.0000 1.2664 0.2287 0.0000 600 

9 2.4417 0.1709 0.1919 3.3255 0.1774 0.0287 14 

10 3.1295 0.4645 0.0289 3.2450 0.4664 0.0038 8 

11 6.3045 0.2244 0.2691 6.4199 0.2259 0.0232 6.475 

Table 4. Material parameter values for the numerical analyses 779 

Material  
ks 

[m/s] 

D10 

[mm] 

 
[kPa-1] 

n 
Slr  

(VG) 
  

(modVG) 
Sls 

sBWC 

[kPa] 

XD 

[mm.m s-1.kPa1.5] 

F.L. VG-M 0.38 3x10-6 - 0.306 2.02 0.184 - 1 - - 

C.L. VG-M 0.30 10-2 - 5.851 2.44 0.033 - 1 - - 

C.L. modVG-modM 0.30 10-2 - 5.851 2.44 - 0.088 1 0.7 - 

C.L. modVG-modM+LF 0.30 10-2 5 5.851 2.44 - 0.088 1 0.7 2.35x10-9 

 780 
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List of figures 781 

 782 

Fig. 1. Liquid water forms in unsaturated soils. 783 

 784 

 785 

Fig. 2. Typical (a) SWRC and (b) SHCC, with key transition points indicated. 786 

 787 
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 788 

Fig. 3. Comparison between the hydraulic constitutive models and experimental data for Shonai sand (Mehta et al. 789 

1994): (a) SWRC and (b) SHCC. 790 

 791 

 792 

Fig. 4. Graphical procedure for simplified estimation of Sl,BWD, Sl,BWC, Sl,BWEX and Sl,BWE. 793 

 794 

 795 

Fig. 5. Qualitative comparison between predicted SHCCs for a finer-grained soil and a coarser-grained. 796 

 797 
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 798 

799 

Fig. 6. Liquid film component of the hydraulic conductivity (Eq. 10) fitted to experimental data in the range where the 800 

hydraulic conductivity is governed by the liquid film component (soils 1-10).  801 

 802 
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803 

Fig. 7. Comparison between experimental data and SWRC and SHCC models for soils 1-11. 804 
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 805 

Fig. 8. Numerical model: (a) mesh and hydraulic properties of the materials, (b) SWRCs and (c) SHCCs. 806 

 807 

 808 

Fig. 9. Predicted time histories of water velocity across the interface for (a) infiltration rate i1 and (b) infiltration rate i2; 809 

symbols indicate the times at breakthrough. 810 

 811 
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 812 

Fig. 10. Suction (a, b) and degree of saturation (c, d) profiles at breakthrough for infiltration rates i1 and i2. 813 


