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Abstract

The fast-growing offshore wind energy sector brings opportunities to provide a sus-

tainable energy resource but also challenges in offshore wind turbine (OWT) opera-

tion and maintenance management. Existing operational simulation models assume

deterministic input reliability and failure cost data, whereas OWT reliability and fail-

ure costs vary depending on several factors, and it is often not possible to specify

them with certainty. This paper focuses on modelling reliability and failure cost

uncertainties and their impacts on OWT operational and economic performance.

First, we present a probabilistic method for modelling reliability data uncertainty with

a quantitative parameter estimation from available reliability data resources. Then,

failure cost uncertainty is modelled using fuzzy logic that relates a component's fail-

ure cost to its capital cost and downtime. A time-sequential Monte Carlo simulation

is presented to simulate operational sequences of OWT components. This operation

profile is later fed into a fuzzy cost assessment and coupled with a wind power curve

model to evaluate OWT availability, energy production, operational expenditures and

levelised cost of energy. A case study with different sets of reliability data is pres-

ented, and the results show that impacts of uncertainty on OWT performance are

magnified in databases with low components' reliability. In addition, both reliability

and cost uncertainties can contribute to more than 10% of the cost of energy varia-

tion. This research can provide practitioners with methods to handle data uncer-

tainties in reliability and operational simulation of OWTs and help them to quantify

the variability and dependence of wind power performance on data uncertainties.
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1 | INTRODUCTION

Offshore wind energy has grown rapidly in the last decade, and it is still expected to rise in the coming years. From just over 2 GW in 2009, the

global installed capacity of offshore wind energy has increased more than 11 times to over 23 GW in 2018 (Figure 1), representing an annual

ABBREVIATIONS: AEP, annual energy production; CAPEX, capital expenditure; FIS, fuzzy inference system; GW, gigawatt; LCOE, levelised cost of energy; MCS, Monte Carlo simulation; MW,

megawatt; NPV, net present value; O&M, operation and maintenance; OPEX, operational expenditure; OWT(s), offshore wind turbine(s); TEP, total energy production; TSMCS, time-sequential

Monte Carlo simulation.
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growth rate of over 30%.1 Currently, approximately 80% of the installed capacity of offshore wind comes from Europe, with the United Kingdom

(8.3 GW) and Germany (6.4 GW) leading the industry. In the next decade, the United Kingdom aims to meet a third of the country's electricity

demand from offshore wind with a total expected generation capacity of 30 GW in 2030.2 Asian economies aim to build up to 100 GW of off-

shore wind power by 2030.3 The United States also has a plan to increase its offshore wind energy and reach 22 GW by 2030 with a series of

projects in its north-eastern coast.4 The fast-growing offshore wind energy sector brings opportunities for providing a green and sustainable

energy but also challenges in offshore wind turbine (OWT) modelling and management.

Operational simulation can provide useful information for performance evaluation, cost of energy estimation and operation and maintenance

(O&M) planning and optimisation of OWTs. The O&M of offshore wind is complex and costly. It is generally higher than its onshore counterpart

and contributes approximately 30% to the cost of energy.5–8 OWT O&M modelling and simulation are complex, as they involve several factors

such as component reliability, turbine system characteristics, wind speed data, maintenance strategy and costs.9,10

Wind turbine component reliability is a critical input to the operational simulation of OWTs. Existing operational simulation models often

assume a fixed failure rate or failure probability for the wind turbine. In the literature, reliability data are often collected and analysed for the tur-

bines that have been operating for several years,11,12 whereas the operational simulation needs to model and predict the operation of future

OWTs. The lack of data problem has been an issue in the research community, which has been mentioned in previous studies.12,13 Particularly,

operators and manufacturers tend to keep reliability and cost data for themselves, and there have been very few sources of offshore reliability

data published. Data sometimes are published, but information about wind farm/wind turbine is commonly anonymised.14,15 The problem may be

less severe for wind farm developers as they can have some data directly from manufacturers. However, data uncertainty is still a problem as for

newly developed wind turbines with limited operating experience, and its true reliability and failure cost are not known with certainty. In addition,

reliability of wind turbine components can vary greatly depending on manufacturer, technology, location of deployment and maintenance strat-

egy. This fact creates a challenge for researchers and practitioners in investigating and modelling the OWT reliability and operation.

Furthermore, several factors are involved when dealing with failure and repair cost estimation, and this cost represents a major portion of the

total O&M cost of OWTs.16,17 In operational simulation, the cost per failure of a wind turbine is often required as an input to be specified in

advance. Cost data for OWT failures and repairs are not easy to obtain because of the competitive nature of the offshore wind industry. A recent

paper14 reported the average material cost for repair. However, there are several other factors such as repair logistics, equipment, manpower and

detailed component failure consequences, which can all contribute to the failure cost. The uncertainty of failure cost makes it challenging to spec-

ify a single crisp value for this input explicitly. Thus, the need for a method to represent the cost data uncertainty in OWT reliability modelling and

O&M cost estimation is viable.

In the literature, it has been shown that simulation is a powerful and flexible tool for analysing OWT operation, and several O&M simulation

studies have been performed.18 Although input data uncertainty is a critical factor that wind energy system operators need to deal with,19 existing

simulation models vastly ignore the uncertainties of data in reliability and O&M cost evaluation.9,20–32 Therefore, this paper focuses on modelling

two types of uncertainties related to reliability data and failure cost of OWT components. An OWT simulation framework employing a time-

sequential Monte Carlo simulation (TSMCS), probabilistic techniques and fuzzy logic is proposed to evaluate the impacts of reliability and failure

cost uncertainties on the OWT availability, energy production and cost of wind energy.

Existing operational simulation models take deterministic values of input reliability and cost data, and it is common to vary the input data and

perform a sensitivity analysis to estimate output performance. Sensitivity analysis can be effective to estimate the change of output depending by

changing each of the input variables. However, if there is a probabilistic variation of reliability data, a method to quantify the statistical informa-

tion of OWT output performance is needed. Moreover, sensitivity analysis relies on the assumption that a change of one variable is independent

from that of other variables. Sensitivity analysis is not useful when there are associations between different variables, such as component capital

cost, downtime and cost per failure in this case. Thus, the contributions of this paper are the methodologies for handling input data uncertainty

F IGURE 1 Offshore wind energy installed capacity growth
(2009–2018) [Colour figure can be viewed at wileyonlinelibrary.com]
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while considering the relationship between different input variables, including a probabilistic reliability data modelling and a fuzzy cost inference

system.

The remaining part of this paper is organised as follows. Section 2 provides a literature review on the existing operational simulation of both

onshore wind turbines and OWTs, their objectives and methods used. Section 3 presents two types of uncertainties related to reliability and cost

data and an OWT operational simulation framework incorporating these types of uncertainties into the TSMCS to estimate the operational and

economic performance of OWTs. A case study on a future 10-MW direct-drive OWT is presented, and the impacts of two types of uncertainties

are analysed in Section 4. Finally, Section 5 concludes this research.

2 | LITERATURE REVIEW

Wind turbine and wind farm operational simulation is a thriving research topic that has been the focus of many studies since the early 2000s. The

first work on wind farm operational simulation was performed within the Dutch Offshore Wind Energy Converter (DOWEC) project,20 which

focused on accessibility, that is, the possibility that wind turbines are accessible when maintenance is required. A Monte Carlo simulation (MCS)

was developed to evaluate wind farm availability and examine the relationship between accessibility and availability. Using the reference wind

farm in DOWEC project,20 the Energy Research Centre of the Netherlands (ECN) developed an ECN O&M tool for estimating the costs of off-

shore wind farms and has continuously updated it in subsequent publications.21,22,27 The ECN tool was developed using a ‘what-if analysis’ with

several options for different types of maintenance to estimate the O&M costs of offshore wind farms.

A group of researchers at Texas A&M and Texas Tech University simulated wind farm O&M using the discrete event system specification

(DEVS) simulation.23,26,32 The DEVS simulation is a hierarchical approach allowing the construction of components, wind turbines and wind farm

models and coupling them together to simulate failure and maintenance events. A wind turbine may be in either operating or failed state, which

can be simulated by assuming that the state transition probabilities of its components are given. McMillan and Ault24 used MCS to simulate the

failures of wind turbines and analysed the benefits of condition monitoring. Focusing on two maintenance strategies, namely, corrective mainte-

nance and preventive maintenance, Santos et al.25 used Petri net and MCS for determining the best preventive maintenance intervals. By

employing a sequential MCS, a reliability and operation simulation framework is developed to analyse several OWT performance indicators such

as energy not supplied, failure cost and cost of energy depending on its component reliability data.9

In the literature, there are some offshore wind farm operational simulation models aiming to support maintenance and logistics planning. The

Norwegian Offshore Wind power lifecycle cost and benefit tool (NOWIcob), developed by the SINTEF Energy Research Centre, used an event-

based MCS to simulate the wind farm O&M costs considering weather, maintenance and logistics.30 Endrerud et al.28,29 presented a logistics deci-

sion support model using an agent-based simulation for O&M of offshore wind farms. This model was later integrated into a commercial tool,

Shoreline.33 Dalgic et al.31 extended the ECN and NOWIcob models by defining in details four sets of input data related to climate, vessel specifi-

cations and fleet configuration, wind farm/wind turbine information and different types of costs. All the maintenance and logistics models require

extensive input data, which are not always available, and assumptions on known reliability and deterministic cost data. With these assumptions,

different maintenance strategies can be simulated to identify the best strategy for the specific and given context.

Although there are uncertainties of input parameters related to reliability and cost in wind turbine operational simulation, all of the above sim-

ulation models assume that these parameters are given. To date, there has been only one paper by Scheu et al.34 that considers the reliability

uncertainty in wind turbine operational simulation, where the wind farm availability was investigated for nine types of distribution of wind turbine

failure time. This study revealed that the availability could vary significantly by simply changing the failure distribution. However, Scheu et al.34 is

more of a theoretical study as they used classical failure distributions with given mathematical formulation, and discussion on how practical reli-

ability data can be used in their study was not provided. In addition, the cost uncertainty and analysis have been vastly ignored in the literature.

Thus, this paper attempts to bridge the gap by investigating the methods for modelling and simulation of both reliability and cost uncertainties in

OWT reliability and operational simulation. The modelling and simulation methods in this research will provide OWT operators and wind power

performance analysts with approaches to handle data uncertainty and to quantify its impacts on the variation of OWT operational and economic

performance.

3 | UNCERTAINTIES MODELLING AND OWT OPERATIONAL SIMULATION

In general, a comprehensive OWT reliability and operational simulation takes input data, including component reliability data, wind turbine system

characteristics, wind speed data and failure cost information, and simulates the operation of the wind turbine throughout its lifetime (Figure 2).

Several performance indices, that is, the output of the simulation, such as availability, energy production and cost of energy, can be estimated

from the operational simulation. The core parts in the OWT operational simulation include (i) reliability models to simulate the failure and repair
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(or maintenance) of the wind turbine components; (ii) a wind power model to estimate the power output of the wind turbine; and (iii) a cost of

energy model to evaluate its economic performance.

In this paper, we assume that the OWT characteristics and wind speed data are given, and we focus on the modelling and analysis of OWT

performance under the reliability and failure cost uncertainties.

Although some of the large OWTs recently developed have limited operating experiences, their reliability can be estimated with some degree

of uncertainty. The basis for estimating the reliability of new OWT components can come from the fact that existing wind turbines are not

entirely similar but have some common characteristics with the new wind turbine. Thus, this paper presents methods for modelling data uncer-

tainty and investigates their impacts on the performance of OWTs.

In the remaining part of this section, two types of uncertainties related to reliability and failure cost data are described and modelled. Then,

they are integrated into an OWT operational simulation framework for estimating the operational and economic performance of the wind turbine

under uncertainties.

3.1 | Component reliability data uncertainty

Component reliability data are important inputs for OWT operational simulation. Reliability data include failure rate λ and repair rate μ; the former

represents the failure frequency per unit time repair, and the latter is a multiplicative invert of the expected downtime per failure d. In operational

simulation, the failure and repair processes of wind turbine components are simulated using reliability data and a degradation model based on the

assumption of the Markovian process for failure and repair transitions. In existing simulation studies, deterministic values of failure and repair

rates are used to represent the component reliability; that is, parameters of component reliability distributions are assumed to be known with

certainty.

In this paper, the failure rates and expected downtimes of OWT components are not known with certainty. Instead, only some reference reli-

ability databases in the literature are available, and a method allowing probabilistically sample failure rate and downtime from multiple distribu-

tions is presented. This model is applicable for the situation where the future OWT is not entirely similar to but has some common characteristics

with and can be referred to existing wind turbines reported in the literature. A probabilistic reliability data matrix is introduced to represent the

probabilities that a component's reliability is similar to its reliability from existing databases. If there are n components and mf available reference

failure rate databases, the probabilistic reliability data matrix for failure rate, Pf, is presented in Equation 1.

Pf =

p f
11 p f

12 … p f
1m f

p f
21 p f

22 … p f
2m f

… … … …

p f
n1 p f

n2 … p f
nm f

2
666664

3
777775
: ð1Þ

Each element p f
ij in the probabilistic reliability data matrix represents the probability that the failure rate of component i is similar to its failure rate

from database j.

Similarly, if there are md reference reliability databases for downtime, the probabilistic reliability data matrix for downtime, Pd, is presented as

in Equation 2.

F IGURE 2 General offshore wind turbine
(OWT) operational simulation (no uncertainties)
[Colour figure can be viewed at wileyonlinelibrary.
com]
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Pd =

pd11 pd12 … pd1md

pd21 p f
22 … pd2md

… … … …

pdn1 pdn2 … pdnmd

2
66664

3
77775, ð2Þ

where pdij represents the probability that the expected downtime of component i is similar to its expected downtime from database j.

An important characteristic of the two matrices Pf and Pd is that the total sum of all elements in a row is equal to 1; that is, for each compo-

nent i,i = 1,2,…,n, in the OWT, we have the following expression:

X
j
pij = 1,8j2 J: ð3Þ

In Equation 3, J is the set of all available reliability databases. The value of each element in the probabilistic reliability data matrices, Pf and Pd,

can be either determined by expert judgements or estimated from available reliability data. When simulating the operation of a new OWT, the

turbine designers and developers (experts) can specify the likelihood that a component's reliability gets a value of its reliability in a reference reli-

ability database. In addition, there are reviews on existing wind turbine reliability databases,12,35 which investigate a large population of wind tur-

bines and provide averages and ranges of failure rate and downtime. Data obtained from this large population can be used to estimate the

reliability data uncertainty and probabilistic reliability matrices Pf and Pd. In the following part of this section, mathematical formulations for esti-

mating pfij in the failure rate probabilistic matrix Pf are presented. The elements in Pd can be calculated similarly.

Let �λi and Rλ,i be the mean and range of failure rate drawn from the large reliability data population for component i. A failure rate deviation

of database j from the mean failure rate for component i is calculated as in Equation 4.

Δij = λi,j− �λi
�� ��: ð4Þ

From Equation 4, we can measure the degree of uncertainty by defining an indicative uncertainty factor qij of database j, representing the propor-

tion of failure rate deviation over its range, as follows:

qij =
Δij

Rλ,i
: ð5Þ

It is noted that the failure rate deviation is always less than the failure rate range, that is, the difference between the largest and the smallest in

the population. Thus, qij always takes a positive value between 0 and 1.

Among the population, the possibility that the failure rate of component i is taken from database j can be represented using the following

equation:

p f
ij = ki 1−qij

� �
= ki 1−

Δij

Rλ,i

� �
, ð6Þ

where ki is a normalising coefficient to make
P
j
pfij =1, that is,

X
j
p f
ij =

X
j
ki 1−

Δij

Rλ,i

� �
=1: ð7Þ

If there are mf available reference reliability databases for failure rate, Equation 7 can be rewritten as

ki m f −
P

jΔij

Rλ,i

� �
=1) ki =

Rλ,i

m fRλ,i−
P

jΔij
: ð8Þ

From Equations 6 and 8, we have

p f
ij =

Rλ,i

m fRλ,i−
P

jΔij
1−

Δij

Rλ,i

� �
: ð9Þ
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As the probability p f
ij 2 0,1ð Þ and

P
j
p f
ij =1, the random selection of failure rate data can be performed using an MCS with random numbers. The

OWT component failure rate can be generated using a series of n random numbers following the uniform distribution ri�U(0,1),i = 1,2,…,n. The

failure rate of component i is drawn from database j if

X j−1

k =0
p f
ik < ri ≤

X j

k =0
p f
ik: ð10Þ

3.2 | Failure cost uncertainty

In OWT operational simulation, component failure cost is an important factor in estimating the total failure cost, which is later used for levelised

cost of energy (LCOE) estimation. In the literature, component failure cost is either estimated as a percentage of its capital cost9,24 or discretised

by the types of repair and maintenance methods.31,36 In both cases, the cost per failure is assumed to be known with certainty. However, it is

challenging to specify this cost value in practice, as it can vary widely depending on component failures, downtime, materials, maintenance man-

power and repair equipment. Therefore, in this section, instead of using a crisp, that is, single and given, value for component failure cost, fuzzy

numbers and a fuzzy inference system (FIS) are used to represent the relationship between component capital cost, downtime and component

failure cost.

3.2.1 | Fuzzy set theory and uncertainty representation

In fuzzy set theory,37,38 a fuzzy set ~A, built from a reference set of real numbers U 2 R, is defined as follows.

~A= xi,μA xið Þf g, ð11Þ

where xi 2 U, and μA : U ! [0,1] is the membership function of A; the value μA(x) 2 [0,1] is called the degree of membership of x in A. Figure 3

shows an example of a triangular fuzzy membership function, which can be represented by three real numbers a,b and c.

Intuitively, the fuzzy set theory implies that an element can either belong to a set or not, and the possibility that an element belongs to the

fuzzy set is the membership function value. In Figure 3, a value between (a,b) has the degree of membership between 0 and 1 and thus can ‘par-

tially’ belong to set A.

In the literature, fuzzy logic has been applied to the problem of wind turbine speed control, such as in Jauch et al.39 and Bououden et al.40 It

was also used to diagnose and identify failure modes on the basis of symptoms of wind turbine components.41 To the authors' best knowledge, it

has not been developed for quantifying the uncertainty and evaluating the wind turbine failure cost. Thus, in this study, a FIS is presented to pre-

dict the failure cost on the basis of component capital cost and random downtime sampled from the MCS.

3.2.2 | Failure cost FIS

One of the applications of the fuzzy set theory is to build FISs or fuzzy expert systems, which can be used to acquire expert knowledge in the

form of logical statements called fuzzy rules.38 In fuzzy rules, the variables can take linguistic ‘values’ in word or sentence from natural language,

F IGURE 3 Membership function of fuzzy numbers [Colour figure can be
viewed at wileyonlinelibrary.com]
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for example, low, medium and high; and the relationship between different variables is represented using ‘if–then’ clauses. In this paper, a FIS is

built to represent logical relationships between component capital cost, downtime per failure and its failure cost, as shown in Figure 4.

The inputs of the fuzzy failure cost estimation include downtime and component cost (capital cost). Downtime data can be generated from

the MCS of operation using reliability data (Section 3.3). Component capital cost (ci) data are available from manufacturer factsheet or industrial

reports such as that of BVG Associates.42

The fuzzy failure cost estimation also works on the basis of FIS logical rules representing the failure cost uncertainty and its ‘fuzzy’ relation-

ship with downtime and component cost. In this paper, the FIS rules describe the inference logic between the FIS inputs (downtime and compo-

nent cost) and output (failure cost), as shown in Figure 5. Intuitively, it is assumed that the failure consequence in terms of cost will be more

severe for more extended downtime and higher component cost.

In Figure 5, the FIS rules present the relationship between downtime, component cost and failure cost in a matrix form. Each coloured cell

contains an inference relation with an underlying ‘if–then’ statement, for example, ‘if component cost is high and downtime is long, then the fail-

ure cost is high’ and ‘if component cost is low and downtime is long, then the failure cost is medium’. In general, FIS is quite flexible, as several

types of logic rules and operators such as and, or, not can be defined depending on expert knowledge and available information.

A FIS is developed by two essential elements of fuzzy membership functions and FIS rules. Whereas FIS rules are constructed using intuitive

logic with linguistic relation, fuzzy membership functions can be estimated using data.43 A procedure for developing the FIS for failure cost esti-

mation is presented as follows.

1 Generate random downtime data for fuzzy numbers.

2 Partition the data into groups and estimate the membership function in each group.

3 Define the fuzzy logic rules and relations between input and output.

4 Define fuzzy operators and defuzzification method for output failure cost estimation.

In this paper, we employ the MCS and reliability data to generate data for fuzzy membership function construction. The purpose of this simu-

lation is to obtain a set of downtime samples for determining the fuzzy numbers to represent the downtime. The Gaussian membership function44

is used to estimate the parameters of fuzzy membership function:

μA di,c,sð Þ= e−
di −cð Þ2
2s2 , ð12Þ

where c and s are two parameters representing the mean, that is, central point, and standard deviation of the Gaussian membership function and

di is a downtime sample data point from the MCS. A reference simulation case in the literature with levels of repair time and cost such as minor,

medium and major36 is used to partition the simulated data into groups that match the qualitative levels in the FIS rules' matrix. Assume that there

are K groups of reference data and rk is the reference data in group k; the central point ck, that is, μA(ck) = 1, in each group can be estimated using

Equation 13.

F IGURE 4 Fuzzy failure cost estimation [Colour figure can be viewed at
wileyonlinelibrary.com]

F IGURE 5 Fuzzy inference system (FIS) rules in the fuzzy failure cost
estimation [Colour figure can be viewed at wileyonlinelibrary.com]
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ck = rk

P
i
dið Þ=IP

k
rkð Þ=K

, ð13Þ

where I is the total number of data points generated from the MCS. A membership function should take a value between 0 and 1, and its cumula-

tive value is equal to 1. A Gaussian function with a standard deviation of the group's standard deviation can be used for representing a member-

ship function of generated data.

Once the central points and standard deviations of membership functions in all groups are determined, the FIS rules in ‘if–then’ statements

(Figure 5) are added to construct the FIS. Finally, the computational unit within FIS employs the FIS rules, fuzzy operators and defuzzification

methods38 to estimate the FIS output. The output of FIS is the failure cost, which can further be used to evaluate the wind turbine economic perfor-

mance indicators. The FIS for failure cost estimation is integrated into OWT operational simulation framework as presented in the next section.

3.3 | OWT operational simulation framework under uncertainties

The two types of uncertainties in Sections 3.1 and 3.2 are integrated into an OWT reliability modelling and operational simulation framework

(shown previously in Figure 2) to evaluate the operational and economic performance of the OWT as in Figure 6.

In the proposed reliability modelling and operational simulation framework, reference reliability data, that is, {λ} and {μ}, from existing reliabil-

ity surveys are inputs for probabilistic reliability data uncertainly modelling (Section 3.1). A TSMCS is used to generate multiple sequences of ran-

dom failure/repair events of the OWT using the component and system reliability models. More details about the TSMCS are presented in

Section 3.3.1. The output of TSMCS can be used to estimate the system availability as well as the system operation and downtime to feed into

the wind power model for energy production (Section 3.3.2) and fuzzy failure cost estimation (Section 3.2), respectively. The wind speed and wind

power models employ historical wind speed data to create a time series of future wind speed using an autoregressive moving average (ARMA)

model.45 The wind power model is, then, coupled with theTSMCS for estimating the energy production. At the same time, downtime and compo-

nent capital cost are used in the fuzzy failure cost estimation for evaluating the variable failure cost of OWT. The simulation can be run for the

entire OWT lifetime, for example, 20 years, and finally, the energy production and the total failure cost are integrated into the LCOE estimation

to calculate the LCOE of OWT.

It is noted that the wind speed and other weather conditions may have an influence on component degradation and thus affect its failure

probability. Some papers have found that there are correlations of component reliability and environmental conditions such asTavner et al.46,47 In

this work, we focus on data uncertainty modelling and investigate the impacts of data uncertainty on OWT operational simulation, and it is

assumed that the wind speed and other weather conditions have no influence on the failure rate. Also, in other simulation models, focusing on

maintenance and logistics often requires met-ocean data to do the planning of activities, as this type of data may relate to the OWT accessibility

and selection of transportation vessels. This paper mainly focuses on reliability modelling and the impacts of reliability uncertainty on the perfor-

mance of OWTs. The impacts of maintenance logistics and met-ocean data, in this work, are assumed to reflect in the downtime per failure and

its uncertainty as presented in Section 3.1.

3.3.1 | Component degradation model and TSMCS

As mentioned earlier, in this paper, the failure and repair of each component in the OWT are assumed to follow a two-state Markov process as in

Figure 7.

F IGURE 6 Offshore wind turbine
(OWT) operational simulation (with
uncertainties) [Colour figure can be
viewed at wileyonlinelibrary.com]
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A failure of the component brings it from the working or ‘Up’ state to the failure or ‘Down’ state with failure rate λi , whereas a repair brings it

from the ‘Down’ state to the ‘Up’ state with a repair rate μi. From the Markov degradation process, an MCS is employed to simulate the failure

time t fi and repair time tri of a component i, as follows.

t fi = −
1
λi
ln r1ð Þ,

tri = −
1
μi
ln r2ð Þ,

r1, r2~U 0,1ð Þ:

ð14Þ

The failure and repair times of each component are generated sequentially until the total failure and repair times reaches the turbine opera-

tional lifetime and therefore is called a TSMCS. The OWT in this paper is regarded as a series system of several s-independent components. The

system is in the ‘Up’ state if and only if all of its components are in the ‘Up’ state. The illustration of getting a system operating sequence from

two components' operating sequences is shown in Figure 8.

In Figure 8, the first time index, for example, t11, is similar to the first time to failure generated by the MCS. Subsequent time indices are accu-

mulated from repair or failure times as in the set of equations in Equation 14.

After several simulation runs, expected values for different performance indicators are calculated as in Section 3.3.3. The number of SMCS

runs, N, is determined by setting a threshold for relative error, ε, as in Dao et al.9

ε=
σTEP × Z

μTEP
ffiffiffiffi
N

p ≤ α, ð15Þ

where μTEP and σTEP are the mean and standard deviation of a performance indicator, such as the total energy production (TEP); Z is a value rep-

resenting the confidence level, for example, Z = 1.96 for 95% confidence level; and α is a desired accuracy threshold.

3.3.2 | Wind power model

The wind power output of an OWT depends on its reliability and wind speed at the site location. For a normal working turbine, the relationship

between hourly wind speed at time t,that is, vt, and wind turbine power output at the same time, that is, Pt, is shown in Equation 16.

Pt =

1
2
ρCpArv

3
t when vcut− in ≤ vt < vrated

Prated when vrated ≤ vt ≤ vcut−out

0 otherwise

0
BBBB@

1
CCCCA, ð16Þ

where Prated is the rated power; Cp is a power coeffient; ρ is the air density; Ar is the rotor swept area; and vrated, vcut − in and vcut − out are rated,

cut-in and cut-out wind speed, respectively.

F IGURE 7 Component degradation model

DAO ET AL. 9



It is noted that the actual power output is a combination of its operational simulation, that is, a sequence of ‘Ups’ and ‘Downs’, and the theo-

retical power output as in Equation 16. The wind turbine generally generates power when wind speed is between vcut − in and vcut − out. However,

when a failure occurs, that is, the turbine is in the ‘Down’ state, there is no power output regardless of the current wind speed. Therefore, the

actual power output at time t considering the reliability is

Pw tð Þ=Pt × δ tð Þ, ð17Þ

where δ(t) is a zero–one function, taking the value 1 when the wind turbine is in the ‘Up’ state and 0 when the system is in the ‘Down’ state.

3.3.3 | Wind turbine operational and economic indicators

In this paper, a set of wind turbine operational and economic indicators are used to evaluate the performance of the OWT and investigate the

impacts of uncertainties. These indicators include availability, energy production, failure cost and LCOE.

• Time-based availability: From the TSMCS, the total time that the system is in either ‘Up’ or ‘Down’ state can be estimated, and the system

time-based availability (AT) is calculated as the ratio between the total up time and the total time in simulation.

AT =

P
tupP

tup +
P

tdown
: ð18Þ

• TEP and annual energy production (AEP) and energy-based availability: TheTEP generated by the OWT in its entire lifetime is

TEP=
X

t2TΔt× Pw tð Þ, ð19Þ

where Δt is the timestep, that is, the interval between two consecutive time points, that the wind speed and wind power estimated in Equation 16.

The TSMCS is performed in the entire turbine's lifetime, T, which is typically 20–25 years. It is assumed that there are 8760 h per year, and the

AEP of year y can be calculated for year y with a set of time Ty.

F IGURE 8 Illustration of the offshore wind
turbine (OWT) and its components operation
using time-sequential Monte Carlo simulation
(TSMCS) [Colour figure can be viewed at
wileyonlinelibrary.com]

10 DAO ET AL.

http://wileyonlinelibrary.com


AEPy =
X

t2Ty
Δt× Pw tð Þ, ð20Þ

whereTy = [1+8760(y − 1), 8760y],y = 1,2,…. It is noted that TEP =
P

yAEPy.

From the energy production, the energy-based availability (AE) can be estimated as

AE =
TEP
EPmax

, ð21Þ

where EPmax is the maximum theoretical energy production that can be calculated using the theoretical power curve shown in Equation 16. It is

seen that availability and energy production are purely technical and operational performance indicators; there are no economic factors involved

in the calculation of these performance indicators. Two other economic indicators are also examined as follows.

• Total failure cost: The total failure cost, CF, is the summation of all individual failure costs of each component in a wind turbine's entire

lifetime.

CF =
X

t2T
X

i
c f,i ci,dið Þ, ð22Þ

where the component failure cost cf,i(i, di) is estimated using the fuzzy failure cost estimation based on the component capital cost ci and down-

time di.The fuzzy logic and estimation used data generated from the MCS. Similar to the AEP, the annual failure cost, CF,y, can also be calculated

for each year y.

CF,y =
X

t2Ty

X
i
c f,i ci ,dið Þ, ð23Þ

and CF =
P

yCF,y.

• LCOE: LCOE is the total net present value (NPV) of annual costs, NPVCy, over the total NPV of annual energy yield, NPVEy:

LCOE =

P
yNPVCyP
yNPVEy

=

P
y
CAPEXy +OPEXy

1+ rð ÞyP
y

AEPy
1+ rð Þy

, ð24Þ

where CAPEXy is the capital expenditure (CAPEX) allocated to year y to acquire and install the OWT; OPEXy represents the annual operational

expenditure (OPEX) in year y; AEPy is the AEP in year y; and r is the discount rate.

In this paper, it is assumed that CAPEX is given and OPEX includes a fixed OPEX, which represents the fixed costs such as rental, administra-

tion and insurance, and a variable OPEX associated with failures and repairs of the wind turbine. The calculation of OPEX in year y is shown in

Equation 25.

OPEXy =OPEXFix +CF,y , ð25Þ

where CF,y is the cost from the operational simulation and failure cost estimation as shown in 23.

4 | CASE STUDY, RESULTS AND DISCUSSIONS

In this section, a numerical study using reliability data from the literature is performed to investigate the impacts of uncertainties on OWT opera-

tional and economic performance. An exemplar 10-MW direct-drive, which is suitable for offshore application, is selected. The wind turbine speci-

fication is taken from Bak et al.48 and presented inTable 1.
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In this paper, the data of six major components in the main wind turbine power generation chain are considered, namely, rotor blades, pitch,

drivetrain, generator, converter and other electrical. Three different reliability data sources, namely, LWK, CIRCE and Strath,11,13,14 are selected

for reliability data uncertainty analysis. They are carefully selected from our recent wind turbine reliability data review.12 The main reason for

selecting these data sources is that they contain detailed failure statistics of wind turbine subassemblies reported on the basis of the same wind

turbine taxonomy from the Reliawind project.49

Although the three selected reliability data sources were all collected in Europe, the reliability statistics reported for each component shows a

clear disparity in different databases. They can truly illustrate the uncertainty in reliability data depending on the source of data collection, and

that is suitable for the demonstration purpose of this case study, where cross-comparison and analysis of the impacts different reliability levels on

OWT operational and economic performances are performed. Among the three databases, Strath is a recent offshore reliability data sources by

the University of Strathclyde.14 LWK and CIRCE are among the most comprehensive databases with detailed insights being analysed in a number

of publications,50–53 making them accessible to vastly general readers and, thus, are selected in the case study. Interestingly, in Tavner et al.,50 it

was observed that the reliability tends to decrease for larger turbines in Faulstich et al.11 However, the group of wind turbines with the smallest

power rating actually had the highest failure rate in Reder et al.13 By examining each database closely, a clear trend of reliability and power rating

is not observed, and thus, input component reliability data are directly taken from three databases available in the literature11,13,14 and are

summarised inTable 2.

In Table 2, the selected databases are classified into ‘low–medium–high’ failure rates and ‘short–long’ downtimes. This classification is based

on the values of the wind turbine failure rate/downtime in one database compared with that of other databases. In this case study, it represents

intuitive names of databases that are convenient for the results analysis and uncertainty comparison when the combination of reliability data

takes place (in Sections 4.1 and 4.2). In practice, a database can have a mixture of reliability for different components, and the presented method

will work for any combination of input reliability data.

Data for LCOE estimation, such as CAPEX and component cost, are taken from the recent guide to offshore wind farm by BVG Associates

for a 10-MW wind turbine for offshore application42; fixed OPEX is taken from BEIS report for Round 3 offshore wind in the United Kingdom

predicted for 2020.8 Input wind speed data and the offshore site for wind data to be extracted are from Renewables.ninja54 and the Dogger Bank

wind farm in the United Kingdom,55 respectively. The OWT is expected to operate for a duration of 20 years (which is also the simulation time

span), and the discount rate for LCOE estimation is 10%. Table 3 shows the input cost data in this study.

To analyse the impacts of cost uncertainty, a FIS is designed to represent the linguistic relationships between component cost, downtime per

failure and the failure cost. Four levels of downtime (short, medium, long and very long), three levels of component cost (low, medium and high)

and four levels of failure cost (low, medium, high and very high) are used with reference failure cost data from.36 The Gaussian membership func-

tions44 are employed to represent the downtime and cost data uncertainty. Table 4 shows the details of 12 FIS rules in this case study.

TABLE 1 Wind turbine specifications

Parameter Value

Power rating 10 MW

Rotor diameter 178.3 m

Cut-in wind speed 4 m/s

Rated wind speed 11.4 m/s

Cut-out wind speed 25 m/s

Power factor (Cp) 0.45

TABLE 2 Input reliability data

Component

Failure rate (failures per turbine per year) Downtime (h)

CIRCE13 (low) LWK11 (medium) Strath14 (high) LWK11 (short) CIRCE13 (long)

Rotor blades 0.044 0.194 0.755 42.123 190.73

Pitch 0.029 0.088 1.076 25.147 98.092

Drivetrain 0.016 0.030 0.633 118.185 165.846

Generator 0.029 0.140 0.999 74.361 320.636

Converter 0.006 0.053 0.180 29.867 74.171

Electrical 0.061 0.270 1.322 34.53 74.031
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4.1 | Impacts of reliability data uncertainty

From three failure rate databases and two downtime databases presented in Table 2, 12 possible scenarios (simulation cases) of fixed and uncer-

tain reliability data can be formed, and the proposed operational simulation is performed for all 12 cases. There are six simulation cases with fixed

failure rates and fixed downtimes, that is, no uncertainty included; three cases where the failure rates are fixed and downtimes are uncertain; two

cases where the failure rates are uncertain and downtimes are fixed; and one case where both failure rates and downtimes are uncertain.

In order to evaluate the impacts of reliability data uncertainty, each simulation case is repeatedly run, and the mean and standard deviation of

operational and economic indicators presented in Section 3.3.3 are calculated for all 12 cases. This experiment is designed for analysing the

impacts of the probabilistic reliability data selection used for assigning the component reliability data as in Section 3.1. For each selection of reli-

ability data, several realisations of OWT operational lifetime are simulated in the TSMCS to ensure the relative error for TEP being less than the

desired threshold of 0.01% (see Equation 15, Section 3.3.1). The simulation is developed in Matlab R2018 and built-in Fuzzy logic toolbox. It is

run in a multiple-core Intel Xeon CPU 2.40-GHz server, 256GB of RAM, and Linux operating system. The number of simulation runs and CPU per-

formance summary is presented inTable 5.

On average, it requires more than 3340 TSMCS runs for the TEP to converge to the desired accuracy of 0.01%. A random operational profile

of the OWT is generated per TSMCS run, and the CPU time per TSMCS run is relatively short, that is, approximately 0.32 s. However, theTSMCS

needs to run repeatedly to guarantee the desired accuracy as well as for the reliability data uncertainty evaluation. In total, more than 167 000

operational profiles, that is, simulated lifetimes, are generated per simulation case to obtain the mean and standard deviation of five operational

and economic indicators as in Figure 9.

In Figure 9, the standard deviations are plotted to show the impact of reliability data uncertainty for 12 possible simulation cases (six of them

are fixed input reliability data, and six other cases are with different levels of uncertainty). This figure is useful to (i) illustrate the differences in the

variation between fixed and uncertain reliability data and (ii) compare the variation between different levels of reliability data.

TABLE 3 Input CAPEX, OPEX and component cost

Cost element/component Value (£ thousand)

CAPEX (per MW) 2670

Fixed OPEX (per year) 962

Rotor blades 1450

Pitch 100

Drivetrain 400

Generator 2000

Converter 300

Electrical 400

Abbreviations: CAPEX, capital expenditure; MW, megawatt; OPEX, operational expenditure.

TABLE 4 Fuzzy logical rules

If downtime is And component cost is Then failure cost is

Short Low Low

Short Medium Low

Short High Medium

Medium Low Low

Medium Medium Medium

Medium High Medium

Long Low Medium

Long Medium Medium

Long High High

Very long Low Medium

Very long Medium High

Very long High Very high
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The left-hand-side subfigures (Figure 9A,C,E,G,I) show the mean values of five performance indicators of interest and indicate the general

relationship between reliability data, that is, failure rate and downtime, and the operational and economic performance of the OWTs. Similar pat-

terns can be observed in time-based availability, energy-based availability and AEP; that is, high failure rates and long downtimes lead to low aver-

age availability and energy production and vice versa. For the total failure cost and LCOE figures, high failure rates and long downtimes lead to

high total failure cost and LCOE, with mean values in cases with uncertainty line between the case with low reliability and the case with high reli-

ability. This well agrees with the fact that high failure rate increases the number of failures and long downtime reduces the total operating time,

and both lead to a decrease in OWT operational and economic performance.

The right-hand-side subfigures (Figure 9B,D,F,H,J) provide information about the impacts of reliability data uncertainty on the indicators of

interest. The impacts of reliability data uncertainty are measured by the standard deviation of each indicator. In all subfigures, the variation for six

cases without reliability data uncertainty is minimal, which implies that the MCS produces robust results; that is, the variation caused by the MCS

is negligible and appropriate for uncertainty analysis. The variation is the highest where both failure rate and downtime are uncertain. Interest-

ingly, where there is either failure rate uncertainty or downtime uncertainty, the variation is bigger for the cases with low reliability, that is, high

failure rate or long downtime. This not only means reliability data uncertainty can cause a large variation in the OWT operational and economic

performance but also implies that low reliability magnifies the impacts of reliability data uncertainty on its performance.

4.2 | Impacts of failure cost uncertainty

Further experiments are performed for two cases: (i) the cost per failure is fixed at 10% of the component capital cost, that is, cf,i = 0.1ci, and

(ii) cost per failure is uncertain and estimated using the FIS as presented in Section 3.2. The mean and variation of availability, mean AEP, total fail-

ure cost and LCOE in both cases are presented in Figure 10.

In Figure 10 horizontal axis, ‘Low’, ‘Medium’ and ‘High’ indicate the level of failure rate database when downtime is uncertain; ‘Short’ and

‘Long’ indicate the level of downtime database when failure rate is uncertain; and ‘Both’ indicates both failure rate and downtime are uncertain.

There are disparities in the impacts of cost uncertainty on the operational and economic performance of OWTs in this case study. Similar pat-

terns of mean and standard deviations can be observed in Figure 10A,B,C. The variations are not clearly distinguishable, which means that there

is no correlation between cost uncertainty and the obtained AT,AE and AEP. This is because AT,AE and AEP are purely operational performance indi-

cators, which are dictated by wind turbine reliability data but not the failure cost. However, the impacts of failure cost uncertainty are observed in

Figure 10D,E, where standard deviations of total failure cost and LCOE are higher for the case with cost uncertainty compared with the case with-

out cost uncertainty. Additionally, a similar pattern to Figure 9 is observed; that is, the wind turbine reliability also has impacts on the cost uncer-

tainty; that is, the variation is more significant in turbines with higher rates of failure and longer downtimes.

It is noted that in this study, the OPEX uncertainty can be reflected via the total failure cost. As shown in Equation 25, OPEX includes a fixed

OPEX and variable OPEX associated with the failures of the wind turbine. Because the fixed OPEX is assumed to be a constant in all cases, the

main driving factor in the overall OPEX impact is the total failure cost uncertainty, which is presented in Figure 10D.

In order to quantify the impacts of reliability and cost data uncertainties on different performance indicators of OWTs, the coefficient of vari-

ation, that is, ratio between standard deviation and mean, are calculated for six different cases and presented inTable 6.

In general, a higher coefficient of variation means higher impacts of the uncertainty on the performance indicator of interest. Table 6 indicates

that the impacts of uncertainty vary vastly with wind turbine reliability as well as with different performance indicators. The uncertainty increases

as the reliability decreases; that is, the coefficients of variation are large for high failure rate and long downtime databases and vice versa. The

case where both downtime and failure rate are uncertain produces the highest variation. These results can be explained as follows.

• For operational indicators such as availability and energy production, high failure rates, that is, low-reliability components, lead to frequent fail-

ures of OWTs, which reduce the operational time and the energy produced. The availability is generally high, that is, close to 1, and the energy

TABLE 5 Summary of the simulation performance

Parameter Value

Error threshold (%) 0.01

Ave. number of TSMCS runs per data selection 3340

Ave. CPU time per data selection (s) 1082

Total number of operational profiles per scenario 167 004

Total CPU time per scenario (s) 54 099

Abbreviation: TSMCS, time-sequential Monte Carlo simulation.
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production is large; thus, the coefficient of variation for these operational indicators is not as large as that of other two economic indicators

(Table 6).

• For economic indicators such as total failure cost and LCOE, high failure rates also cause more failures, and that leads to high total failure cost

and LCOE, as shown in Figures 9 and 10. Meanwhile, the combination of uncertain cost and long downtime can create some special circum-

stances, where the cost per failure is very high, corresponding to very long downtime. These special circumstances contribute to the increase

of standard deviation and coefficient of variation of total failure cost and LCOE (Figure 10 and Table 6).

(A) (B)

(D)(C)

(E) (F)

(H)(G)

(I) (J)

F IGURE 9 A–I, Impacts of reliability
data (i.e., failure rate and downtime)
uncertainty [Colour figure can be viewed
at wileyonlinelibrary.com]
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• When the failure rate and/or downtime data are uncertain, the generated number of failures and downtime vary greatly with different reliabil-

ity data selections, and that creates a wider range of both operational and economic indicators. Thus, the coefficients of variation in uncertain-

cost cases are greater compared with those in the fixed-cost cases.

In addition, the coefficient of variation is relatively low in two operational performance indicators of availability and AEP (up to 1.51%),

whereas it is very high for failure cost (from approximately 30% to 120%). The former can partly be explained by the way operational performance

indicators are estimated; that is, failure cost is not taken into consideration in estimating availability and AEP. Meanwhile, a possible reason for

the latter is that both reliability data and cost uncertainties directly dictate the total failure cost, and, therefore, its variation is notably high. LCOE

is a measure that considers both failure cost and energy production, and its coefficient of variation can vary between 0.39% (where the failure

rate is low, and downtime is uncertain) and 10.3% (where both downtime and failure rate are uncertain).

(A) (B)

(D)(C)

(E)

F IGURE 10 A–I, Impact of
failure cost uncertainty [Colour
figure can be viewed at
wileyonlinelibrary.com]

TABLE 6 Coefficient of variation

Failure rate/downtime uncertainty combination

Coefficient of variation (%)

Availability Mean AEP Total failure cost LCOE

Uncertain downtime Low failure rate 0.06 0.06 36.19 0.39

Medium failure rate 0.25 0.29 40.96 1.79

High failure rate 1.47 1.47 29.64 7.47

Uncertain failure rate Short downtime 0.44 0.43 74.06 3.71

Long downtime 1.48 1.41 66.56 8.69

Both uncertain 1.51 1.49 117.8 10.29

Abbreviations: AEP, annual energy production; LCOE, levelised cost of energy.
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To further understand the failure cost variation, the random failure cost distribution from the fuzzy cost evaluation is investigated. The

TSMCS is run repeatedly until the relative error is less than 0.01%, and the fuzzy failure cost data results are extracted. The failure cost distribu-

tion is presented inTable 7.

The obtained results indicate that the failure cost distribution is positively skewed (right skewed) with the median value less than its mean

value. This implies that more failures with low cost are observed. This is true in operational practice, as the wind turbine can experience many

minor repairs with low cost, that is, less than the mean failure cost, whereas there are fewer failures with high cost. The failure cost can be fitted

by a nonparametric distribution, for example, Kernel distribution, rather than by a parametric distribution. These interesting statistics of the cost

per failure from the fuzzy cost estimation are meaningful for the wind farm developers and operators, especially the cost data analysts, as it shows

the variation and nonparametric distribution of the cost per failure during OWT operational lifetime.

5 | CONCLUSIONS

Uncertainty is an inherent characteristic in operational simulation of OWTs but is rarely considered. This paper models two types of uncertainties

related to reliability and cost data and incorporates them into an OWT operational simulation framework. A probabilistic reliability data matrix is

proposed to model the reliability data uncertainty, and the fuzzy logic is used for failure cost uncertainty. These are integrated into an OWT reli-

ability and operational simulation framework under uncertainties, and the TSMCS is employed to investigate the impacts of uncertainty on the

operational and economic performance of OWTs.

The case study and results show that OWT performance indicators such as availability, energy production and LCOE vary vastly with varying

degrees of uncertainty in the input reliability data. The variation reduces for databases with highly reliable components, which implies that

improving reliability not only enhances operational performance and lowers LCOE but also reduces the variation in OWT performance prediction.

In addition, it is seen that the total failure cost variation is substantial when the cost uncertainty is also considered, and that leads to LCOE varia-

tion at up to 10.3% of the mean LCOE. This research can enable OWT modellers and operators to handle data uncertainties and to quantify the

impact of reliability and cost data uncertainties on wind turbines' operational and economic performance.

This paper focuses on uncertainty modelling and assumes that the failure rates of wind turbine components are not affected by the wind

speed and other weather conditions. To incorporate the impact of environmental conditions, one would need to develop a model that can quan-

tify the changes in failure rate depending on wind speed and test the validity of the model. Such models representing the relationship between

failure rate and weather conditions would be another interesting area of research and are suggested for future study.

ACKNOWLEDGEMENT

This research is supported by the UK Engineering and Physical Sciences Research Council (EPSRC) HOME-Offshore project (EPSRC Reference:

EP/P009743/1).

NOMENCLATURE

λ failure rate of the turbine

λi failure rate of component i

λi,j failure rate of component i in database j

Δij failure rate deviation of component i in database j

δ(t) a zero–one function taking the value of 1 when the system works and 0 when the system fails

μ repair rate of the turbine

μi repair rate of component i

ρ air density

AE energy-based availability

TABLE 7 Characteristics of failure cost distribution

Parameter Value

Mean (£) 1.83e+5

Median (£) 1.20e+5

Standard deviation 2.16e+5

Coefficient of variation 1.18

Skewness 2.40
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AT time-based availability

Ar rotor swept area

CF total failure cost calculated for the entire OWT lifetime

CF,y total failure cost in year y

Cp power coefficient

cf,i cost per failure of component i

ci capital cost of component i

di downtime per failure of component i

ki normalising coefficient for reliability data uncertainty estimation

md number of reference downtime databases

mf number of reference failure rate databases

N number of simulation runs in theTSMCS

n number of components in the wind turbine

Pd probabilistic reliability data matrix for downtime

Pf probabilistic reliability data matrix for failure rate

pdij probability that the downtime data of component i are drawn from database j

p f
ij probability that the failure rate data of component i are drawn from database j

Prated rated power output

Pt theoretical power output

Pw actual power output

qij reliability uncertainty factor of component i and database j

Rλ,i failure rate range of component i considering different databases

r discount rate

t fi random time to failure of component i

tri random time to repair of component i

vt wind velocity at hub height
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