Electronic Supplementary Material (ESI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary information for
Phase transitions on non-uniform curved surfaces:
Coupling between phase and location

Jack O. Law,! Jacob M. Dean,?* Mark A. Miller,> and Halim Kusumaatmaja':*

!Department of Physics, Durham University,
South Road, Durham DH1 3LE, United Kingdom
2Department of Chemistry, Durham University,
South Road, Durham DHI1 SLE, United Kingdom

(Dated: August 6, 2020)

S1. GLOBAL POTENTIAL ENERGY MINIMA ON THE TORUS
A. Structure Sequences

We have performed basin-hopping parallel tempering (BHPT) runs as described in the
main text to see how the energetically favoured structures evolve with the cluster size. The
surface is the 5-7 torus, as used for the case study in the main article, and we compare
long- and short-ranged Morse potentials (p = 4 and p = 18, respectively) over the range
100 < N < 500 particles, which includes the value of N = 300, the structures for which are
shown in Fig. 7 of the main article. For simplicity, the untruncated potential is used in these
optimisations. We depict the optimised structures by their Voronoi tessellations in order to
highlight any packing defects without the need to choose a cut-off distance for neighbours.
[1l-defined Voronoi cells at the boundary of the clusters have been suppressed, as explained
in the main text. This has the effect of removing some cells belonging to edge particles but
does not alter the depiction of the cluster interiors.

Fig. S1 shows the lowest-energy structures found for the long-ranged potential. The clus-
ters always adopt compact configurations that reduce their perimeter. Such arrangements
require some distortion of the hexagonal packing, but this does not come with an excessive
energetic penalty because of the softness of the potential. Small clusters (N = 100) form at
the “top” or “bottom” of the torus, in the vicinity of zero Gaussian curvature, where they
can be both compact and relatively flat. Larger clusters are located on the “outside” of the
torus (region of positive Gaussian curvature) in order to remain compact. For sufficiently
large clusters, small groups of topological defects arise to accommodate the Gaussian cur-
vature. Each particle in a defect has coordination number ¢ # 6, giving rise to a topological
charge ¢ = 6 — c. In Fig. S1, each group of defects has a net charge of +1. We find that the
number of defects increases with the amount of curvature enclosed: one net fivefold defect
(pentagon) at at N = 300, two at N = 400 and three at N = 500. We note that these defects
are present for purely energetic reasons; a cluster that does not cover the surface is free to
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FIG. S1: Putative global potential energy minima for p = 4 (long-ranged Morse potential),
depicted by their Voronoi tessellations. Each row shows the structure for a given number
of particles from two perspectives. Cells are coloured by coordination number. The
potential energy V' is given in units of € and rounded to one decimal place.



expel defects on any curved surface [1]. Furthermore, a torus has an Euler characteristic of
zero so, unlike on a sphere, there is no topological requirement for defects even if the surface
is fully covered.

Fig. S2 shows the equivalent sequence of lowest-energy structures for the short-ranged
potential. Here, the energetic penalty for distortion of pairwise separations away from the
optimal value of ry is high. Hence, these clusters avoid topological defects by preferentially
occupying the relatively flat region of the torus. The sequence of increasing size N involves
elongation of the cluster at the expense of generating a large perimeter. The approximate
lattice vectors of the crystal gradually rotate as one follows the cluster round the torus. The
incommensurability of the crystal growth leads to a mismatch at the point where the two
ends touch at around N= 500, forming a linear defect known as a line slip [2].

There are numerous minor variations on the structures presented in Figs. S1 and S2,
often differing in the detail of the perimeter. However, independently seeded BHPT runs
do converge to similar energies (differences on the order of ). Importantly, the overarching
features of the structures coming from these repeat runs, such as the location and overall
shape of the clusters, are reliably reproducible.

B. Decomposition of the Energy

In the main text we have shown that, at low temperature, increasing the range of the
potential p leads to a transition between two crystal-like states, C+ and X0 in the case of
N = 300 particles on the 5-7 torus. We argue that this transition is driven by competition
between line energy (the perimeter effect) and crystal frustration (the stress effect). Fig. 7(C)
of the main article shows the cross-over in the balance between these effects for the ground-
state (zero-temperature) structures as a function of p. In this section, we examine the origins
of the observed trends in more detail by decomposing the potential energy of the ground
states into contributions with a direct physical interpretation.

The energy of each minimum can be broken down into the components

E = —-3N¢e + Eline + Edefect + Estress + Enon—nna (1)

which we now describe in turn. In a perfect hexagonal crystal, the interaction energy of any
given particle with its immediate neighbours would be —6¢. The first term on the right-hand
side of Eq. 1 gives this ideal energy for N particles after correcting for double-counting of
pairs.

The line tension energy term in Eq. 1 is given by

3
Eline - 5 2(6 - Nnn)7 (2)
edge
where the sum is over particles on the edge of the cluster. Ny, is the number of nearest
neighbours (nn) of each particle in the sum (i.e., the number of particles lying closer than
1.4579) and the factor of 1/2 corrects for double-counting of bonds. We identify particles on
the edge using a test-particle method. For each pair of nearest neighbours, a test particle
is inserted on the surface at the two locations where it is at a distance ry from both real
particles in the pair. If the test particle overlaps with another real particle in exactly one
of these locations then both particles in the pair are designated as lying on the edge of the

cluster.



N =100
N =200
N =300
N =400
N =500

LI

05 @s @7

V =-262.8
V =-538.3
V =-812.9
V = —-1087.8
V = -1365.2

FIG. S2: Putative global potential energy minima for p = 18 (short-ranged Morse
potential), depicted by their Voronoi tessellations. Each row shows the structure for a
given number of particles from two perspectives. Cells are coloured by coordination
number. The potential energy V is given in units of € and rounded to one decimal place.
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FIG. S3: Left: Components of the potential energy for the C+ state for N = 300 particles
on the 5-7 torus as a function of the potential range parameter p. Right: Components of
the potential energy for the X0 state.
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FIG. S4: The change in potential energy, AE = Fcy; — Fxq, from the X0 to the C+ state
for the perimeter effect (line energy), stress effect (including defects), and the
non-nearest-neighbour interactions (AFEyonnn)-

The defect energy term in Eq. 1 corresponds to energy contribution from particles that
have a number of nearest neighbours different from 6,

£

Edefect = 5

> (6= Naw),

not edge

(3)

where the sum is over all particles not on the edge of the cluster.
The stress energy term in Eq. 1 captures the excess energy of nearest-neighbour pairs



whose separation is different from the equilibrium distance,

Estress = Z(UM + E)a

nn

where the sum is over pairs of nearest neighbours.
Finally, the non-neighbours energy term in Eq. 1,

Enon—nn = Z UM7

non-nn

captures the interactions between all pairs of particles that are not nearest neighbours.

This breakdown is presented for the C+ and X0 states as a function of p in Fig. S3. In
Fig. S4 we also plot the energy difference between C+ and X0 for Ey,. (the perimeter effect),
Eactect + Fistress (the stress effect), and Fyopnn. In agreement with the discussion in Sec. S1 A,
the X0 structures have no defect energy and are only weakly stressed, but at the expense
of a more elongated shape with a higher line energy. In contrast, for the C+ state, the line
energy is lower, but it has higher Fgefoct and Fgess. For both structures, the line energy in
these zero-temperature structures does not vary much with p because the structures do not
undergo significant rearrangement when relaxed at different p.

ELonnn varies with p, especially for low p where the range of interaction is larger than the
typical equilibrium distance between any pair of neighbouring particles. However, F,onnn
has a similar dependence for the X0 and C+ states, leading to a small AFE,oynn. Thus, we
conclude this term does not play a major role in the transition between the X0 and C+
states.

Overall, the increase in Fgefect + Fstress against nearly static differences in Ey,e and Epopnn
drives the transition from C+ to X0 crystal-like structures with increasing p.

S2. ORDER PARAMETER DISTRIBUTIONS

Throughout this work we have used the the local bond order parameter ||, defined in
Sec. 3.1 of the main article, to define whether a given particle is in a crystalline environment.
In this section, we examine the full distribution of |¢)| and, in particular, what changes in
the distribution can tell us about microstructure as we traverse the major phase transitions
on the 5-7 torus.

Fig. S5(A) shows histograms of |1| over a range of temperatures that spans the G, L—
and C+ states at p = 5. Each histogram has 7 peaks or steps. From left to right, these
features arise from particles with 0 to 6 maximally ordered neighbours. The region to the
left of a particular peak is dominated by contributions from particles that have the same
number of neighbours, but some deviation from perfect hexagonal ordering. In the gas state
(for example, at kgT' /e = 0.56), there is a sharp peak around || = 0.33, which represents
particles with two nearest neighbours in a configuration characteristic of hexagonal order.
This indicates that the second most common motif (after isolated particles) is a group
of three particles arranged in an equilateral triangle. As the temperature is reduced, the
height of this peak deceases rapidly as the particles condense into the liquid phase. The
histogram becomes relatively flat, with less pronounced peaks, since particles have a range of
coordination numbers and little crystalline order. This change happens smoothly, meaning
the transition from G to L— cannot be pinpointed from the bond-order distribution. As the
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FIG. S5: Normalised histograms of the per-particle bond order parameter [¢| (defined in
Sec. 3.1 of the main article) from simulations of 300 particles on a 5-7 torus in the
canonical ensemble. (A) Potential range parameter p = 5 over a range of temperatures; the
crystal peak (just below |¢)| = 1), is broad and grows gradually with decreasing
temperature. (B) At p = 16 over a smaller range of temperatures; the crystalline peak
emerges rapidly and is sharp. (C) At kg7 = 0.29 for different potential ranges; the profiles
are similar, although the peaks become slightly sharper with increasing p.

temperature drops further, the peak near |[¢)| = 1 becomes dominant, indicating that the
cluster has an increasingly dense, crystalline structure. In addition, all the peaks become
sharper, reflecting the presence of particles with crystalline order but missing neighbours,
such as particles at the edges of the cluster. As the potential is soft, the peaks are quite
broad because the structure still contains some disorder.

Fig. S5(B) shows histograms taken at shorter potential range, p = 16, over a much
narrower range of temperatures around the G to X0 transition. It can be seen that the
transition is much sharper than for the softer potential in panel (A). While the profiles of
the gas phases in panels (A) and (B) are similar, the crystal phase in (B) features much
sharper peaks, indicating strong crystalline order. Most particles have six neighbours, but
there are also clear peaks for the boundary particles at three, four and five neighbours. There
are also significant peaks at the zero and one neighbour positions, unlike for the crystal phase
at p = 5. This suggests that the crystalline cluster is coexisting with a significant amount



TABLE I: Summary of nomenclature for states of the system. The first symbol represents
the thermodynamic phase. The second symbol denotes the sign of the Gaussian curvature
in the region where the state is found.

Symbol Explanation

gas (covers whole surface)
liquid

condensed

crystal

+IX Q- @

positive Gaussian curvature
negative Gaussian curvature
zero Gaussian curvature (and vicinity)

H o©

both positive and negative Gaussian curvature

of gas at the lowest temperature included on the plot.

Fig. S5(C) shows histograms taken at a cross-section of values of p around the transition
from C+ to X0. Although the peaks become slightly sharper at higher p, the effect is
small. This shows that the C+ to X0 transition, which involves a major relocation and
rearrangement of the structure, has little effect on the microstructure of the cluster. We
have seen that the bond-order distribution reflects the microstructure of the system, but,
significantly, cannot be used in isolation to identify the state of the system in full. Hence, a
second, positional, order parameter is needed to understand these transitions (see the free
energy surfaces in Fig. 4 of the main article).

S3. ADDITIONAL PHASE PHASE DIAGRAMS

In this section we present some additional phase diagrams to show how the coupling of
phase and location is affected by the number of particles and the precise shape of the surface.
As in the main paper, states are labelled with two symbols to denote the phase of matter
and the location. For convenience, a summary of these symbols is repeated in Table I.

A. Planar surface

As a reference system without the effects of curvature, we present the phase diagram of
300 Morse particles on a planar surface in Fig. S6. The simulation cell has periodic boundary
conditions in both directions and an edge length of 37.17r¢, giving it an area equal to that
of the main test case of the 5-7 torus. The similarities and differences between the planar
and toroidal cases are covered in the main article.

B. 5-7 Torus with 100 Particles

The phase diagram for a 5-7 torus with 100 Morse particles (fewer than in the main
article) is shown in Fig. S7, with snapshots of the three observed states shown in Fig. S8.
Although free energy calculations show that the L— state continues to exist as a metastable
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FIG. S6: Phase diagram for 300 Morse particles on a plane with periodic boundaries and
an area equal to that of a 5-7 torus as a function of the potential range parameter p and
the reduced temperature kgT'/e.

state, it has a higher free energy than the C+ state, and hence it does not appear in the
phase diagram.

We further find that, with decreasing temperature, the X0 state extends to lower values of
p than in the case of 300 particles. This observation is consistent with the ground-state (i.e.,
zero temperature limit) structures shown in Fig. S1; at p = 4 the lowest-energy structure for
N = 100 crystal is located in the vicinity of zero Gaussian curvature, whereas for N = 300
it has moved to the region of positive Gaussian curvature. Moreover, unlike the case of 300
particles, the boundary between the C+ and X0 phases for N = 100 is not independent of
temperature. To explain these observations, consider a C+ state on the outside of the torus
for a relatively low p. Decreasing the temperature drives the system towards increasing
crystallinity. For a small number of particles, such as N = 100, this can be achieved by
migrating to the “top” or “bottom” of the torus for two reasons: first, the crystal in the
X0 state is less stressed due to Gaussian curvature. Secondly, the difference in perimeter,
and hence line energy, between the C+ and X0 states is small. Thus, the strain effect can
dominate over the perimeter effect. In contrast, for a larger number of particles (such as for
N = 300), the line energy penalty becomes prohibitively expensive in the X0 state, since the
shape of the cluster is highly anisotropic with a large aspect ratio. Therefore, for N = 300,
the system instead creates defects to compensate for the increasing degree of crystallinity in
the C+ state with decreasing temperature.

The transition from C+ to X0 can be induced by increasing p, since the elastic energy for
stressing the crystal and/or creating defects becomes more expensive than the line energy
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FIG. S7: Phase diagram for 100 Morse particles on a 5-7 torus as a function of the
potential range parameter p and the reduced temperature kg7 /e. Snapshots of the system
at the labelled points are shown in Fig. S8.
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FIG. S8: Snapshots of the states labelled in the phase diagram of Fig. S7 for 100 Morse
particles on the 5-7 torus. (A) G, at p =4, kgT'/e = 0.73; (B) C+, at p = 6, kgT'/e = 0.28;
(C) X0, at p = 14, kgT'/e = 0.26. Particles are coloured by the number of nearest
neighbours.

penalty when the potential is short-ranged. The C+ to X0 phase boundary will tend to
become more independent of temperature for larger crystals.

C. 5-7 Torus with 500 Particles

As an example of a larger cluster, we have also investigated the case of 500 Morse particles
on the 5-7 torus. Once again, the key message is that we observe a localisation of the particles



11

FIG. S9: Snapshots of the states labelled in the phase diagram of Fig. S10 for N = 500
particles on the 5-7 torus. (A) G, at p =4, kgT/e = 0.73; (B) L+, at p = 4, kgT/e = 0.44;
(C) C+, at p =4, kgT/e = 0.36; and (D) X0, at p = 14, kgT'/e = 0.33. Particles are
coloured by the number of nearest neighbours.

caused by the curvature of the surface, but the specific details are affected by the additional
particles. In Fig. S9 we show snapshots of the four observed states. Free energy calculations
confirm that these phases are separated by barriers and are therefore distinct. At high
temperature, we observe a gas (now rather dense) as usual. For the liquid phase, instead of
just occupying the region of negative Gaussian curvature (L— phase), the additional particles
lead to a second loop that wraps around the tube of the torus, forming what we term the
L+ state to signify the fact that it covers regions both of negative and of positive Gaussian
curvature. The closure of this second loop reduces the total perimeter of the cluster in
comparison to an L— phase that extends too far from the centre of the torus. The C+
and X0 phases appear similarly to the 300 particle case. The transition between these two
states is also independent of temperature for N = 500, for the reasons given in the previous
subsection. The phase diagram for a 5-7 torus with 500 particles is shown in Fig. S10.

D. The 3.5-10 Torus with 300 Particles

We have shown that surface curvature leads the localisation of thermodynamic states.
By comparing the case of the 5-7 torus and the sinusoidal surface in the main text, it can
be seen that the number and character of those states depends on the nature of the surface.
Even for toroidal surfaces, different conditions can be produced by altering the size and
aspect ratio of the torus. In this section, we investigate the 3.5-10 torus (radii a = 3.5r
and ¢ = 10rg as defined in Fig. 1 of the main text) for N = 300 particles and show that its
phase diagram has some different features from that of the 5-7 torus.

The 3.5-10 torus has the same surface area as the 5-7 torus, but consists of a longer,
thinner tube. We observe three states, shown as snapshots in Fig. S11. These are a gas
(G), a condensed state wrapped around tube of the torus (C+), and an X0 state. Fig. S12
shows the phase diagram. The loss of the L— and C+ state in favour of the wrapped state
can easily be understood in terms of line energy. As the bore of the torus is so wide, an
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FIG. S10: Phase diagram for 500 Morse particles on a 5-7 torus as a function of the
potential range parameter p and the reduced temperature kg7'/e. Snapshots at the points
labeled A-D are given in Fig. S9.

L— state would have a large perimeter; and as the tube is so thin, a C+ state would have
a very large aspect ratio. However, the thinness of the tube stabilizes the C£ state as its
perimeter is relatively small. The frustration of the crystal is also lower, as the Gaussian
curvature of this torus is relatively low. Hence, the X0 state only becomes the stable phase
at higher p, compared to a 5-7 torus.

FIG. S11: Snapshots of the states labelled in the phase diagram of the 3.5-10 torus with
N =300 in Fig. S12. (A) G, at p =4, kgT /e = 0.78; (B) C+, at p =6, kgT'/e = 0.30; and
(C) X0, at p =12, kgT'/e = 0.30. Particles are coloured by the number of nearest
neighbours.
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FIG. S12: Phase diagram for N = 300 Morse particles on a 3.5-10 torus as a function of
the potential range parameter p and the reduced temperature kg7'/e. Snapshots from the
points labelled A-C are shown in Fig. S11

S4. VIDEOS OF PHASE TRANSITIONS ON THE TORUS

The movie files in the electronic supplementary information illustrate the following tran-
sitions on the 5-7 torus as observed in equilibrium molecular dynamics simulations. In all
cases, particles are coloured by coordination number using the scale given in Fig. 2 of the
main article.

1. Transition from the C+ state to the L— state at p = 6 and kgT'/e = 0.38.
2. Transition from the C+ to the X0 state at p =7 and kgT'/e = 0.25.

3. Transition from the G to the X0 state at p = 20 and kg7'/e = 0.3.
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