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Abstract
A number of codes for general-relativistic simulations of cosmological structure
formation have been developed in recent years. Here we demonstrate that a sam-
ple of these codes produce consistent results beyond the Newtonian regime. We
simulate solutions to Einstein’s equations dominated by gravitomagnetism—a
vector-type gravitational field that does not exist in Newtonian gravity and pro-
duces frame-dragging, the leading-order post-Newtonian effect. We calculate
the coordinate-invariant effect on intersecting null geodesics by performing ray
tracing in each independent code. With this observable quantity, we assess and
compare each code’s ability to compute relativistic effects.
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1. Introduction

The flat Λ cold dark matter (ΛCDM) model is the backbone of modern cosmology. Originally
proposed in the context of the inflationary scenario [1] and to accommodate for observations
of structures on large scales [2], it has emerged as the concordance cosmological model [3, 4]
after the discovery of the accelerating expansion of the Universe [5, 6]. Theoretically, ΛCDM
rests on three main pillars: (i) based on general relativity (GR) with a cosmological constant
Λ, a Friedmann–Lemaître–Robertson–Walker (FLRW) metric is adopted as the description of
the Universe on average, on the assumption of large-scale statistical homogeneity and isotropy;
(ii) the relativistic perturbations of this background model are used to describe small inhomo-
geneities at large scales and early times, e.g. cosmic microwave background fluctuations; (iii)
Newtonian dynamics is used to model structure formation at late times and on small scales,
where nonlinearity in the matter distribution is important.

On these bases,ΛCDM successfully explains the majority of our cosmological observations
in a surprisingly simple framework [7, 8]. Yet ΛCDM faces a number of challenges, theoret-
ical and observational. While a cosmological constant representing vacuum energy [9, 10] is
the simplest possible form of dark energy, the measured value is difficult to justify from a
theory standpoint [11–13]. With the continuous improvement of cosmological observations, a
number of tensions have started to emerge (see, e.g. [14]), particularly between low and high
redshift measurements of some cosmological parameters. For example, a significant tension
exists between supernovæ [15] and cosmic microwave background measurements [7] of the
present Hubble expansion rate, H0 [16]. The former depends on calibration on the cosmic dis-
tance ladder [17], and the latter depends on assuming ΛCDM as cosmological model. Also
assuming ΛCDM, a tension is present between high and low redshift observations of σ8, the
parameter measuring the growth of structures [18, 19]. Recently, some evidence for a spatially
curved Universe has been claimed [20, 21] and disputed [22], with some authors suggesting
the possibility of a structure formation-induced curvature [23]. Motivated theoretically and
because of these tensions, a number of alternatives to ΛCDM have been considered. These
range from an interacting vacuum scenario (see, e.g. [24–27], and references therein), to scalar
fields [28] and modified gravity models (see e.g. [29–32], and references therein). However,
ΛCDM is still largely preferred when Bayesian model comparisons are carried out [33–37].

With the increasing precision of current and upcoming cosmological surveys10 [38–40],
the ΛCDM model will be truly tested. In view of these future observations and their target
1% precision, current state-of-the-art cosmological N-body simulations of structure forma-
tion aim at the same precision in theoretical predictions. However, considering that these
N-body simulations are mostly based on the Newtonian approximation in lieu of full GR, it is
timely to address the possibility that some percent-level GR effects may be missed, potentially
biasing the inferred likelihood of cosmological parameters. Understanding the role of

10 https://euclid-ec.org
https://lsst.org/
https://skatelescope.org/
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general-relativistic effects on observations will thus be crucial in correctly interpreting these
precision data.

While the extensions and alternatives to ΛCDM mentioned above explore new physics,
some explore the inclusion of existing physics that is neglected by the standard cosmolog-
ical model. Previous efforts to investigate the role of GR effects in numerical cosmology
have included simplifying symmetries (e.g. [41, 42]). In recent years, a number of general-
relativistic codes with no assumed symmetries have been developed for cosmology, employing
either a formally exact treatment of the metric [43–49] or an approximate scheme [50, 51].
These tools provide new ways to study aspects of GR beyond the limited scope of known ana-
lytic solutions and perturbative expansions around them. For instance, they have been applied
to quantify gravitational back-reaction of small-scale structures [52–57], light-cone projection
effects [58–61], and the impact of relativistic species [62, 63] on the evolution and observation
of large-scale structure. These codes have proven themselves reliable through comparisons to
both linearized and exact GR solutions (e.g. [64–67]), and have in turn been used to validate
the applicability of traditional Newtonian simulations to cosmology in a weak-field limit (e.g.
[48, 68, 69]).

Here, we compare several codes within a controlled setup that features an artificially large
gravitomagnetic vector potential as part of the metric, generating a frame-dragging effect. Con-
nected to rotation of masses, frame dragging has been measured in the gravitational field of the
Earth [70]. Gravitomagnetism and frame dragging are purely relativistic and absent from New-
tonian gravity, a theory based on a single scalar potential (see however [71] where this effect is
computed from a Newtonian code using a post-Friedmann approximation [72]). There are only
a few known analytic solutions that exhibit frame-dragging—e.g. the Kerr and Kerr–Newman
solutions—although the effect is ubiquitous in GR, for example in rotating neutron stars (see,
e.g. [73]). Numerical cosmological solutions with large frame-dragging effects have also been
studied [74].

In the limit where linear cosmological perturbation theory provides an accurate description
of the behavior of a spacetime, frame-dragging is associated with the presence of vector modes
[75, 76] and is well understood and under analytic control. However, vector modes may also
be sourced through nonlinear processes (e.g. [77–83]), potentially interfering with our ability
to measure phenomena such as primordial gravitational waves of sufficiently small amplitude
[84]. They can also produce a gradient in the matter density field [85]. While such vector modes
are not expected to be a dominant contribution to either the dynamics of our Universe or the
propagation of information through it, simulating such a physical system nevertheless provides
us with a way to explore the regime of validity of approximate numerical and analytic models.
At the nonlinear level, we must seek to validate both perturbation theory and approximate
numerical approaches against fully general-relativistic calculations.

In this work, we do precisely this. We describe and perform a comparison between linear
theory, simulations that use an approximate treatment of Einstein’s equations to model non-
linear effects, and numerical relativity simulations that provide numerically exact solutions to
Einstein’s equations. We focus our comparison on the purely relativistic frame-dragging effect.
It would of course be interesting to study other relativistic effects relevant for cosmology, e.g.
in nonlinear structure formation or gravitational waves. While these lie beyond the scope of
this paper, we emphasise that switching on gravitomagnetism goes a long way, because all
relativistic degrees of freedom are excited once nonlinearity becomes relevant. On this basis,
it seems reasonable to expect that the level of agreement among codes in this test should be a
good indication of what to expect in other regimes.
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We present the initial data for our simulations in section 2, describe the observables we
compute in section 3, give an overview of the different computational frameworks in section 4,
discuss our results in section 5 and conclude in section 6.

Unless otherwise stated, we use Latin indices to represent spatial indices, which take values
1, 2, and 3, and Greek indices to represent space-time indices which take values 0, 1, 2, and 3,
with repeated indices implying summation. We set the speed of light c = 1.

2. Initial data

GR admits a well-posed initial-value formulation (see, e.g. [86]). A consequence of this is that
in cosmological simulations we do not need to specify an a priori fixed background. We choose
coordinates such that our initial Cauchy surface is described by a fixed coordinate time, t = t∗.
The line element in the 3 + 1 decomposition is [87]

gμν d xμ d xν = −α2 dt2 + γi j

(
d xi + βi dt

) (
d x j + β j dt

)
, (1)

where xi ∈ {x, y, z} are coordinates on the three-dimensional space-like hypersurface, α is
the lapse function, and βi is the shift vector. While we will set initial conditions non-
perturbatively, we can draw a connection to linear perturbation theory both for intuition and
a comparison. We choose the initial lapse, shift, spatial metric, and extrinsic curvature to be,
respectively,

α∗ = 1 , (2)

βi
∗ = 0, (3)

γ∗
i j =

⎛
⎜⎜⎜⎝

1
b

H∗L
cos

2πy
L

0

b
H∗L

cos
2πy

L
1 +

b2

H2
∗L2

cos2 2πy
L

0

0 0 1

⎞
⎟⎟⎟⎠ , (4)

K∗
i j = −

⎛
⎜⎜⎜⎝

H∗
b

4L
cos

2πy
L

0

b
4L

cos
2πy
L

H∗ −
b2

2H∗L2
cos2 2πy

L
0

0 0 H∗

⎞
⎟⎟⎟⎠ . (5)

This can be regarded as a snapshot at an initial time t∗ of an exact perturbation of a reference
Einstein–de Sitter (EdS) model with Hubble expansion rate H∗. Here, L is the characteristic
length scale of the vector perturbation that also determines the size of the simulation volume
(the initial conditions are compatible with periodic boundary conditions that identify y = L
with y = 0), b is a dimensionless amplitude, and the asterisk indicates that a quantity is eval-
uated on the initial Cauchy surface. The surface has vanishing three-dimensional Riemann
tensor (γ∗

i j is the Euclidean metric in unusual coordinates) but non-trivial extrinsic curvature.
The connection with linear perturbation theory will become apparent shortly.

Having fixed the initial conditions for the metric we can proceed by solving the Hamiltonian
and momentum constraint equations on the initial surface to obtain valid initial data for the
matter. We assume that the matter can be described (at least initially) as a perfect fluid with
vanishing pressure, such that the stress-energy tensor is given by

Tμν = ρ0uμuν , (6)
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where ρ0 is the rest mass-energy density and uμ is the four-velocity of the fluid. For collision-
less matter the fluid description can break down at some point in the evolution due to stream
crossing, and we will comment on this issue later.

The Hamiltonian and momentum constraint equations are, respectively,

(3)R + K2 − Ki jK
i j = 16πGα2ρ0

(
u0
)2

, (7)

D j

(
Ki j − γ i j K

)
= 8πGαρ0uiu0, (8)

where the three-curvature (3)R and covariant derivative Dj are associated with the three-metric
γ ij, and K = γ ijKij. Together with the mass-shell condition gμνuμuν = −1, this yields a closed
system of equations from which we can determine ρ∗0 and uμ

∗ . Solving this system, given the
initial conditions (2)–(5), we obtain

ρ∗0 = 3

(
16H2

∗L2 − 3b2 cos2 2πy
L

)2 − 64π2b2 sin2 2πy
L

128πGL2
(
16H2

∗L2 − 3b2 cos2 2πy
L

) , (9)

ux
∗ = − 8πb sin 2πy

L√(
16H2

∗L2 − 3b2 cos2 2πy
L

)2 − 64π2b2 sin2 2πy
L

, (10)

and uy
∗ = uz

∗ = 0.
It is worth noting at this point that values b > 2H2

∗L2/π are unphysical, as they violate the
weak energy condition ρ∗0 > 0 at t∗. For H∗L > π

√
2/3, i.e. for exact perturbations outside

the Hubble horizon, the physical range of b is even more restricted, becoming bounded from
above by b < 4

√
3H2

∗L2 − π2/3.
All of the explicit expressions given so far are of course valid in the coordinate system we

chose, in particular with β i = 0. We can therefore use these expressions directly to set the initial
conditions in those simulations that use such coordinates. However, in some simulations we
will instead use the coordinates of the so-called Poisson gauge in which vector perturbations
are completely carried by the shift. In this gauge we denote the line element as

g̃μνdx̃μdx̃ν = a2(̃t)
[
−e2ψd̃t2 + γ̃ i jBiB jd̃t2 − 2Bidx̃id̃t

+ e−2φδi jdx̃idx̃ j + hi jdx̃idx̃ j
]

, (11)

where a(̃t) is the scale factor of the reference EdS model, the shift Bi is the transverse grav-
itomagnetic vector potential, hij is transverse and traceless, and γ̃ i j = (e−2φδi j + hi j)−1 is the
inverse of the spatial metric.

For the particular initial data chosen, a closed expression for the coordinate transformation
xμ �→ x̃μ is given by

t̃ = t, (12)

x̃ = x +
b

2π

[
1

H∗
− 3

2
(t − t∗)

]
sin

2πy
L

, (13)

ỹ = y, (14)

z̃ = z, (15)
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for an infinitesimal (t − t∗) around the initial Cauchy hypersurface. The metric variables in
Poisson gauge are then initially given by

B∗
i = −

⎛
⎜⎝

3b
4π

sin
2πy
L

0
0

⎞
⎟⎠ , (16)

andψ∗ = φ∗ = h∗
i j = 0. We note that from the point of view of the Poisson gauge, the extrinsic

curvature is only needed to provide the initial data for the propagating gravitational waves (i.e.
the free part, or homogeneous solution, of hij). Due to the weak-field approximation, this part
completely decouples from the remaining dynamics in gevolution while it is neglected from
the outset in gramses—which are the two codes detailed below that take their initial data in
this coordinate system. Therefore the extrinsic curvature in Poisson gauge is not required for
setting initial conditions in this work.

From (16) it is clear that the dimensionless parameter b measures the strength of the grav-
itomagnetic field on the initial hypersurface. Neglecting b2 terms in the above expressions we
obtain initial conditions for the first-order solutions in the two gauges. We discuss this further
in section 3.1 below.

3. Behavior of observables

We now want to construct an observable that can be used to ‘measure’ the frame-dragging effect
even in the nonperturbative case. Consider an observer comoving with the fluid and located
at a point of symmetry where spacetime is invariant under a parity transformation. Without
loss of generality we can choose the observer to be located at the origin xO = yO = zO = 0.
Now consider two events A and B on the initial hypersurface that emit a flash of light in all
directions. Within the coordinate system that we introduced on the initial hypersurface, these
events shall be located at xA = xO − L, yA = yO, zA = zO and xB = xO, yB = yO − L, zB = zO.
The null geodesics that connect each of these two events with the worldline of the observer get
‘lensed’ by the frame-dragging effect (see figure 1 for an illustration). The ray coming from A
travels close to a plane of symmetry, while the ray coming from B travels almost orthogonal to
it. They will therefore be affected in different ways. One effect is that the angle ϑ between the
two incoming rays is not exactly 90 degrees in the frame of the observer. The non-vanishing
dot-product

cos ϑ =
kμAei

μδi jkνBe j
ν

kμAuμkνBuν

∣∣∣∣
O

(17)

of the two direction vectors (in the observer’s rest frame) is therefore an observable that
directly relates to the frame-dragging effect. Here uμ is the observer’s four-velocity (which
coincides with that of the fluid in this case), kμA, kνB denote the two null vectors of the incoming
geodesics, and the ei

μ are the basis vectors of the Fermi frame that, up to rotations, is fixed by
the requirement that uμei

μ = 0 and gμνei
μe j

ν = δi j.

3.1. Linear regime

We first analyze a solution in the regime where the amplitude of the perturbation b is small and
a linear treatment—i.e. a first-order expansion in b about an EdS background—is therefore
a good approximation. In this regime it is convenient to work with first-order gauge-invariant

6
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variables, an approach pioneered by Bardeen in his seminal work [75]. If matter has vanishing
pressure, the first-order gauge-invariant vector mode decays like 1/a2. Noting that a ∝ t2 if the
Universe is matter dominated (where t is conformal time), we find that the linear solution for
a harmonic slicing and with initial conditions given by equations (2)–(5) is

α =
t2

t2
∗

, γi j =

⎛
⎜⎜⎜⎜⎜⎜⎝

t4

t4
∗

bt
2L

cos
2πy
L

0

bt
2L

cos
2πy
L

t4

t 4
∗

0

0 0
t4

t4
∗

⎞
⎟⎟⎟⎟⎟⎟⎠

. (18)

In Poisson gauge, the same linear solution reads

a =
t̃2

t̃2
∗

, Bi = −

⎛
⎜⎝

3b̃t4
∗

4πt̃4
sin

2πy
L

0
0

⎞
⎟⎠ , ψ = φ = hi j = 0, (19)

thus in this gauge the entire metric first-order perturbation is encoded in the shift. In a generic
gauge, Bardeen’s gauge-invariant potential is a linear combination of the shift and the time
derivative of the transverse-vector part of γ ij. Through the momentum constraint this potential
is sourced by one of the two matter vector velocity perturbations, namely the one representing
the vorticity of uμ. Using the momentum constraint we can therefore relate the gauge-invariant
quantity in the two gauges, i.e.,

∂ j∂ jBi = ∂ j∂t

(
γi j/α

2
)
. (20)

Here, the left-hand side represents the gauge-invariant vector mode of the metric in Poisson
gauge and the right-hand side the same quantity in the other gauge.

We can also solve the null geodesic equations perturbatively. As per (17), in order to obtain
the direction vectors we contract the null vectors at the observer with the basis vectors that
provide local Fermi coordinates, which can be constructed perturbatively as well. We note that
to calculate (17), the photon four-vectors may also be directly projected into the observers local
frame using the projection tensor gμν + uμuν . However, we proceed using the basis vectors of
the Fermi frame in this work. At leading order, the dot product becomes

cos ϑlin = b

[
H∗L + 6

(H∗L + 2)3 +
32π2

H∗L

∫ 2π

0

cos ξ

(4π + H∗Lξ)3 dξ

]
. (21)

This first-order expression has several intuitive properties. First, it is directly proportional
to the amplitude b of the vector perturbation. Second, in the limit H∗L � 1 it asymptotes to
3b/4 which is independent of H∗L. This makes sense because deep inside the horizon the time
it takes for the light to reach the observer is much shorter than the dynamical time scale of
the perturbation. The observable hence becomes insensitive to time evolution. Third, in the
limit H∗L � 1 quite the opposite is true, and the asymptotic value is 2bH−2

∗ L−2. The signal
gets damped because the vector mode decays significantly while the light travels through the
spacetime.

3.2. Nonlinear regime

Beyond linear order a minor complication arises because the two flashes of light do not arrive
at exactly the same time. The angle between them remains uniquely defined in the observer’s

7
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Figure 1. White lines show photon trajectories as they traverse the spacetime, and
eventually intersect the observer’s worldline, shown in grey. The colored panels in the
background depict the ADM density as the simulation evolves after being initialized
with a large amplitude and wavelength, b = 0.5 and H∗L = 2. Lighter shades indicate
higher densities, and darker lower densities. The arrows in the bottom panel depict the
matter velocity on the initial surface.

inertial reference frame, and thus one needs to keep track of the rotation of that frame with
respect to any coordinate system that is used for the calculation. The arrival vector of the first
ray must therefore be parallel transported along the observer’s world line in order for the angles
to be comparable. On the other hand, the time delay can be seen as another observable that is
linked to the frame-dragging effect.

In figure 1 we illustrate this visually, depicting photon trajectories as they traverse a space-
time with a large vector mode perturbation. Deflection of photons in this case can be manifestly
seen, along with the time-delay. In the background, stream-crossings in the density field are
observed as nonlinear collapse occurs. The ADM density in a gauge with a harmonic lapse
condition and zero shift is plotted, which differs from the rest density at O(b2), e.g. as noted
in equation (31).

4. Computational frameworks

We compute the observable (17) using four different relativistic codes: gevolution, gram-
ses, the Einstein Toolkit (ET), and CosmoGRaPH. Each code employs a different relativistic
approach to evolving the initial conditions presented in section 2, as detailed below. This
study therefore provides a valuable comparison of these different computational methods in
the context of a problem applicable exclusively to relativistic codes.

We evolve the gauge-appropriate initial conditions (as per section 2) with each code for sev-
eral light-crossing times. This allows sufficient time for the light pulses to reach the observer
even in the case of a large perturbation. For each code we perform 30 simulations with different

8
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initial conditions. Specifically, we choose ten values H∗L = 2n for n ∈ {−7, . . . , 2}, and three
initial perturbation amplitudes for each choice of H∗L, namely b ∈ {0.5, 0.05, 0.005} × H2

∗L2.
This particular choice is motivated by the fact that b/(H2

∗L2), much like the compactness
parameter of compact objects, measures how extreme the matter configuration is. We remind
the reader that on sub-horizon scales b is bounded from above by 2H2

∗L2/π, beyond which
the matter configuration would no longer satisfy the weak energy condition. Some intuition
can also be gained from considering the curl part of the momentum constraint in Poisson
gauge. Here the Laplacian of the gravitomagnetic potential Bi—whose initial amplitude is
given by b—is equal to the curl part of the momentum density (Δ2Bi = 16πGa2∇×∇× T0

i
at leading order). Hence, a simple dimensional analysis shows that the latter has to approach
the critical density as b approaches the value H2

∗L2, up to some factors of order unity. The
chosen range of values for b allows us to sample those cases that we expect to be well
within a linear regime, as well as those in which the initial perturbation has sufficient time
to develop into the nonlinear regime during the time the light pulse takes to reach the
observer.

We trace the path of the light pulses emitted at events A and B on the initial surface to the
observer at the origin, where we then calculate the observable (17). To this end, we integrate
the geodesic equation in Wolfram mathematica11 (see appendix D) for the metric obtained with
each code, until each light pulse reaches the observers position. The corresponding boundary-
value problem is solved using a shooting method (employing a built-in root-finding algorithm).
In order to take into account the delay between the two observed signals, we parallel-transport
one of the photon four-vectors along the observer’s world-line before taking the dot prod-
uct. Our ray-tracing method was validated by comparing three independent implementations,
including an extension to the mescaline code [57].

We confirm the numerical convergence of the observable (17) for each code by simulat-
ing multiple spatial resolutions, see appendix B for details. We also compare the constraint
violation in the numerical relativity codes CosmoGRaPH and the ET in appendix A.

4.1. Gevolution

The public cosmological N-body code gevolution is based on a weak-field expansion of
Einstein’s equations in Poisson gauge, which facilitates a vastly more efficient (yet ultimately
approximate) computation in most cosmological settings [50, 68]. This is mainly due to the fact
that non-relativistic particle motion allows for a superior convergence rate of the time integra-
tor, making gevolution an extremely useful tool in relativistic cosmology. A crucial feature in
this respect is the spin decomposition of the metric which separates the dynamical spin-2 field
from the constraints. The latter evolve on time scales determined by the non-relativistic matter.
In our present setup, however, this advantage does not always play out, as we are exploring a
parameter space that allows for highly relativistic particles. Nonetheless, all the simulations
presented here could be run in a few hours on a single desktop workstation.

The vector mode of the metric, Bi, is kept only to linear order in gevolution, but its source
term, which is the spin-1 part of the momentum density, is treated non-perturbatively. To the
extent that the solution maintains

√
δi jBiB j � 1, which is true in cosmology and even for most

of the parameter space studied here, this yields a self-consistent framework. Of course, the
numerical solution will only be accurate up to corrections quadratic in Bi. We shall investigate
the performance of this approximation in the regime of large Bi in comparison with codes using
numerical relativity.

11 https://wolfram.com/mathematica
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Our main results shown in the next section are based on simulations with periodic domains
of N = 96 grid points in each direction to sample the spacetime, and we also use the same
number of particles. In order to study numerical convergencewe also performed all simulations
with N = 64, and some with N = 48.

4.2. GRAMSES

The recently introduced N-body code gramses [51, 88] implements a constrained formula-
tion of GR [89–91], in which the Einstein equations are cast into a system composed of three
hyperbolic equations for the evolution of tensor degrees of freedom, and a set of ten elliptic-
type equations that explicitly include the constraints. Its current version neglects the hyperbolic
part by using the conformal flatness approximation and solves the elliptic system using multi-
grid relaxation, which allows it to compute the two scalar and two vector modes of the metric.
The code inherits the adaptive mesh refinements and massive parallelisation infrastructure from
its parent code, ramses [92].

In gramses, the spatial coordinates are defined by the minimal distortion gauge (or gener-
alized Dirac gauge) condition [91, 93], ∂ ih

ij = 0, where hij corresponds to the deviation from
a conformally flat spatial metric. Notice that this is generally different from the Poisson-gauge
metric (11), in which hij is both transverse and traceless. Furthermore, βi might carry both
scalar (longitudinal) and vector degrees of freedom whereas in Poisson gauge only the latter is
allowed. However, the initial data (16) is actually fully compatible with the conformal flatness
condition h∗

i j = 0, so that the spatial coordinates at the initial hypersurface are equivalent in
these two gauges, as well as the initial shifts. Moreover, in this code the time coordinate is
fixed by a constant mean curvature (CMC) slicing condition, which (5) satisfies, and then (12)
also applies.

gramses obtains the metric and extrinsic curvature components by solving elliptic-type
equations on a mesh, which means the mesh resolution places a limit on the accuracy of its
solutions through the discretisation error. In the results shown below we have used a mesh with
2563 cells, while we have found that using 1283 and 643 cells leads to larger inaccuracies even in
the linear regime, where higher-order terms neglected by the conformal flatness approximation
are subdominant. The same discretisation error occurs for all equations being solved, and so
it can affect particle movements and thereby accumulate over time. It is therefore important
to choose a sufficiently fine grid to suppress this error. Note that for finite differencing at a
fixed order, the discretisation error is determined by the number of cells per side instead of the
physical size of a cell.

4.3. Einstein Toolkit

The Einstein Toolkit12 is an open-source numerical relativity code built on the Cactus infras-
tructure [43, 94]. Comprised of about 100 individual modules, the ET contains codes to evolve
the vacuum Einstein equations using either the Baumgarte–Shapiro–Shibata–Nakamura
(BSSN) [95, 96] or the conformal and covariant Z4 [97] formalism. In addition, it contains
codes for relativistic (magneto-)hydrodynamics [98, 99], employing a fluid approximation for
the matter distribution, and the Carpet adaptive mesh refinement and MPI driver [100]. Many
in-built initial condition setups are also available, along with constraint violation and analysis
modules, and simulation management.

12 https://einsteintoolkit.org
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The ET was first adopted for cosmological simulations in [45, 46] (see also [67]), and has
since been shown to be a viable code for fully relativistic simulations of large-scale struc-
ture formation. Further studies have included structure formation growth rates [45], primordial
gravitational waves [101], global backreaction and curvature [57], and the effect of small-scale
inhomogeneities on the local expansion rate [54].

While the ET is capable of evolving spacetimes in an arbitrary gauge, in this work the ini-
tial conditions are evolved using a harmonic lapse condition and zero shift. Because this is
a fully covariant calculation, the final observable computed will be independent of the gauge
used. Here we use the BSSN formalism to simulate three periodic, cubic domains with res-
olutions N3, where N = 64, 80, and 96, for each set of initial conditions. Having multiple
resolutions allows us to quantify numerical errors for each simulation, details of which are
given in appendix B.

4.4. COSMOGRAPH

Similar to ET, CosmoGRaPH13 [66] is an open-source numerical relativity code employing
the BSSN formulation of Einstein’s equations in order to evolve the metric. It has incorporated
SAMRAI [102] in order to provide full adaptive mesh refinement and MPI capabilities. Cosmo-
GRaPH was developed to explore general relativistic effects in cosmological spacetimes, and
to probe the applicability of novel numerical methods to cosmological problems. The frame-
work can evolve matter sources including N-body systems, perfect fluids, and scalar fields; and
can further perform raytracing through these spacetimes as they dynamically evolve in either
a forward or time-reversed setting in order to compute various cosmological observables.

CosmoGRaPH has been demonstrated capable of obtaining solutions with sufficient accu-
racy to robustly resolve relativistic corrections, down to the level of numerical precision. It
has been used in a cosmological context to explore spacetimes in both weak-field [44, 56] and
strong-gravity [74] limits, and to explore observable properties of these spacetimes [58]. Simi-
lar to ET, CosmoGRaPH is capable of utilizing an arbitrary gauge through choice of lapse and
shift, however for this work a harmonic slicing condition and zero shift are used. The periodic
domain is simulated with resolution Nx = Nz = 1 in the x- and z-directions, and Ny = 64, 96,
and 128 for each set of initial conditions with Np = N2

y /8 particles. The particle number is
chosen to scale this way in order to obtain convergence of the physical field configurations and
constraint violation [56].

5. Results & discussion

Figure 2 shows results for the observable (17) as computed from the different codes, relative
to the linear solution (21), i.e. (cos ϑ/cosϑlin) − 1, as a function of the dimensionless product
H∗L; the length scale of the perturbation in units of the Hubble scale. Panels, top to bottom,
show three different sets of initial perturbation amplitudes, b ∈ {0.005, 0.05, 0.5} × H2

∗L2,
respectively. Red circles show the results from gevolution, blue diamonds show the results
from the ET, green squares show the results from CosmoGRaPH, and orange triangles show
the results from gramses, with dashed lines showing the linear solution for reference. Data
and corresponding error bars for ET and CosmoGRaPH were calculated using a Richardson
extrapolation, i.e. the data points shown represent values extrapolated to N →∞, see appendix
B for details.

In gevolution, the weak-field approximation includes all terms in the expansion up to O(b),
and so for large perturbations (and for H∗L�1) we do expect to see a difference with respect
to the ET and CosmoGRaPH. A similar statement can be made about gramses, which, due to

13 https://cwru-pat.github.io/cosmograph/
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Figure 2. Numerical results obtained from gevolution (red circles), the Einstein Toolkit
(blue diamonds), CosmoGRaPH (green squares) and gramses (orange triangles). Panels
show the relative difference between equation (17), evaluated numerically for simula-
tions with different values of b and H∗L, and the corresponding linear prediction given
in equation (21).

the conformal flatness approximation, neglects tensor modes that might be excited during the
evolution of the system at O(b2) and beyond.

The top panel of figure 2 shows results for the smallest-amplitude perturbation, i.e. b =
0.005 × H2

∗L2. For this case we see agreement with the linear solution to within 0.03% for all
codes and for all values of H∗L. The ET provides the most numerically accurate solution in this
regime where the perturbations remain linear. In this case, the fluid description implemented
in the ET remains valid, which carries a smaller numerical error because it does not require
smoothing over a particle distribution at each time step. To within numerical accuracy of the
simulations performed, the only resolvable effect is a 0.003% deviation from the linear solution
for the ET with H∗L = 4—with the exception of one outlying CosmoGRaPH point at the
smallest L and b due to poor numerical convergence, discussed further in appendix B.

Especially at large values of H∗L the performance of the linear prediction may seem sur-
prising, but can be understood from the following considerations. First, working in Poisson
gauge where the vector perturbation is in the shift, we can see that the linear expression for
the shift is in fact exact on the initial hypersurface, cf equations (16) and (19). The shift also
appears only linearly in the geodesic equation (see appendix D), and the terms due to the lapse
perturbation, which is formally O(b2) outside of the initial hypersurface, would alone not lead
to a deflection in the considered setup due to symmetry. Hence their effect appears only at one
order higher, namely O(b3). There are no new O(b2) corrections as one moves away from the
initial hypersurface because the matter dynamics are mainly due to inertia.

12
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Figure 3. Relative difference between the observable (17) measured in each code and
that measured in CosmoGRaPH for simulations with b = 0.5 × H2

∗L2. We use Cosmo-
GRaPH as a reference here as we expect it to produce the most reliable results in this
extreme case. Red circles show residuals for gevolution, orange triangles for gramses,
and blue diamonds for the Einstein Toolkit. Green lines show the error bars from the
CosmoGRaPH results.

Considering the perturbations b = 0.05 × H2
∗L2, shown in the middle panel of figure 2,

we see measurable deviation from the linear solution for values of H∗L�1. These are below
∼1% in all codes, and the numerical relativity codes ET and CosmoGRaPH agree within
their quoted numerical accuracy. The results from gevolution and gramses show a qualita-
tively similar deviation from the linear prediction, and are well within expected truncation
errors from higher-order terms of O(b2) (i.e. quadratic in the shift or higher, see section 4.1)
in the weak-field expansion. However, in the case of gramses the roughly constant deviation
from the linear solution for H∗L � 1 is a result of the mesh discretization error (see section
4.2).

In the most extreme case with b = 0.5 × H2
∗L2 —close to the limit set by the weak energy

condition—shown in the bottom panel of figure 2, we see the strongest deviations from
the linear prediction. Incidentally, the linear prediction still holds to a good approximation
for H∗L � 1, as confirmed by all four codes. In this regime, gevolution shows a persistent
∼2% error which is consistent with dropping terms of order Bi∂

2Bi ∼ b2/L2 from Einstein’s
equations: compared to terms linear in Bi their relative amplitude is indeed∼b/(H∗L)2 in some
cases. The difference between gevolution and the other three codes for all values of H∗L, is
therefore still well within the expected O(b2) truncation error from the weak-field expansion.
We have clipped the points for H∗L = 4 in the bottom panel of figure 2 to ensure deviations at
smaller H∗L can be resolved. In this case, we find deviation from the linear solution for gevolu-
tion of −0.619, for gramses of −0.68, and for CosmoGRaPH of −0.8183 ± 0.0004. For the
ET simulation with H∗L = 4, we could not find a null geodesic that connects either event A or
B with the observer, possibly indicating the presence of a horizon. We suggest this is a result
of the fluid approximation used in the ET, since all other codes use a particle description and
do not have this issue.

To highlight the difference between codes in the extreme regime shown in the bottom panel
of figure 2, we also plot the observable (17) from each code relative to that calculated in
CosmoGRaPH in figure 3. Here we see gevolution and gramses agree to within ∼1% and
�0.1% for small values of H∗L, respectively. This difference grows to ∼1 for the largest box
size H∗L = 4. For H∗L < 1 the ET and CosmoGRaPH agree within their numerical errors,
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however at H∗L = 1 we see a small deviation, which increases to ∼15% for H∗L = 2. In this
case we expect stream crossing has occurred; a regime in which we no longer trust the fluid
approximation implemented in the ET, and the N-body (Vlasov) description used in Cosmo-
GRaPH is more physically relevant. However, the fluid approximation is more numerically
accurate than N-body per computational cost, as can be seen clearly in the top panel of figure 2.
This is due to the additional numerical error introduced by smoothing over the particle distri-
bution at each time step in order to source the metric evolution, see e.g. [56]. Regardless, the
inability of the fluid approximation to capture stream crossings implies that once these occur,
the results from the ET should not necessarily be considered representative of collisionless
matter.

6. Conclusions

In this work we have compared the computational approaches of four independent, relativis-
tic, cosmological simulation codes. Specifically, we studied a coordinate-invariant effect on
null geodesics that is produced by an artificially strong gravitomagnetic field. In the pro-
cess we have also explored the validity of the linear approximation for the frame-dragging
effect.

We summarize our main findings as follows:

• For perturbations with amplitude b = 0.005 × H2
∗L2, we find a match to linear theory

within 0.03% for all codes and for all box sizes studied here.
• For larger perturbations, with amplitudes b ∈ {0.05, 0.5} × H2

∗L2, we find agreement with
linear theory within 0.1% and 1%, respectively, for all sub-horizon box sizes H∗L � 1.
However, gevolution has a persistent deviation of almost 2% for the highest perturbation
amplitude, which is nonetheless consistent with its approximation scheme.

• In CosmoGRaPH, the deviation from linear theory is ∼ 80% for H∗L = 4 and b = 0.5 ×
H2

∗L2. We expect CosmoGRaPH to provide the most trustworthy results in this extreme
case; a regime in which �O(b2) effects are relevant and stream crossing occurs.

• The weak-field approximation used in gevolution agrees well with the numerical relativity
codes for most cases studied here. Any deviations seen are well within the expected O(b2)
for all choices of parameters. Due to the fact that Einstein’s equations are second order,
some of these corrections can scale as ∼b2/L2, which means that they survive even in the
sub-horizon limit.

• In gramses, deviations from the linear solution in cases well into the linear regime are
dominated by the mesh discretization error, while for larger perturbations deviations from
other codes are mainly due to the conformal flatness approximation, and are within the
expected O(b2) truncation error.

• We find agreement within numerical uncertainties between the numerical relativity codes,
ET and CosmoGRaPH, in most cases. Exceptions are those in which stream crossing
occurs, at which point the fluid description used in ET is no longer resolving the full
phase-space dynamics, and CosmoGRaPH provides a more physically relevant result.

The test performed here is unique in that it is applicable only to codes which consider
general-relativistic effects. Each code has differences in either its approximation of GR and/or
numerical method. This study therefore provides an important test of these approximations and
their limits in describing nonlinear dynamics.

A number of other relativistic effects would of course be interesting to investigate using
these codes. These include, but are not limited to, studying in detail the collapse and
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virialisation of structures, the development and relevance of local spatial and Weyl curvature
(electric vs magnetic), coupling between small scales—where the matter distribution is very
nonlinear—and the largest sub-horizon scales, gravitational waves, and the impact that any of
these effects may have on current and future cosmological observations.

The codes used here each have their limitations, e.g. ET is currently limited to a fluid
description of matter, and therefore cannot be used to study virialisation, while gramses
uses the conformal flatness approximation and therefore cannot be used to study gravitational
waves. Comparing our codes in regimes where such effects may be relevant therefore is beyond
the scope of this paper. Nonetheless, we further emphasise that by inducing a strong gravit-
omagnetic field, we have considered a regime where all relativistic degrees of freedom are
excited once nonlinearity becomes relevant. While we leave the investigation of other rela-
tivistic effects to future studies, it seems reasonable to expect that these will not contradict the
results we found here.
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Appendix A. Constraint violation in NR codes

Here we analyse the constraint violation for the numerical relativity codes ET and Cosmo-
GRaPH for two select simulation cases. These codes are based upon hyperbolic formulations
of Einstein’s equations, which evolve the dynamical equations but do not explicitly enforce the

14 https://sexten-cfa.eu
15 https://massive.org.au
16 https://sciama.icg.port.ac.uk
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constraint equations. The constraints (7) and (8) are instead used as a diagnostic tool to check
whether solutions have drifted too far from the physical constraint surfaces, i.e. to determine
how well energy and momentum have been conserved in a general-relativistic sense.

Although this check is a good diagnostic, it does not necessarily imply validity of solu-
tions, as numerical error can violate the dynamical evolution equations while still preserv-
ing constraints. For a timestep sufficiently small that the error in the dynamical evolution is
small, remaining error will be dominated by truncation error when evolving vacuum or fluid
solutions, or particle noise in the N-body case. In both cases, we can compute the rate at
which the constraint violation in simulations converges to zero, and compare this to theoretical
expectations.

In the case of stream-crossings, or caustics, it has been found that the constraint violation in
the vicinity of a caustic will not converge in general [56, 103]. This is due to the presence of a
mild singularity in the vicinity of caustics, where curvature scalars can diverge, yet the metric
remains in a weak-field limit and the spacetime is geodesically complete. In the N-body case,
we therefore expect constraint violation to be well-behaved before stream-crossings, and poor
after. We expect the constraint violation to be well-behaved at all times in the corresponding
fluid limit (assuming all relevant scales are resolved, i.e. that all gradients in the fluid remain
constant between resolutions).

In figure A1 we show the constraint violation as a function of approximate scale factor of
the simulation, for ET (blue curves) and CosmoGRaPH (green curves). We use the volume of
the entire simulation domain, VD, to calculate the approximate scale factor, i.e.,

aD(t) =

(
VD(t)

VD(tinit)

)1/3

, (22)

where VD ≡
∫
D
√
γ d3X, and γ is the determinant of the spatial metric γij.

The top panel of figure A1 shows the simulation with H∗L = 0.0625, and the bottom panel
shows H∗L = 2. Both simulations shown here have perturbation amplitude b = 0.5 × H2

∗L2.
Solid curves show the highest resolution, dashed curves the medium resolution, and dotted
curves the lowest resolution. These sets of resolutions differ slightly between ET and Cosmo-
GRaPH, see sections 4.3 and 4.4, respectively, for details. Specifically, figure A1 shows the
L2 error of the normalised Hamiltonian constraint violation, i.e.,

‖H/[H]‖2 =

√∑
iH

2
i√∑

i[H]2
i

, (23)

where Hi is the Hamiltonian constraint violation at grid cell i (for an exact solution we have
Hi = 0 everywhere), and the normalisation is

[H] ≡
√(

3R
)2

+
(
K2

)2
+
(
Ki jKi j

)2
+ (16πGρ)2, (24)

where ρ = α2ρ0(u0)2 is the mass-energy density on the simulation hypersurfaces (not neces-
sarily the rest-frame of the matter), and [H]i is (24) evaluated at grid cell i.

For the smaller box size, in the top panel of figure A1, both simulations show conver-
gence of the L2 error with an increase in resolution. For the larger box size H∗L = 2 in the
bottom panel of figure A1, the perturbation has more time to grow in a few light-crossing
times of the box. For the N-body approach used in CosmoGRaPH, convergence is found
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Figure A1. Hamiltonian constraint violation for the ET (blue) and CosmoGRaPH
(green), for H∗L = 0.0625 (top panel) and H∗L = 2 (bottom panel). Both panels show
simulations with amplitude b = 0.5 × H2

∗L2. Solid curves show the highest resolution,
dashed curves the medium resolution, and dotted curves the lowest resolution. Here we
show the L2 norm (23) of the constraint violation as a function of approximate simulation
scale factor.

up until a stream-crossing occurs, at a scale factor of a ∼ 2. After this time, inexact can-
cellation of numerically large (and formally infinite) contributions to the Hamiltonian con-
straint leads to a lack of convergence of constraint violation. For ET we see convergence
until approximately the same time as CosmoGRaPH in this case, after which the constraint
violation is approximately the same at all resolutions, and reaches order unity. For this par-
ticular simulation, gradients are no longer consistent between resolutions and so we do not
expect convergence of the constraints in general. After stream crossing, we do not expect the
fluid approach used by ET to be representative of collisionless matter. While convergence of
the constraints diverges due to caustic formation, convergence of the metric itself and its first
derivatives is still found, leading to convergent results for the observable as discussed in the next
section.

Appendix B. Convergence and errors

B.1. Numerical convergence of observable

Here we check numerical convergence of the observable presented in figure 2 as a function
of resolution for all codes. We must ensure that our numerical calculations provide results
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with a sufficient degree of precision that they are meaningful, i.e. that they are approaching
a continuum limit solution. We expect different rates of convergence for each code, due to
different dominant error sources which depends on the numerical approximations made in
each case.

We compute the convergence rate by evaluating the observable at three different resolutions,
Δx1, Δx2, and Δx3. For a method of order p, the error will be O(Δxp), and the convergence
rate of the observable angle ϑ is given by

C =
ϑΔx1 − ϑΔx2

ϑΔx2 − ϑΔx3

, (25)

and the theoretical convergence rate is

Cexpected =
Δxp

1 −Δxp
2

Δxp
2 −Δxp

3

. (26)

Figure B1 shows the convergence rate relative to the theoretical convergence rate for each
code, for the set of simulations in the top panel of figure 2. The expected convergence rate
is calculated using (26) and the order of the integration scheme implemented in each code,
p, as indicated in the legend. For this small perturbation, we expect all results to match the
linear solution to a good approximation, and so it is an ideal case in which to test numerical
convergence (although we have confirmed convergence for larger b as well). From figure B1
we see all codes give close to their expected numerical convergence rate for all values of
H∗L. In gevolution we see a drop to first-order convergence inside the horizon. This is pos-
sibly due to the fact that we are approaching a quasistatic limit in which the error in the time
integrator becomes subdominant. The elliptic constraint for the gravitomagnetic potential is
solved by inverting a first-order finite-difference Laplacian, which may become the domi-
nant source of error in this regime. We note a few peculiar convergence values in figure B1
for CosmoGRaPH, gevolution, and ET, at H∗L = 0.007 8125, 0.03125, and 2, respectively.
In the case of CosmoGRaPH, we believe this is due to truncation error surpassing error
introduced from particle noise, leading to a different convergence rate than expected, and
thus effective method order p; this additionally results in a poorly extrapolated data point
and error bar as seen in figure 2. The remaining simulations appear to show normal numer-
ical convergence for, e.g., the constraint violation in the case of ET, and so we believe the
simulations themselves are providing reliable results. We therefore suggest that the non-
convergence of the observable is related to the root-finding algorithm implemented in the
ray tracing code used, but we do not investigate this further since all other points show good
convergence.

B.2. Error calculation

For ET and CosmoGRaPH, simulations were run at three different spatial resolutions for
each value of b and H∗L. This allows us to quantify the numerical error on the observ-
ables we compute from these simulations, as well as to estimate values in the N →∞ limit
using a Richardson extrapolation. The values and error bars are calculated by fitting curves
consistent with the expected order of convergence of the scheme used, and extrapolating
to find the continuum-limit solution. The numerical error bars shown in figure 2 are com-
puted using differences between numerical values and the extrapolated, continuum-limit solu-
tions in the case of ET, and using the distribution of extrapolated values in the case of
CosmoGRaPH.
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Figure B1. Convergence rate (25) for the observable (17) calculated in simulations
with b = 0.005 × H2

∗L2. We show the convergence rate relative to its expected value
(26), for the Einstein Toolkit (blue diamonds), CosmoGRaPH (green squares), gramses
(orange triangles), and gevolution (red circles).The order of the integration scheme, p,
implemented in each code is indicated in the legend.

Appendix C. Initial conditions with BSSN variables

The BSSN conformal factor and extrinsic curvature trace are given by [95, 96]

φBSSN
∗ = 0 (27)

K∗ = −3H∗. (28)

Because the determinant of the spatial metric γ∗ = 1, the conformal BSSN metric is given by
γ̄∗

i j = γ∗
i j. The conformally related trace-free part of the extrinsic curvature is given by

Ā∗
i j = 3

⎛
⎜⎜⎜⎝

0
3b
4L

cos
2πy
L

0

3b
4L

cos
2πy
L

3b2

2H∗L2
cos2 2πy

L
0

0 0 0

⎞
⎟⎟⎟⎠ , (29)

and the conformal, contracted Christoffel symbol is

Γ̄i
∗ =

⎛
⎜⎝
− 2πb

H∗L2
sin

2πy
L

0
0

⎞
⎟⎠ . (30)

Lastly, the 3 + 1/ADM density is given by

ρ∗ADM =
3H2

∗
8πG

− 9b2 cos2
( 2πy

L

)
128πGL2

, (31)

and relativistic gamma factor W∗ = α∗u0
∗

W∗ =
16H2

∗L2 − 3b2 cos2
( 2πy

L

)
√(

16H2
∗L2 − 3b2 cos2

(
2πy
L

))2 − 64π2b2 sin2
(

2πy
L

) (32)
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Appendix D. Photon integration

The geodesic equations parallel transport velocity vectors in the direction of the velocity,

kμ∇μkν = 0, (33)

for a photon four-vector kμ, or for ordinary matter with kμ → uμ. In order to integrate this
numerically, we can cast this expression into a 3 + 1 form conducive to numerical integration,
and for which the effects of frame-dragging due to a nonzero shift are transparent,

dki

dt
= −αk0∂iα+ k j∂iβ

j − 1
2k0

k jkk∂iγ
jk

d xi

dt
= γ i j k j

k0
− βi. (34)

Lastly, the observable, equation (17), can be rewritten without a reference to basis vectors for
an observer at rest, uμ ∝ (1,�0), as

cos ϑ =
γ i jkA

i kB
j√

γ i jkA
i kA

j

√
γ i jkB

i kB
j

∣∣∣∣∣∣
O

, (35)

provided the vectors are observed simultaneously. In order to obtain this simple expression
we also used the fact that β i vanishes at our observer location due to symmetry. For non-
simultaneous arrivals, one vector will need to be parallel transported along the observer’s
trajectory. The parallel transport equation can be written

uμ∇μkν = 0

→ dki

dt
= −αk0∂iα+ k j∂iβ

j − 1
2u0

ulk j∂iγ
l j

+ α
(uk

u0
k0 − kk

)
Kk

i , (36)

where the last term here is new compared to equation (34), and the second-last term now is
sensitive to the observer’s velocity. In terms of 3 + 1 variables, and for the metric and observer
considered in this work, and for a gauge choice that respects symmetry of the problem (so
∂ iα = 0 at y = 0), this expression simplifies to

dki

dt
= k j∂iβ

j − αk jK
j
i , (37)

which is integrated purely in time at y = 0. The observable, equation (35), is also evaluated
using the metric at the time the second ray arrives.

ORCID iDs

Hayley J Macpherson https://orcid.org/0000-0002-9950-422X

References

[1] Peebles P J E 1984 Astrophys. J. 284 439
[2] Efstathiou G, Sutherland W J and Maddox S J 1990 Nature 348 705

20

https://orcid.org/0000-0002-9950-422X
https://orcid.org/0000-0002-9950-422X
https://orcid.org/0000-0002-9950-422X
https://doi.org/10.1086/162425
https://doi.org/10.1086/162425
https://doi.org/10.1038/348705a0
https://doi.org/10.1038/348705a0


Class. Quantum Grav. 37 (2020) 154001 J Adamek et al

[3] Spergel D N et al 2003 Astrophys. J. Suppl. 148 175
[4] Tegmark M et al 2004 Phys. Rev. D 69 103501
[5] Riess A G et al 1998 Astron. J. 116 1009
[6] Perlmutter S et al 1999 Astrophys. J. 517 565
[7] Aghanim N et al 2018 arXiv:1807.06209
[8] Alam S et al 2017 Mon. Not. R. Astron. Soc. 470 2617
[9] Lemaître G 1931 Nature 127 706

[10] Lemaître G 1934 Proc. Natl Acad. Sci. 20 12
[11] Adler R J, Casey B and Jacob O C 1995 Am. J. Phys. 63 620
[12] Weinberg S 1989 Rev. Mod. Phys. 61 1
[13] Martin J 2012 C. R. Phys. 13 566
[14] Buchert T, Coley A A, Kleinert H, Roukema B F and Wiltshire D L 2016 Int. J. Mod. Phys. D 25

1630007–244
[15] Riess A G et al 2018 Astrophys. J. 855 136
[16] Riess A G, Casertano S, Yuan W, Macri L M and Scolnic D 2019 Astrophys. J. 876 85
[17] Lemos P, Lee E, Efstathiou G and Gratton S 2019 Mon. Not. R. Astron. Soc. 483 4803
[18] Battye R A, Charnock T and Moss A 2015 Phys. Rev. D 91 103508
[19] Douspis M, Salvati L and Aghanim N 2018 Proc. 2nd World Summit on Exploring the Dark Side

of the Universe (EDSU2018): Point a Pitre, PoS EDSU2018 (Guadeloupe France, June 25–29,
2018) p 37

[20] Handley W 2019 arXiv:1908.09139 [astro-ph.CO]
[21] Di Valentino E, Melchiorri A and Silk J 2019 Nature Astron. 4 196
[22] Efstathiou G and Gratton S 2020 arXiv:2002.06892 [astro-ph.CO]
[23] Bolejko K 2017 J. Cosmol. Astropart. Phys. JCAP6(2017)25
[24] Salvatelli V, Said N, Bruni M, Melchiorri A and Wands D 2014 Phys. Rev. Lett. 113 181301
[25] Wang Y, Wands D, Zhao G-B and Xu L 2014 Phys. Rev. D 90 023502
[26] Martinelli M, Hogg N B, Peirone S, Bruni M and Wands D 2019 Mon. Not. R. Astron. Soc. 488 3423
[27] Hogg N B, Bruni M, Crittenden R, Martinelli M and Peirone S 2020 arXiv:2002.10449

[astro-ph.CO]
[28] Copeland E J, Sami M and Tsujikawa S 2006 Int. J. Mod. Phys. D 15 1753
[29] Clifton T, Ferreira P G, Padilla A and Skordis C 2012 Phys. Rep. 513 1
[30] Joyce A, Lombriser L and Schmidt F 2016 Annu. Rev. Nucl. Part. Sci. 66 95
[31] Ezquiaga J M and Zumalacárregui M 2017 Phys. Rev. Lett. 119 251304
[32] Frusciante N and Perenon L 2019 arXiv:1907.03150 [astro-ph.CO]
[33] Heavens A, Fantaye Y, Sellentin E, Eggers H, Hosenie Z, Kroon S and Mootoovaloo A 2017 Phys.

Rev. Lett. 119 101301
[34] Renk J, Zumalacárregui M, Montanari F and Barreira A 2017 J. Cosmol. Astropart. Phys.

JCAP10(2017)20
[35] Zhao G-B et al 2017 Nature Astron. 1 627
[36] Lazkoz R, Ortiz-Baños M and Salzano V 2018 Eur. Phys. J. C 78 213
[37] Di Valentino E, Melchiorri A, Mena O and Vagnozzi S 2020 Phys. Rev. D 101 063502
[38] Laureijs R et al 2011 arXiv:1110.3193
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