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Abstract

We calibrate a mathematical model of renal tubulointerstitial fibrosis by Hao et al. [5], which is used
to explore potential drugs for Lupus Nephritis, against a real data-set of 84 patients. For this purpose, we
present a general calibration procedure which can be used for the calibration analysis of other biological
systems as well. Central to the procedure is the idea of designing a Bayesian Gaussian process (GP)
emulator that can be used as a surrogate of the fibrosis mathematical model which is computationally
expensive to run massively at every input value. The procedure relies on detecting influential model
parameters by a GP based sensitivity analysis, and calibrating them by specifying a maximum likelihood
criterion, tailored to the application, which is optimized via Bayesian global optimization.

Keywords: Renal tubulointerstitial fibrosis, calibration, surrogate model, Gaussian process emulation

1 Introduction

An autoimmune disease, such as Lupus Nephritis, starts with inflammation in the kidney, which may lead to
renal tubulointerstitial fibrosis. The renal fibrosis is characterized by abnormal excessive deposition of fibrous
proteins, such as collagen, and is often progressive leading to kidney dysfunction or failure. A mathematical
model of renal tubulointerstitial fibrosis was recently developed by Hao et al.[5] and was used to explore

1



potential drugs. This mathematical model is based on the network of cells and cytokines of renal fibrosis
progression which is represented by a system of partial differential equations (PDEs) in a section of the
kidney tissue. More recently Hao et al. [4] extended this model to IPF and used it to explore the efficacy of
drugs. These computational models enable predictions of fibrosis progression and can provide a systematic
way to quantify the precision medicine for fibrosis patients. However, developing these models depends on
the knowing biology behind the fibrosis progressions but lacks of unknown qualities. Then further model
refinement needs a calibration technique for the model validation and parameter analysis that aligns model
and fibrosis progression.

In this paper, we present a computational method for calibrating the renal tubulointerstitial fibrosis
mathematical model in Hao et al. [5] against real data. This method is based on Bayesian global optimization,
global sensitivity analysis, and the Gaussian process emulation. It is a general approach and can be easily
extended to other biological models for a deeper consideration of calibration to demonstrate the data-
driven modeling purpose. Here, as fibrosis model is expensive to run massively, the Gaussian process (GP)
emulator [17] is utilized as a computationally cheap probabilistic surrogate model aiming at representing
computationally expensive functions and quantifying uncertainties due to approximations. Initially, the
influential model parameters are identified via a surrogate model based global sensitivity analysis [11] as a
part of a screening procedure to reduce the computational requirements during the calibration procedure.
Optimal values for the model parameters are discovered by minimizing a maximum likelihood criterion,
measuring the proximity of the real data and the model output, via a Bayesian global optimization. The
criterion is specified properly in order to take into account differences between the three patient groups (low,
intermediate, and high fibrosis).

The layout of the paper is as follows: we describe the mathematical model simulating Fibrosis in Section
2, we present the statistical methods that we use to analyze the application in Section 3, we perform the
analysis of the fibrosis mathematical model and discuss the results in Section 4, we conclude in Section 5.

2 Mathematical model of the renal fibrosis

The model developed in Hao et al [5] is used to describe the casual network of the renal fibrosis which
starts the injured glomerular compartment that communicates with the tubulointerstitial compartment. By
responding to glomerular immune complexes, monocytes enter glomeruli from the circulation differentiate
into tissue macrophages and then escape from damaged glomeruli into the tubulointerstitium. Similarly,
soluble pro-inflammatory factors could “leak" out of damaged glomeruli and activate tubular epithelial cells
(TECs). Activated TECs secrete some pro-inflammatory mediators including chemoattractants like mono-
cyte chemotactic protein-1 (MCP-1), that recruit additional circulating monocytes to the tubulointerstitial
space. Infiltrating monocytes become activated macrophages, with activated TECs, facilitate the progression
from inflammation to interstitial fibrosis by secreting several cytokines and growth factors such as platelet-
derived growth factor (PDGF), transforming growth factor-beta (TGF-β), matrix metalloproteinase (MMP)
and tissue inhibitor of metalloproteinase (TIMP) (See more details in Figure 1). All these cytokines are
involved in the regulation of tissue fibrosis: TGF-β, along with TEC-derived basic fibroblast growth fac-
tor (bFGF) increases the proliferation of interstitial fibroblasts; PDGF and TGF-β transform fibroblasts to
myofibroblasts, which produce extracellular matrix (ECM). The imbalance between MMP and its inhibitor
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TIMP facilitates the accumulation of ECM and formation of interstitial fibrosis.
In order to model different cells dispersion and cytokines’ diffusion (due to the renal fibrosis progression)

shown in Fig. 1, a system of convection-diffusion equations has been used in Hao et al. [5]. The equation
for each species Ci p1 ď i ď Nq has the following form [5]:

BCi
Bt

´DCi∆Ci “ FCipCq in Ω (1)

where DCi
is the diffusion/dispersion coefficient and FCi

pCq is a function which models all the species’
interactions in the molecular networks shown in Figure 1. We will not write FCi

pCq explicitly here for each
Ci (see Hao et al. [4, 5] for more details). The system of diffusion equations, Eq. (1), is solved by the central
difference scheme of finite difference method in discretizing the space coupled with the forward Euler method
in discretizing the time.

This model has been compared with the patient data qualitative [5]. However it did not calibrate the
model and perform the parameter sensitivity analysis which is very important to illustrate the usefulness of
the model in clinical practice. In the present paper, we will further calibrate this model with respect to the
available patient data.

Figure 1: Schematic networks of the renal fibrosis.
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3 Model calibration statistical methods

We present a two stage procedure for the calibration of the fibrosis mathematical model (1) which involves
sensitivity analysis and Bayesian global optimization.

3.1 Gaussian process emulators of unknown functions

Emulators of computationally expensive or unknown functions are cheap probabilistic surrogate models [17,
18, 19] aiming at quantifying uncertainties due to approximations. Assume there is interest in representing a
function whose analytic expression is not directly available; e.g., the output of a simulator. Let the unknown
function be fp¨q, that inquires a set of inputs x :“ px1, ..., xdq P X Ă Rd and produces an output y “ fpxq P R.

Central to the Gaussian process (GP) emulation [17, 23] is the idea of modeling fp¨q as a Gaussian process
which can be fully specified by its mean function and correlation function. Here, we specify

fp¨q|β, ψ „ GPpµ0p¨|βq, σ
2r0p¨, ¨|ψqq,

where β and ψ are unknown hyper-parameters of the mean µ0p¨|βq and correlation r0p¨, ¨|ψq functions, and σ2

is an unknown scale parameter controlling the variance at each input that need to be specified accordingly.
Although fp¨q is unknown, it is often possible to exist a priori knowledge regarding some properties of the
fp¨q, e.g. smoothness; such information can be incorporated through the specification of µ0p¨|βq and r0p¨, ¨|ψq.
The mean function µ0p¨|βq traditionally is modeled as

µ0px|βq “ hJpxqβ,

where hp¨q :“ ph1p¨q, ..., hqp¨qq are known basis functions, e.g. polynomial bases [26], and β P Rq are unknown
coefficients, because it can satisfactory represent long scale dependences. The covariance function r0p¨, ¨|ψq
must be specified such that every covariance matrix with elements tr0pxi, xj |ψqu is non-negative defined. In
the literature, there are several covariance function families with different properties [18]. A commonly used
class of covariance functions is the Matern [23] because of its flexibility. Specifically, a correlation function
based on the ν-Matern kernel is such r0px, x1|ψq “ kMatern,νp

řd
j“1pxj ´ x

1
jq

2ψ´1
j q, where

kMatern,νpdq “
21´ν

Γpνq
p
?

2νdqνKνp
?

2νdq,

tψ´1
j u are positive length-scale parameters describing how smooth fp¨q is with respect to the j-th input, Kνp¨q

is a modified Bessel function [1], and ν ą 0 is a smoothness parameter that describes the differentiability of
the function. The use of a ‘nugget’ term κ ą 0 in the covariance function, as r0px, x1|ψq “ kMatern,νp

řd
j“1pxj´

x1jq
2{ψjq ` κ can lead to a better statistical properties and computational stability [3]; here we consider κ

as a fixed value specified by the researcher.
We assume that there is available a (training) data-set D “ tpx1, y1q, ..., pxn, ynqu of size n that contains

realizations yi :“ fpxiq at design points xi for i “ 1, ..., n. The joint distribution of the outputs y (forming
the likelihood function) is a multivariate Normal distribution

y|β, ψ, σ2 „ NnpHβ, σ2Rpψqq,
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where σ2 is an unknown scalar parameter, R is the correlation matrix such that rRpψqsi,j “ r0pxi, xj |ψq,
and H is a design matrix such that H “ phpx1q, ..., hpxnqq

J. Working in the Bayesian framework, we assign
weak prior πpβ, σ2q91{σ2 on the unknown parameters pβ, σ2q, and a user specified proper prior πpψq on ψ.

The predictive distribution of fp¨q at new input points x1 and x2 given the observed y results by integrating
out pβ, σ2q from the joint distribution rfpx2q, fpx1q, y, β, σ2, ψs and conditioning on y, ψ, as a Student-t
process [20, 18, 24]:

fp¨q|y, ψ „ StPpµnp¨|ψq, vnpψqCnp¨, ¨|ψq, n´ qq, (2)

with degrees of freedom n´ q, mean and shape function

µnpx|ψq “hpxq
Jβ̂npψq ` rpx|ψq

JR´1pψqpy ´Hβ̂npψqq (3)

Cnpx, x
1|ψq “rr0px, x

1|ψq ´ rpx|ψqJR´1pψqrpx1|ψq

` phpxq ´ rpx|ψqJR´1pψqHqpHJR´1pψqHq´1sphpx1q ´ rpx1|ψqJR´1pψqHqJ, (4)

vnpψq “
yJpR´1pψq ´R´1pψqHpHR´1pψqHJq´1HJR´1pψqqy

n´ q
(5)

where rp¨|ψq :“ pr0p¨, x1|ψq, ..., r0p¨, xn|ψqq, and β̂npψq “ pHR´1pψqHJq´1HJR´1pψqy. The predictive
distribution (2) can be used as an emulator for fp¨q, while the posterior mean µnpx|ψq can be used as a
surrogate model for fp¨q, provided we know the unknown ψ.

To learn the unknown ψ, we consider the Maximum A posteriori (MAP) estimation which requires one
to maximize the log marginal posterior distribution density of ψ

πpψ|yq9Nnpy|Hβ̂npψq, σ2Rpψqqπpψq,

where Ndpy|b, Bq denotes the density of the d-dimensional Normal distribution with mean b and covariance
B. Namely, we seek the MAP estimates of ψ as

ψ̂ “ arg min
ψ
tlogpπpψqq ´

1

2
log detpRpψqq ´

1

2
log detpHJR´1pψqHq ´ pvnpψqq

n´q
2 u, (6)

This is essentially an Empirical Bayes approach which can be seen as a fast approximation of the fully
Bayesian method. To solve (6), one can implement any optimization algorithm, here we use the Parallel and
Interacting Stochastic Approximation Annealing (PISAA) algorithm [9].

3.2 Surrogate based global sensitivity analysis

Sensitivity analysis (SA) quantifies how uncertainties in the output of the simulator can be apportioned to
uncertainties in the inputs throughout the input space. It can be used to identify non-influential parameters
as a part of a screening procedure in order to reduce model complexity. This can mitigate the computational
cost in a subsequent model calibration due to high dimensionality of the input space.

According to Hoeffding-Sobol expansion [6], any function fp¨q can be decomposed into summands of
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increasing dimensionality as

fpxq “ fo `
d
ÿ

i“1

fipxiq `
ÿ

1ďiăjďd

fi,jpxi, xjq ` ... “
ÿ

iPI
fipxiq,

under certain orthogonality conditions [21], where I is a collection of all possible index subsets. This allows
the total variance D “ Varpfpxqq of fpxq to be factorized as

D “ Do `

d
ÿ

i“1

Di `
ÿ

1ďiăjďd

Di,j ` ... “
ÿ

iPI
Di,

where Di “ VarpEpfpxq|xiqq ´
ř

jĂi VarpEpfpxq|xjqq are partial variances [22]. The Sobol sensitivity index
for i is defined as

Si “
Di

D
. (7)

For instance, Si “ Di{D is the first-order sensitivity index for input parameter xi and measures its main
effect on the output, while Si,j “ Di,j{D is the second-order sensitivity index that measures the part of
the variance explained by xi and xj jointly but not individually. Often it is computationally expensive
to evaluate all possible tSi;@i P Iu, and hence the main interest focuses on the total sensitivity indices
STi

“ Si `
ř

ti:iPiu Si which measures the total effect of i-th input parameter on the output. Small values
of STi

« 0 imply that the i-th input parameter is non-influential and hence can be fixed in the subsequent
model calibration.

Evaluation of Si in (7) cannot be performed analytically due to the intractable integrals. To address this
issue, approximation modified versions of (7) such as the Monte Carlo based methods [2, 7, 14], meta-model
based methods [27, 16, 11], or screening based methods [15] have been developed. Here, we focus on the
GP based Sobol sensitivity analysis [11] according to which the function fp¨q is substituted by the surrogate
model (2) and then Sobol indices are estimated via Monte-Carlo integration. The estimator of (7) is

S̃
pn,mq
i “

D̃i

D̃
“

1
m

řm
t“1 f̃pxiqf̃px´iq ´ p

1
m

řm
t“1 f̃pxiqqp

1
m

řm
t“1 f̃px´iqq

1
m

řm
t“1 f̃pxiq

2 ´ p 1
m

řm
t“1 f̃pxiqq

2
(8)

where f̃p¨q “ µnpx|ψ̂q denotes the surrogate model (3), n is the data-set size required to train the surrogate
model, and m is the sample size for the Monte Carlo estimates in (8). The evaluation of the distribution
of S̃pn,mqi (as well as the estimation of its statistics mean, and standard error) is performed numerically
via Bootstrap sub-sampling algorithm [11] which takes into account both uncertainty of the GP emulator
meta-model and Monte Carlo integration error.

3.3 Bayesian global optimization

We consider the problem of optimizing an objective function fp¨q of p input parameters x :“ px1, ..., xpq.
Namely we need to discover input value (location) x˚ and associated fpx˚q such as

x˚ “ arg min
xPXĂRp

fpxq.
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BGO aims at optimizing objective functions which are extremely computationally expensive to be directly
evaluated excessively many times and whose analytic expression and derivatives may not be available. Central
to BGO is the idea of building a probabilistic surrogate model for the objective function and using it to
define a utility function called ‘information acquisition function’ (IAF) whose role is to guide the search for
the optimum value.

The IAF is defined such that high acquisition corresponds to potentially high values of the objective
function either because the prediction is high or the uncertainty is large. The expected improvement (EI)
[8] is perhaps the most commonly used IAF because it accounts for both exploration (sampling from areas
of high uncertainty) and exploitation (sampling from areas likely around the global minimum) in an efficient
and tractable manner. The improvement is defined as Ipxq “ maxp0, fpx˚q´fpxqq, where x˚ is the currently
best location discovered. Then the expected improvement EIpxq with respect to the process (2) is

EIpx|ψ̂q “

$

&

%

σ2
npx|ψ̂qznpx|ψ̂qΦStpznpx|ψ̂qq `

n´q
n´q´1

´

1` znpx|ψ̂q
2

n´q

¯

σnpx|ψ̂qφStpznpx|ψ̂qq, ifσnpx|ψ̂q ą 0

0 otherwise
,

(9)
where zpx|ψ̂q “ fpx˚q´µnpx|ψ̂q

σnpx|ψ̂q
, ψ̂ is the MAP in (6), while µnpx|ψ̂q and σ2

npx|ψ̂q “ vnpψ̂qCnpx, x|ψ̂q denote
the predictive mean (3) and variance (4, 5) of the GP emulator. Here, ΦStp¨q and φStp¨q denote the standard
Student-t cumulative and probability density function. We remark that the EI in (9) is the expectation of the
improvement Ipxq with respect to a Student-t process (2) and hence it is different that the standard BGO
where the expectation is with respect to a Gaussian process. The present treatment allows the variance
component σ2

npx|ψ̂q in (9) to depend not only on the locations x but also on fpxq; this can improve the
exploration ability of BGO to detect more useful input locations.

The value of EIpx|ψ̂q increases at a given x when either µnpx|ψ̂q is smaller than the currently best value
fpx˚q discovered or there is a large amount of uncertainty in the predictor µnpx|ψ̂q when σnpx|ψ̂q is large. It
is worth mentioning that although evaluating and optimizing fp¨q directly can be computationally expensive,
computing and optimizing EI (9) is cheap. EI can be optimized with an existing optimization algorithm,
here we use the PISAA [9].

The BGO procedure initiates by collecting an initial data-set D “ tpx1, y1q, ..., pxn, ynqu by directly
evaluating the objective function at n input location values selected via a space filling method such as Latin
hyper-cube sampling (LHS) [12]. It proceeds by performing a recursion: evaluate the GP emulator (2) and
the IE function (9) given the current data-set; discover input values with the largest acquisition information
(IE value); and append the objective function values evaluated at these input values to the the data-set
D. The recursion iterates until a termination criterion is met. A termination criterion can be used based
on the maximum number of iterations performed, or the convergence rate of the objective function such as
|f˚ ´ f 1| ă εtol.|f

˚| where f 1 is the new best value and εtol.is a tolerance. The procedure is presented in
Figure 2.
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Initialize

Generate an initial training data-set D “ tpx1, y1q, ..., pxn, ynqu, by selecting n input points
txiu via a LHS and computing directly the output of the objective function tyi “ fpxiqu.

Iterate

1. Given current data-set D, train the GP emulator of fpxq, find ψ̂ and calculate the
expected improvement EIpx|ψ̂q.

2. Find the input values x1 that maximize the expected improvement by solving x1 “
arg maxxPX EIpx|ψ̂q.

3. Augment the data-set as D Ð D Y tpx1, y1qu by computing directly y1 “ fpx1q at the
input values x1.

4. Stop if the termination criterion |f ´ f 1| ă εtol.|f | is satisfied, where f is the current
best value.

Figure 2: Work-flow of the Bayesian global optimization algorithm

4 Analysis

We analyze the renal tubulointerstitial fibrosis mathematical model (simulator) in (1). The model aims at
predicting the uMCP1 (ng{mgcr) at three levels of fibrosis severity (low, intermediate, and high) given a set
of input (model) parameters λET, λTM, λGM, λQM, λQrM, λPM, λρf, λρm, λρT, λfE, λmfT, and λmfG. The
default values and the ranges of the input parameters are presented in Table 1.

Parameter Default Range Parameter Default Range
λET 2 r0.2, 3.8s λρf 3e´ 3 r0.0003, 0.0057s
λTM 3e´ 2 r0.003, 0.057s λρm 6e´ 3 r0.0006, 0.0114s
λGM 2.4e´ 5 r2.4e´ 6, 4.56e´ 05s λρT 1 r0.1, 1.9s
λQM 3e´ 4 r3e´ 5, 0.00057s λfE 1.05e´ 2 r1.05e´ 3, 0.01995s
λQrM 6e´ 5 r6e´ 6, 0.000114s λmfT 1.2e´ 1 r0.012, 0.228s
λPM 3e´ 3 r3e´ 4, 0.0057s λmfG 1.2e´ 1 r0.012, 0.228s

Table 1: Default values, and ranges of the model parameters

We are interested in identifying which of these model parameters significantly influence the output of
the simulator –and hence its behavior– first, and then calibrating these parameters against a real data-set.
For the former, we will perform sensitivity analysis, while for the later we will perform Bayesian global
optimization to minimize a maximum likelihood criterion suitable for the application.

Sensitivity analysis The mathematical model for fibrosis has 12 input parameters defined in ranges
presented in Table 1. We wish to determine non-influential model parameters which can be fixed in the
subsequent calibration procedure. We perform GP based global sensitivity analysis described in Section 3.2,
which estimates the Sobol indices by substituting the output function of the simulator via surrogate model
and using Monte-Carlo integration. This approach is suitable for our application because the simulator is
very expensive to run directly and because it has a large number of input parameters.
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We are mainly interested in the total sensitivity Sobol indices. To build the GP emulator, we considered
the prior mean function to be constant and the covariance function to be a tensored 5{2-Matern kernel. The
emulator was trained via MAP, against a training data-set of size 1000 where the input points were selected
via LHS. The Monte Carlo estimator of Sobol indices was defined on a sample with size 5000.

The estimates of the total sensitivity Sobol indices are presented in Figure 3, for each fibrosis sensitivity
level. At low and intermediate fibrosis severity levels, we observe that the input parameter λPM significantly
explains most of the variability of the simulator output (with Sobol indexes equal to 99% and 98% respec-
tively). At the high fibrosis severity level, we observe that the input parameters λPM and λET can explain
most of the variability of the simulator output (with Sobol indexes equal to 85% and 12% respectively). The
rest input parameters are non-influential as the confidence intervals of their corresponding Sobol indexes
include 0% values. Therefore, in the subsequent calibration of the simulator under consideration, interest
lies in calibrating the influential model parameters λET and λPM while keeping the rest fixed and equal to
the default parameters in Table 1.

Calibration analysis We wish to calibrate the model parameters of the fibrosis mathematical model
(1), given that the rest input parameters are fixed and equal to the default values in Table 1. In order to
calibrate the model, we use the patient data provided in Hao et al. [5]. Urine was collected at the time
of diagnostic kidney biopsy of Systemic lupus erythematosus (SLE) patients who developed clinical signs of
kidney involvement. Urine MCP-1 was measured by specific ELISA; Urine TGF-β was also measured by
specific ELISA obtained from R & D systems. The simulator is calibrated against observed data (uMCP1
(ng{mgcr) measurements) collected from 84 individuals. The individuals where categorized according to
their fibrosis severity in 3 groups: ‘low’, ‘intermediate’, and ‘high’ severity level.

To calibrate the simulator with respect to model parameters λET and λPM, we seek optimal values λ˚ET,
λ˚PM for λET and λPM, such that the fibrosis model generates outputs close to the observed values, while
taking into account possible variation due to different individuals and possible heterogeneity between the
Fibrosis severity groups. Moreover, as the original measurements are concentrations, in order to normalize
and stabilize variance, we apply a log transformation to the output of the model and use the observations
in the log scale.

Based on this, to specify the maximum likelihood criterion. We assume parametric model

ηi,j “MjpλET, λPMq ` gj ` εi,j ; i “ 1, ...,mj , j “ 1, ..., 3 (10)

gj „Np0, τjq; (11)

εi,j „Np0, τq,

where MjpλET, λPMq is the uMCP1 real output (in log scale) of the simulator at the λET and λPM input
parameter values, and ηi,j is the uMCP1 (ng{mgcr) measurement (in log scale), of the i-th individual of the
j-th severity level. The fibrosis severity levels were labeled as j “ 1 for low level, j “ 2 for intermediate level,
and j “ 3 for high level. The size of each fibrosis sensitivity group was m1 “ 23 , m2 “ 33, and m3 “ 28.
Notice that the model (10) allows for different variations among different severity levels. In particular, the
error term εi,j accounts for the noise variation, while gj accounts for the different variability accross different
severity levels. Precisely, the resulting likelihood function of vector η “ pηi,j |i “ 1, ...,mj ; j “ 1, ..., 3q
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Figure 3: Total sensitivity Sobol indices estimates and confidence intervals. The values on the horizontal
axis indicate the indices of vector pλET, λTM, λGM, λQM, λQrM, λPM, λρf, λρm, λρT, λfE, λmfT, λmfGq.
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corresponds to a multivariate normal distribution density with mean such as Epηi,jq “ MjpλPM, λETq and
covariance matrix such as Covpηi,j , ηi1,j1q “ pτj ` τδi,i1qδj,j1 , for i “ 1, ...,mj , j “ 1, 2, 3.

The calibration is performed, by maximizing the likelihood function that leads to the optimization prob-
lem

pλ˚ET, λ
˚
PM, τ

˚
0 , τ

˚
1 , τ

˚
2 , τ

˚q “ arg min
λET,λPM,τ0,τ1,τ2,τ

fpλET, λPM, τ0, τ1, τ2, τq (12)

where

fpλET, λPM, τ0, τ1, τ2, τq “
1

2

2
ÿ

j“0

log detpΣjpτj , τqq

`
1

2

2
ÿ

j“0

pηj ´MjpλET, λPMqq
JrΣjpτj , τqs

´1pηj ´MjpλET, λPMqq, (13)

is the objective function with Σj “ τj1nj
` τInj

, for j “ 0, 1, 2.
The optimization problem (12) is solved via Bayesian global optimization (BGO), because the objective

function (13) is prohibitively expensive to be computed massively as it requires one to run the expensive
simulator. Hence, according to BGO, a GP emulator is used as a proxy of (13). For the GP emulator, the
prior mean was specified to be constant hpxq “ 1, the covariance function was specified to be a tensored
5{2-Matern kernel, and the nugget term was specified to be κ “ 0.001 after pilot runs to check the stability
of the computations. The acquisition function considered was the Expected Improvement. We considered
an initial training data-set of size 15, whose input values were chosen via LHS. The BGO algorithm ran
for 51 iterations. The EI was optimized by PISAA [9] optimizer. In particular, EI was evaluated at 100

random locations and the ‘best’ values were used as seeds for the PISAA optimizer which performed 1000

iterations targeting IE. At each iteration, we increase the training data-set by adding 10 new objective
function evaluations at the locations suggested by the highest local maxima of the Expected Improvement
accordingly. At the end the procedure was trained against a data-set of 525 simulations.

In Figure 4, we present convergence plots of BGO implemented for the solution of (12). The evolution of
the best value fpx˚q discovered is presented in Figure 4a. The optimal values of the calibration parameters
were detected to be λ˚ET “ 2.3759 and λ˚PM “ 0.00127, while the estimated nuisance parameters where
τ˚ “ 1.0192, τ˚0 “ 0.052, τ˚1 “ 0.605, τ˚2 “ 0.83. The best objective function value discovered was
fpx˚q “ 48.01, at x˚ “ pλ˚ET, λ

˚
PM, τ

˚
0 , τ

˚
1 , τ

˚
2 , τ

˚q. These parameters are in the reasonable ranges listed in
[5] but with a better fitted value, fpx˚q “ 48.01. Moreover, we observe that our analysis suggests that the
variation of MCP-1 concentration may increase with the level of severity since the estimates of the nuisance
parameters tτ˚j u

2
j“0 increase with j.

The predicted standard deviation of the new location against the iteration of the algorithms is presented
in Figure 4b, and we observe that it is acceptably small when it terminates.

We performed an informal accuracy assessment of the derived estimates of the tunable parameters λ˚ET

and λ˚PM. The square root mean square error of the output of the fibrosis simulator using the calibrated
values λ˚ET “ 2.3759 and λ˚PM “ 0.00127; smsepλ˚ET, λ

˚
PMq “

b

1
84

ř

i,jpηi,j ´Mjpλ
˚
ET, λ

˚
PMqq

2 is 0.1157. In
Figure 5, we present the distribution of the squared root predictive mean squared errors produced by a
Monte Carlo cross-validation where the observed data-set was randomly splinted 30 times into validation
data-sets that consist of 15 observations (5 from each level) and training data-set that consist of the rest
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observations.
Here, we used this approach instead of K&O[10] due to its efficient mechanism that adaptively selects

training-data from areas that both reduce uncertainty and optimize the simulator. This allows the algorithm
to efficiently collect more desirable training data for a given computational budget. K&O is more appropriate
for cases where the main interest lies on the design of an emulator, as well as it may present non-identifiability
between the discrepancy term and calibration parameters which is difficult to be addressed. We could also
account for discrepancy if gj was parametrised with a non-zero mean in (11), however here the discrepancy
is considered as negligible.

Discussion In our sensitivity analysis and calibration studies, we show that the parameter λPM is the most
sensitive parameter for three different patient groups (low, intermediate and high fibrosis). This is consistent
with the treatment studies in [5]: the treatment with anti-MCP-1, decreasing MCP-1 concentration, is a
beneficial therapeutic plan for renal fibrosis [25]. The second most sensitive parameter is λET which is
associated with the production of TEC by TGF-β and plays an important role in renal fibrosis. This is
validated by the anti-TGF-β treatment, a specific and effective therapy for chornic kidney disease associated
with renal fibrosis [13].

The calibration approach is based on the available patient data which has three classification groups by
fibrosis severity, “low", “intermediate" and “high." The calibration result provides a guidance to weight the
network shown in 1 : MCP-1 plays the most important role in the renal fibrosis due to the inflammation; the
TEC production by TGF-β is also crucial in the fibrosis progression. Therefore, once more clinical/biological
data becomes available, the interaction mechanism between TEC, MCP-1 and TGF-β needs to be explored
more carefully

5 Conclusion

In this paper, we have proposed a general calibration approach for biological systems. This approach is
based on surrogate modeling, global sensitivity analysis, and the Gaussian process. It has been applied to
a mathematical model of renal tubulointerstitial fibrosis developed in Hao et al. [5]. In our analysis we
found that the parameter λPM which is associated with anti-MCP-1 is the most sensitive parameter for
three different patient groups (low, intermediate and high fibrosis), while λET which is associated with the
production of TEC by TGF-β is the second most sensitive parameter. Although these computational results
do not provide more information in modeling point of view, they guide us to explore the “high" sensitivity
group once more clinical/biological data becomes available which gives us a direction on modeling refinement.
Moreover, this general approach can be generalized to other biological models and provides a systematical
way to quantify the precision medicine and personalized treatments guided by computational modeling.
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Figure 4: Convergence plots of the Bayesian global optimization
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Figure 5: Squared root predictive mean squared errors by Monte Carlo cross validation with 30 realizations
spliting the data-set into validation data-set that consists of 15 observations and training data-set of 69
observations.

15


