
Journal Pre-proofs

Energy Performance of a High-rise Residential Building Retrofitted to Passive
Building Standard – A Case Study

Huilan Huang, Wan Iman Binti Wan Mohd Nazi, Yiqun Yu, Yaodong Wang

PII: S1359-4311(20)33384-6
DOI: https://doi.org/10.1016/j.applthermaleng.2020.115902
Reference: ATE 115902

To appear in: Applied Thermal Engineering

Received Date: 10 December 2017
Revised Date: 26 December 2019
Accepted Date: 7 August 2020

Please cite this article as: H. Huang, W. Iman Binti Wan Mohd Nazi, Y. Yu, Y. Wang, Energy Performance of a
High-rise Residential Building Retrofitted to Passive Building Standard – A Case Study, Applied Thermal
Engineering (2020), doi: https://doi.org/10.1016/j.applthermaleng.2020.115902

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover
page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version
will undergo additional copyediting, typesetting and review before it is published in its final form, but we are
providing this version to give early visibility of the article. Please note that, during the production process, errors
may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.

https://doi.org/10.1016/j.applthermaleng.2020.115902
https://doi.org/10.1016/j.applthermaleng.2020.115902


1

 Energy Performance of a High-rise Residential Building Retrofitted to Passive 

Building Standard – A Case Study

Huilan Huang1, Wan Iman Binti Wan Mohd Nazi2,*, Yiqun Yu1, Yaodong Wang3,* 

1 Mechanical Engineering College, Guangxi University, Nanning, Guangxi, 530004, 

China
2 Green Castle Innovation Ltd, No.2 Jalan Kerinchi, Gerbang Kerinchi Lestari, 59200 

Kuala Lumpur, Malaysia
3 Department of Engineering, Durham University, Durham, DH1 3LE, UK

*Corresponding author: Email: wanimanwannazi@googlemail.com;

                         yaodong.wang@durham.ac.uk 

Tel: +44 (0)191 334 2377 

Abstract

In China, residential building is a major energy consumer and retrofitting of existing 

residential buildings is considered as an effective method in achieving energy savings. 

This study examined a high-rise residential building located in northern China. The 

target-building’s electricity consumption and indoor temperature were gathered and 

analysed. DesignBuilder software was used to conduct a numerical study on the target-

building where we studied the feasibility and energy-saving potentials in retrofitting the 

target-building to Passivhaus standard. It was found that the energy consumption of the 

building reduced by 96% for heating and 8.7% for cooling; totally reduced by 78.9%. 

The cost for the retrofitting was estimated approximately as 18.4 years using the simple 

payback period method and the current price of the materials in the market. The 

residents could start to get profit for the remaining lifetime of the building.

Key words: High residential building, simulation, energy-saving retrofitting, Passive 

Building

Nomenclature:

Abbreviation
BEE      Building Energy Efficiency 

COP      Coefficient of Performance
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CV       Coefficient of Variable

EPS      Expanded polystyrene foam (insulation material) 

kgce      kilogrammes of standard coal equivalent

Low-E    Low-emissivity

MVHR   Mechanical Ventilation with Heat Recovery 

MBE     Mean Bias Error

NUH     Northern urban heating

RMSE    Root Mean Squared Error

SPP      Simple payback period

UPVC    Unplasticized Polyvinyl Chloride, material for window frames

VIP      Vacuum insulation panel

XPS      Extruded polystyrene foam (insulation material)

XPS-CO2  XPS foam blown with CO2

1.0 Introduction

China is the second-largest building energy consumer in the world. The sector’s energy 

consumption has increased by 40% since the last two decades [1]. Building stock in 

China accounts for 56.1 billion m² with total commercial energy consumption (includes 

electricity and heating) of 9,524,970,000,000 kWh in 2014. 22.5% (2,139,920,000,000 

kWh) of the commercial energy usage were spent on northern urban heating (NUH) 

alone in 2014 [2]. The enormous heating demand in the northern region has driven the 

government to create initiatives to reduce the energy consumption in civil buildings [3]. 

One of the main initiatives developed by the government was to enforcement in 

Building Energy Efficiency (BEE) code which was first developed for the northern 

region in 1986 to achieve 30% energy reduction [3]. The potential in improving existing 

buildings’ energy performance via retrofit to comply with the BEE was acknowledged 

by the Chinese government [1][4] by providing technical and financial support for 

building retrofits focusing on the public buildings across the country and residential 

buildings in northern China [1]. The BEE code for severe cold region in China was first 

developed in 1986 to achieve 30% energy reduction, then the code was constantly 

revised to achieve higher energy reduction to 50% in 1995 and 65% in 2010 [3]. The 

initiatives taken by the Chinese government is proven to work as the energy savings of 

new buildings per increased floor area per year increased from 20.4 kWh/m2 to 28.4 
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kWh/m2 [3]. 

The housing types in China cities is predominantly dominated by high-rise residential 

buildings (building with more than 8 floors) [2][4]. This type of residential normally 

come with 50 years to 70 years leases. To ensure that the building maintains its 

performance for the given lease duration and up to date with building’s energy 

requirement, at one stage in its lifetime the building will have to go through retrofitting 

[4]. For the northern region alone, the average heating energy use per unit of floor area 

declined from 22.8 kilogrammes of coal equivalent per m2 (kgce/m²) in 2001 to 14.6 

kgce/m² in 2014. This is mainly due to the improvement in building’s envelopes, higher 

heating system’s efficiency and a higher share of high efficient heating sources [2]. The 

increase in insulation thickness and replacement with more effective insulation 

materials with higher thermal resistance for building’s envelope will reduce energy 

consumption significantly but it can be costly [5]. Another crucial position is window 

glazing since it has the weakest thermal properties among all building fabric elements. 

While an insulated opaque element (walls, floors and the roof) could have an overall 

heat transfer coefficient of around 0.3 W/(m2∙K), windows typically will have values 

more akin to 2-5 W/(m2∙K), indicating that a building could lose several times more 

heat through its glazing compared to an equivalent opaque surface [6]. Therefore, 

improving the building’s fabric is one of the most effective solutions to reduce energy 

loss and consumption [7]. 

The target area (Jining City in Shandong district) is categorised as cold region where 

the temperature in winter can reach -10ºC and in summertime the temperatures can 

reach up to 37ºC [8]. The extreme weather condition in winter and summer will be 

tricky to define the right envelope requirement to deliver a comfortable indoor 

temperature in both seasons (cold winter and hot summer). Highly insulated building’s 

envelope can reduce heating energy consumption in winter, however, it will also cause 

overheating during summer season which will results in the increment in cooling energy 

consumption. Furthermore, domestic indoor overheating also impose adverse impact 

on human’s work performance and health and safety risks (such as accidents and 

injuries are likely to increase when the external temperature rises) [9]. In northern China, 

coal-powered district heating is widely applicable during winter time and air 

conditioners are generally used for summer cooling demand. The overall cooling 

demand for urban dwellings was 52 billion kWh of electricity and accounted for 10.4% 

of the total energy consumption of residential buildings [10].  
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Passivhaus standard is a widely known construction method that emphasize on 

excellent thermal performance using highly insulated building’s fabric, high air-

tightness and heat recovery ventilation system [11]. The standards if follows has shown 

to reduce building’s energy consumption up to 50% compared to conventional building 

[4]. Retrofitting conventional building to Passivhaus standard will involve ‘deep energy 

retrofitting’ which will involve changes of the entire fabric, conventional systems of 

the building, and airtightness of the building. This type of retrofitting is very 

challenging [4]. Previous studies on Passivhaus standards are mainly focusing on the 

low-rise residential building and rarely on a high-rise building. Most of the studies on 

high-rise buildings highlighted the incorporation of passive designs in the building 

architecture that covers building’s fabrics, thermal mass, natural ventilation, natural 

daylighting, passive heating/cooling [12][13][14][15][16][17][18]. Those studies used 

sensitivity analysis to achieve multi-objectives optimisation processes designed for 

early design building. This paper explores the feasibility of retrofitting a high-rise 

building based on the Passivhaus standard. Findings in this paper are intended to fill in 

the research gap in high-rise building with the Passivhaus standard. The strict 

regulations especially on a very low envelope’s thermal conductivity can be very 

challenging to achieve for a retrofit case studies and low air-tightness is very 

challenging for high-rise buildings. The energy, indoor temperature all year round and 

economic analysis were presented and compared between the actual target-building and 

after retrofitting using Passivhaus standard. 

2.0 Methods

2.1 The target-building 

An 18-floor high-rise domestic tower building, located in the urban area of Jining City, 

Shandong Province was selected as the target-building. According to the China code 

for design of civil buildings [19], the area which the target-building is located is defined 

as the cold zone with an average temperature of -10°C to 0°C in January and 18°C to 

28°C in July. As recommended in the guide [19], the buildings in cold zone should be 

capable of satisfying both the heating and cooling demand. The target-building with 

north-south exposure has 18 floors and two basement floors. The construction started 

in 2008 and completed in 2010. The expected building lifetime according to China 
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Ministry of Housing and urban and Rural Development [19] is 50 years. 

With the access offered by the staff of property developers, the floor plan shown with 

detailed dimension information was obtained to explore internal layout of apartments 

and its infrastructures. As indicated in Figure 1 and 2, there are four unique apartments 

in each floor and a total of 72 flats in this dwelling. The width and length of each floor 

respectively are 36.8 m and 24.7 m, the total area of each floor is approximately 619 

m2, the conditioned space is 561 m2. The structure drawing of the building with detailed 

fabric data is shown in Table 1, the U-values are calculated using DesignBuilder 

software [20]. It can be seen that all the needed structure information such as the 

thickness and materials of envelope layers was generally based on the building energy 

standard of Shandong Province [21] which aims to achieve 65% reduction of energy 

demand. However, the thermal performance of windows and ground floor are relatively 

poor and has higher U-values than the recommended design standard.
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Figure 1: Exterior façade of the target high-rise residential building.

Figure 2: Typical floor plan of the studied building.
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Table 1: The gathered fabric data and calculated U-values using Designbuilder

Elements Material Thickness  
(m)

U-value 
(W/(m2∙K))

External wall Concrete/plaster/mortar-cement screed 0.005
XPS-CO2 blowing 0.045
Concrete/plaster/mortar-cement mortar 0.02

 Concrete, reinforced (with 1% steel) 0.2

0.62

Roof Concrete/plaster/mortar-cement mortar 0.045
XPS-CO2 blowing 0.055
Concrete/plaster/mortar-cement mortar 0.02
Perlite Plasterboard 0.04

 concrete, reinforced (with 1% steel) 0.1

0.473

Ground floor concrete/plaster/mortar-cement mortar 0.02
 concrete, reinforced (with 1% steel) 0.12

3.449

Window Double glazing 6 mm/6 mm filled with 
air / UPVC frame  3.16

Internal 
partition Concrete/plaster/mortar-cement mortar 0.021

 concrete, cast-aerated 0.1
1.094

Heating of the whole building except basements and lobbies in every floor is supplied 

by a coal-fired district heating plant during winter time, and heating radiators are 

installed in all heating spaces. Split air conditioning systems were employed for cooling 

during summer in the apartments. The heating and cooling system in the building is 

shown in Figure 3 and Figure 4 shows the type of radiator used for rooms heating in 

the target-building.  
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Figure 3: The target-building's heating and cooling system.

Figure 4: The radiator for room heating.

2.2 The field study 

A field study was carried out to investigate the building’s data (fabric, floor plan, 

mechanical systems and usage behaviour). Interview with the developer’s staffs were 

conducted to gather the building’s data (fabric, floor plan, and mechanical systems). A 

survey was conducted among the residents to explore preferences and habits of people’s 
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activities around their house and their common heating, cooling and equipment usage. 

The cooling schedules and preferred set point temperatures which were completely 

depended on individuals were gathered as well. Furthermore, for the purpose of 

obtaining real internal temperature data, four sets of temperature meters were set in the 

living rooms and bedrooms of four selected apartments on the 1st, 6th, 11th and 16th 

floors to monitor the variation of temperature. In addition, with the assistance of a three-

member family (the most typical Chinese family formation) lived in a flat in the 

building, the daily electricity consumption of the flat gathered from the main electricity 

meter (as shown in Figure 5) was recorded from Oct 2015 to May 2016. 

Figure 5: The combination of electricity meters in the basement.

2.3 Computational study 

DesignBuilder software [20] was used for the computational study (modelling, 

simulation and optimisation). DesignBuilder is the most established and advanced 

building energy simulation tool using EnergyPlus engine [22] which provides a user-

friendly interface for modelling simulation and optimisation. EnergyPlus is a very 

powerful simulation engine for studies of building energy including construction, 

HVAC, glazing, thermal mass and economic analysis. The software is widely used and 

validated in building energy modelling either for conventional building fabrics to a 

more complicated building materials such as building integrated phase change materials 

[23][24][25][26][27]. 
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2.3.1 Building modelling 
The CAD floor plan provided by the developer was imported into DesignBuilder as a 

tracing to the floor geometry. The area of each floor was divided into five closed zones 

including four apartments’ zones and one lobby zone. The fabric data including external 

wall, roof, ground floor, internal partition, internal floor and window was defined 

exactly as the same as the real construction data gathered in the field study. The 3-D 

model of the whole building was established as shown in Figure 6.

Figure 6: Visualisation of the whole building model with simulated solar radiation and sun path in 

summer. 

Based on the collected information from the survey, the occupancy, operation schedules 

of heating, cooling and ventilation, and the preferred set point temperature were defined 

in DesignBuilder software. The heating set point temperature was set to 25 °C (the 

heating was set to switch on when the temperature reached 20°C) and the cooling set 

point temperature was set at 26 °C (the cooling was set to switch on when the 

temperature reached 30°C).

2.3.2 Validation 

ASHRAE Guide 14 was used to validate the building model. It is an established method 

for measuring a model’s accuracy [28,29, 30]. It is suggested that a building is 

considered accurate if the Mean Bias Error (MBE) of monthly values is within ±5% 
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and the Coefficient of Variable (Root Mean Squared Error) (CV(RMSE)) for monthly 

values is below +15% and [31]. The MBE and CV(RMSE) were calculated using 

equation (1) and (2). 

CV(RMSE) = (1)
∑𝑁𝑖

𝑖 = 1      [(𝑀𝑖 ― 𝑆𝑖)2/𝑁𝑖]
1

𝑁𝑖
  ∑𝑁𝑖 

𝑖 = 1   𝑀𝑖

(2)𝑀𝐵𝐸 =  
∑𝑁𝑖

𝑖 = 1   (𝑀𝑖 ― 𝑆𝑖)

∑𝑁𝑖
𝑖 = 1   𝑀𝑖

Where, Mi and Si respectively represents measured values and simulated values at 

instance i, Ni is the count of the number of values involved in the error calculation. 

2.3.3 Building optimisation- retrofitting 

The target-building base model was calibrated to follow the Passivhaus standard 

developed by Professors Bo Adamson of Sweden and Wolfgang Feist in Germany [32]. 

The actual baseline building’s data and the building’s requirement based on the DBJ 

14-037-2012 [21] and Passivhaus standard [11] are listed in Table . The calibrated 

model was then simulated to evaluate its indoor temperature and energy performance. 

Table 2: The actual target-building fabric elements and energy data compared to the BES for Shandong 

Province [21] and Passivhaus standard [11]. 

Target-building Standards
Element Base DBJ 14-

037-2012
Passive

Complete window installed U-value, 
W/(m2∙K)

3.16 2.8 ≤ 0.85 

Air tightness, ac/h 0.5-1.5 0.5 ≤ 0.6 
Walls U-value, W/(m2∙K) 0.62 0.7 ≤ 0.15 
Floors U-value, W/(m2∙K) 3.45 0.56 ≤ 0.15 
Roofs U-value, W/(m2∙K) 0.47 0.45 ≤ 0.15 
Heating demand, kWh/m².year 91 n/a ≤ 15 
Cooling demand, kWh/m².year 11 n/a ≤ 15 
Primary energy demand, 
kWh/m².year

118 n/a ≤ 120 
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MVHR heat recovery efficiency n/a n/a ≥ 75%
MVHR electrical efficiency, Wh/m2 n/a n/a ≤ 0.45
Internal temperature 20°C - 25°C ≥18ºC 20°C - 

26°C

2.4 Performance evaluation 

The building’s performance was assessed based on the energy performance and 

economic analysis. Equation (3) and (4) were used to measure the savings after retrofit 

and equation (5) is a simple payback period was used to as the economic indicator.   

Saving (kWh) = Energy used (baseline) – Energy used (retrofit) (3)

Saving (%) = Saving (kWh) / Energy used (baseline) × 100% (4)

(5)
I

E

CSPP
V



The CI in the formula represents the original total investment, VE represents the energy 

saving cost.

3 Results and discussion

3.1 Actual consumption 

The actual electricity consumption of the target-building, as shown in Figure 7, were 

measured in 2016 covering winter, spring, summer and autumn seasons. The electricity 

consumption in summertime escalated to an average of 589 kWh a month compared to 

in winter, spring and autumn where the average monthly electricity consumption in 

those seasons were 173 kWh, 171 kWh and 204 kWh respectively. The reason is 

because of massive usage of electric powered cooling system during summertime. 

Meanwhile, in other seasons district heating was used.
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Figure 7: The target-building's monthly electricity consumption in 2016

The recorded daily electricity in one of the selected apartments shows a variation of 

daily electricity usage from 3 kWh to 14 kWh with the spikes of usage of more than 10 

kWh occurred mainly in winter season. The electricity consumptions were exceptional 

high on 4 December and 9 April are because there were some relatives/friends visited 

the family. 

Figure 8: Recorded daily electricity consumption of a selected apartment.

Based on the survey, it is found that the heating supply is provided from 15th November 

to 15th March. It is noticed that some issues, for instance expensive electricity bill in 

summer and overheating in winter, were put forward by residents in the survey 

conducted. Most of the residents are workers and students with typical weekdays and 

weekend schedule. The residents were set to leave in the morning at 8 am and return 
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home at 6 pm during weekdays. Approximately half of them went home for a lunch 

break from 12 am to 2 pm. Meanwhile on weekends and holidays, most of the residents 

stayed at home, spending time with their family. 

From the monitored temperature data in the flats on 1st, 6th, 11th and 16th floor, it was 

found that approximately the room temperatures in these flats fluctuated between the 

peak of 25 °C and the lowest point of 20°C in winter. According to preferences of the 

occupants, when the temperature went up to 30 °C in summer, people would feel 

uncomfortable and cooling was required. On average, the cooling temperature of air 

conditioners was set to 26 °C. 

3.2 Simulation results 

The actual and simulated monthly electricity data of the target-building is shown in 

Figure 9 and Table 1. The result showed that the MBE for the monthly electricity 

consumption of the flat is -5%, the CV(RMSE) is 14.1%. Therefore, according to 

ASHRAE Guide 14, the building model is considered accurate.

Figure 9: The actual and simulated monthly electricity consumption.

Table 1: The actual and simulated electricity consumption and the error.

Month Actual 
(kWh)

Simulated 
(kWh)

Absolute error
(kWh）

Percentage error 
(%)

1 182 177.6 -4.4 -2%
2 160.1 163.8 3.7 2%
3 170.2 186.4 16.2 10%
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4 167.4 173 5.6 3%
5 174.9 177.6 2.7 2%
6 448.9 482.3 33.4 7%
7 705.5 783.6 78.1 11%
8 613.7 701.2 87.5 14%
9 268.7 205.6 -63.1 -23%
10 166.9 177.6 10.7 6%
11 176.7 177.4 0.7 0%
12 176.2 182 5.8 3%

Detail energy analysis of the target-building was achieved via the simulation made in 

DesignBuilder software. The simulation results show that the target-building consumed 

324,131 kWh of electricity a year (of which 131,722 kWh was spent on summer cooling) 

and 1,131,519 kWh energy on heating a year. Total simulated energy (electricity and 

heating) consumption a year was 1,455,650 kWh. The simulated average energy 

intensity was 144.15 kWh/m2.year; the average heating intensity was 112.05 

kWh/m2.year, which in the range of national statistics [33, 2]; and cooling intensity was 

13.04 kWh/m2.year. To achieve Passivhaus standard, massive heating reduction is 

required ( ≤  15 kWh/m2.year). Most of the building’s energy (87%) were spent on 

heating and cooling, the remaining 13% were used for other equipment (lighting, 

computer, refrigerator, television, kitchenware and etc.). The target-building’s energy 

consumption by sector is shown in the Figure 10.
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Figure 10: The target-building's energy consumption by sector.

As can be seen in Figure 11, monthly electricity consumption remains around 15,000 

kWh from January to May, and then the total power consumption has increased 

significantly since the advent of summer with the use of air conditioners, rising from 

June Peaked at 68,175 kWh in July, of which 52,125 kWh was the electricity consumed 

by air conditioners. As the weather started to cool in September, the use of air 

conditioners dropped drastically and monthly power consumption dropped back to 

about 15,000 kWh. As mentioned earlier, the period of winter heating started from 

November 15 to the end of March 15 of the second year. As shown in Figure 12, 

monthly heating energy consumption started to rise from November and peaked at 

330,790 kWh in January, Heating energy consumption in March began to drop 

significantly. Due to non-heating period from April to September, heating energy 

consumption is basically zero.
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Figure 11: Simulated monthly electricity consumption and cooling consumption.

Figure 12: Simulated monthly heating consumption.

3. 3 Retrofitting approach

3.3.1 Fabric

The baseline building model was calibrated based on local Standard for Energy 

Efficiency of Residential Buildings (DBJ 14-037-2012) and Passivhaus standard. The 

building fabric’s heat transfer coefficient before and after retrofitting are shown in 

Table 2. 

Table 2: The building's fabric before and after retrofitting.

 Target building Retrofitted target-building
Heat transfer coefficient, 
W/(m2∙K)

Baseline DBJ 14-037-2012 Passivhaus

External wall 0.62 0.62 0.148
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Roof 0.47 0.45 0.15
Ground floor 3.45 0.55 0.149
Window 3.16 2.71 0.786

Approaches taken to achieve the standards for the building fabrics are listed in Table 3. 

The target-building’s external wall confirms to the DBJ 14-037-2012 standard, 

however, roof, ground floor and window require extra insulation to achieve the targeted 

heat transfer coefficient. The desired heat transfer coefficient given in the DBJ 14-037-

2012 standards can be achieved by adding additional 5 mm of XPS-CO2 blowing to the 

roof layers, introducing 53 mm XPS-CO2 blowing to the flooring and increase the air 

gap between the windows’ glazing to 13mm. However, to retrofit the current target-

building fabrics to Passivhaus standards is rather challenging. Passive house design and 

planning standards put an extremely high requirements on the thermal performance of 

the building envelope. The actual thermal performance of the target-building is 3 to 23 

times less efficient compared to the Passivhaus standards. The thermal conductivity of 

the conventional insulation materials such as XPS or EPS is around 0.05 W / (m • K) 

and to achieve 0.15 W / (m2 • K), 300 mm of the XPS/EPS is required. Installation of 

such insulation thickness poses a series of problems related to the difficulty of actual 

construction, the reduction in the strength of the external wall structure and massive 

losses in the indoor space as the insulation layer will be added internally. Therefore, a 

vacuum insulation panel (VIP) with thermal coefficient of 0.002 ~ 0.007 W / (m • K) 

was used in addition to the current structure. The VIP core material is usually fibre 

material and porous powder material. Powder silica is commonly used in construction. 

The core material is hermetically sealed with an airtight film wrap, typically a metal-

containing polymer multilayer film [34] to maintain the vacuum state over a long period 

of time. The default material parameters in the DesignBuilder database do not have a 

vacuum insulation board and therefore need to be entered. Following material 

specification was entered for VIP product: thermal conductivity 0.007 W / (m • K), 

specific heat 850 kJ / (kg • K) with a density of 170 kg / m3 [35]. 

In order to improve window’s thermal performance, the windows need to be replaced 
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with argon-filled three-layer hollow low-emissivity glass. Argon is a colorless, odorless, 

non-toxic inert gas that has no effect on visible light penetration. Argon gas tightness 

of 1.7836 kg / m3 (at a temperature of 0 ° C) is greater than the air tightness, so filling 

argon gas in the hollow glass instead of air can reduce the thermal conductivity of the 

gas and reduce the heat convection [36]. Low-E glass is a thin film of one or more 

layers of metal or metal oxide coated on the surface of a glass to ensure visible light 

transmittance and high reflectivity to infrared light. Low-radiation glass in the summer 

can ensure enough visible light to reach the interior, and at the same time block a large 

amount of infrared radiation generated by external objects outdoors, thereby greatly 

reducing the indoor and outdoor heat exchanges. Low-radiation glass in winter reflects 

the thermal radiation generated by indoor electrical equipment, heating facilities, and 

the human body, returning it to heat the room [37]. Extra reduction in heat transfer 

through windows is achieved by replacing the windows frame to UPVC that can reduce 

the heat transfer coefficient has better air tightness. 

3.3.1 Heating, cooling and ventilation 

In local DBJ 14-037-2012 standards, the suggested heating set point temperature is 

18 °C while in reality the residents regulated their heating to achieve 20°C to 25°C 

indoor temperature. Meanwhile in summer time the respondents switched on air 

conditioning once the indoor temperature reached 30°C. Standard cooling set point 

temperature wasn’t given in the DBJ 14-037-2012, therefore the actual residents’ 

preference gathered during the field study survey was taken as the cooling set point 

reference. Passivhaus standards requires the indoor temperature to vary between 20°C 

to 26°C at all time, ≥ 75% heat recovery and minimum ventilation rate per person. To 

ensure the building adheres to this requirement, advanced air conditioning systems 

supplying heating, cooling and mechanical ventilation are installed in the apartments 

replacing the conventional district heating, radiator and individual air conditioning used 

only for cooling. In this study, a Haier air conditioning system [38] with the overall 

Coefficient of Performance (COP) of 2.8 for cooling and 3.2 for heating was selected. 



20

For Passivhaus retrofit, the heating set point and setback point temperature are 

respectively determined as 22 °C and 20 °C to avoid overheating. It was noticed that 

the peak temperature always occurs during late afternoon when the apartments were 

normally empty in the weekdays. Additionally, according to a survey aiming to 

investigate the optimum thermal comfort for Chinese urban residents in the cold zone 

[39], the range of suitable summer internal temperature for most of the residents is 

considered as 26.0 °C to 30.7 °C. For the purpose of both reaching Passive House 

standard and reducing energy consumption, the temperature range during cooling 

period is defined as 24 °C to 30 °C.  
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Table 3: The construction materials and its thicknesses for each standards.

Retrofitted: DBJ 14-037-2012 Retrofitted: Passivhaus
Elements Material Thickness  

(m)
Material Thickness  

(m)
External wall Concrete/plaster/mortar-cement screed 0.005 Concrete/plaster/mortar-cement screed 0.005

XPS-CO2 blowing 0.045 Vacuum insulation panel 0.036
Concrete/plaster/mortar-cement mortar 0.02 XPS-CO2 blowing 0.045
Concrete, reinforced (with 1% steel) 0.2 Concrete/plaster/mortar-cement mortar 0.02

   Concrete, reinforced (with 1% steel) 0.2
Roof Concrete/plaster/mortar-cement mortar 0.045 Concrete/plaster/mortar-cement mortar 0.045

XPS-CO2 blowing 0.06 Vacuum insulation panel 0.032
Concrete/plaster/mortar-cement mortar 0.02 XPS-CO2 blowing 0.06
Perlite Plasterboard 0.04 Concrete/plaster/mortar-cement mortar 0.02
concrete, reinforced (with 1% steel) 0.1 Perlite Plasterboard 0.04

  concrete, reinforced (with 1% steel) 0.1
Ground floor concrete/plaster/mortar-cement mortar 0.02 concrete/plaster/mortar-cement mortar 0.02

extruded polystyrene board 0.053 Vacuum insulation panel 0.045
concrete, reinforced (with 1% steel) 0.12 extruded polystyrene board 0.053

  concrete, reinforced (with 1% steel) 0.12
Window Double glazing 6 mm/13 mm filled with air / 

UPVC frame
0.025 13mm argon-filled three-layer hollow 3mm low-

emissivity glass/ UPVC energy-saving window 
frame

0.022
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3.3.3 Shading 
In view of the climatic characteristics of most parts of China, window shade plays an 

important role in reducing building energy consumption and enhancing indoor thermal 

environment. Summer window shade helps regulate the amount of radiant heat entering 

the indoor which will avoid overheating and the need to use the air conditioning for 

cooling. A sun path simulation was made using DesignBuilder software to analyse the 

solar radiation in summer. As seen in Figure 13, the southern and western surfaces of 

the building receive the most solar radiation when the temperature was highest in the 

summer’s afternoon. The windows on the south and west should be shaded in order to 

avoid too much solar heat gain through windows. 

Figure 13: Analysis of the solar radiation on building envelope.

According to the study on the optimisation of shadings in Beijing area [38], no external 

shadings should be added outside of the balcony glazing since people would always 

like to enjoy enough sunlight through their balconies. Simple shadings which are only 

overhangs with 0.5 m of projection are applied to the windows where there are limited 

spaces on the southern surface. Complex shadings that are composed of overhangs with 

0.5 m of projection, side-fins with 0.4 m of projection and louvres are installed outside 

of large windows on the southern surface. The windows on the west are added 

overhangs with 1.5 m of projection. Figure 14 shows the visualisation of a part of 

external shadings on the western and southern facades. 
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Figure 14: External shadings on the western and southern surfaces of the building.

3.4 Performance comparison  

3.4.1 Energy performance

Figure 15 Summary and comparison of energy consumption

The simulated energy consumption results using retrofitted model is summarised in 

Figure 15 and compared to the results from the base model for the current situation of 

the building without retrofitting yet. From the results, it can be seen that the energy 

consumption for heating reduces from 1,131,518 kWh (equivalent to the standard coal 

consumption 13.76 kgce/m2) per year to 16,230 kWh of electricity consumption per 

year. Assuming the thermal efficiency of coal power plants are 35% - 40%, the 

electricity consumed are equivalent to the coal consumption between 40,575 – 46,371 
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kWh. The primary energy consumption decreased by 95.9 - 96.4 %. The specific 

heating demand is between 4.02 ~ 4.59 kWh/m2∙year, reaching the requirement of 

Passive House. The electricity consumption for cooling reduced from 131,722 kWh per 

year to 120,271 kWh per year, decreased by 8.7%. The specific cooling demand is 11.9 

kWh/m2∙yr, also satisfying the requirement of Passive House. Other electricity 

consumption used for electric appliances and lighting were reduced by 7.4% from 

184,296 kWh per year to 170,582 kWh per year. The overall energy consumption was 

reduced from 1,455,650 kWh per year to 307,693 kWh per year, 78.9% of reduction 

was achieved through the retrofitting solutions. The simulated primary energy demand 

is 36.1 ~36.7 kWh/m2∙year, which is much lower than the Passive house standard of 

120 kWh/m2∙year. Figure 16 indicates the comparison of simulated heating, cooling 

and overall electricity consumption. It can be seen that only a small quantity of heating 

is required from November to March of next year. Most of cooling occurs from March 

to October and reaches the peak of approximately 700 kWh per day in July. It is noted 

that some days in March and November that get both heating and cooling supplies are 

caused by outside diurnal temperature differences. Generally, the daily total electricity 

consumption showed a correlation with heating and cooling consumption, 

approximately fluctuating from 400 kWh per day to 1400 kWh per day and expressing 

some peaks on weekends and holidays due to people’s activities at home.  

Figure 17 shows the comparison of external dry-bulb temperature and internal air 

temperature. According to the weather data, the external temperatures could go down 

to -7°C in winter and reach a peak of 33°C in summer. After retrofitting, the internal 

temperatures of the dwelling approximately fluctuate between 22 °C and 27°C, it was 

a stable line for the whole year. The result indicated that the retrofitting approaches 

worked well on avoiding the problem of energy wasting caused by overheating in 

winter, the thermal comfort is improved significantly for all year round. 
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Figure 16 Simulated daily heating, cooling and total electricity consumption after 

retrofitting. 

Figure 17 Comparison of internal air temperature and outside dry-bulb temperature

The results proved that the fabric retrofitting measures which lead to better insulation 

and the increase of thermal mass play an essential role in the reduction of energy 

demand in residential buildings. Meanwhile, the updated HVAC system with required 

75% of heat recovery would provide reasonable scenarios of heating, cooling and 

mechanical ventilation based on the internal environmental conditions, resulting in the 

decrease of heat loss and further energy conservation. External shadings are applied 

outside of selected windows to avoid summer overheating and lower down cooling 

demand probably caused by great insulated envelope.

4. Economic analysis

The feasibility at the financial aspect is examined through a cost analysis. According to 

the guide [19], the designed life of residential buildings is 50 years. The target building 
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has been occupied for 9 years since 2010, the unexpired lifetime is 41 years. The 

assumed investors and beneficiaries were the residents of the building. The estimated 

initial investment expenditure is calculated based on average market prices of Shandong 

Province as shown in Table 6. It is calculated that the initial investment cost is 

¥ 4,069,768 in total.

Table 4 Estimation of the initial investment cost (The unit cost including labour cost)

Measures Unit cost Project volume Cost

External insulation 

(external walls)

¥119/m2 8451 m2 ¥1,005,669

External insulation 

(roof)

¥125/m2 619 m2 ¥77,375

External insulation 

(ground)

¥66/m2 619 m2 ¥40,854

Windows ¥380/m2 2308 m2 ¥877,040

Louvres ¥370/set 90 sets ¥33,390

Overhangs and 

side-fins

¥120/set 162 sets ¥19,440

Air conditioning 

systems

¥28000/set 72 sets ¥2,016,000

According to the simulation data, 16438 kWh of electricity would be saved per year 

and the electricity price is ¥ 0.55/kWh, the cost of saved electricity is ¥ 9,066 per year. 

The heating charge is ¥ 21/m2 and the total heating space is 10098 m2, the cost of winter 

heating is ¥ 212,058 in total.   

The value of saved energy is ¥ 221,124 totally. The simple payback period (SPP) is 

employed to carry out the cost analysis and is defined as shown in the Equation (5). 

Where, VE represents the value of saved energy, CI is the initial investment costs. The 

simple payback period was approximately 18.4 years. Hypothetically this retrofitting 

project is considered to be implemented from the beginning of 2019 and last for one 

year, the residents could start to turn a profit from the middle of 2037 and keep being 

benefited for the remaining 23years.
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5 Conclusions

The simulation results from this study show that, for the studied high-rise residential 

building, using the retrofitting measures of the Passive House standard can lead to a 

78.9% reduction of overall energy consumption in a calendar year. The heating and 

cooling consumption can be reduced by around 96% and 8.7 % respectively through 

designed updating solutions. If the studied dwelling is retrofitted to Passive House 

standard, 1,147,957 kWh of energy could be saved per year in total. With all the 

construction and energy performance updated to meet the requirements of Passive 

House, the living and thermal comfort would be improved for residents as well. 

Furthermore, the results from the cost analysis showed that the payback period was 18.4 

years, and the economic benefits can be obtained in the remaining lifetime of the 

building. 

The results of this study indicate that it is feasible to achieve the Passive House standard 

through the fabric refurbishment and HVAC system updating measures in an existing 

high-rise residential building of northern China area. The results showed a good 

example of energy saving by retrofitting. The methodology and retrofitting approaches 

can be applied to other similar existing high residential buildings in the area.
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Highlight

• This study examined a high-rise residential building located in northern China.

• The target-building’s electricity consumption and indoor temperature were gathered 

and analysed.

• DesignBuilder software was used to conduct a computational study on the feasibility 

and energy-saving potentials in retrofitting the target-building to Passivhaus 

standard.

• It was found that the energy consumption of the building reduced by 96% for heating 

and 8.7% for cooling; totally reduced by 78.9%.

• The payback period was estimated as 18.4 years.
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