
 

 

1 

 

 

 

Enhanced lifetime of Organic Photovoltaic diodes achieved by blending with 

PMMA: Impact of morphology and Donor:Acceptor combination 

Balder A. Nieto Díaz1, Christopher Pearson1, Zakiya Al-Busaidi1, Leon Bowen2, Michael C. Petty1 and 

Christopher Groves1* 

1Department of Engineering, Durham University, South Road, Durham DH1 3LE, United Kingdom 

2Department of Physics, Durham University, South Road, Durham DH1 3LE, United Kingdom 

*email: chris.groves@durham.ac.uk 

 

ABSTRACT 

In order to realise the potential of organic photovoltaic devices (OPVs) to provide cheap, 

scalable access to renewable energy, it is necessary to improve their lifetime and cost of 

encapsulation.   The aim of this work is to achieve these aims by blending the donor and 

acceptor with the commodity polymer, PMMA, to form a ternary blend device with enhanced 

lifetime.  We find that ternary OPV devices prepared in this manner can have up to double 

the lifetime of the binary control devices to an extent that depends upon the PMMA 

morphology and the processing additives used. Further, we find that the initial performance 

of ternary OPVs may decrease (in the case of PTB7-based blends) or slightly increase (in the 

case of P3HT-based blends) when compared to their binary counterparts, which is 

hypothesised to be due to donor compatibility with the PMMA. These findings suggest that 

this approach can be employed in other OPV blend systems and give design rules to 

maximise the positive impact on device lifetime. 
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Introduction 

This paper addresses the need to improve the lifetime of organic photovoltaic (OPV) diodes 

through blending the donor:acceptor pair with an inert polymer, poly-methyl(methacrylate) 

(PMMA) which slows performance degradation via the ‘gettering’ of water [1].  Our 

contribution is twofold.  We examine the impact of PMMA morphology on the effectiveness 

of this approach, thereby suggesting design rules for future devices.  Additionally, we show 

that adding PMMA can be effective in extending the lifetime of more modern donor:acceptor 

pairs, although we also show that processing additives can have a detrimental impact.  Taken 

together, these findings suggest a way forward to improving OPV lifetime that can be effective 

for a range of blend systems.   

 

OPVs occupy an important space within the breadth of photovoltaic (PV) technologies.  While 

future goals of installing terawatt (TW)-scale PV capacity is likely to be achieved when 

inorganic technologies can offer $0.5/W with lifetimes of 25 years [2], such devices may not 

be appropriate for all applications.  In particular, flexible and light-weight PV panels may have 

a significant impact in the Global South where of the order of 1 Billion people do not have 
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reliable access to electricity and its allied advantages to health, education, productivity and 

income [3].  OPVs are a technology that may meet this need due to compatibility with scalable, 

roll-to-roll manufacture on flexible substrates [4] and the associated benefits of reduced cost  

[5].  Recent advances in donor, and particularly acceptor, materials have led to substantial 

improvements in the certified OPV record efficiency to 17.6% [6].  However, a significant 

remaining challenge in the commercialisation of OPVs is achieving an acceptable lifetime [7].   

 

Although OPV devices combine a variety of donor and acceptor pairs with varying efficiencies, 

they degrade with similar mechanisms, which depend upon ambient light [8-10], temperature 

[11, 12], oxygen [13-15] and water [14, 16, 17].  Photo-oxidation of the donor polymer in 

particular impacts its electronic and mechanical properties [18], and although pairing the donor 

with the fullerene acceptors phenyl-C61-butyric acid methyl ester (PC61BM) [19] and phenyl-

C71-butyric acid methyl ester (PC71BM) [20] improves photo-oxidative stability, it is not to a 

level where an acceptable lifetime is observed.  Degradation of OPV performance is also 

accelerated by the presence of ambient water and oxygen [21], which can gain access to the 

active materials through microscopic pinholes in the electrode [22], whereupon they may react 

with the donor or acceptor [23] and lead to increased charge recombination [24].  While it is 

certainly the case that some donors and acceptors are more resistant to degradation than others 

[19, 25, 26], it is not yet the case that un-encapsulated OPV devices can achieve acceptable 

performance in ambient environments for several years.  This in turn increases the importance 

of other methodologies to improve OPV lifetime.  A variety of barrier layers that are compatible 

with flexible OPVs have been demonstrated, such as multilayers of parylene, Al2O3 and ZrO2 

[27-29] as well as fluorinated plastic laminates.  However, these barriers do not yet provide 

sufficient protection from water vapour and oxygen to yield acceptable lifetimes and can also 

significantly inflate the cost [30-32] of the final device. 
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Al Busaidi et al. [1] recently demonstrated a new concept that reduces the rate at which OPV 

devices degrade.  This involved combining the donor poly(3-hexylthiophene) (P3HT) and 

acceptor PC61BM with inert PMMA in a common solvent prior to deposition, and experiments 

showed that the ternary OPVs had longer lifetimes than the P3HT:PC61BM control to an extent 

which depended on the relative humidity, suggesting that the hygroscopic PMMA [33] acts as 

a gettering agent for water.  Furthermore, and similar to Qin et al [34],  they showed that the 

dilution of the donor:acceptor layer with PMMA actually slightly increased the power 

conversion efficiency (PCE), notwithstanding the lower P3HT:PC61BM content in the active 

layer.  This approach of blending the donor and acceptor with PMMA is compatible with some 

encapsulation layers, and therefore may reduce the requirements placed on active materials and 

encapsulants for flexible and rigid OPV devices alike.  However, two important questions 

remain unanswered: what role PMMA morphology plays upon the effectiveness of this 

approach; and is the technique applicable to other donor:acceptor blends?  To address these 

issues, we report a series of experiments based on the donor:acceptor pairs  P3HT:PC61BM and 

poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-

ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7):PC71BM in which the wt% and Mw 

of PMMA is varied.  It is demonstrated that PMMA becomes more effective at extending OPV 

lifetime as PMMA phase separation becomes more pronounced.  We ascribe this observation 

to water being more effectively contained within large PMMA domains as opposed to PMMA 

contained within the (largely) donor:acceptor matrix, and therefore suggests design rules for 

future OPV blends incorporating PMMA.  It is also demonstrated that PMMA can enhance the 

lifetime of more highly performing PTB7:PC71BM, albeit to a lesser extent than 

P3HT:PC61BM, suggesting that blending PMMA could benefit the lifetime of a wide range of 

donor:acceptor blends.  Finally, it is shown that the processing additive diiodooctane (DIO), 
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commonly used to optimise blend morphology, significantly limits the lifetime of OPV devices 

incorporating PMMA.   

 

2.   Experimental methods 

 

2.1   OPV fabrication  

 

Indium tin oxide (ITO) coated glass substrates were patterned into stripes by etching with zinc 

powder and hydrochloric acid, prior to sequential sonication for 15 minutes each in propanol-

2-ol, acetone, Decon 90 solution (2% aqueous), and deionised water, followed by drying with 

N2 gas. Cleaned substrates were treated with Oxygen plasma (Yield Engineering Systems Inc., 

YES-R3) for 5 min with 100W RF power. The conductive polymer poly(3,4-

ethylenedioxythiophene):poly(styrene sulfonate) PEDOT:PSS (CLEVIOS P VP AI 4083) was 

filtered using a 0.2 μm poly(tetrafluoroethylene) (PTFE) syringe filter and spin-cast onto the 

substrate at 2500 rpm for 45s prior to annealing at 140 °C for 10 min in ambient atmosphere.   

 

The polymer donors considered in this study were P3HT and PTB7, which were purchased 

from Rieke Metals and 1-Material Inc., respectively, alongside the acceptor fullerenes PC61BM 

and PC71BM, purchased from 1-Material Inc.  PMMA with molecular weights MW =15 kg mol-

1, 97 kg mol-1 and 350 kg mol-1 were purchased from Sigma Aldrich.  In all cases the materials 

were used as provided.   Working in a N2 glovebox, 30mg ml-1 solutions of the individual 

components were formulated.  Details as to solvents used and stirring times are listed in Table 

S1 of the supplementary information.  Two types of OPVs were fabricated, ternary OPVs 

containing a donor:acceptor and PMMA, and binary OPVs with only a donor and acceptor 

which served as a control.  Binary solutions of P3HT:PC61BM were mixed in a 1:1 volume 
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ratio, while binary blends of PTB7:PC71BM were mixed in volume ratio of 1:1.5, and stirred 

overnight. Binary OPVs were fabricated by pipetting 150 μl of these mixtures onto the PEDOT: 

PSS coated substrates prior to spinning at 1000 rpm for one minute.  Ternary OPVs were 

fabricated in a similar fashion by adding 30mg ml-1 solutions of PMMA to the binary solutions 

described above, prior to spin coating.  In devices that use diiodooctane (DIO), this was added 

with a concentration of 3% to the binary or ternary solutions, and stirred for one hour before 

deposition.  Detailed information about solvents used and stirring times are included in SI Table 

S1.  Spin coating resulted in films of ~100nm thickness, whereupon ~150 nm of aluminium 

was thermally evaporated through a shadow mask. Finally, the devices were annealed at 120 

°C for 10 min in the glovebox prior to testing.    

 

2.2 Characterisation 

The current-voltage characteristics of OPVs were measured in the dark and under AM 1.5 

illumination (Oriel Sol1A 94021 A) using a Keithley 2400 SourceMeter.  All measurements 

under illumination used a mask to restrict illumination to an active area of 0.79 mm2.  Each 

batch of OPVs comprised six substrates of four devices each that were measured to ensure 

reliable statistics.  UV-vis absorption was measured alongside current-voltage measurements 

using a UV-1800 Shimadzu UV spectrophotometer.  In all cases, we report measurements of 

typical devices rather than ‘champion’ devices with the highest performance or lifetime.  

Following initial characterisation in a N2 atmosphere, OPVs were stored in a dark 

environmental chamber in ambient air with controlled temperature (20–25 oC) and humidity 

(40–50% RH), thereby following the standard of the International Summit on OPV Stability 

ISOS-D-1 shelf aging protocol [35].  Devices were removed from the environmental chamber 

for current-voltage and UV-vis absorption measurements to be taken, prior to being replaced 

for further aging.  This process was repeated until the power conversion efficiency (PCE) fell 
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to 20% of its original value.  AFM was used in a cleanroom environment to characterise surface 

topography and measure layer thicknesses. Gwyddion 2.50 image processing software [36] was 

used to analyse the characteristic surface features shown in the ternary OPV blends. 

 

3.   Results and discussion 

 

3.1   Impact of PMMA morphology on OPV lifetime 

To understand how the distribution of PMMA within the active layer effects OPV lifetime and 

performance, two series of ternary P3HT:PC61BM:PMMA OPVs were manufactured in which 

both PMMA weight percent (wt%) and molecular weight (MW) were varied.  In this way, 

aspects of the ternary blend morphology could be controlled, and the corresponding impact on 

OPV performance measured.  In one series, the wt% of PMMA with MW of 350 kg mol-1 was 

increased from 5% to 15 wt%, while the other series had 15 wt% PMMA in which MW was 

varied from 15 kg mol-1 to 350 kg mol-1.  Both series included binary P3HT:PC61BM OPV 

devices to serve as a control.  Addition of PMMA to the binary blend led to the appearance of 

domed regions in the topology, as shown in Fig. 1a-d for the series of blend films in which 

PMMA MW was varied.  The corresponding AFM images for the series in which wt% of 

PMMA was varied are shown in the Supplementary Information (Fig. S1).  Al-Busaidi et al. 

[1] also observed domed regions in the topology of P3HT:PC61BM:PMMA OPVs with 14wt% 

of PMMA with MW = 97 kg mol-1.  They used conductive AFM to show that domed regions 

had low conductivity when compared to the regions in-between, inferring that the former were 

PMMA-rich while the latter were P3HT:PC61BM rich.  Here, we investigate the domed regions 

further using cross-sectional SEM, shown in Fig. 1e.  Surprisingly, it is found that the PMMA-

rich domains form beneath the active layer, suggested to be due to the high wettability of the 

PMMA on the PEDOT:PSS surface [37].  Given that the addition of PMMA extends the 
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lifetime of P3HT:PC61BM-based OPVs in the presence of atmospheric water vapour [1], this 

suggests that atmospheric water has significant mobility in the device prior to reacting with the 

active materials, be it either through the PEDOT:PSS layer or through the P3HT:PC61BM-rich 

active layer.  This supposition is supported by conductive AFM images of ternary devices 

reported by Al-Busaidi et al. [1], since the conductivity of the P3HT:PC61BM-rich regions 

degrades uniformly across the inhomogeneous film.   

 

AFM studies on the present series of P3HT:PC61BM:PMMA devices show that the size of the 

PMMA-rich domains can be controlled by the MW and wt% of PMMA.  Fig 1 shows that the 

size of the PMMA-rich domains increases with PMMA MW for a constant wt% of PMMA 

(Supplementary Information Table S2 lists average area, density, and height of the PMMA-

rich domes).  We attribute the behaviour shown in Fig. 1 to PMMA dropping out of solution at 

an earlier point during the drying process as MW increases, in turn leading to larger PMMA-

rich domains and less PMMA in the otherwise P3HT:PC61BM-rich regions, therefore resulting 

in a total higher volume of isolated PMMA (Fig. S2) that provides increased protection against 

water vapour.  Fig. S1 shows that increasing wt% of PMMA whilst keeping the MW constant 

for P3HT:PC61BM:PMMA devices leads to increasing size of PMMA-rich domains.  Unlike 

the first series, changing only the wt% of PMMA and not the MW, is not expected to change 

the equilibrium concentration of PMMA in the PMMA-rich and P3HT:PC61BM-rich regions 

[38].  The change in size of PMMA-rich regions is instead attributed to the greater availability 

of PMMA in solution.  Hence, the two series of P3HT:PC61BM:PMMA devices allow for some 

degree of control over the amount and whereabouts of PMMA within the OPV. 
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Figure 1: AFM topography images of active layers comprising (a) P3HT:PC61BM and 

P3HT:PC61BM:PMMA with 15 wt% PMMA of MW (b) 15 kg mol-1, (c) 97 kg mol-1 and (d) 

350 kg mol-1. (e) Cross-sectional SEM image of a P3HT:PC61BM:PMMA blend film with 14 

wt% of MW = 97 kg mol-1 PMMA. 

 

We now turn our attention to the lifetime of the ternary OPVs.  Fig. 2a illustrates ISOS-D-1 

degradation of the PCE for typical P3HT:PC61BM:PMMA OPVs with 15 wt% PMMA but 

varying MW, normalised to the initial value.  Similar to Al-Busaidi et al [1], it is shown that 

ternary OPVs with PMMA have a longer lifetime than the binary control.  Fig. 2b-d shows that 

this improvement in lifetime is largely due to an improvement of the rate in which JSC degrades 

when PMMA is introduced.  The Fill Factor (FF) is shown to degrade slightly more slowly in 

presence of PMMA, whilst the open-circuit voltage (VOC) stays largely constant for all devices 

with measurable photovoltaic action.  It has been argued that the presence of water in 

P3HT:PC61BM OPV active layers leads to trap formation and increased recombination [24], 

and in turn, Al-Busaidi [1] argued that water-related trap-formation was slowed in the presence 

of PMMA.  Data for other OPV systems suggest that increased trapping can lead to increased 

charge recombination [39, 40], in turn effecting JSC and FF as seen here, hence our data is 

consistent with this explanation. 

(a) (b) 

(c) (d) 

(e) 
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Figure 2: Normalised (a) PCE, (b) JSC, (c) FF and (d) VOC as a function of time for typical 

binary P3HT:PC61BM blend (black squares) and ternary P3HT:PC61BM:PMMA blend with 

15 wt% of PMMA and MW = 15 kg mol-1 (red circles), 97 kg mol-1 (blue up triangles) and 

350 kg mol-1 (pink down triangles).  Devices were aged according to ISOS-D-1 standard. 

 

Fig. 2a shows a significant variation in OPV lifetime upon PMMA MW.  We reiterate that this 

series of devices contain the same weight of PMMA, but that its distribution varies with MW 

(Fig. 1).  Surprisingly, it is shown that the beneficial effects of PMMA are most pronounced 

for the largest MW (350 kg mol-1), which have the largest, most widely spaced PMMA-rich 

regions (Fig 1d).  Fig. S3c in the Supplementary Information shows normalised PCE lifetime 

for the second series of OPVs in which wt% of 350 kg mol-1 PMMA was increased from 0% 

to 15%.  It can be seen that lifetime improves with increasing wt% of PMMA, which from Fig. 

S1, is associated with larger PMMA-rich domains. Supplementary Information Fig. S4 shows 

the improvement in lifetime is again largely due to a reduction in the rate at which JSC degrades.  

Taken together, these data imply that large, widely-spaced PMMA-rich regions are most 

(a) (b) 

(c) (d) 
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effective at extending OPV lifetime, thus providing design criteria for future ternary OPV 

devices.  

 

While the benefits of PMMA to OPV lifetime, as well as the role of morphology in this action, 

is demonstrated by the data, the precise mechanism by which PMMA extends lifetime in OPVs 

is less clear.  We will, however, review the evidence thus far.  Al-Busaidi et al [1] demonstrated 

that adding PMMA to P3HT:PC61BM slowed the rate of OPV degradation resulting from 

atmospheric water vapour. The route of water ingress could be through pinholes in the Al 

electrode [41] or diffusion through the PEDOT:PSS layer.  While no pinholes could be 

observed in the Al electrodes following fabrication, localised delamination in the form of 

bubbles was observed following aging as shown in Supplementary Information Fig. S5.  Luo 

et al [42] observed similar bubbles on the cathode of organic LEDs following aging in ambient 

air.  This was argued to be due to the creation of Hydrogen gas by reaction between water and 

Aluminium, which in turn led to delamination of the electrode [43].  Further, Luo et al [42] 

found that PEDOT:PSS facilitated the formation of bubbles in the electrode, suggesting that 

the hygroscopic nature of PEDOT:PSS transported atmospheric water laterally through the 

device.  We note that while both aged ternary and binary OPV devices showed bubbles on the 

Al electrode, the population of bubbles was reduced for the ternary device.  Hence, our data 

appear to be consistent with initial atmospheric water ingress through the PEDOT:PSS, which 

is further accelerated by rupturing of the electrode due to reaction between Al and water.  This 

process appears to be slowed by the presence of PMMA in the ternary blend.  Combined with 

the physical process of electrode delamination is the change in opto-electronic properties of the 

active layer with aging.  The present data show that degradation in PCE is primarily due to 

changes in FF and JSC, which is indicative of an increase in recombination with aging. These 

data are consistent with shallow trapping (not recombination-active), as VOC is minimally 
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affected as can be seen in Fig. 2d. It has been demonstrated that shallow traps can originate 

from clusters or simple traces of water [44, 45], which limits charge transport and increase the 

voltage dependence of current [44]. This is supported by Al-Busaidi et al [1], who argued that 

reduction in conductivity as measured by conductive AFM was due to increased trapping, itself 

due to chemical changes in the active layer with aging.  Interestingly, however, they also 

showed that the there was little spatial dependence in the degradation of conductivity, despite 

the heterogeneity of the ternary film.  Nonetheless, it seems that chemical changes in both the 

active layer and the electrode due to atmospheric water vapour play a role in degradation of 

PCE in P3HT:PC61BM OPVs.  What seems more clear is that water has significant mobility in 

the active layer prior to interacting with the donor, acceptor, or electrode, and that during this 

mobile period, water can become trapped in the larger PMMA-rich domains, which in turn 

extends OPV lifetime. 

  

Having established that PMMA can reduce the rate at which PCE degrades, we now turn to 

consider the impact of PMMA on initial absolute performance.  Figures S6 and S7 in the 

Supplementary Information show the impact of varying wt% and MW of PMMA respectively 

upon the statistics of PCE, JSC, VOC and FF.  No significant trend in PCE is observed in either 

series, with most devices displaying a PCE in the region of 0.8 to 1.2%.  We did however 

observe, as shown in Supplementary figure S8, that reverse leakage current reduces with 

addition of PMMA which we ascribe to a reduction in parallel current paths through the 

PMMA-rich regions shown in Fig. 1e.  The reduction in reverse leakage current indicates that 

blending donor:acceptor materials with PMMA may also improve the detectivity of organic 

photodetectors [46].  These data add to those reported for organic field-effect transistors [47] 

and light-emitting diodes [48], which show that devices incorporating inert polymers can have 

similar or superior performance compared to those with all-conjugated active layers. 
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3.2   Impact of donor:acceptor system on effectiveness of PMMA 

We now turn our attention to whether incorporating PMMA into the active layer can increase 

the lifetime of donor:acceptor systems.  For this investigation a series of OPVs were fabricated 

with PTB7 as donor and PC71BM as acceptor, being an OPV blend with different 

morphological characteristics [49] and higher performance [50] than P3HT:PCB61BM.  The 

additive DIO is commonly used in binary PTB7:PC71BM OPVs to limit the size of fullerene 

aggregates and thereby maximise PCE [49, 51], hence, we begin by considering binary 

PTB7:PC71BM and ternary PTB7:PC71BM:PMMA OPVs incorporating DIO as described in 

section 2.1.  Fig. 3a shows ISOS-D-1 PCE degradation for ternary PTB7:PC71BM:PMMA 

OPVs with 15 wt% of PMMA having MW = 15, 97 and 350 kg mol-1, compared to a binary 

PTB7:PC71BM OPV control.  It is apparent that the lifetime of PTB7:PC71BM-based devices 

is lower than that of P3HT:PCB61BM (Fig. 2), and that addition of PMMA has no discernible 

impact on OPV lifetime.  Furthermore, Fig. S9 of the Supplementary Information shows that 

JSC and PCE for ternary PTB7:PC71BM:PMMA OPVs is less than half that of the binary 

counterpart.   

 

We investigate the underpinning reasons for this further by looking at the morphology of the 

binary and ternary films. When adding PMMA to the PTB7:PC71BM films, domed regions 

were observed which increased in size as the MW of the PMMA used was increased (Fig. 4), 

as was seen for P3HT:PCB61BM:PMMA ternaries shown in Fig. 1.  The impact of PMMA on 

the film morphology is therefore outwardly similar in the cases of both 

P3HT:PCB61BM:PMMA and PTB7:PC71BM:PMMA, making it unlikely that morphology is 

the reason for the difference in behaviour.  
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Figure 3: (a) Normalised PCE as a function of time for typical binary PTB7:PC71BM blend 

with DIO (black squares) and ternary PTB7:PC71BM:PMMA blend with DIO and 15 wt% of 

PMMA and MW = 15 kg mol-1 (red circles), 97 kg mol-1 (blue up triangles) and 350 kg mol-1 

(pink down triangles). (b) Repeat of data shown in part ‘a’ without use of DIO, binary blend 

(open black squares) and ternary blend with 15 wt% of PMMA and MW = 97 kg mol-1 (open 

blue up triangles). All devices were aged according to ISOS-D-1 standard. 

 

 

 

 

Figure 4: AFM topography images of (a) PTB7:PC71BM, and of PTB7:PC71BM:PMMA with 

15 wt% of PMMA with (b) 15, (c) 97 and (d) 350 kg mol-1. 

 

(a) (b) 
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One significant difference between the PTB7-based and P3HT-based devices is the use of DIO 

in the former.  It has been shown that the use of processing additives can lead to increased 

photo-bleaching [52].  Therefore, we hypothesise that the poor lifetime of 

PTB7:PC71BM:PMMA ternary OPVs may be due to residual DIO which becomes trapped in 

the PMMA.  We tested this assertion by fabricating further PTB7:PC71BM and 

PTB7:PC71BM:PMMA OPVs without DIO, and subjecting them to the same ISOS-D-1 aging 

protocol, as shown in Fig. 3b.  It can be seen that incorporating PMMA in the PTB7:PC71BM 

blend when DIO is absent improves lifetime, thereby recovering the result seen for the P3HT-

based devices, however, it is noted that improvement is less pronounced.  More specifically, 

the length of time taken to drop to 20% of the initial PCE is improved by up to a factor of ~2 

for P3HT-based blends when PMMA is added, whilst the corresponding improvement in 

lifetime for PTB7 based blends when PMMA is added is ~1.3.  There are a number of possible 

reasons for this difference in behaviour.  PTB7 contains a bridging O atom [52] which is not 

present in P3HT, and thus P3HT devices are more stable than their PTB7 counterparts. [53]. 

Further, PTB7-based devices were fabricated with PC71BM, while P3HT with PC61BM. The 

larger size of PC71BM has an influence on phase segregation in the polymer–fullerene blend 

films [54], which can lead to morphological changes with the passage of time, and may be one 

of the reasons for the poor ISOS-D-1 stability of PC71BM-based devices [55].  The evidence 

that PMMA can extend the lifetime of PTB7:PC71BM OPVs, albeit slightly, suggests that water 

plays some role in these degradation mechanisms. 

We note that the PTB7:PC71BM:PMMA OPVs with or without DIO show a decrease of  >50% 

in initial JSC and PCE when compared to their binary counterparts (Figs. S9 & S10), indicating 

that PTB7-based devices initial performance is significantly affected by the addition of PMMA, 

contrary to P3HT-based devices, which are almost unaffected as described in the previous 

section. Fig. S15 in the Supplementary Information shows a decrease of ~24% in absorption of 
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P3HT:PC61BM:PMMA OPVs when compared to the binary control devices, while Fig. S19 

shows a similar decrease of ~17-22% in absorption of PTB7:PC71BM:PMMA OPVs when 

compared to their binary counterparts, suggesting that changes in absorption are not the root 

cause of the difference in initial behaviour. Instead, we suggest that the differing impacts of 

PMMA upon initial performance of PTB7-based and P3HT-based devices is due to differences 

in microstructure. A previous study by Masataka Kumano et al., [56], used time resolved 

microwave conductivity (TRMC) to show that adding an insulating molecule as a ternary 

component can enhance photoconductivity in crystalline polymers like P3HT and PffBT4T, 

and degrade photoconductivity in amorphous polymer PTB7, in turn suggesting that insulating 

molecules/polymers are more compatible with crystalline than amorphous polymers. In other 

studies, energy filtered transmission electron microscopy (EFTEM) measurements have shown 

that P3HT:PC61BM films form nano fibrils; while there are no obvious PTB7 crystals in the 

PTB7:PC71BM films, only PC71BM aggregates [57, 58].  These data suggest that the addition 

of insulating polymers/additives can disrupt charge transport in PTB7:PC71BM:PMMA OPVs 

[59, 60].  This provides a deeper understanding of how inert polymers may be utilised within 

OPV devices, as our data suggest that PMMA can be effective in enhancing lifetime in multiple 

blend systems, but that it can also disrupt charge transport in amorphous donor polymers. 

We now return to investigate the unfavourable impact of DIO upon lifetime in ternary OPVs.  

To that end, further P3HT:PC61BM based devices were fabricated with DIO, i.e. repeating 

experiments shown in Fig. 2 with DIO for comparison.  Fig. 5 shows ISOS-D-1 degradation of 

PCE for binary P3HT:PC61BM OPVs and ternary P3HT:PC61BM:PMMA OPVs comprising 

15 wt% of PMMA with MW = 97 kg mol-1, both of which included DIO as an additive.  The 

addition of PMMA to the blend leads to very rapid reduction of OPV performance as compared 

to the binary control, which is the opposite behaviour to that observed in P3HT:PC61BM based 

devices when DIO is absent (Fig. 2).  We conclude that whilst incorporating PMMA as a 



 

 

17 

 

ternary component can improve lifetime in a range of donor:acceptor systems, its efficacy 

varies and is negatively impacted by use of some processing additives.  We note that some 

studies have shown that washing the active layer with a small amount of an inert solvent with 

a low boiling point like methanol or ethanol can remove residual DIO and thus improve 

stability [61, 62].  This approach was tested on the current devices to examine whether it could 

reduce or remove the negative impact of DIO on ternary OPVs but were found to be ineffective.  

The results of these experiments are presented in Supplementary Information Fig. S16-19.   

  
Figure 5: Normalised PCE as a function of time for typical binary P3HT:PC61BM blend 

(black squares) and ternary P3HT:PC61BM:PMMA blend with 15 wt% and a 97 kg mol-1 (red 

circles), both of which were processed with DIO.  
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4.   Conclusions 

 

The commercial viability of OPV devices requires improvements in lifetime and a reduction in 

cost of encapsulant technologies.  This paper has shown that the ISOS-D-1 lifetime of OPVs 

can be improved by forming a ternary blend between the donor and acceptor with PMMA.  The 

improvements in lifetime were as high as a factor of 2 without significantly effecting power 

conversion efficiency of P3HT-based devices, while a lesser factor of 1.3 and an initial PCE 

drop of >50% was observed for PTB7-based devices. This shows that adding an inert polymer 

is more effective in some blend systems than in others, which is hypothesised to be due to the 

compatibility between the donor polymer and PMMA. Furthermore, our data show that the 

improvement in lifetime is sensitive to the PMMA morphology, with larger, PMMA-rich 

domains providing the most benefit, thereby providing design rules for future devices.  As a 

final cautionary note, we also show how the use of processing additives (here DIO) in addition 

to PMMA can have a negative impact on lifetime, indicating some limitations to the processing 

methodologies for ternary OPV devices with PMMA. 
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