
Computer Physics Communications 249 (2020) 106997

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

High-performance dunemodules for solving large-scale, strongly
anisotropic elliptic problemswith applications to aerospace
composites✩

R. Butler a, T. Dodwell b,c, A. Reinarz d,∗, A. Sandhu b, R. Scheichl e,f, L. Seelinger e

a Department of Mechanical Engineering, University of Bath, UK
b College of Engineering, Mathematics and Physical Sciences, University of Exeter, UK
c The Alan Turing Institute, London, NW1 2DB, UK
d Institute of Informatics, Technical University of Munich, Germany
e Institute for Scientific Computing, University of Heidelberg, Germany
f Department of Mathematical Sciences, University of Bath, UK

a r t i c l e i n f o

Article history:
Received 16 January 2019
Received in revised form12 September 2019
Accepted 16 October 2019
Available online 25 October 2019

Keywords:
Composites
Parallel iterative solvers
Domain decomposition
High performance computing

a b s t r a c t

The key innovation in this paper is an open-source, high-performance iterative solver for high
contrast, strongly anisotropic elliptic partial differential equations implemented within dune-pdelab.
The iterative solver exploits a robust, scalable two-level additive Schwarz preconditioner, GenEO
(Spillane et al., 2014). The development of this solver has been motivated by the need to overcome
the limitations of commercially available modelling tools for solving structural analysis simulations
in aerospace composite applications. Our software toolbox dune-composites encapsulates the
mathematical complexities of the underlying packages within an efficient C++ framework, providing
an application interface to our new high-performance solver. We illustrate its use on a range of
industrially motivated examples, which should enable other scientists to build on and extend dune-
composites and the GenEO preconditioner for use in their own applications. We demonstrate the
scalability of the solver on more than 15,000 cores of the UK national supercomputer Archer, solving
an aerospace composite problem with over 200 million degrees of freedom in a few minutes. This scale
of computation brings composites problems that would otherwise be unthinkable into the feasible
range. To demonstrate the wider applicability of the new solver, we also confirm the robustness and
scalability of the solver on SPE10, a challenging benchmark in subsurface flow/reservoir simulation.
Program summary
Program Title: dune-composites
Program Files doi: http://dx.doi.org/10.17632/96mtdcmjsb.1
Licensing provisions: BSD 3-clause
Programming language: C++
Nature of problem: dune-composites is designed to solve anisotropic linear elasticity equations for
anisotropic, heterogeneous materials, e.g. composite materials. To achieve this, our contribution also
implements a new preconditioner in dune-pdelab.
Solution method: The anisotropic elliptic partial differential equations are solved via the finite element
method. The resulting linear system is solved via an iterative solver with a robust, scalable two-level
overlapping Schwarz preconditioner: GenEO.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

✩ This paper and its associated computer program are available via the
Computer Physics Communication homepage on ScienceDirect (http://www.
sciencedirect.com/science/journal/00104655)..

∗ Corresponding author.
E-mail address: reinarz@in.tum.de (A. Reinarz).

1. Introduction

Across the physical sciences, elliptic partial differential equa-
tions (PDEs) naturally arise as mathematical models of the
equilibrium state of a system. Classical examples include the
distribution of temperature in a body, the flow of fluid in a
porous medium and, the particular application of interest in this
paper, the equilibrium of forces acting on a material. The most
widely used approach to solve such PDEs is the finite element

https://doi.org/10.1016/j.cpc.2019.106997
0010-4655/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.cpc.2019.106997
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2019.106997&domain=pdf
http://dx.doi.org/10.17632/96mtdcmjsb.1
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:reinarz@in.tum.de
https://doi.org/10.1016/j.cpc.2019.106997
http://creativecommons.org/licenses/by/4.0/


2 R. Butler, T. Dodwell, A. Reinarz et al. / Computer Physics Communications 249 (2020) 106997

method [1], which results in a sparse system of equations. For
systems which exhibit multiple scales and large spatial variations
in model parameters the system of equations can be very ill-
conditioned and extremely large, e.g. contain > 107 degrees of
freedom. The design of robust and scalable solvers that do not
require laborious tuning and are capable of exploiting the power
of modern distributed computers, is essential. In this paper,
we describe the design and implementation of a robust two-
level additive Schwarz preconditioner for parallel Krylov based
iterative solvers in dune-pdelab [2]. By also creating a bespoke
module for analysis of composite structures dune-composites,
we demonstrate the capabilities of this new solver on industrially
motivated aerospace composite problems with over 200 million
degrees of freedom. To also demonstrate the wider applicability
of the new solver, we demonstrate the robustness and scalability
of the solver on the challenging, classical SPE10 benchmark [3,4]
in subsurface flow/reservoir simulation.

1.1. Motivating computational challenge in aerospace composites

Scientific advances in aerospace composite design and mate-
rials offer exciting engineering opportunities, making them the
material of choice for many modern aircraft (e.g Airbus A350,
Boeing 787). However, composite manufacturers face huge chal-
lenges in designing and making complex components quickly
enough to remain commercially competitive. There is a growing
realisation in both academia and industry that to meet ambitious
global growth targets, composites manufacturers should ‘reduce
time, cost and risk to market through the use of validated simulation
packages’ [5]. Currently simulation capabilities allowing high-
fidelity full-scale analysis of a composite structure are not openly
available. But, why is this? What makes this analysis of large scale
composite structure so challenging?

When we apply classical finite element (FE) analysis to a
composite structure the problem reduces to finding a vector of
displacements u(i)

∈ R3 at each of the N nodes within a FE mesh.
This leads to the sparse system of FE equations [1]:

Aũ = b, where ũ = [u(1)
h , . . . ,u(N)

h ]
T , (1)

A is the global stiffness matrix and b is the load vector aris-
ing from the applied boundary conditions or loading. In solv-
ing the linear system (1), we face two significant mathematical
challenges:

• Scale of calculations. Composite materials are manufac-
tured from thin fibrous layers, less than 1 mm thick, sepa-
rated by even thinner resin interfaces of thickness less than
0.05 mm, yet entire component parts are generally several
metres long, Fig. 1. To resolve stresses and accurately predict
failure, several elements need to be placed through each
layer [6]. Naturally this means that the number of nodes
N is very large. As an example in this paper, we model
a 1 m section of a wing box given in Section 5.3, while
resolving the resin interfaces, giving in total 200 million de-
grees of freedom. Solving linear systems of this size requires
specialised, parallel solvers. Current industry standard tools,
such as Abaqus [7], are not able to deal with these prob-
lem sizes, largely due to limitations of the parallel solvers
employed.

• Material anisotropy. Central to the benefits of composite
structures is the inclusion of directional fibres, which gives
them an excellent weight to stiffness ratio under a particular
loading. This means, there is a large contrast (∼ 1 : 40)
in mechanical properties within a single layer of composite,
related to the fibre direction(s) and those directions dom-
inated by the stiffness of the matrix material (typically a

toughened epoxy resin). In the FE discretisation, this leads
to a stronger coupling between degrees of freedom in the
fibre direction, as opposed to those in the orthogonal di-
rections. The fibrous layers are stacked with different fibre
orientations to form a laminate, adding an additional level
of complexity. The fibre directions act as stiff constraints on
the deformation, whilst the weak connections give rise to
low-energy mechanics within the structure. Mathematically,
this causes significant numerical challenges in solving Eq. (1)
via iterative solvers, since the system is very ill-conditioned.
For such cases, classical iterative solvers (required to address
Challenge 1) converge very slowly.

The usual approach to tackle both these challenges is to apply
the parallel iterative solvers to a preconditioned version of Eq. (1).
The task then is to develop an operator M−1, which is computa-
tionally cheap to construct, such that M−1Aũ = M−1b is better
conditioned. The most widely used preconditioners for iterative
solvers for (1) in both commercial and scientific FE codes are Al-
gebraic Multigrid (AMG) methods [8,9]. They have demonstrated
excellent scalability for a broad class of problems over thousands
of processors, and have the advantage of working only on the
matrix equations (1), so that they can be applied ‘black-box’. As
a preconditioner, AMG constructs the matrix M by repeatedly
coarsening the full matrix A through recursive aggregation over
the degrees of freedom. The aggregation process is algebraic and
based on the fact that the solution at two neighbouring nodes will
be similar if they are ‘strongly connected’. The success of an AMG
preconditioner depends on this aggregation process. As discussed
above, the connectivity of degrees of freedom within a laminate
is very complex even for a simple laminate and in our numerical
experiments the performance of all AMG preconditioners that we
tested was prohibitively poor. In particular, this includes off-the-
shelf AMG used in the commercial software Abaqus [7], as well
as tailored aggregation strategies in the AMG preconditioners
provided through dune-istl [8] and Hypre [9].

This initial testing of AMG preconditioners highlighted the
need for the development and implementation of a robust
preconditioner with respect to both problem size, material het-
erogeneity and anisotropy for large-scale composite based ap-
plications. Over the last decade there has been significant effort
from the domain decomposition community to develop scalable
and robust preconditioners suitable for parallel computation.
One such preconditioning approach is provided by the additive
Schwarz framework [10]. The domain is decomposed into over-
lapping subdomains, which in our case each correspond to one
processor, and the subdomain’s local stiffness matrix is inverted
on each processor using a direct solver. This ‘‘one level’’ approach
is not sufficient for very large problems and global information in
the form of a coarse space must be added. In dune-composites,
we use GenEO [11] to construct a coarse space by combining
low energy eigenvectors of the local subdomain stiffness matrices
using a partition of unity. The resulting preconditioner leads to an
almost optimal scaling with respect to problem size and number
of processors, allowing us to successfully tackle large industrially
important problems with over 200 million degrees of freedom.

1.2. The contributions of this paper

dune-composites is a high-performance composite FE pack-
age built on top of Dune (Distributed and Unified Numerics
Environment), an open source modular toolbox for solving partial
differential equations (PDEs) with grid-based methods [12–14].
Based on the core Dune philosophy, dune-composites is writ-
ten using C++ and exploits modern inheritance and templating
programming paradigms. It is open-source and publicly avail-
able at https://dune-project.org/modules/dune-composites/. The
package provides a codebase with the following key features:

https://dune-project.org/modules/dune-composites/


R. Butler, T. Dodwell, A. Reinarz et al. / Computer Physics Communications 249 (2020) 106997 3

Fig. 1. The range of scales introduces significant complexity in the analysis of aerospace composites. From Left to Right: fibre/resin scale (5 µm), ply scale (0.25 mm),
laminate scale (5–30 mm) to the structure (> 1 m)(Composite Fan Blade, Right).

• implementation and interface to a novel, robust precondi-
tioner called GenEO [6,11] for parallel Krylov solvers, which
exhibits excellent scalability over thousands of processors
on Archer, the UK national HPC system. Since release 2.6, the
preconditioner is provided as part of dune-pdelab, avail-
able at https://dune-project.org/modules/dune-pdelab/ (ini-
tially it had been developed within the dune-composites
module);

• interfaces to handle composite applications, including
stacking sequences, complex part geometries, defects and
non-standard boundary conditions, such as multi-point con-
straints or periodicity;

• to overcome shear locking of standard FEs, mesh stabil-
isation strategies to support reduced integration [15], as
well as a new 20-node 3D serendipity element (with full
integration) have been implemented;

• interfaces to other state-of-the-art parallel solvers (& pre-
conditioners) in dune-istl [8] and Hypre [9];

• a code structure which supports both engineering end-
users, and those requiring flexibility to extend any aspect of
the code in a modular way to introduce new applications,
solvers or material models.

The purpose of this paper is to highlight the novel math-
ematical aspects of the code and document its structure. We
illustrate its use through a range of industry motivated examples,
which should enable other scientists to build on and extend
dune-composites for use in their own applications. We begin by
outlining the mathematical formulation of the new robust pre-
conditioner and its implementation on a distributed memory
computer in Section 3. We then provide details of the structure
and salient features of the code in Section 4. Finally in Section 5,
through the use of a series of example problems, we provide
details of how to implement, build and run your own applications.
We also use these examples as an opportunity to demonstrate the
computational efficiency of dune-composites.

2. Preliminaries: Anisotropic elasticity equations and their fi-
nite element discretisation

A composite structure occupies the domain Ω ⊂ R3 with
the boundary Γ and a unit, outward normal vector n ∈ R3.
At each point x ∈ Ω we define a vector-valued displacement
u(x) : Ω → R3. In each of these three global directions the
boundary may contain a Dirichlet component Γ

(i)
D and a Neumann

component Γ
(i)
N , such that

Γ = Γ
(i)
D ∪ Γ

(i)
N and Γ

(i)
D ∩Γ

(i)
N = ∅, i = x, y, z. (2)

Let σij denote the Cauchy stress tensor and f(x) : Ω → R3

the body force per unit volume. The infinitesimal strain tensor, is
defined as the symmetric part of the displacement gradients

ϵij(u) =
1
2

(
ui,j + uj,i

)
, (3)

where ui,j =
∂ui
∂xj

. The strain tensor is connected to Cauchy stress
tensor via the generalised Hooke’s law

σij(u) = Cijkl(x)ϵkl(u). (4)

Cijkl(x) is a symmetric, positive definite fourth order tensor. A
composite laminate is made up of a stack of composite layers
(or plies ∼ 0.2 mm), separated by a very thin layer of resin
(15 µm). A single composite layer is modelled as a homoge-
neous orthotropic elastic material, characterised in general by 9
parameters and a vector of orientations θ . Resin interfaces are
assumed isotropic, defined by just 2 scalar (Lamé) parameters.
These fibres are aligned in local coordinates and can be rotated
in any direction using standard tensor rotations, for more details
see e.g. [16].

Given functions hi : Γ
(i)
D → R and gi : Γ

(i)
N → R, prescribing

the Dirichlet and Neumann boundary data (for each component),
we seek the unknown displacement field u(x), which satisfies the
force equilibrium equations and the boundary conditions,

∇ · σ (u) + f = 0, x ∈ Ω, ui = hi for x ∈ Γ
(i)
D and

× σijnj = gi for x ∈ Γ
(i)
N , (5)

as well as Eqs. (3) and (4). Then, we define the function space for
each component of displacement ui to be

V (i)
:= {v ∈ H1(Ω) : vi(x) = hi , x ∈ Γ

(i)
D }, (6)

leading to the weak formulation of (5), of finding u ∈ V :=

V (1)
⊗ V (2)

⊗ V (3) such that

a(u, v) :=

∫
Ω

σij(u)ϵij(v) dx =

∫
∂Ωn

σijnjvi ds −

∫
Ω

fivi dx

:= b(v), ∀v ∈ V . (7)

We consider the discretisation of the variational equations (7)
with conforming FEs on a mesh Th on Ω . Let Vh ⊂ V denote the
restriction of V onto a FE space on Th and seek an approximation
uh ∈ Vh such that

a(uh, vh) − b(vh) = 0, for all vh ∈ Vh. (8)

We block together displacements from all three space dimen-
sions, so that u(i)

h ∈ B = R3 denotes the vector of displacement
coefficients containing all space components associated with the
ith basis function. We introduce the (vector-valued) FE basis for

https://dune-project.org/modules/dune-pdelab/


4 R. Butler, T. Dodwell, A. Reinarz et al. / Computer Physics Communications 249 (2020) 106997

Vh defined by the spanning set of (vector-valued) shape func-
tions {φ(i)(x)}Ni=1. These are the normal scalar shape functions,
repeated for each displacement component. Therefore the vector
displacement at a point is given by uh(x) =

∑N
i=1(u

(i)
h )T φ(i)(x).

The choice of basis converts (8) into a symmetric positive-definite
(spd) system of algebraic equations

Aũ = b where A ∈ BN
× BN and b ∈ BN (9)

where the blocks in the global stiffness matrix and in the load
vector, for any i, j = 1, . . . ,N , are given by Aij = a(φ(i), φ(j))
and bi = b(φi). The vector ũ = [u(1)

h , . . . ,u(N)
h ]

T
∈ BN is the

block vector of unknown FE coefficients. System (9) is assembled
element-wise from (7), using Gaussian integration.

3. A robust, scalable, parallel iterative solver for composite
structures

The key innovation of dune-composites, as a software package,
is the design and implementation of a highly robust, scalable
parallel iterative solver for composite applications. This solver
is applicable to a more general class of problems and has been
made available in the dune-pdelab module. In this section, we
provide the mathematical and implementation details of the new
solver. Apart from new types of FEs that had to be implemented
in Dune, the remainder of the package largely provides interfaces
to handle the set-up for complex composite applications.

3.1. Krylov subspace methods preconditioned with two-level addi-
tive Schwarz methods

In dune-composites we use preconditioned Krylov subspace
methods both in sequential and parallel, as provided by Dune’s
‘‘Iterative Solver Template Library’’ dune-istl [8]. Krylov sub-
space methods are iterative solvers which construct a sequence
of approximations u(k) in the k-dimensional subspace:

Kk = span{r,Ar,A2r, . . . ,Ak−1r} ⊂ Rn (10)

where r = b − Aũ(0) is the initial residual. The simplest Krylov
subspace method for a symmetric positive-definite matrix A is
the Conjugate Gradient method (CG), first introduced by Hestenes
and Stiefel (1952). In each step, the approximate solution ũ(k) is
updated by adding the search direction d(k) scaled by a factor
chosen to minimise the energy norm over the space Kk. The
search directions are chosen to be A-orthogonal to all previous
direction i.e. ⟨d(k),Ad(k′)

⟩ = 0 for k′ < k. The method iterates
until the residual norm (or ‘‘energy’’) ∥r(k)∥ reduces below a
user defined tolerance. Importantly, the convergence rate of CG
depends on the spectral properties of the matrix A, see e.g. [17].
In particular, it can be bounded proportionally to the square
root of the condition number κ , defined as the ratio between its
largest and smallest eigenvalue. A large value, as usually seen in
composites, indicates that the system Aũ = b is ill-conditioned.
This means that u is very sensitive to small changes in b. For
such cases, iterative solvers converge very slowly or even not
at all, particularly when the problem size increases. A remedy
is to precondition the system, that is to develop an operation
M−1 which is computationally cheap to construct and apply (in
parallel) such that M−1Aũ = M−1b is better conditioned and CG
solvers converge quickly.

In dune-composites our main preconditioner is a two level
additive Schwarz method. To construct this method we partition
our domain Ω into a set of non-overlapping subdomains Ω ′

j
for j = 1 to N resolved by Th, as shown in Fig. 2 (left). Each
subdomain Ω ′

j is extended by O-layers of elements to give the
overlapping subdomains Ωj, Fig. 2 (middle). For each subdomain
1 ⩽ j ⩽ N , we denote the restriction of Vh to Ωj by Vh(Ωj), whilst
the space of FE functions with support contained in Ωj is called
Vh,0(Ωj).

Remark. In dune-composites the user can define the initial
non-overlapping decomposition (or a default is used), the over-
lapping process is handled by Dune’s parallel structured grid class
Dune::YaspGrid [12].

Any function v ∈ Vh,0(Ωj) is mapped onto Vh by the prolon-
gation operator RT

j : Vh,0(Ωj) → Vh, which extends v by zeros, so
that

RT
j v(x) =

{
v(x), x ∈ Ωj

0, x ∈ Ω\Ωj.

We therefore note that the restriction operator Rj : Vh →

Vh,0(Ωj). In matrix form the restriction and prolongation opera-
tors Rj and RT

j , are denoted Rj and RT
j respectively. This allows us

to define the subdomain stiffness matrices restricted to Vh,0(Ωj)
as Aj := RjART

j for j = 1, . . . ,N . In practice, we do not com-
pute Aj from A via this double matrix product. Instead, we can
equivalently assemble Aj directly from the bilinear form (8) on Ωj
with homogeneous Dirichlet boundary conditions on all artificial
interior subdomain boundaries, i.e all points x ∈ ∂Ωj that satisfy
x ∈ Ωj′ for some other j′ ̸= j.

The 1-level Additive Schwarz method can then be defined as
a preconditioner of (9) via the operator

M−1
AS,1 =

N∑
j=1

RT
j A

−1
j Rj (11)

Here, in the subscript, the AS denotes additive Schwarz and the 1
denotes a one-level method. In this case the preconditioner M−1

AS,1
approximates the inverse operator A−1 by a sum of local solves on
overlapping subdomains, with homogeneous Dirichlet boundary
conditions on interior boundaries. We will see in the numerical
examples to follow that, for large problems, a single-level method
is not sufficient, causing stagnation (high iteration counts) of the
iterative solver. This stagnation of the iterative solver is caused
by a few very small eigenvalues in the spectrum of the precon-
ditioned problem. They are due to the lack of a global exchange
of information in the preconditioner in the single-level method.
A classical remedy is the introduction of a coarse grid problem
that couples all subdomains at the second level [10]. To define
our coarse problem, we introduce a coarse space VH ⊂ Vh (which
we define below). We denote the restriction from the fine to the
coarse space by the operator RH : Vh → VH , with matrix repre-
sentation RH . The two-level additive Schwarz preconditioner (in
matrix form) is given by

M−1
AS,2 = RT

HA
−1
H RH + M−1

AS,1 where AH = RHARH
T . (12)

Two natural questions arise:

• What is a good choice of coarse space VH for composite
applications?

• How do we construct AH efficiently on a distributed memory
computer without assembling A directly?

3.2. A robust coarse space via generalised eigenproblems in the
overlaps (GenEO)

The ideal coarse space would capture the global low energy
modes of A that jeopardise the performance of Krylov solvers.
Specifically, in the two-level additive Schwarz setting, the modes
not captured by the local solves are of interest. Yet, to compute
those low-energy modes explicitly would be more expensive
than inverting A itself. Instead, the global low-energy modes can
be approximated by stitching together local (optimal) approx-
imations. These local approximations are solutions of specific
Generalised Eigenproblems in the Overlaps, hence named GenEO,



R. Butler, T. Dodwell, A. Reinarz et al. / Computer Physics Communications 249 (2020) 106997 5

Fig. 2. (Left) Domain Ω partitioned into non-overlapping subdomains Ω ′

j where colouring differentiates independent subdomains. (Middle) Shows overlapping
subdomain Ωj with a single layer of overlap (O = 1). Overlap region Ω◦

j is shown in white. Transparent red regions show cells of the grid which belong to ’nearest
neighbour’ processors. (Right) Shows partition of unity (PoU) operator Ξj on a single processor, defined as in 3.2.

defined below. Importantly the local eigenproblems are indepen-
dent and can trivially be computed in parallel. The robustness of
GenEO has been proven for isotropic elasticity problems, Spillane
et al. [11], and numerically verified by the authors for anisotropic
variants [6].

The construction of the GenEO coarse space has two key steps:
the definition of the generalised eigenproblems on the subdo-
mains and the stitching together of the resulting local eigen-
modes from each subdomain to form a global basis. This stitching
process by means of partition of unity (PoU) operators is also
incorporated in the local eigenproblems, therefore we construct
the PoU operators first.

Definition 3.1 (Subdomain Overlap). For each subdomain Ωj, the
overlap region is defined by the set

Ω◦

j := {x ∈ Ωj : ∃j′ ̸= j s.t. x ∈ Ωj′},

i.e. the subset of Ωj which belongs to at least one other subdo-
main.

Definition 3.2 (Partition of Unity). The family of operators Ξj :

Vh(Ωj) → Vh,0(Ωj), j = 1, . . . ,N , defines a Partition of Unity if
N∑
j=1

RT
j Ξj(v|Ωj ) = v, ∀v ∈ Vh.

Since RT
j′Ξj′ (v|Ωj′

) = 0 on Ωj\Ω
o
j for all j′ ̸= j, it follows from

this definition that restricted to Ωj\Ω
o
j each Ξj has to be the

identity operator. In the overlaps, the choice of Ξj is not unique.
The simplest approach is to define Ξj(v) such that each coefficient
of the FE function v is scaled by the number of subdomains
the corresponding degree of freedom belongs to (see [11] for
details). However, we also provide a smoother PoU as defined by
Sarkis [18] in our implementation, but observe little difference in
the performance of the overall solver (at most one iteration); we
therefore keep the presentation here as simple as possible.

Given this set of local PoU operators Ξj(·), we can construct
any global FE function vh ∈ Vh from local functions v

(j)
h ∈ Vh(Ω)

as follows:

vh =

N∑
j=1

RT
j Ξj(v

(j)
h ) . (13)

In particular, we can define the local generalised eigenproblems
that (once collected from each subdomain) provide the basis of
the GenEO coarse space. The following definition can be rigor-
ously motivated from theoretical considerations and we refer
again to [11]. For each subdomain Ωj, j = 1, . . . ,N , we define

the generalised eigenproblem: Find (λ, p) ∈ R+
× Vh(Ωj) such

that

aΩj (p, v) = λaΩo
j
(Ξj(p), Ξj(v)), ∀v ∈ Vh(Ωj), (14)

where, for any D ⊂ Ω , the bilinear form aD is defined like a in
(7) with the integral restricted to D.

Definition 3.3 (GenEO Coarse Space). For each subdomain Ωk let
pjk be the eigenfunctions from (14) with associated eigenvalues λ

j
k

in ascending order. Then, for some choice of mj ∈ N, the GenEO
coarse space is defined as

VH := span{RT
j Ξj(p

j
k) : k = 1, . . . ,mj, j = 1, . . . ,N}.

The only parameter that remains to be chosen is the number
of eigenmodes mj to be included in each subdomain Ωj. In order
to ensure robustness and scalability of the solver, the condition
number of the preconditioned system needs to be bounded from
above, independent of N , h and of the material properties. It has
been shown in [11] that

κ(M−1
AS,2A) ⩽ C max

1⩽j⩽N

(
1 +

1

λ
j
mj+1

)
. (15)

where C > 0 is a constant depending only on the geometry
of the subdomains and where λ

j
mj+1 is the lowest eigenvalue

whose eigenfunction is not added to the coarse space on Ωj.
Thus, the desired robustness can be achieved by including all
eigenfunctions in the coarse space whose eigenvalues are below
an a priori chosen threshold. A particular threshold that turns out
to provide an effective black-box choice for mj and also depends
only on the geometry of the subdomain partition is to include
all eigenfunctions with λ

j
k ≤ diam(Ωj)/width(Ωo

j ).
1 This simple

threshold can be scaled by a constant factor, thus also scaling
the condition bound of the preconditioned system by the same
factor. As the number of iterations of the Krylov solver depends
directly on the condition number, this allows us to balance the
time spent in the iterative solver with the time spent on setting
up the preconditioner.

The number of eigenfunctions that are used in the coarse
space is problem-specific, but it turns out that for strongly struc-
tured coefficient distributions only a small number is typically
sufficient. We will see in Section 5 that the calculation of these
local eigenmodes is not prohibitively expensive, while yielding
excellent condition numbers and, due to the independence of the
individual eigenproblems, parallel scalability.

1 For any D ⊂ Ω , diam(D) and width(D) refer to the radius of the largest
circumscribed and inscribed circle, respectively.



6 R. Butler, T. Dodwell, A. Reinarz et al. / Computer Physics Communications 249 (2020) 106997

3.3. Implementation of GenEO on a high performance computer

The two-level additive Schwarz preconditioner with GenEO
coarse space is implemented within a collection of header files,
which are located in dune-pdelab from releases/2.6 and in
the folder solvers/geneo/ in prior releases. Here we describe
our implementation. We are aware of only one other high per-
formance implementation of GenEO, which can be found in the
package HPDDM for which details are provided in Jolivet et al.
[19,20].

It is a main goal of such an implementation to fully exploit
the excellent parallel scalability promised by the method’s con-
struction and theoretical properties. Therefore, each process j will
be assigned to subdomain Ωj and only store relevant fine-level
operators and functions in the form of local restrictions to Ωj.
Further, per-subdomain stiffness matrix and eigenproblem solves
will be run in parallel on the respective processes. Only scalable
nearest-neighbour communication is needed, with the exception
of setting up the coarse matrix, which consequently requires
particular care.

3.3.1. Partition of Unity (PoU) operator
The partition of unity operator as defined by Definition 3.2

is stored locally on each processor (see Fig. 2). In practice, the
partition of unity operator Ξj is represented as a diagonal matrix
X(j). In the simplest case, each diagonal entry of X(j) is set to one
divided by the number of subdomains containing the associated
degree of freedom, except for the subdomain boundary where
entries are set to zero. Therefore, if v(j) is a vector containing
all nodal degrees of freedom of the FE function vh ∈ Vh(Ωj) in
subdomain Ωj, the operation X(j)v(j) automatically maps vh into
Vh,0(Ωj). Such a PoU can be generated using existing parallel data
structures in Dune by adding a vector of ones and by enforc-
ing both global and subdomain boundary conditions before and
after communication. The implementation of the PoU operators
is within the header file geneo/partitionofunity.hh under
the function standardPartitionofUnity(...). As the choice
of partition of unity operator is not unique, we also provide
the PoU in [18], which is implemented in the same header file
under the function sarkisPartitionofUnity(...). This gives
a ‘smoother’ PoU operator, which is however restricted to equally
distributed subdomain sizes. Under testing, we noted no signifi-
cant difference in the performance of the preconditioner when
changing between the two different PoU operators.

3.3.2. Subdomain eigenproblems
The local generalised eigenvalue problems (14) can be rewrit-

ten in matrix form as follows: Find eigenpairs (λ(j)
i , pj

i) with
eigenvalues in ascending order and ∥pj

i∥ = 1 such that

AΩjp
j
i = λ

j
i

(
X(j)AΩ◦

j
X(j)
)
pj
i , for j = 1, . . . ,N and

i = 1, . . . ,mj (16)

where AΩj and AΩ◦
j
denote the stiffness matrices corresponding

to the bilinear forms aΩj (·, ·) and aΩ◦
j
(·, ·) on Vh(Ωj) and Vh(Ωo

j ),
respectively. They are solved using ARPACK++ [21].
A customised wrapper has been developed to convert Dune data
structures into a suitable format for ARPACK++ [21]. In order to
regularise the problem, we employ ARPACK++’s shift and invert
spectral transformation mode and, since we are interested in the
smallest mj eigenvalues, we choose a small shift factor. The global
coarse basis vectors Φ1, . . . ,ΦNH are obtained from the local
eigenvectors by applying the PoU operator, i.e., Φi(j,k) := X(j)pj

k,
and padding the rest of the global vector (outside Ωj) with zeros.
Here, (j, k) ↦→ i(j, k) is a one-to-one mapping from the local
numbering of the eigenvectors on Ωj to a global numbering, with
1 ≤ i(j, k) ≤ NH =

∑N
j=1 mj.

3.3.3. Coarse space assembly
The parallel assembly of the coarse system AH = RHARH

T

is not trivial in practice since process j only has local access to
rows and columns of A associated to degrees of freedom on sub-
domain Ωj. We denote this submatrix Ãj. Note that Ãj differs from
the matrix Aj in (11) in that it does not incorporate Dirichlet
conditions on interior subdomain boundaries.

Furthermore the coarse space prolongation matrix RT
H is only

available in a distributed manner. Each basis vector Φi, i ∈

{1, . . . ,NH}, is available only on process j(i), where the unique
j(i) ∈ {1, . . . ,N} denotes the index of the subdomain Ωj(i) associ-
ated with the eigenproblem (16) corresponding to Φi. However,
due to the local support of the basis functions, one can break
down the global matrix product into local products

(AH )i,ℓ = (RHART
H )i,ℓ =

(
ΦT

i Ãj(i)

)
Φℓ, for i, ℓ = 1, . . . ,NH ,

(17)

with a slight abuse of notation, denoting the local parts of the
global vectors Φi and Φℓ restricted to Ωj(i) again by Φi and Φℓ.
In the implementation, the matrix vector product in the bracket
is local whereas the scalar product requires communication of
(parts of) vector Φℓ from processor j(ℓ) to processor j(i). This
avoids having to communicate the local matrices Ãj.

We note that the locality of the basis functions implies ΦiÃj(ℓ)
Φℓ = 0 whenever Ωj(i) ∩ Ωj(ℓ) = ∅. Therefore, the parallel
assembly of AH requires only communication between processes
assigned to overlapping subdomains. This locality of communica-
tion, which is demonstrated in Fig. 2 (middle), can be exploited to
set up AH as a banded sparse matrix. Its parallel communication is
implemented within geneo/multicommdatahandle.hh, allow-
ing to pass basis functions between all processes at the same time
and therefore make best use of available bandwidth. Combining
sparsity and efficient communication, linear complexity in basis
size can be achieved for this step.

Since the number of coarse degrees of freedom per process is
too small, i.e., mj on process j, after assembly we distribute the
resulting global coarse matrix AH to all processors and duplicate
the coarse solve on all processors to avoid fine-grained commu-
nication. The communication of AH is achieved directly with MPI
calls, as the dune-pdelab communication infrastructure is not
designed for such global operations.

In case of the restriction of a distributed vector vh representing
a function vh ∈ Vh, it follows that

(RHvh)i = ΦT
i vh. (18)

So, each row i can be computed by the process associated with
Φi, and the rows can be exchanged among all processes via
MPI_Allgatherv. Again, the communication effort increases
with the dimension of VH . On the other hand, the prolongation
RT
HvH of a vector vH that is globally available on all processors,

representing a vH ∈ VH , consists only of local contributions
and hence can be computed in parallel without communication.
Since the result lies in Vh(Ω), the regular PDELab communication
patterns can be used. This only involves communication between
adjacent subdomains, making this a highly scalable process.

Each process executes its associated subdomain solve as well
as the coarse space solve (redundantly). Where possible we use a
sparse direct solver (UMFPack) [22]. For very large problems and a
large number of parallel processors the coarse space becomes too
large, and must itself be solved with a preconditioned iterative
solver; in that case we use by default preconditioned CG with
the BoomerAMG [9] preconditioner. It is important to note that
in such cases since the coarse solve is inexact, the preconditioner
for the (overall) Krylov method is now instationary. It is therefore
necessary to switch from a standard preconditioned CG to a
flexible Krylov solver. In our case we use Flexible GMRES as
provided by dune-istl [8].



R. Butler, T. Dodwell, A. Reinarz et al. / Computer Physics Communications 249 (2020) 106997 7

4. Using and extending dune-composites

In this section we provide an overview of the dune-
composites code, sufficient to enable other scientists to leverage
the framework. The code is structured so that little additional
knowledge of Dune and/or C++ is required to apply the code
within the existing functionality. Fig. 3 shows the code structure.
A user can extend any of the functionality e.g. implement a new
solver, define a more complex nonlinear problem (e.g. cohesive
zone) or introduce new types of elements.

4.1. Defining a Model

At the highest level an analysis is defined by a user-defined
baseStructuredGridModel class shown in green in Fig. 3.
This class defines all the key variables, functions and classes
which describe the analysis, as well as storing any variables
that are required for postprocessing or any later calculations. A
base model class is provided, which can be inherited by each
example. This provides default variables and functions, so that
the user need only overwrite those functions which deviate from
this base class. The Model class also defines the general load-
ing on the structure and the boundary conditions, these include
Dirichlet and Neumann conditions, but also thermal loading and
multi-point constraints. Periodic boundary conditions are defined
within the grid data structure, using Model::LayerCake(). Ex-
amples of user defined Model classes for a series of applications
are provided in Section 5 which follows.

4.2. Internals of dune-composites

The functions provided in the subfolder /Setup provide
support for the geometric setup of the grid geometry, material
properties and boundary conditions. This includes the composite
layering (or stacking sequence), the structural geometric shape
of the component and in some cases adding a perturbation to
the geometry to form a defect (see for example Section 5.1).
Because of uniform layering and planar anisotropy in composite
laminates, our first version has focused on structured, overlap-
ping grid implementations using Dune::YaspGrid and Dune::
GeometryGrid. The Dune::GeometryGrid functionality al-
lows us to apply any continuous transformation to the basic
Cartesian mesh provided by Dune::YaspGrid. Development of
unstructured grid implementation using Dune::UGGrid [23] are
described in the future work Section 7.

The folder /Driver contains the key functions and classes
which relate to the FE calculations beyond what is available
directly from Dune::PDELab. In particular these include all el-
ement calculations, the definitions of new FEs, solvers and pre-
conditioners. The functions and classes are split between three
folders:

• /localOperators define the weak form of the equa-
tions to be solved on an element, along with any support
functions. In our case for anisotropic linear elasticity equa-
tions we define the local operator linearelasticity.hh
which returns the element stiffness matrix, load vector and
residual as defined by Eq. (7).

• /FEM defines specialist finite elements beyond those de-
fined by Dune::PDELab. In our case, these are the family
of serendipity elements [24]. The use of these elements are
then defined explicitly in the Driver class, where the FE
space is set up on the grid.

• /Solvers defines specialist solvers and preconditioners
beyond those defined in Dune::PDELab::istl [8]. The
Driver uses the solver as defined by the Model class,
defined by the templated class function Model::solve().
By default, as defined by baseStructuredGridModel, for
parallel calculations we use a CG Krylov solver, precon-
ditioned with either a one or two level additive Schwarz
method. Two-level methods use GenEO as the coarse space
as long as ARPACK++ is available. If not, the coarse space
consists of only the zero energy modes [10]. In sequential
mode, in particular for the coarse and the local solves,
a sparse direct solver UMFPack [22] and the iterative CG
preconditioned with AMG as provided by Dune::PDELab
::ISTLBackend_SEQ_CG_AMG_SSOR, are also available. In
/Solvers/hypre we provide a wrapper to the external
parallel solvers provided by hypre [25], including boomer-
AMG [9].

The analysis is defined via a Driver. This is a class which pro-
vides the complete solution procedure, from the setup of the grid,
the definition of a finite element space, assembly of the global
stiffness matrix and load vector, and finally, calling the solver,
followed by the PostProcessing routines, as defined by the Model
class. In this version, we provide two driver classes for the exam-
ples considered in Section 5: /FEMDriver/linearStatic.hh
and /FEMDriver/ThermalStatic.hh.

The folder /PostProcessing contains various classes and
functions for the postprocessing of results. By default, after the
solution has been calculated the driver initiates certain postPro-
cessing steps, in particular the calculation of stresses, the creation
of the necessary data for any plots and finally the calculation of
any further quantities of interest. All of these routines can be
modified by the user.

5. dune-composites - examples

In this section, we introduce and demonstrate the function-
alities of dune-composites using a series of examples of in-
creasing complexity. The examples are intended as a starting
point for researchers implementing their own studies, whilst
also demonstrating the significant computational gains dune-
composites is able to achieve in comparison to the commercial
package Abaqus [7].

To simplify the definition of the examples in the following
we assume that all cases use the same material properties. The
orthotropic fibrous layers are assumed to be of thickness tp =

0.23 mm, with elastic moduli

E11 = 162 GPa, E22 = E33 = 10 GPa, G12 = G13 = 5.2 GPa,

G23 = 3.5 GPa, (19)
ν12 = ν13 = 0.35 and ν23 = 0.5,

whereas the isotropic resin rich layers are assumed to be ti =

0.02 mm thick, with isotropic properties E = 10 GPa and ν =

0.35. These particular values are taken from a previous study by
the authors [26].

5.1. Example 1: A flat composite plate

For the first two examples we consider a flat composite plate
[0, 100 mm] × [0, 20 mm] under various loading conditions. The
laminate is made up of 12 identical composite layers arranged in
the following composite stacking sequence

[∓45◦/0◦/90◦/±45◦/∓45◦/90◦/0◦/±45◦] . (20)

The composite layers are separated by 11 isotropic resin in-
terface layers, giving a total thickness of T = 2.98 mm. In



8 R. Butler, T. Dodwell, A. Reinarz et al. / Computer Physics Communications 249 (2020) 106997

Fig. 3. Code structure.

each of the examples, we discretise the geometry with quadratic,
20-node serendipity elements (with full Gaussian integration).
For the base mesh, which will be refined, we take 20 elements
in the x-direction, 5 in the y-direction and through thickness 2
per composite layer and 1 per interface layer. This gives a total
number of 3,500 elements, with 13,608 degrees of freedom.

The geometry, the stacking sequence and the initial finite
element mesh are introduced into a model by overwriting the
base class function Model::LayerCake(), with the following
user defined function.
Here the geometry and grid are defined by a file ‘‘stackingSe-
quences/example1.csv’’.

In these first two examples, we demonstrate a very simple
setup and run on a single processor as well as on a few pro-
cessors. We consider a cantilever beam with a uniform pressure
of 0.01 MPa applied to the top face and the following boundary
conditions:

u1 = u2 = u3 = 0 at x = 0 and σ33 · n3 = −q at z = T .

(21)

All other boundary conditions are assumed to be homogeneous
Neumann conditions, i.e

σij · nj = 0. (22)

Boundary conditions are implemented by overwriting the two
class functions Model::isDirichlet() and Model::
evaluateNeumann() as follows

bool in l ine i sD i r i c h l e t ( FieldVec& x , const in t i ) {
return (x [0] < 1e- 6) ;

}

Here i refers to the direction being restricted, see (2).

i n l ine void evaluateNeumann ( const FieldVec& x , FieldVec& h ,
const FieldVec& normal ) const {

h = 0 .0 ; / / i n i t i a l i s e to zero
double T = R [ 0 ] . L [ 2 ] ; / / Thickness
i f ( x [2] > T - 1e- 6){

h[2] += q;
}

}

We note that Model::evaluateDirichlet() need not be over-
written since by default it returns homogeneous boundary con-
ditions (i.e. u(x) = 0 ) for all those points x marked as Dirichlet
boundary conditions by isDirichlet(). Furthermore, by de-
fault loading under the weight of the structure is included by
providing density as an input parameter. We do not wish to
include it in this example and therefore we must also overwrite
the function Model::evaluateWeight()

i n l ine void evaluateWeight ( FieldVec& f , in t id ) const {
f = 0;

}

Here f is the output density in a given element id.

5.1.1. Example 1a: A flat composite plate — getting started
Our first study computes the maximum vertical deflection of

the cantilever beam as our quantity of interest

Q (u) = max
x∈Ω

u3(x).

This is done by providing the following user defined function
This function loops over the solution at each vertex

native(u)[i], and records the maximum vertical displacement
native(u)[i][2]. Since for a parallel run, this maximum is
only the maximum on the local subdomain associated with a



R. Butler, T. Dodwell, A. Reinarz et al. / Computer Physics Communications 249 (2020) 106997 9

void inline LayerCake(){
std::string example01a_Geometry = " stackingSequences/example1a.csv " ;
LayerCakeFromFile(example01a_Geometry);
GeometryBuilder();

}

template <class GO, class V, class GFS, class C>
void inline postprocess(const GO& go, V& u, const GFS& gfs, const C& cg){

using Dune::PDELab::Backend::native;
double local_u3_max = 0.0;
for (int i = 0; i < native(u).size(); i++){ // Loop over each vertex

double u3 = std::abs(native(u)[i][2]);
if (local_u3_max < u3) { local_u3_max = u3; }

}
MPI_Allreduce(&local_u3_max , &QoI, 1,

MPI_DOUBLE , MPI_MAX, MPI_COMM_WORLD);
}

Fig. 4. Visualisation of results for Example01a using Paraview (left) Visual output of laminate and stacking sequence using plotProperties() function (right)
Visualisation of solution, in deformed coordinates (scalar factor of displacement is 4).

given processor, the final command MPI_Allreduce() finds
the maximum vertical displacement over all subdomains (pro-
cessors). The final result is stored in QoI, a member of the
baseStructuredGridModel class.

We use the default sequential and parallel solvers. On a single
processor (e.g. with the call ./Example1a) the sparse direct
solver UMFPack [22] is used. Otherwise, if more than one pro-
cessor is used (e.g. with the call mpirun -np 8 ./Example1a)
the equations will be solved with CG, preconditioned with a one-
level additive Schwarz preconditioner, as defined by (11) using
UMFPack as the local solver on each subdomain.

As output, the quantity of interest is printed to the screen
(Maximum Vertical Displacement inExample01a =
1.23992mm). Furthermore, the data for plots of the laminate
stacking sequence, the solution (deformation) and the stress
field are generated and provided in three files named Exam-
ple01a_xxx.vtu. The stacking sequence and solution are shown
in Fig. 4.

5.1.2. Example 1b: A flat composite plate — testing preconditioners
(up to 32 cores)

In Example01b, we test our new preconditioner GenEO on
up to 32 processors. In this example we also demonstrate the
inclusion of a failure criterion. To do this we change the quantity
of interest to be the pressure q = q⋆ in the boundary condi-
tion (21) at which the laminate fails according to the Camanho

criterion [27], defined by the functional

F(σ (x)) =

√(
σ+

33

s33

)2

+

(
σ13

s13

)2

+

(
σ23

s23

)2

. (23)

We apply the Camanho criterion only in the resin-rich interface
layers and we say that failure occurs at a load q⋆ if maxx∈Ω Inter

F(σ (x)) = 1. However, since the problem is linear it suffices
to solve only one problem with an arbitrary load q. The failure
load is then given by q⋆

:= q/maxx∈Ω Inter F(σ (x)). Expression
(23) is implemented in the file PostProcessing/FailureCri-
terion/Camanho.hh within the code. Within linearStatic-
Driver, by default, the stress field (per element) is stored within
the container stress_mech (a 6 × 1 vector). To compute q⋆,
the Camanho functional is first calculated in each element. The
maximum is then found by once again overwriting the class
function Model::postprocess. The material allowables, s33 =

61 MPa, S13 = 97 MPa and s23 = 94 MPa, in Eq. (23) are stored
in a std::vector<double> p.
Different failure criteria can be implemented by defining other
user-defined functionals of the stress tensor, similar to
Dune::Composites::Camanho(). In this simple test, we note
that failure initiates due to high through thickness stresses in
the interface between layers (σ13 and σ23) as the laminate bends.
For further engineering discussion of the failure of composites
under the Camanho criterion we point the reader to the original
paper [27] and to [6,26].



10 R. Butler, T. Dodwell, A. Reinarz et al. / Computer Physics Communications 249 (2020) 106997

template <....>
void inline postprocess(...){

//material allowables in MPa
const std::vector<double> p = {61., 97., 94.};
double Fm = 0.0;
for (int i = 0; i < stress_mech.size(); i++){

double F = Camanho(stress_mech[i], elemIndx2PG[i], p);
if (Fm < F) { Fm = F; }

}
double Fm_all;
MPI_Allreduce(&Fm, &Fm_all, 1, MPI_DOUBLE , MPI_MAX, MPI_COMM_WORLD);
Q = pressure / Fm_all; // Failure load

}

Fig. 5. (Left) The eigenvectors corresponding to the first nine non-zero eigenvalues on a subdomain with no global Dirichlet boundary. (Right) The reduction of the
residual against CG iterations for Example01b using no coarse space, only zero energy modes (ZEM) and the full GenEO coarse space.

We use this test example to demonstrate the influence of the
GenEO coarse space on the parallel iterative solver. For the first
experiment we use 16 processors. Fig. 5 (left) shows the first nine
non-zero energy modes of a subdomain with no global Dirichlet
boundary. Linear combinations of these functions together with
the zero energy modes (six rigid body translations and rotations)
provide a good low dimensional representation of the system on
that subdomain consisting of those modes most easily energeti-
cally excited. Fig. 5 (right) shows the influence of the coarse space
on the number of iterations for the preconditioned Krylov Solver
(pCG), comparing no coarse space (one-level additive Schwarz),
only the zero energy modes (ZEM) and the GenEO coarse space.
The need for a coarse space is clear; with no coarse space, even in
this simple test case we observe the well-documented stagnation
phenomenon for iterative solvers [10] between Iteration 10−100.
With a coarse space (ZEM or GenEO), the convergence shows no
stagnation and it is much faster — close to optimal with GenEO.

Next we want to study the robustness of GenEO as a function
of the number of subdomains in comparison to one-level additive
Schwarz (AS) and ZEM. We consider a fixed size problem and
increase the number of subdomains. We note that the tests can
be run with

mpirun -np 16 ./Example01b or mpirun -np 16 ./Exam-
ple01bBoomerAMG

In each case we record the condition number, the dimension of
the coarse space dim(VH ) (if applicable) and the number of CG
iterations to achieve a residual reduction of 10−5. The results are
summarised in Table 1. We see that the iteration counts (and the

condition number estimates) increase steadily with the number
of subdomains when no coarse space is used. The condition num-
ber estimate is still fairly big if only the zero energy modes are
used and the iteration counts also increase steadily with the num-
ber of subdomains. In contrast, the iterations and the condition
number estimates remain constant for the GenEO preconditioner.
We also add a comparison with boomerAMG [9] for this test
problem. BoomerAMG provides a large number of parameters to
fine-tune. We retained the defaults for most parameters (HMIS
coarsening without aggressive refinement levels and a hybrid
Gauss–Seidel smoother). We used blocked aggregation with block
size 3 as recommended for elasticity problems. A strong threshold
of 0.75 was chosen after testing values in the range from 0.4 to
0.9. Due to a lower setup cost with this parameter setting, the
boomerAMG solver is faster in actual CPU time, but the numbers
of iterations – albeit also constant – are more than 10× bigger.
For more complex geometries, boomerAMG does not perform very
well and in our tests it does not scale beyond about 100 cores in
composite applications.

5.2. Example 2: Corner unfolding — validation & performance com-
parison with Abaqus (up to 32 cores)

This example is motivated by the industrial challenge of certi-
fying the corner-bend strength of a wingspar as its corner unfolds
due to the internal fuel pressure in an aeroplane wing. We use
this example to demonstrate the validity of the results of dune-
composites by comparing the stresses computed with those
given by Abaqus. We also make a cost comparison between the
two software packages up to 32 cores.



R. Butler, T. Dodwell, A. Reinarz et al. / Computer Physics Communications 249 (2020) 106997 11

Table 1
Demonstration of performance of different preconditioners for Example01b for fixed problem size (30,000 DOFs)
but increasing the number of subdomains: Number of pCG iterations (it), coarse space dimension (dim(Vh)), an
estimate of the condition number κ of the preconditioned system matrix M−1

AS,2A.

N AS ZEM GenEO BoomerAMG

it cond κ it cond κ dim(VH ) it cond κ dim(VH ) it Num. levels

4 89 79,735 26 394 12 16 10 78 258 10
8 97 84,023 30 245 42 15 9 126 258 11

16⋆ 107 98,579 36 177 84 16 10 182 257 12
32 158 226,871 42 230 168 16 9 526 263 12

Fig. 6. (Left) Diagram of the corner bend specimen with resin edge treatment. (Right) Cross section of the corner showing the loading conditions.

The model setup is shown in Fig. 6. We consider the curvilinear
coordinate system (s, r, ℓ), where s is around the radius, r is
outwards (or normal) to the laminate and ℓ runs along the length
of the sample. For our particular test, the two limbs of the coupon
are of length L = 3 mm and border a corner with a radius of
R = 6.6 mm. The width is taken to be W = 15 mm. The 12 plies
and the 11 interfaces have the same properties as in Example01,
but the stacking sequence is slightly different, given by

[∓45◦/90◦/0◦/∓45◦/∓45◦/0◦/90◦/±45◦] . (24)

Furthermore, we apply a resin treatment of 2 mm to the free
edges of the laminate as shown in Fig. 6 (left). The advantages of
edge treatment have been shown in [26]. It reduces conservatism
in the design of aircraft structures, as well as making the analyses
more reliable by eliminating stress singularities at the free edges.

Away from the points of contact, a standard four-point bend
test as detailed in ASTM D6415 [28] generates a pure moment on
the corner. To simulate such a moment, all degrees of freedom at
the boundary of one limb are clamped. At the other end, all nodes
are tied with a multipoint constraint where a running moment
of 96.8 Nmm/mm is applied. This is achieved by applying an
offset load from the mid-plane of the laminate as a Neumann
boundary condition, implemented with the user-defined function
evaluateNeumann().

The finite element mesh consists of 56 × 56 columns of
hexahedral 20-node serendipity elements (element C3D20R in
ABAQUS, [7]) in its local l and s coordinates. In the r direction,
each (fibrous and resin) layer is discretised into 6 elements,
leading to an overall number of 432,768 elements. All of the
geometry and mesh parameters are defined in stackingSe-
quenes/example2.csv. To ensure a sufficient resolution of the
strong gradients of the solution at the free edges and at the mate-
rial discontinuities, the mesh is graded along the width towards
both free edges and in the radial direction towards each of the
fibre–resin interfaces. Grading is defined by the ratio between
largest and smallest elements in the mesh, called the bias ratio
and chosen to be 400 between the centre and the edge in the l
direction and 10 between the layer centres and interfaces in the
r direction. The specification of the geometry and of the mesh
grading can be defined in the function gridTransformation().

In Fig. 7 (left & middle), we compare the radius stress (denoted
by σr ) and the through-thickness shear stress (denoted by τsℓ)
recovered from dune-composites and Abaqus. We see good
agreement between the two codes. There are two small differ-
ences: Abaqus uses reduced integration while our example uses
full integration and the stresses are not recovered in an identical
way from the displacements in the two codes. In Fig. 7 (right)
we see the absolute cost and the parallel scalability of the sparse
direct solver in Abaqus and the iterative CG solver in dune-
composites for a fixed total problem size, i.e. a strong scaling
test. The red and blue curves show one-level and two level over-
lapping Schwarz methods respectively, both of which perform
better than the sparse direct solver (green) in Abaqus. However,
both codes show optimal parallel scalability up to 32 cores. In
dune-composites the problem is decomposed into 8 subdo-
mains for 1 − 8 cores, distributed evenly to the available cores.
On 16 and 32 cores, each core is passed exactly one subdomain,
i.e., the number of subdomains is 16 and 32, respectively. The
local problems on each subdomain are solved using the sparse
direct solver UMFPack [22]. The simulations in Abaqus are with
a parallel sparse direct solver, based on a parallel multi-frontal
method similar to [29]. Abaqus’s iterative solver, which is based
on CG preconditioned with ML [30] (another black-box AMG
preconditioner), does not converge in a reasonable time for this
problem. Therefore the computational gains observed here are
really the difference between using a direct and a robust iterative
solver. Importantly, we note that the parallel sparse direct solver,
available in Abaqus does not scale beyond 64 cores [7], making it
unsuitable for problems much bigger than that considered here,
and reinforcing the need for robust iterative solvers and therefore
dune-composites as a package.

5.3. Example 3: Large composite structure — parallel efficiency of
dune-composites (up to 15,360 cores)

The industrially motivated problem described in this section is to
assess the strength of a wingbox with a small localised wrinkle
defect. Wrinkle defects, which can form during the manufacturing
process [31,32], occur at the layer scale. They lead to strong local
stress concentrations [6,33], causing premature failure. Naturally,
good mesh resolution around the defect is required, leading to



12 R. Butler, T. Dodwell, A. Reinarz et al. / Computer Physics Communications 249 (2020) 106997

Fig. 7. (Left & Middle) Stresses (in MPa) as functions of the distance r from the outer radius at the apex of the curve, at 2.156 mm from the edge of the resin-edge-
treated laminate (dune-composites, solid blue; Abaqus, dotted red). The background colours indicate the stacking sequence: +45◦

= red, −45◦
= blue, 90◦

= green,
0◦

= yellow. (Right) Cost comparison between the sparse direct solver implemented in Abaqus and the iterative preconditioned CG solver in dune-composites.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

finite element calculations with very large number of degrees
of freedom. We leave the engineering discussion of the results
to a future engineering publication, using it instead to demon-
strate both weak and strong scalability of dune-composites
up to 15,360 subdomains. The experiments in this section were
performed using the UK national HPC cluster Archer, which has
4920 Cray XC30 nodes with two 2.7 GHz, 12-core E5-2697 v2
CPUs each.

For these tests we model a single bay of a wingbox of width
W = 1 m, height H = 300 cm and length L = 1 m, as shown
by the schematics in Fig. 8 (left). The laminates were assumed to
be of constant thickness, made up of 39 composite layers (as well
as 38 interfaces) giving a total thickness of T = 9.93 cm with an
internal radius of 15 mm in the corners. As in a typical aerospace
application, the stacking sequence differs in the covers (top and
bottom), corners and in the spar (sides) with the following ap-
proximate percentage breakdowns of 0◦, ±45◦ and 90◦:
[50%, 40%, 10%] (covers); [20%, 60%, 20%] (corners); and

[15%, 70%, 15%] (spars).
(25)

We reiterate that this example serves to represent structural scale
modelling. Therefore, sub-structural phenomena, such as stiffen-
ing of the upper and lower covers, are not modelled here. The
specific layer-sequencing has been chosen, using a discrete opti-
miser, to ensure that each laminate is balanced, symmetric with
no bend–twist coupling, whilst maximising the number of con-
tinuous orientations around the wing box. Transitions between
each of the stacking sequences are achieved over a relatively
short segment of 5 cm, and the chosen stacking sequence is in
no way optimised for strength in these regions, as considered
for example by Dillinger et al. [34]. In practice, this change of
stacking sequence is easy for the user to specify using a .csv
file specifying different Regions for each segment of the wing-
box and providing the required different stacking sequence. The
wingbox geometry is again achieved by specifying a gridTrans-
formation(), which now becomes slightly more complex, in
order to handle each of the different regions. To create the closed
curve of this wingbox, periodic boundary conditions are imposed.
In this application, we consider two forms of loading. Firstly, an
internal pressure of 0.109 MPa, arising from the fuel, is applied
to the internal surface. Secondly, a thermal pre-stress induced
by the manufacturing process is imposed, using the user-defined
function evaluateHeat() (see Fig. 9).

We approximate the influence of the ribs that constrain the
wingbox in the y direction, by clamping all degrees of freedom
at one end, whilst tying all other degrees of freedom at the other
end using a multipoint constraint. Elements to be included in the
multipoint constraint are marked with the user-defined function

isMPC(FieldVec& x). A localised wrinkle defect is introduced
into one of the corner radii, as shown in Fig. 8. The defect is
introduced by adapting the function gridTransformation().
The wrinkle geometry is defined by a random field, parameterised
by a Karhunen–Loéve expansion. The actual parametrisation of
the wrinkle is chosen to match an observed defect in a CT-Scan
of a real corner section. Further details of this methodology are
provided in Sandhu et al. [33, Sec. 3].

We firstly carry out a weak scaling experiment, increasing the
problem size proportionally to the number of cores used. For
iterative solvers that scale optimally with respect to problem size
and with respect to the number of cores, the computational time
should remain constant. To scale the problem size as the number
of cores Ncores grows, we refine the mesh, doubling the number
of elements as we double the number of cores. The number or
elements for each setup are detailed in Table 2, separately listing
the number of elements across the spar and the cover, around the
corners and along the length of the wingbox. The defective corner,
denoted Rd, contains twice as many elements as the other three
corners, denoted by Rnd. Table 2 also details the resulting number
of degrees of freedom, iteration numbers for the preconditioned
CG, an estimate of the condition number of the preconditioned
system matrix M−1

AS,2A, the dimension of the coarse space dim VH ,
as well as the total run time. Fig. 10 (left) shows that the weak
scaling of the iterative CG solver in dune-composites with
GenEO preconditioner is indeed almost optimal up to at least
15,360 cores (the limiting capacity available on Archer for our
experiments). We also include a more detailed subdivision of the
computational time into Setup Time (for the assembly of the FE
stiffness matrix and for the construction of the GenEO coarse
space) and Iteration Iime (for the preconditioned CG iteration).
Both scale almost optimally. This test demonstrates the capability
of increasing the size of the tests at a nearly constant run time and
thus, to solve a problem with 200 million degrees of freedom in
just over 13 min.

Next we carry out a small strong scaling experiment. The
mesh is that of Setup 5 in Table 2 and the results of the strong
scaling test are given in Fig. 10 (right) and in Table 3. We see
that the iterative CG solver in dune-composites with GenEO
preconditioner scales almost optimally to at least 11 320 cores,
with the time taken approximately halving as the number of cores
is doubled.

Again, both the Setup and the Iteration scale optimally.

6. Subsurface flow application: Strong scaling for the SPE10
benchmark

In this section, we apply the GenEO solver to an elliptic partial
differential problem outside of composites modelling, demon-
strating its scalability and robustness on a subsurface flow prob-
lem in a highly heterogeneous medium. A challenging test case in



R. Butler, T. Dodwell, A. Reinarz et al. / Computer Physics Communications 249 (2020) 106997 13

Fig. 8. (Left) Geometry of the wingbox with dimensions; the colouring shows the number of eigenmodes used in GenEO in each of the subdomains of Setup 6
in Table 2. (Right) Close-up plot of the corner of the wingbox using plotProperties(), which shows the wrinkle and the inter-lacing of the different stacking
sequences in the corner, cover and spar regions.

Fig. 9. FE solution for Example 3: (Left) Overall deformation of the wingbox with colours showing the magnitude of the displacements in cm. (Right) Camanho
failure criterion (23) in a close-up of the corner containing the wrinkle defect.

Fig. 10. Parallel performance of dune-composites on Archer: (Left) A weak scaling test, as summarised in Table 2. (Right) A strong scaling test using Setup 5 in
Table 2, with the dashed line showing perfect scaling, as summarised in Table 3.

Table 2
Details of the six setups and results used in the weak scaling test. In all of the tests, we used two layers of 20-node
serendipity elements per fibrous layer and only one layer of elements in each of the interface layers. The number
of elements per core was fixed at 2808.
Setup Ncores Spar Cover Rd Rnd Length DOF iter. κ dim VH Time (s)

1 480 34 14 40 20 20 6.4 · 106 156 445 5 025 734
2 960 34 14 40 20 40 1.3 · 107 154 421 7 840 806
3 1 920 68 28 80 40 40 2.6 · 107 152 322 18 752 800
4 3 840 68 28 80 40 80 5.1 · 107 144 287 29 444 772
5 7 680 216 64 80 40 80 1.0 · 108 132 303 50 930 764
6 15 360 216 64 80 40 160 2.0 · 108 102 245 94 527 845

the computational geosciences is the SPE10 benchmark [3]. This
problem features high contrast, heterogeneous coefficients which
challenge most iterative solvers [4].

We consider the SPE10 domain Ω := [0, 1200] × [0, 2200] ×

[0, 170] (feet), divided into a tensor product grid Th with 60 ×

220 × 85 = 1.122 × 106 cells. The domain Ω has the boundary
∂Ω = ΓD ∪ ΓN , where we define ΓD := {x ∈ ∂Ω : z = 0} as the

Dirichlet part of the boundary and n ∈ R3 as the outward normal
to ∂Ω . We calculate the steady-state fluid pressure u(x) ∈ Ω

which obeys Darcy’s law. This is given by the linear, scalar elliptic
partial differential equation

− ∇ · (K(x)∇u) = f , ∀x ∈ Ω (26)



14 R. Butler, T. Dodwell, A. Reinarz et al. / Computer Physics Communications 249 (2020) 106997

Fig. 11. Left: Logarithm of the permeability field K for the SPE10 benchmark, from bottom to top: Kx , Ky and Kz . Right: A strong scaling test using the SPE10 dataset,
with the dashed line showing perfect scaling.

Table 3
Strong scaling test with Setup 5 in Table 2, demonstrating near optimal strong
scaling up to at least 11,320 cores.
Ncores Elements

per core
dim(VH ) it. Tit Tsetup Ttotal Total core

time (days)

2 880 3132 18843 167 623 2283 2906 96.9
3 840 2340 26333 153 434 1332 1766 78.5
7 680 2008 52622 132 284 773 1057 94.0

11 320 1392 78233 162 208 498 706 92.5

subject the boundary conditions

u(x) = 0 on ΓD and − K(x)∇u · n = 0 on ΓN = ∂Ω\ΓD .

(27)

The SPE10 dataset gives a spatially varying permeability tensor

K(x) =

[Kx(x) 0 0
0 Ky(x) 0
0 0 Kz(x)

]
∀x ∈ Ω.

Fig. 11(left) shows the permeability field, it is constant in each
cell, but varies strongly over the domain. The parameters Kx and
Ky vary from 6.65×10−4 to 2.0×104 and the parameter Kz varies
from 6.65 × 10−8 to 6.0 × 103.

We define the function space for the pressure u as V := {v ∈

H1(Ω) : v(x) = 0 , x ∈ ΓD}, and choose the finite element space
Vh ⊂ V to be the set of continuous, piecewise linear functions
on Th. The finite element discretisation of (26) then reads: Find
uh ∈ Vh such that∫

Ω

K(x)∇uh · ∇vh dx =

∫
Ω

f vh dx ∀vh ∈ Vh. (28)

By defining uh =
∑N

i=1 u
(i)φi(x), again we obtain the sparse

system of equations

Au = b, where u = [u(1), u(2), . . . , u(N)
]
T

is a vector pressures at each cell vertex, which is assembled
element-wise from (28) using standard Gaussian integration. The
source term in our experiments is assumed to be uniform f ≡ 1.

In Fig. 11(right) and Table 4 we show a small strong scaling ex-
periment performed with this challenging setup. The parameter
contrast for this benchmark is on the order of 1011. Nevertheless,
we see that the iterative CG solver in dune-composites with
GenEO preconditioner scales almost optimally to at least 256

Table 4
A strong scaling test using the SPE10 dataset.
Ncores dim(VH ) it. Tit Tsetup Ttotal
16 149 167 136.11 143.621 279.721
32 225 203 58.42 53.065 111.485
64 379 206 25.81 19.982 45.787

128 527 224 11.32 7.107 18.427
256 930 232 6.34 4.552 10.892
512 1737 234 5.18 3.795 8.975

cores. At 512 cores with only around 2000 elements per core the
strong scaling begins to break down due to the communication
overhead. Due to the layered structure of the material parameters
our domain decomposition is two dimensional. Each subdomain
includes the full length in z-direction. We used a minimal overlap
of only one element. Table 4 also details the number of cores, size
of the coarse space dim VH , iteration numbers for the precondi-
tioned CG, as well as the time spent in CG iterations, setup time
and total run time.

7. Discussion & future developments

In this paper, we describe the new high performance package
dune-composites, designed to solve massive finite element
problems for the anisotropic linear elasticity equations. The paper
provides both the mathematical foundations of the methods, their
implementation within a state-of-the-art software platform on
modern distributed memory computer architectures, as well as
details of how to set up a problem and carry out an analysis,
illustrated via a series of increasingly complex examples. In ad-
dition, we demonstrate the scalability of the new solver on over
15,000 cores on the UK national supercomputer Archer, solving
industrially motivated problems with over 200 million degrees
of freedom within minutes. This scale of computations brings
composites problems that would otherwise be unthinkable into
the feasible range.

The disadvantage of dune-composites as a package over
commercial counterparts is currently the limited functionality
in considering more general problems; this includes complex
geometries, unstructured grids and nonlinear problems. This is
the first release of dune-composites, and therefore the func-
tionality is naturally still limited, but it will increase over time,
driven by the industrial questions we seek to solve as a commu-
nity of developers. There are currently four key areas of active
development:



R. Butler, T. Dodwell, A. Reinarz et al. / Computer Physics Communications 249 (2020) 106997 15

• Multiscale methods: There is a strong connection between
coarse spaces for domain decomposition methods, as devel-
oped and implemented within the GenEO preconditioner,
and multiscale discretisation methods, such as generalised
multiscale FEs (GMsFE) [35]. In fact, the GenEO coarse space
provides and natural multiscale method. Current research
[36] is aiming to provide this functionality as an embedded
solution scheme within dune-composites.

• Nonlinear mechanics: Currently the analysis implemented
in the package is linear (static and thermal). Naturally,
modelling failure propagation in composites is a nonlinear
problem. Current research in implementing nonlinear mate-
rial models includes cohesive zone models and ply damage
models, for integration within the existing framework.

• Uncertainty quantification: A significant motivation for
developing efficient robust solvers is to enable stochastic
studies in which many simulations of a model with different
parameters are required. The package has already been
used to study the effects of wrinkle defects in composite
strength [33], and ongoing research is exploring Bayesian
parameter estimation using multilevel Markov chain Monte
Carlo methods [37,38].

• GUI development: A current limitation of the package is
that its application to new models or geometries requires
a basic knowledge of C++ and command line program-
ming. Active development with software engineers is seek-
ing to provide a simple Graphical User Interface (GUI) to en-
able application-focused research with dune-composites
without extensive programming experience.

Acknowledgments

This work was supported by an EPSRC Maths for Manufactur-
ing grant (EP/K031368/1). Richard Butler holds a Royal Academy
of Engineering-GKN Aerospace Research Chair in Composites.
This work used the ARCHER UK National Supercomputing Service
(http://www.archer.ac.uk).

References

[1] T.J. Hughes, The Finite Element Method: Linear Static and Dynamic Finite
Element Analysis, Courier Corporation, 2012.

[2] M. Blatt, A. Burchardt, A. Dedner, C. Engwer, J. Fahlke, B. Flemisch, C.
Gersbacher, C. Gräser, F. Gruber, C. Grüninger, D. Kempf, R. Klöfkorn, T.
Malkmus, S. Müthing, M. Nolte, M. Piatkowski, O. Sander, Arch. Numer.
Softw. 4 (2016) 13–29.

[3] M. Christie, M. Blunt, Proceedings of SPE Reservoir Simulation Symposium,
11-14 February, Houston, SPE-66599-MS, Society of Petroleum Engineers,
2001.

[4] P. Bastian, E.H. Müller, S. Müthing, M. Piatkowski, Matrix-free multi-
grid block-preconditioners for higher order discontinuous Galerkin
discretisations, 2018, arXiv e-prints, arXiv:1805.11930.

[5] The 2016 UK composites strategy: Delivering UK growth through the
multi-sector application of composites, 2016, URL https://compositesuk.co.
uk/system/files/documents/Strategy%20final%20version_1.pdf.

[6] A. Reinarz, T. Dodwell, T. Fletcher, L. Seelinger, R. Butler, R. Scheichl,
Compos. Struct. 184 (2018) 269–278.

[7] D. Systèmes, Abaqus analysis user’s manual, 2007.
[8] M. Blatt, P. Bastian, International Workshop on Applied Parallel Computing,

Springer, 2006, pp. 666–675.
[9] U.M. Yang, V.E. Henson, Appl. Numer. Math. 41 (2002) 155–177.

[10] A. Toselli, O. Widlund, Domain Decomposition Methods-Algorithms and
Theory, Vol. 34, Springer Science & Business Media, 2006.

[11] N. Spillane, V. Dolean, P. Hauret, F. Nataf, C. Pechstein, R. Scheichl, Numer.
Math. 126 (2014) 741–770.

[12] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger, O.
Sander, Computing 82 (2008) 103–119.

[13] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber, M.
Ohlberger, O. Sander, Computing 82 (2008) 121–138.

[14] M. Blatt, P. Bastian, Int. J. Comput. Sci. Eng. 4 (2008) 56–69.
[15] T. Belytschko, J.S.-J. Ong, W.K. Liu, J.M. Kennedy, Comput. Methods Appl.

Mech. Engrg. 43 (1984) 251–276.
[16] T. Ting, Anisotropic Elasticity: Theory and Applications, in: Applied Math-

ematics and Engineering Science Texts Series, John Wiley & Sons, Limited,
1992, URL https://books.google.de/books?id=XxemPwAACAAJ.

[17] Y. Saad, Iterative Methods for Sparse Linear Systems, Vol. 82, siam, 2003.
[18] M. Sarkis, Numer. Math. 77 (1997) 383–406.
[19] P. Jolivet, V. Dolean, F. Hecht, F. Nataf, C. Prud’Homme, N. Spillane, J.

Numer. Math. 20 (2012) 287–302.
[20] P. Jolivet, F. Hecht, F. Nataf, C. Prud’Homme, Sci. Program. 22 (2014)

157–171.
[21] F.M. Gomes, D.C. Sorensen, Arpack++: A C++ Implementation of ARPACK

Eigenvalue Package, Tech. Rep. TR97729, CRPC, Rice University, Houston,
TX, 1997.

[22] T.A. Davis, ACM Trans. Math. Softw. (TOMS) 30 (2004) 196–199.
[23] P. Bastian, K. Birken, K. Johannsen, S. Lang, N. Neuß, H. Rentz-Reichert, C.

Wieners, Comput. Vis. Sci. 1 (1997) 27–40.
[24] D.N. Arnold, G. Awanou, Found. Comput. Math. 11 (2011) 337–344.
[25] R.D. Falgout, J.E. Jones, U.M. Yang, Numerical Solution of Partial Differential

Equations on Parallel Computers, Springer, 2006, pp. 267–294.
[26] T.A. Fletcher, T. Kim, T.J. Dodwell, R. Butler, R. Scheichl, R. Newley, Compos.

Struct. 146 (2016) 26–33.
[27] P.P. Camanho, C.G. Davila, M.F. De Moura, J. Compos. Mater. 37 (2003)

1415–1438.
[28] ASTM D6415 / D6415M-06a(2013), Standard test method for measuring

the curved beam strength of a fiber-reinforced polymer-matrix composite,
2013, http://dx.doi.org/10.1520/D6415_D6415M-06AR13.

[29] P.R. Amestoy, A. Guermouche, J.-Y. L’Excellent, S. Pralet, Parallel Comput.
32 (2006) 136–156.

[30] M.W. Gee, C.M. Siefert, J.J. Hu, R.S. Tuminaro, M.G. Sala, ML 5.0
Smoothed Aggregation User’s Guide, Technical Report, Technical Report
SAND2006-2649, Sandia National Laboratories, 2006.

[31] T.J. Dodwell, R. Butler, G.W. Hunt, Compos. Sci. Technol. 105 (2014)
151–159.

[32] J.P.-H. Belnoue, T. Mesogitis, O.J. Nixon-Pearson, J. Kratz, D.S. Ivanov, I.K.
Partridge, K.D. Potter, S.R. Hallett, Composites A 102 (2017) 196–206.

[33] A. Sandhu, A. Reinarz, T. Dodwell, Compos. Struct. 205 (2018).
[34] J. Dillinger, M. Abdalla, T. Klimmek, Z. Gürdal, J. Aircr. 50 (2013)

1159–1168.
[35] Y. Efendiev, J. Galvis, T.Y. Hou, J. Comput. Phys. 251 (2013) 116–135.
[36] T.J. Dodwell, A. Sandhu, R. Scheichl, International Workshop on Bifurcation

and Degradation in Geomaterials, Springer, 2017, pp. 577–584.
[37] T.J. Dodwell, C. Ketelsen, R. Scheichl, A.L. Teckentrup, SIAM/ASA J.

Uncertain. Quantif. 3 (2015) 1075–1108.
[38] T.J. Dodwell, C. Ketelsen, R. Scheichl, A.L. Teckentrup, SIAM Rev. 61 (2019)

509–545.

http://www.archer.ac.uk
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb1
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb1
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb1
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb2
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb2
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb2
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb2
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb2
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb2
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb2
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb3
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb3
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb3
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb3
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb3
http://arxiv.org/abs/1805.11930
https://compositesuk.co.uk/system/files/documents/Strategy%20final%20version_1.pdf
https://compositesuk.co.uk/system/files/documents/Strategy%20final%20version_1.pdf
https://compositesuk.co.uk/system/files/documents/Strategy%20final%20version_1.pdf
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb6
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb6
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb6
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb7
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb8
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb8
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb8
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb9
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb10
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb10
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb10
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb11
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb11
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb11
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb12
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb12
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb12
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb13
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb13
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb13
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb14
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb15
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb15
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb15
https://books.google.de/books?id=XxemPwAACAAJ
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb17
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb18
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb19
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb19
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb19
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb20
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb20
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb20
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb21
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb21
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb21
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb21
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb21
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb22
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb23
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb23
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb23
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb24
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb25
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb25
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb25
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb26
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb26
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb26
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb27
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb27
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb27
http://dx.doi.org/10.1520/D6415_D6415M-06AR13
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb29
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb29
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb29
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb30
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb30
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb30
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb30
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb30
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb31
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb31
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb31
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb32
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb32
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb32
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb33
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb34
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb34
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb34
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb35
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb36
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb36
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb36
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb37
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb37
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb37
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb38
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb38
http://refhub.elsevier.com/S0010-4655(19)30336-4/sb38

	High-performance dune modules for solving large-scale, strongly anisotropic elliptic problems with applications to aerospace composites
	Introduction
	Motivating computational challenge in aerospace composites
	The contributions of this paper

	Preliminaries: Anisotropic elasticity equations and their finite element discretisation
	A robust, scalable, parallel iterative solver for composite structures
	Krylov subspace methods preconditioned with two-level additive Schwarz methods
	A robust coarse space via generalised eigenproblems in the overlaps (GenEO)
	Implementation of GenEO on a high performance computer
	Partition of Unity (PoU) operator
	Subdomain eigenproblems
	Coarse space assembly 


	Using and extending dune-composites 
	Defining a Model
	Internals of dune-composites

	dune-composites - examples
	Example 1: A flat composite plate
	Example 1a: A flat composite plate — getting started
	Example 1b: A flat composite plate — testing preconditioners (up to 32 cores)

	Example 2: Corner unfolding — validation & performance comparison with Abaqus (up to 32 cores) 
	Example 3: Large composite structure — parallel efficiency of dune-composites (up to 15,360 cores)

	Subsurface flow application: Strong scaling for the SPE10 benchmark
	Discussion & future developments
	Acknowledgments
	References


