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ABSTRACT: Joint physically and chemically pattered surfaces can
provide efficient and passive manipulation of fluid flow. The ability of
many of these surfaces to allow only unidirectional flow means they
are often termed fluid diodes. Synthetic analogues of these are
enabling technologies from sustainable water collection via fog
harvesting to improved wound dressings. One key fluid diode
geometry features a pore sandwiched between two absorbent
substratesan important design for applications that require liquid
capture while preventing back-flow. However, the enclosed pore is
particularly challenging to design as an effective fluid diode due to the
need for both a low Laplace pressure for liquid entering the pore and a
high Laplace pressure to liquid leaving. Here, we calculate the Laplace
pressure for fluid traveling in both directions on a range of conical pore designs with a chemical gradient. We show that this chemical
gradient is in general required to achieve the largest critical pressure differences between incoming and outgoing liquids. Finally, we
discuss the optimization strategy to maximize this critical pressure asymmetry.

I. INTRODUCTION

Structured surfaces that control the direction of motion of
liquid droplets are prevalent in nature.1 Strong directionality is
enabled by surfaces that have both physical and chemical
gradients, demonstrated for example by the textured conical
spines of the cactus Opuntia microdasys,2 the spindle knots of
spider silks,3 and the ratcheted surface of butterfly wings.4 This
directionality is a result of a driving force from the combined
effects of a Laplace pressure gradient across the droplet, caused
by the physical structure,5,6 and a surface energy gradient
under the droplet, caused by a chemical pattern.7,8

Inspired by these biological examples, there is substantial
interest in synthesizing structures that enforce unidirectional
liquid flow − fluid diodes.9 The technological applications of
fluid diodes span numerous and ambitious fields focusing on
efficiency and sustainability,10 such as oil−water separation11
and water purification or fog harvesting.12 Fluid diodes are
being realized in a range of geometries, such as across surface
structures,13 along a porous strip,14 through the thickness of a
material,11 and within microfluidic channels.15

The optimal performance of a fluid diode relies on
maintaining a high contrast in the force required to transport
fluid through the diode in the forward direction compared to
the reverse direction. One geometry in which this remains
particularly challenging is the enclosed pore, illustrated in
Figure 1. In this geometry, a pore through an impermeable
membrane is sandwiched between two absorbent substrates.
The diode ability here arises from the critical pressure
asymmetrythe difference in the maximum Laplace pressure
(critical pressure) required to force liquid from the bottom

substrate to the top substrate compared to the reverse
direction. Such a design is particularly suited to a range of
applications in which fluid should be readily absorbed into the
diode but not be able to pass back out. Cleaning and hygiene
are two notable areas where such applications are prominent.
In these, the diode would both facilitate absorption of liquid
from a surface, such as skin, into a porous material while also
preventing back-flow out of the material. General and widely
used potential applications include diapers, cloths, and
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Figure 1. 2D illustration of the axisymmetric pore construction and
outgoing meniscus profile. The axis of symmetry is shown as the thick
vertical line. Liquid is shown in blue, with vapor shown in white.
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towels.16 However, the fluid diode is also gaining interest in
high-performance innovations, such as sports textiles, which
absorb and remove sweat to cool the body but are waterproof
from the outside,17 and wound dressings, in which excess fluid
should be selectively absorbed out of the wound to improve
healing and reduce infection risk.18

Here, we explore the diode capabilities of a conical pore
augmented with a chemical gradient. Conical pores, or pores
with a variation in cross-sectional width, have been shown in
microfluidic fields to enable effective passive regulation of fluid
flow, with a key application being the capillary burst
valve.15,19−21 Furthermore, substantial progress has been
made in calculating the maximum Laplace pressures for liquid
entering physically textured surfaces (see, for example, refs 22
and 23) as well as liquid exiting physically textured surfaces of
axisymmetric and nonaxisymmetric cross sections.24,25 How-
ever, the enclosed geometry, efficacy at preventing back-flow,
and the impact of chemical patterning have never been
discussed.
In section II.A, we begin by calculating the Laplace pressure

for liquid leaving the pore. In section II.B, we calculate the
Laplace pressure for liquid entering the pore. We then compare
the incoming and outgoing maximum Laplace pressures using
the critical pressure asymmetry to measure the strength of the
diode in section III.C section before finally optimizing the
chemical pattern to produce the maximum possible critical
pressure asymmetry in section III.D.

II. THEORY

II.A. Outgoing Critical Pressures. The model setup,
illustrated in Figure 1, features a liquid-impermeable
membrane shown in shaded gray, punctured by an
axisymmetric (conical) pore of wedge angle α. Without loss
of generality, we restrict α to the interval [0, π/2], so that the
smallest pore radius R1 is always located at the bottom of the
system and the largest pore radius R2 is located at the top. For
α > π/2, we need not perform additional calculations, but
rather turn the pore as shown upside-down, and exchange the
roles of incoming and outgoing critical pressure. In addition to
a physical gradient, we employ a chemical gradient in the form
of the local contact angle θ(r) which varies from θ1 at the
bottom of the pore to θ2 at the top. Although any variation in
contact angle can be chosen, we employ a linear variation to
most closely compare with the linear physical gradient of the
conic profile, where

θ θ θ θ= + −
−
−

r
r R

R R
( ) ( )1 2 1

1

2 1 (1)

As the primary focus of this section is to model the pressure
required for liquid to exit the pore, the contact angles used in
the analysis throughout should be treated as the advancing
contact angles on a surface where hysteresis is present.
In a fully enclosed pore, the top of the bottom surface of the

liquid-impermeable membrane is in contact with liquid-
absorbent substrates, shown as cross-hatched areas in Figure
1. For considering the outgoing critical pressure, the bottom
absorbent substrate is modeled as an infinite liquid reservoir
from which the liquid meniscus rises upward into the pore.
The top substrate is modeled as a perfect liquid sink: as soon
as liquid reaches the top of the pore or contacts the upper
surface, the diode breaks down.

We consider the surface to be smooth with the only pinning
sites occurring at the sharp corners at the top and bottom of
the pore, and we work below the capillary length so that the
liquid meniscus assumes a spherical cap geometry for all values
of the contact line radius r. To ensure this, the pore size should
typically be less than several millimeters; for example, the
capillary length of water is 2.7 mm, while for a low surface
tension liquid such as hexane the capillary length is 1.7 mm.
We also consider the system to be larger than the longest range
van der Waals forces (∼100 nm26), so that disjoining-pressure
modifications to the liquid−vapor interface shape close to the
contact line are negligible. The pressure difference ΔP across
the liquid−vapor interface is therefore described by the
Young−Laplace equation appropriate for a spherical geometry:
ΔP = 2γlv/R, where γlv is the liquid−vapor interfacial tension
and R is the radius of the sphere. This spherical cap model also
implies we treat the fluid configurations as static; the impact of
fluid velocity on burst pressures can also be important but is
outside the scope of the current work. For instance, such
dynamical effects have been studied in a variety of porous
structures.25,27,28 Throughout, we nondimensionalize the
Laplace pressure so that ΔPr = ΔP/(2γlv/R1). For convenience,
we also nondimensionalize all radii with respect to R1, so that
for example R′ = R/R1 and R2′ = R2/R1.
We note here that although we label the fluids as “liquid”

and “vapor”, as the methods only require a knowledge of the
contact angle at the three-phase contact line and the fluid−
fluid interfacial tension, the analyses presented here are entirely
general for any pair of immiscible fluids, such as oil and water.
By use of the construction in Figure 1, the outgoing Laplace

pressure ΔProut may be described as a function of the reduced
contact line radius r′ = r/R1
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Finding the critical outgoing pressure ΔPcout then becomes
finding the maximum value of ΔPr as r′ is increased from 1 to
R2′. As soon as the contact radius reaches R2′, the liquid will be
spontaneously absorbed into the top substrate. It is possible
that the apex of the meniscus contacts the upper substrate
before r′ = R2′, but we reserve discussion of these cases to
section II.A.5. To begin with, if we only allow liquid to be
absorbed into the top substrate at r′ = R2′, and then ΔProut
exhibits four characteristic variations with r′, depending on R2′,
θ1, θ2, and α; representative examples of each are plotted in
Figure 2a, where we fix α = 45° and R2′ = 6.

II.A.1. Variation 1 and the Bottom-Pinned (B) Critical
Meniscus. The first variation, shown as the dotted red line,
shows that for r′ > 1 ΔProut decreases monotonically with r′.
When r′ = 1, however, the contact line is pinned to the bottom
of the pore. The Gibbs pinning criterion of a contact line at a
sharp corner29,30 then permits a continuum of allowed
pressures, as the pinned contact angle may vary from θ1 with
respect to the bottom surface of the impenetrable membrane
to θ1 with respect to the sloping pore wall. This is shown as the
vertical dotted red line at r′ = 1. The critical pressure here
occurs in the bottom-pinned state, labeled the B state in Figure
2b, where
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For θ1 − α < π/2, ΔPcout(B) occurs when the interface depins
from the sharp corner, such that the contact angle at the
contact line is equal to θ1. For θ1 − α > π/2, however,
ΔPcout(B) happens when the contact angle reaches π/2 − α,
before the depinning event, because the maximum possible
critical pressure for the system is attained here at R = R1.
II.A.2. Variation 2 and the Top-Pinned (T) Critical

Meniscus. The second variation, shown as the dashed cyan
line in Figure 2a, shows a monotonic increase of ΔProut with r′.
The critical pressure therefore occurs at the point when the
contact line reaches the top of the system at r′ = R2′, where θ =
θ2. This is labeled the top-pinned (T) state in Figure 2b. In this
case

θ αΔ =
′

−P T
R

( )
1

sin( )c
out

2
2

(4)

II.A.3. Variation 3 and the Intermediate (I) Critical
Meniscus. The third variation, shown as the solid black line
in Figure 2a, exhibits a nonmonotonic variation with r′ and a
local maximum at intermediate values of r′, labeled the I state
in Figure 2b. The upper inset panel highlights the local
maximum in a vertical magnification. To solve for the critical
pressure, we aim to find stationary points of ΔProut in eq 2, such
that the critical contact line radius rc′ ∈ (1, R2′). This amounts
to solving
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for rc′, such that ΔProut is maximal, yielding ΔPcout(I). In general,
this is not analytically solvable and instead must be solved
numerically. Interestingly, such a local maximum cannot exist
for a chemically homogeneous pore: rather, it is a result of the
competition between physical and chemical gradients. To
illustrate this, we consider the example shown in Figure 2a
(solid black line), for which θ1 < π/2, but θ2 > π/2. Physically,
as the contact line radius r′ increases from 1 to R2′; this tends to
increase the droplet radius R′ and hence reduce the magnitude
of the Laplace pressure. Chemically, the simultaneous increase
in local contact angle tends to reduce the droplet radius R and
so increase the droplet pressure. When the I-state exists, it is
therefore due to the balancing of these two effects.

II.A.4. Variation 4 and the B and T Critical Menisci.
Instead of a local maximum, the fourth variation, shown as the
double-dashed magenta line in Figure 2a, exhibits a local
minimum. The lower inset panel highlights the local minimum
in a vertical magnification. This behavior is observed when
solving eq 5, which yields a minimal solution of ΔProut. Thus,
both the B state at r′ = 1 and the T state at r′ = R2′ become
local maximizers of ΔProut. Which state globally maximizes
ΔProut is found by comparing eqs 3 and 4. We detail this
comparison in section III.A.2. We further note here that both
the B state and T state have negative Laplace pressures. It is
possible for the B state to have negative Laplace pressure
(whereby θ1 < α) if θ2 is so small that the Laplace pressure
becomes more negative on increasing r′ from 1 to R2′.

II.A.5. Influence of Top Substrate: B′ and I′ Critical
Menisci. When the liquid meniscus is convex, the center of the
meniscus may contact the top of the pore before the B state or
I state critical pressure is reached. We denote the bottom-
pinned contacting state B′ and the intermediate contacting
state I′. We note that a top-pinned contacting state cannot
occur, as this would require the center of the meniscus to
contact the top absorbent substrate before the three-phase
contact line. For clarity of notation throughout, we refer to a
liquid meniscus as being convex if the droplet forms a
converging lens, such as the B state in Figure 2b, and concave if
the droplet forms a diverging lens, such as the T state in Figure
2b. In Figure 3a, we construct the total height of the liquid
meniscus as the sum of the height of the contact line zc above

Figure 2. (a) Example plots of each of the four outgoing reduced
pressure variations with r′, with insets magnifying the local maxima/
minima. The local maxima of each variation are associated with one of
three critical meniscus types, illustrated in (b).

Figure 3. (a) Construction used to calculate the critical pressure of
the I′ state. (b) Illustration of the B′ state, with the point of failure
highlighted by a red circle.
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the pore bottom and the height of the spherical cap above this
hc. Noticing that hc = Rc − sc, where sc is the z-distance from
the center of the spherical cap to the contact line, we derive

θ α
θ α

=
− −

−
h r

r
r

1 cos( ( ) )
sin( ( ) )c c

c

c (6)

For the spherical cap to touch the upper substrate, zc + hc = L
must be satisfied, where zc = (rc − R1) tan α and the
membrane thickness L = (R2 − R1) tan α. In reduced units,
this amounts to solving

α
θ α

θ α
′ − ′ + ′ − ′ −

′ −
=r R r

r
r

( ) tan
1 cos( ( ) )

sin( ( ) )
0c 2 c

c

c (7)

In general, this does not have analytic solutions and must be
solved numerically. Once rc′ is found in this way, it is
straightforward to substitute r′ for rc′ in eq 2 to recover the
critical pressure ΔPcout(I′) caused by the cap contacting the
upper substrate, while the contact line radius takes an
intermediate value between R1 and R2.
If instead the contact line is pinned to the bottom of the

pore at the point of meniscus contact, as illustrated in Figure
3b, the B′-type critical meniscus arises, where the outgoing
critical pressure may be simply expressed as

Δ ′ =
′ + ′

P B
L

( )
2

L
c
out

1
(8)

where L′ = L/R1.
II.B. Incoming Critical Pressures. We model the

occurrence of liquid entering the pore from above in Figure
4. We utilize the same setup as shown in Figure 1, with the

exception that the liquid (orange) now enters from the top
absorbent substrate and the bottom substrate is dry. The same
linear physical and chemical gradients are employed as before.
Again, as we focus on modeling the maximum pressure
maintainable before fluid enters the pore, the contact angles
used in the analysis are the advancing contact angles on a
surface where hysteresis is present.
The incoming Laplace pressure ΔPrin can be derived as
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θ θ θ αΔ = −

′
+ − ′ −

′ −
+P

r
r
R

1
sin ( )

1
1r

in
1 2 1

2 (9)

It can be seen that eq 9 can be obtained from ΔProut in eq 2 by
exchanging the fluid phases, such that θ(r′) → π − θ(r′). This
simple transformation, however, will be shown to give rise to
remarkably different incoming and outgoing critical pressures.

Again, the competition between physical and chemical
gradients gives rise to four different variations in ΔPrin with
r′, where we have reserved the study of the interaction between
the meniscus apex and lower absorbent substrate to section
II.B.5. The characteristic examples of each shown in Figure 5a
illustrate the symmetry between ΔPrin and ΔProut, as it is
observed that by making the fluid exchange, Figure 2a is
reflected in the r′-axis to yield Figure 5a.

II.B.1. Variation 1 and the Top-Pinned (T) Critical
Meniscus. The first variation is shown as the dotted red line
in Figure 5a. Here, for r′ < R2′, ΔPrin decreases monotonically as
r′ decreases. When r′ = R2′, however, a range of critical
pressures is possible as the contact line is pinned to the top of
the pore. This is shown as the vertical dotted red line at r′ = R2′.
The critical pressure here occurs in the top-pinned state,
labeled the T-state in Figure 5b, where

θ αΔ = −
′

+P T
R

( )
1

sin( )c
in

2
2

(10)

II.B.2. Variation 2 and the Bottom-Pinned (B) Critical
Meniscus. The second variation is shown as the dashed cyan
line in Figure 5a. This shows a monotonic increase of ΔPrin as r′
is decreased. The critical pressure therefore occurs at the point
when the contact line reaches the bottom of the system at r′ =
1 and θ = θ1, labeled the B state in Figure 5b. In this case

θ αΔ = − +P (B) sin( )c
in

1 (11)

II.B.3. Variation 3 and the T and B Critical Menisci. The
third variation is shown as the solid black line in Figure 5a.
Here, a local minimum exists at intermediate values of r′. The
lower inset panel highlights the local minimum in a vertical

Figure 4. 2D illustration of the axisymmetric pore construction and
incoming meniscus profile. The axis of symmetry is shown as the thick
vertical line. Liquid is shown in orange, with air shown in white.

Figure 5. (a) Example plots of each of the four incoming reduced
pressure variations with r′, with insets magnifying the local maxima/
minima. The local maxima of each variation are associated with one of
three critical meniscus types, illustrated in (b).
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magnification. In this pressure variation, both the T state and B
state become local maximizers of ΔPrin. Which state globally
maximizes ΔPrin is found by comparing eqs 10 and 11. We
perform this comparison for selected examples of θ1 and θ2 in
section III.B.2.
II.B.4. Variation 4 and the Intermediate (I) Critical

Meniscus. The fourth variation is shown as the double-dashed
magenta line in Figure 5a. Here, a local maximum is observed
at intermediate values of r′, labeled the I state in Figure 5b.
The upper inset panel in Figure 5a highlights the local
maximum in a vertical magnification. This local maximum can
be found by finding stationary points of ΔPrin in eq 9 which
maximize ΔPrin in the interval rc′ ∈ [1, R2′]. This is achieved
through solving
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In general, this is again not analytically solvable and instead
must be solved numerically.
II.B.5. Influence of Top Substrate: T′ and I′. When the

liquid meniscus is convex, the center of meniscus may contact
the bottom of the pore before the T state or I state critical
pressure is reached.
To find the critical pressure of the I-contacting state shown

in Figure 6a (denoted I′), we begin by finding the total sag

depth of the liquid meniscus. This is constructed as the sum of
the depth of the contact line zc below the pore top and the
depth of the spherical cap below this hc. Using hc = Rc − sc, we
derive

θ α
θ α

= −
+ +

+
h r

r
r

1 cos( ( ) )
sin( ( ) )c c

c

c (13)

The spherical cap will touch the lower substrate if zc + hc = L.
In reduced units, we therefore solve

α
θ α
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0c c
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In general, this does not have analytic solutions and must be
solved numerically. Once rc′ is found in this way, we substitute
r′ for rc′ in eq 9 to obtain the critical pressure ΔPcin(I′) caused
by the cap contacting the lower substrate, while the contact
line radius takes an intermediate value between R1 and R2.
If instead the contact line remains pinned to the top of the

pore at the point of meniscus contact, as illustrated in Figure
6b, the top-contacting critical meniscus arises (denoted T′),
where the incoming critical pressure is expressed as

Δ ′ =
′ + ′

′

P T
L

( )
2

R
L

c
in

2
2

(15)

III. RESULTS AND DISCUSSION
III.A. Outgoing Critical Pressures. III.A.1. Critical

Morphology Existence Ranges. Overall, five different critical
interface morphologies may occur: B, B′, T, I, and I′, in which
the associated critical pressures feature different dependencies
on θ1, θ2, α, and R2′. Despite this complexity, the system
parameters can be partitioned into four categories, determined
based on whether the liquid meniscus is convex (θ > α) or
concave (θ < α) at the top and bottom of the system. In Table
1, we show which critical morphology is possible within each
category.

For (θ1 > α, θ2 < α), the critical meniscus must occur when
contact line is pinned to the bottom of the system in B or B′.
For (θ1 < α, θ2 > α), however, the Laplace pressure is negative
when the contact line is at the bottom of the pore and positive
at the top, so the critical meniscus must occur in some
intermediate state: I or I′. For (θ1 > α, θ2 > α), the meniscus is
convex for all r, meaning the B, B′, I, or I′ states could occur.
For (θ1 < α, θ2 < α), the meniscus is concave for all r, so that
the critical pressure must occur at either the bottom of the
system, as B, or the top, as T.

III.A.2. Outgoing Critical Pressures Visualization. We now
visualize how the outgoing critical pressure depends on the
four parameters θ1, θ2, α, and R2′. To reduce the dimensionality
of the representation, in Figure 7 we show a matrix of contour
plots at fixed θ1 and θ2, both of which may only take the values
10°, 50°, and 100°. We choose these values to capture the
range of contact angles exhibited by commonly used liquids
and substrates (see, for example, ref 31).
At each θ1 and θ2, Figure 7 illustrates the sets of critical

pressure states presented in Table 1. We now discuss the
competition between the states within each set for the global
critical pressure.
When θ1 = 10° and α < θ2, B, B′, I, or I′ is possible;

however, the I state is not observed within the range of R2′
plotted. The region of existence of B′ is shown to not depend
on θ2. This is because the B′ meniscus is pinned to the bottom
of the well and so never experiences the chemical gradient.

Figure 6. (a) Construction used to calculate the critical pressure of
the I′ state. (b) Illustration of the B’ state, with the point of failure
highlighted by a red circle.

Table 1. Critical Outgoing Meniscus Types Able to Occur
for a Convex Meniscus, θ > α, or Concave Meniscus, θ < α

θ1 > α θ1 < α

θ2 > α B, B′, I, I′ I, I′
θ2 < α B, B′ B, T
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Furthermore, if B′ coexists with I′, the I′ state must necessarily
have a lower critical pressure than B′. This is because,
compared to B′, the I′ meniscus has a wider contact line radius
and smaller peak height, leading to a greater radius of curvature
and so a smaller critical pressure. Thus, the I′ critical pressure
(which does depend on θ2) never outcompetes the B′ critical
pressure, leaving the B′ region of existence unaltered by θ2. I′ is
however able to outcompete the B state, as exhibited by the B
region receding to larger R2′ values as θ2 is increased from 10°
to 50°.
When θ1 = 50°, two additional features are observed. The

first is that the B and T states only coexist and compete when
θ1 > θ2 (and θ1, θ2 < α as described in Table 1, meaning the
menisci at the top and bottom of the pore are concave). This
condition must be satisfied; otherwise, the wider aperture at
the top of the pore will always produce a meniscus of larger
negative critical radius, and so a greater critical pressure, than
when pinned to the bottom of the pore. The second additional

feature is that for θ2 = 100° we now observe the I state to exist
over a small region at large R2′. For I to occur, the critical
meniscus must be produced sufficiently low in the well for the
peak to not contact the upper substrate. This requires a
delicate balance between the chemical gradient (favoring the
critical state at the top of the pore) and the physical gradient
(favoring the critical state at the bottom of the pore), which
overall produces a narrow existence range of I.
When θ1 = 100°, only the B and B′ states can occur, as

outlined in Table 1. Because the contact line at the critical
pressure is always pinned to the bottom of the well, θ2 has no
impact on the critical pressure. Thus, all three contour plots for
θ1 = 100° are identical. Because θ1 > 90°, we also observe here
the incidence of the maximum possible critical pressure, ΔPout
= 1, shown bounded by the thick contour. This is shown in eq
3 to be as a result of the B state critical pressure occurring
when the contact line is pinned to the bottom of the well, with
a contact angle of 90° with respect to the horizontal axis.

Figure 7. Matrix of R2′−α contour plots of the outgoing critical pressure for a selection of θ1 and θ2. The outgoing meniscus types are labeled with
black circles. The boundaries between these critical types are shown as dotted black lines. Contours are shown at intervals in ΔPcout of 0.2. For visual
clarity, regions with ΔPcout > 0 are marked with a “+” and regions where ΔPcout < 0 are marked with a “−”.
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III.B. Incoming Critical Pressures. III.B.1. Critical Mor-
phology Existence Ranges. Overall, five different critical
interface morphologies may occur: B, T, T′, I, and I′, in which
the associated critical pressures feature different dependencies
on θ1, θ2, α, and R2′. Despite this, the critical pressure types able
to occur within a system can be determined based on whether
the liquid meniscus is convex (θ + α > π) or concave (θ + α <
π) and the top and bottom of the system. This is presented in
Table 2.

For (θ1 + α < π, θ2 + α > π), the critical meniscus must
occur when contact line is pinned to the top of the system as T
or T′. For (θ1 + α > π, θ2 + α < π), however, the Laplace
pressure is negative when the contact line is at the top of the
pore and positive at the bottom, so the critical meniscus must
occur in some intermediate state: I or I′. For (θ1 + α > π, θ2 +
α > π), the meniscus is convex for all r, meaning the T, T′, I, or
I′ states could occur. For (θ1 + α < π, θ2 + α < π), the
meniscus is concave for all r, so that the critical pressure must
either occur at the top of the system, as T, or the bottom, as B.

III.B.2. Incoming Critical Pressure Visualization. We now
visualize how the incoming critical pressure depends on the
four parameters θ1, θ2, α, and R2′. To reduce the dimensionality
of the representation, in Figure 8 we again show a matrix of
contour plots at fixed θ1 and θ2, both of which may only take
the values 10°, 50°, and 100°.
The incoming critical pressure contour plots in Figure 8

show markedly different behavior to the outgoing critical

Table 2. Critical Incoming Meniscus Types Able to Occur
for a Convex Meniscus, θ + α > π, or Concave Meniscus, θ +
α < π

θ1 + α > π θ1 + α < π

θ2 + α > π T, T′, I, I′ T, T′
θ2 + α < π I, I′ T, B

Figure 8.Matrix of R2′−α contour plots of the incoming critical pressure for a selection of θ1 and θ2. The incoming meniscus types are labeled with
white circles. The boundaries between these critical types are shown as dotted black lines. Contours are shown at intervals in ΔPcin of 0.05. For
visual clarity, regions with ΔPcin > 0 are marked with a “+” and regions where ΔPcin < 0 are marked with a “−”.
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pressure plots in Figure 7. This is because under the range of
θ1 and θ2 tested, except at large α, θ1 + α < π and θ2 + α < π,
meaning the liquid meniscus is concave. This means that the
pore exerts a pulling force on the liquid in the top substrate, so
that to prevent liquid filling the pore, a negative pressure must
be applied.
Under such conditions, when θ1 = θ2, the T-type critical

meniscus always emerges. This is because the meniscus has a
wider contact radius at the top of the pore than the bottom,
resulting in the less-negative critical pressure at the top of the
pore. When θ1 > θ2, the B state may outcompete the T state for
largest critical pressure at large α and R2′. When this happens,
the high contact angle at the bottom of the pore negates the
small contact line radius to create a less-negative critical
pressure than the T state. When θ1 < θ2, this time the B state
may outcompete the T state for largest critical pressure at small
α and R2′. This is because at the bottom of the pore the low
contact angle creates a liquid−vapor interface with a near-

spherical shape. The associated large radius of curvature
produces a smaller negative critical pressure than the meniscus
at the top of the well.
When α is sufficiently large to enable θ1 + α > π, the I′ state

is observed. This is because a convex meniscus is enabled close
to the bottom of the well, resulting in a positive critical
pressure.

III.C. Critical Pressure Asymmetry. We now define the
critical pressure asymmetry, A, of a pore: the difference
between the outgoing and incoming critical pressures.

= Δ − ΔA P Pr r
out in

(16)

A matrix of contour plots shown in Figure 9 illustrates the rich
and complex dependence of A on θ1, θ2, α, and R2′. We identify
three important values of A to consider, which are deduced in
the Supporting Information (Figure S1). A = ±1, shown as the
thick contour, is the maximum possible asymmetry for a
doubly closed cylindrical pore when R2 → ∞. A = ±√2,

Figure 9.Matrix of R2′−α contour plots of the critical pressure asymmetries for a selection of θ1 and θ2. The outgoing meniscus incoming meniscus
pair types are labeled with black and white circles. The boundaries between these critical types are shown as dotted black lines. Contours are shown
at intervals in A of 0.2. Two significant A contours are also highlighted: A = 1 (thick black line) and A = √2 (white-centered black line).

Langmuir pubs.acs.org/Langmuir Article

https://dx.doi.org/10.1021/acs.langmuir.0c01039
Langmuir 2020, 36, 7463−7473

7470

http://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.0c01039/suppl_file/la0c01039_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.0c01039?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.0c01039?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.0c01039?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.0c01039?fig=fig9&ref=pdf
pubs.acs.org/Langmuir?ref=pdf
https://dx.doi.org/10.1021/acs.langmuir.0c01039?ref=pdf


shown as the doubly thick contour, is the maximum possible
asymmetry for a semiopen cylindrical pore. A = 2 is the
maximum possible asymmetry for any pore. Recently, a
semiopen pore has been developed which approaches this
maximum.25 We now discuss the features of the critical
pressure asymmetries.
It is initially observed that for the range of parameters shown

in Figure 9 A is never negative. This can be proved to be true
in general for all α < π/2, shown in Figure S2. Thus, for α < π/
2, a conical pore will always preferentially intake liquid than
expel it.
For θ1 = 10°, the critical pressure asymmetry remains small.

When θ1 < α, A is small because both the incoming and
outgoing critical pressures are negative (with the magnitude of
the outgoing being smaller than the incoming). When θ1 > α,
A is also small as although the outgoing critical pressure is
positive, it is never large. This is because ΔPcout(B) is small due
to the low contact angle and ΔPcout(I′) is small due to the large
contact radius. Overall, the asymmetry is dominated by the
negative contribution from the incoming critical pressure
rather than the outgoing critical pressure. Because of the
dominance of the incoming critical pressure, the maximal A
occurs on the boundary between the incoming B and T critical
meniscus types.
For θ1 = 50°, a similar picture emerges. However, now for θ1

> α, the B- or B′-type outgoing critical pressure can be large
and positive. In this region, we therefore begin to see larger A
as the contribution of the outgoing critical pressure becomes
more significant. The competition also becomes apparent
between intermediate positive outgoing critical pressures (at
small α, large R2′) and large negative incoming critical pressures
(at intermediate α, small R2′). The maximum asymmetries
occur as an optimal compromise between these extremes, at
intermediate α and R2′. In contrast to θ1 = 10°, the maximum
asymmetries now occur along an outgoing boundary.
For θ1 = 100°, very large asymmetries are observed,

exceeding A = 1 in all panels examined and exceeding A =
√2 when θ2 = 50°. Here, the large θ1 enables large ΔPcout(B/
B′). Thus, the competition between large outgoing and
incoming critical pressures observed for θ1 = 50° becomes
here more extreme. Interestingly, now that both the outgoing
and incoming critical pressures can contribute equally to A, the
maximum asymmetries are observed at points where an
outgoing-type boundary and incoming-type boundary cross.
This is most apparent when θ1 = 100° and θ2 = 50°, where at

the junction between the outgoing B/B′ boundary and
incoming T/B boundary, A > √2.

III.D. Optimum Asymmetry. We observe in Figure 9 that
the (α, R2′) coordinate that maximizes the asymmetry depends
on both θ1 and θ2. We now investigate the maximum possible
asymmetry for a specified α and R2′ by varying θ1 and θ2. This
is achieved by evaluating the asymmetry at each (R2′,α)
coordinate, when θ1 and θ2 are iteratively incremented in 2°
steps from 0° to 180°. The overall optimum asymmetry is
shown in Figure 10a, with the associated optimal θ1 and θ2
shown in Figures 10b and 10c, respectively.
Overall, we can conclude that the maximum possible

asymmetry, A = 1.46, occurs at α = 41 ± 5°, R2′ = 1.70 ±
0.05, θ1 = 104 ± 2°, and θ2 = 49 ± 2°. Uncertainties reported
indicate the resolution with which the quantities were
determined. Across all α and R2′, a key trend we observe is
that a high contrast between θ1 and θ2 is required to produce
maximum asymmetries (a homogeneous contact angle will not
in general maximize A). We also observe that θ1 and θ2 vary
nonmonotonically with both α and R2′ due to changes in the
critical meniscus type.
We now examine the critical meniscus types observed to

achieve maximum asymmetry. For the outgoing critical
pressure, the observed strategy for maximizing A is to ensure
the contact line remains pinned to the bottom of the pore in
the B or B′ state, thereby ensuring ΔPcout remains large and
positive.
The incoming critical meniscus type is, however, more

variable, particularly in the region where the outgoing critical
meniscus is the B state in the upper right-hand sides of the
plots in Figure 10. Here, the incoming meniscus may be in the
I′, T, or B states. In the region where I′ is dominant, the
incoming critical pressure is positive, making this region
unique across all α and R2′. To maximize the asymmetry in this
region, the most effective strategy is to maximize ΔPcout by
using θ1 ≈ α + π/2 at the expense of enabling a positive
incoming critical pressure. However, the large value of α
ensures ΔPcin is never too large and is minimized further by
setting θ2 = 0°.
When the I′ state does not occur, however, the B and T

incoming states compete for the largest negative ΔPcin. As is
observed in Figure 8, the largest negative critical pressures
occur on the boundary between B and T (where this boundary
exists). Thus, over the extended region outlined with diffuse

Figure 10. (a) Maximum asymmetry possible at each (α, R2′) coordinate. Two significant A limits are highlighted in the contour plots: A = 1 (thick
black line) and A = √2 (white-centered black line). The outgoing meniscus incoming meniscus pair types are labeled with black and white circles,
with dense dotted black lines showing the boundaries between these types. The diffuse black dotted line illustrates the approximate region where
the incoming B and T states have equal pressure. (b) θ1 required for maximum asymmetry. (c) θ2 required for maximum asymmetry.
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dotted lines in Figure 10, the incoming critical pressure is
equally described by both the B and T states.
Finally, we examine the cooperativity of the chemical and

physical gradients in producing the critical pressure asymme-
try. We do this by comparing the optimal critical pressure
asymmetry to “the sum of its parts”: the cooperativity δ is
defined as

δ = − +A A A( )het
cyl

hom
con

(17)

At each (R2′, α) coordinate, Ahet
cyl is evaluated as the critical

pressure asymmetry of a cylindrical pore, with a chemical
gradient the same as the optimal chemical gradient shown in
Figure 10b,c. For a fair comparison, we also ensure the pore
depth L is the same for the cylindrical and conical pores at
each (R2′, α) coordinate. Ahom

con is the critical pressure asymmetry
for a chemically homogeneous conical pore. A number of
choices exist in deciding which homogeneous contact angle
most fairly compares to the optimal chemical gradient. We
show in Figure 11 the two limiting cases, when the
homogeneous contact angle is (i) the optimal θ1 at each (R2′,
α) coordinate and (ii) the optimal θ2 at each (R2′, α)
coordinate. To distinguish these two limiting cooperativities,
we label these δ1 in Figure 11a and δ2 in Figure 11b.
In Figure 11a, over the majority of the (R2′, α) plane, the

cooperativity δ1 > 0, meaning that the optimal asymmetry
(arising from both physical and chemical gradients) is greater
than the sum of asymmetries arising from the physical gradient
and chemical gradient separately. Thus, the physical and
chemical gradients act together to produce the high optimal
asymmetries. The exceptions to this, when δ1 < 0 within the
solid black contours, arise when the optimal asymmetry is
almost wholly achieved through the conical shape and not the
chemical patterning. As Ahet

cyl > 0, in these cases, the optimal
asymmetry is less than the sum of its parts.
In Figure 11b, we observe an extended region at

intermediate values of α for which the cooperativity δ2 > 1.
This very large, positive cooperativity is caused in this region
by the occurrence of the I-type outgoing critical meniscus for
the homogeneous conical pore. The I-type outgoing critical
pressure is smaller than the B or B′ types; hence, Ahom

con is small,
leading to the large δ2 observed. The impact of B- or B′-type
outgoing critical pressures instead of I can be seen in Figure
11a. Here, the outgoing type is always B or B′, leading to a
larger Ahom

con and hence a smaller δ1.

IV. CONCLUSIONS

Here we have calculated the maximum Laplace pressures (the
critical pressures) required for fluid to both enter and leave a
conical, chemically patterned pore, sandwiched between two
absorbent substrates. Across the range of pore designs
considered, we found the Laplace pressure to depend on the
contact line radius in four different manners, of which two of
these arose from a competition between the physical and
chemical gradients. This interaction between the two gradients
produced three different critical menisci, where the contact line
was pinned to the top of the pore, pinned to the bottom of the
pore, or located in between. The presence of the top and
bottom substrates produced an additional two critical menisci
due to premature contact of the liquid−vapor interface with
the substrates.
We then analyzed the critical pressure asymmetry, the

difference between incoming and outgoing critical pressures, as
a measure of the efficacy of the fluid diode across a range of
pore geometries. For the pores considered with an opening
angle α < 90°, the outgoing pressure was always shown to be
larger than the incoming pressure. Furthermore, the maximum
asymmetry did not in general occur due to the dominance of
either the incoming or outgoing critical pressure individually,
but as a compromise between the two.
Finally, we optimized the chemical pattering to produce

maximal critical pressure asymmetries across the range of pore
geometries, showing that a large chemical gradient is required
to produce large asymmetries. Across the majority of pore
opening angles α and maximum radii R2, we showed that the
optimum asymmetry for the pore with both physical and
chemical gradients was greater than the sum of asymmetries of
pores with physical gradients and chemical gradients
separately. The physical and chemical gradients therefore act
together cooperatively to achieve the largest critical pressure
asymmetries.
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https://pubs.acs.org/doi/10.1021/acs.langmuir.0c01039.

Derivation of the critical pressure asymmetry limits and
proof that for α < π/2 the asymmetry A > 0 (PDF)

Figure 11. Comparison of the asymmetry of the optimal chemically patterned conical pore, with the sum of asymmetries from the same chemical
patterning applied to a cylindrical pore, and a chemically homogeneous conical pore. The comparison is made for the chemically homogeneous
conical pore with θ = θ1

opt in (a) and θ = θ2
opt in (b). Solid black contours mark the δ = 0 level. Note the larger scale bar range in (b).
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Wetting Phenomena: Drops, Bubbles, Pearls, Waves; Springer Science +
Business Media, Inc.: New York, 2010.
(9) Mates, J. E.; Schutzius, T. M.; Qin, J.; Waldroup, D. E.;
Megaridis, C. M. The fluid diode: Tunable unidirectional flow
through porous substrates. ACS Appl. Mater. Interfaces 2014, 6,
12837−12843.
(10) Zhang, S.; Huang, J.; Chen, Z.; Yang, S.; Lai, Y. Liquid mobility
on superwettable surfaces for applications in energy and the
environment. J. Mater. Chem. A 2019, 7, 38−63.
(11) Zhao, Y.; Wang, H.; Zhou, H.; Lin, T. Directional Fluid
Transport in Thin Porous Materials and its Functional Applications.
Small 2017, 13, 1601070.
(12) Brown, P. S.; Bhushan, B. Bioinspired materials for water supply
and management: water collection, water purification and separation
of water from oil. Philos. Trans. R. Soc., A 2016, 374, 20160135.
(13) Li, J.; Zhou, X.; Li, J.; Che, L.; Yao, J.; McHale, G.; Chaudhury,
M. K.; Wang, Z. Topological liquid diode. Sci. Adv. 2017, 3, eaao3530.
(14) Shou, D.; Fan, J. An All Hydrophilic Fluid Diode for
Unidirectional Flow in Porous Systems. Adv. Funct. Mater. 2018,
28, 1800269.
(15) Zimmermann, M.; Hunziker, P.; Delamarche, E. Valves for
autonomous capillary systems. Microfluid. Nanofluid. 2008, 5, 395−
402.
(16) Diersch, H.-J. G.; Clausnitzer, V.; Myrnyy, V.; Rosati, R.;
Schmidt, M.; Beruda, H.; Ehrnsperger, B. J.; Virgilio, R. Modeling
Unsaturated Flow in Absorbent Swelling Porous Media: Part 1.
Theory. Transp. Porous Media 2010, 83, 437−464.

(17) Miao, D.; Huang, Z.; Wang, X.; Yu, J.; Ding, B. Continuous,
Spontaneous, and Directional Water Transport in the Trilayered
Fibrous Membranes for Functional Moisture Wicking Textiles. Small
2018, 14, 1801527.
(18) Shi, L.; Liu, X.; Wang, W.; Jiang, L.; Wang, S. A Self-Pumping
Dressing for Draining Excessive Biofluid around Wounds. Adv. Mater.
2018, 31, 1804187.
(19) Cho, H.; Kim, H.-Y.; Kang, J. Y.; Kim, T. S. How the capillary
burst microvalve works. J. Colloid Interface Sci. 2007, 306, 379−385.
(20) Chen, J. M.; Chen, C.-Y.; Liu, C.-H. Pressure Barrier in an
Axisymmetric Capillary Microchannel with Sudden Expansion. Jpn. J.
Appl. Phys. 2008, 47, 1683−1689.
(21) Taher, A.; Jones, B.; Fiorini, P.; Lagae, L. Analytical, numerical
and experimental study on capillary flow in a microchannel traversing
a backward facing step. Int. J. Multiphase Flow 2018, 107, 221−229.
(22) Kaufman, Y.; Chen, S.-Y.; Mishra, H.; Schrader, A. M.; Lee, D.
W.; Das, S.; Donaldson, S. H.; Israelachvili, J. N. Simple-to-Apply
Wetting Model to Predict Thermodynamically Stable and Metastable
Contact Angles on Textured/Rough/Patterned Surfaces. J. Phys.
Chem. C 2017, 121, 5642−5656.
(23) Panter, J. R.; Gizaw, Y.; Kusumaatmaja, H. Multifaceted design
optimization for superomniphobic surfaces. Sci. Adv. 2019, 5,
eaav7328.
(24) Ma, B.; Shan, L.; Dogruoz, B.; Agonafer, D. Evolution of
Microdroplet Morphology Confined on Asymmetric Micropillar
Structures. Langmuir 2019, 35, 12264−12275.
(25) Agonafer, D. D.; Lee, H.; Vasquez, P. A.; Won, Y.; Jung, K. W.;
Lingamneni, S.; Ma, B.; Shan, L.; Shuai, S.; Du, Z.; Maitra, T.; Palko,
J. W.; Goodson, K. E. Porous micropillar structures for retaining low
surface tension liquids. J. Colloid Interface Sci. 2018, 514, 316−327.
(26) de Gennes, P.-G.; Brochard-Wyart, F.; Queŕe,́ D. Capillarity
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