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Robust entangling gate for polar molecules using magnetic and microwave fields
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Polar molecules are an emerging platform for quantum technologies based on their long-range electric
dipole–dipole interactions, which open new possibilities for quantum information processing and the quantum
simulation of strongly correlated systems. Here, we use magnetic and microwave fields to design a fast entangling
gate with >0.999 fidelity and which is robust with respect to fluctuations in the trapping and control fields and
to small thermal excitations. These results establish the feasibility to build a scalable quantum processor with a
broad range of molecular species in optical-lattice and optical-tweezers setups.
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I. INTRODUCTION

The field of ultracold molecules has seen enormous
progress in the past few years, with landmark achievements
such as the production of the first quantum-degenerate molec-
ular Fermi gas [1], low-entropy molecular samples in optical
lattices [2,3], trapping of single molecules in optical tweez-
ers [4–6], and magneto-optical trapping and sub-Doppler
cooling of molecules [7–11]. These results bring significantly
closer a broad range of applications of ultracold molecules,
from state-controlled chemistry [12–17] and novel tests of
fundamental laws of nature [18–21] to new architectures for
quantum computation [22–26], quantum simulation [27–32],
and quantum sensing [33,34].

A key feature of polar molecules is the strong long-range
electric dipole–dipole interaction (DDI) between them. Full
exploitation of this feature requires tools to tune the DDI by
controlling the underlying molecular electric dipole moments
(EDMs). A popular approach to this involves trapping the
molecules in a two-dimensional array, which could be an
optical lattice [14,35] or an array of optical tweezers [4–6]. A
static electric field mixes the rotational states [36,37], leading
to an EDM dependent on the external field. The field needed
to produce a laboratory-frame EDM close to the molecule-
frame EDM, d , is Eapp � Brot/d . For heavy bialkali-metal
molecules, whose rotational constants, Brot, are small, Eapp ≈
1 kV/cm, which is easy to achieve. For other molecules,
especially hydrides, the required field can be hundreds of
times larger, which is challenging. Another limitation of this
approach is that the induced EDM depends on the strength
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of the polarizing field, making the DDI between molecules
highly sensitive to errors or fluctuations in this field.

Here, we describe an alternative approach to controlling the
electric DDI that does not involve static electric fields, but re-
lies instead on magnetic and microwave (MW) fields [28,38–
40]. We employ this tunable DDI together with a shaped
MW pulse [41–44] to design an entangling two-qubit gate
that has a large fidelity, F > 0.999, and is robust with re-
spect to experimental uncertainties in the optical confinement
and to thermal motional excitations. Given that our achiev-
able fidelity is above the quantum-error-correction thresh-
old [45,46], these results establish the feasibility of universal
fault-tolerant quantum computation [47,48] with a wide range
of polar molecules in scalable platforms. For concreteness,
we illustrate our discussion with numerical results for CaF
(X 2�), which has been laser cooled to temperatures below
10 μK [5,8–10,31,49]. Our proposal is also applicable to
bialkali-metal molecules in their lowest 1� or 3� states; to
illustrate this, we present in Appendix D analogous numerical
results for RbCs [3,16,50–53].

II. CONTROLLING THE MOLECULAR EDM
WITH MAGNETIC AND MW FIELDS

The first step in processing quantum information with polar
molecules is to isolate a pair of levels to define a qubit
space. To this end, we apply a homogeneous magnetic field
of magnitude B0 to separate the Zeeman components of the
fine and hyperfine levels within a rotational manifold, and
MWs to couple a selected Zeeman state to a state in an
adjacent rotational manifold [28]. We show in Fig. 1 the
energies of the states in the N = 0 and 1 rotational manifolds
of CaF in a magnetic field B, with N the rotational quantum
number. For B > 30 G, the different Zeeman states within a
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FIG. 1. (a) Sketch of the system under consideration: two polar
molecules (spheres with arrows) trapped in optical tweezers (shaded
areas) and subject to magnetic, B, and microwave (MW) fields.
(b) Energy levels of the N = 0 and N = 1 rotational manifolds of
the X 2�+(v = 0) state of 40Ca 19F as a function of magnetic field.
The arrow indicates the transition addressed by the MW field to
dress the states |0〉 = |N = 0, F = 1, MF = 1〉 and |1〉 = |N = 1,

F = 2, MF = 2〉, where F is the total angular momentum quantum
number of the molecule and MF its projection on the z axis, defined
by the magnetic field. At B0 = 50 G, the resonant transition fre-
quency, ωmol, is 20.778 GHz and the transition EDM is d10 ≈ 1.77 D.
(c) Absolute value of the EDM of the eigenstates of Hmol as a function
of detuning for a constant Rabi frequency � = 2π × 731 rad/s.

rotational manifold are split by �10 MHz. This large splitting
allows selected states within N = 0 and N = 1 to be coupled
using MW radiation with negligible off-resonant excitation
to other states, thus defining a qubit space, {|1〉, |0〉}. In
the absence of a static electric field, the qubit states satisfy
〈 j|d| j〉 = 0 ( j = 0, 1), while 〈1|d|0〉 = d10, the transition
EDM. They can be resonantly coupled by suitably polarized
MWs of angular frequency ωmw ≈ ωmol, where h̄ωmol(B0) =
E1(B0) − E0(B0), with Ej (B) the energy of state | j〉 as a
function of B. We also introduce E (B) = [E0(B) + E1(B)]/2.
In the electric dipole approximation, the MW coupling is
Hmw = −d · E, where E(t ) = E0 cos(ωmwt ) is a classical
MW electric field and d is the EDM operator, which we
write d = d10|1〉〈0| + d∗

10|0〉〈1| ≡ d10σ
x, where we assume

d10 is real and introduce σ x = |1〉〈0| + |0〉〈1|. Then, Hmw =
h̄� cos(ωmwt )σ x with the Rabi frequency � = −d10 · E0/h̄.
Assuming the detuning, �(B0) = ωmol(B0) − ωmw, and Rabi
frequency satisfy |�|,� � ωmw, we make the rotating wave
approximation (RWA), and obtain the Hamiltonian in the
rotating frame for a single molecule (see Appendix A for
details),

Hmol = E (B)I2 + h̄�σ z/2 + h̄�σ x/2. (1)

Its eigenstates acquire the maximum EDM d10 on reso-
nance [see Fig. 1(c)]. Around resonance, the EDM gen-
erated has only second-order sensitivity to fluctuations in
the control parameters. The effective Hamiltonian Eq. (1) is
analogous to single-qubit Hamiltonians encountered in other
quantum-information platforms such as trapped ions [54] or

superconducting circuits [55]. It allows single-qubit opera-
tions to be performed by changing � or �, each of which can
be controlled quickly and robustly in the MW regime. In a
many-molecule array, single-molecule gates can be achieved,
e.g., by displacing the molecule of interest in a tweezer
array [40,56] or, in an optical lattice, by Stark shifting the
target molecule using an addressing beam [57] or crossed laser
beams [58,59].

III. SIMPLE ENTANGLING GATE

We consider next the effect of the magnetic and MW fields
on two identical molecules separated by a distance vector
R [60]. The DDI between the two molecules is

Hddi = 1

4πε0R3
[dA · dB − 3(dA · R̂) ⊗ (dB · R̂)], (2)

where d j is the EDM operator of molecule j ∈ {A, B}, R̂
is a unit vector in the direction of R, and ε0 is the vacuum
permittivity. Recalling the expression for d in terms of σ x,
we have dA · dB = d2

10σ
x
A ⊗ σ x

B, where σα
j is the α = {x, y, z}

Pauli operator in the qubit space of molecule j. For a magnetic
field along the z axis and MWs linearly polarized along z,
dA,B is parallel to the z axis. In this situation, there are
three values of the angle, θ , between R and z of particular
interest: (i) θ = π/2, (ii) θ = arccos(1/

√
3), and (iii) θ = 0.

In case (i), the dipoles are side by side and we have H (i)
ddi =

Vddiσ
x
A ⊗ σ x

B, with Vddi = d2
10/(4πε0R3). In case (ii), H (ii)

ddi = 0
and the coupling vanishes. Finally, in case (iii), which we
use for our numerical simulations, the dipoles are head to
tail and H (iii)

ddi = −2Vddiσ
x
A ⊗ σ x

B. For convenience, we write
Hddi = V σ x

A ⊗ σ x
B, with V = ηVddi, with the numerical factor

|η| � 2 accounting for the directional dependence.
Assuming now |�|,�, |V |/h̄ � ωmw, we make the RWA

and find the two-molecule Hamiltonian in the rotating frame
[see Eq. (A13)]

H2mol = 2E (B)I4 + h̄�(|11〉〈11| − |00〉〈00|)
+ V (|�+〉〈�+| − |�−〉〈�−|)

+
[

h̄�√
2

(|00〉〈�+| + |11〉〈�+|) + H.c.

]
. (3)

Here |i j〉 = |i〉A| j〉B (i, j ∈ {0, 1}), and we introduced the
Bell states |�±〉 = (|01〉 ± |10〉)/

√
2. It is clear from Eq. (3)

that H2mol does not mix the symmetric and antisymmetric sub-
spaces, spanned respectively by {|11〉, |�+〉, |00〉} and |�−〉.
In the absence of the DDI and MW coupling, the three sym-
metric states cross at � = 0. The DDI shifts |�+〉 by V , which
separates the three-level crossing into three distinct two-level
crossings; see Fig. 2. These become avoided crossings when
� �= 0. The avoided crossing between |00〉 and |11〉 remains at
� = 0, while |�+〉 has avoided crossings at � = ±V/h̄ with
|00〉 and |11〉, respectively.

A nonzero DDI thus allows separate addressing of the
transitions |11〉 ↔ |�+〉 and |00〉 ↔ |�+〉. The simplest way
to show this is to consider a coherent transfer, e.g., from
|11〉 to |�+〉. We consider first an implementation using a
Gaussian pulse, �(t ), of root-mean-squared width τrms, at a
constant detuning �; numerically, we switch the pulse on and
off with a rectangular window function of length τgate. We
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FIG. 2. Energies of the two-molecule states. Dash-dotted lines
represent the eigenenergies of H2mol − 2E (B)I4 for the same states of
CaF as in Fig. 1 for V = −h × 1850 Hz and � = 0, while solid lines
indicate the eigenenergies with the same V and � = 2π × 731 rad/s;
this DDI strength corresponds to two 1.77 D dipoles 0.8 μm apart.

require a pulse duration τgate � 2π h̄/|V | to be able to resolve
the two transitions. Under these conditions, we achieve a high
fidelity for the transfer process, which we define as F =
tr[T †U (τgate )]. Here U (τgate ) is the unitary time-evolution
operator on the whole two-qubit space, and

T =

⎛
⎜⎝

0 1 0 0
−1 0 0 0
0 0 1 0
0 0 0 exp(iβ )

⎞
⎟⎠ (4)

is the desired transformation expressed in the basis
{|11〉, |�+〉, |00〉, |�−〉}. The phase β is set by the chosen
values of � and τgate. The main sources of error for this
implementation of the entangling gate stem from uncertainties
in ωmol or, equivalently, �. We estimate this by calculating the
fidelity of the protocol as a function of a constant error in �;
see Fig. 3(a). We observe that the fidelity drops to ≈0.95 for
detuning errors ≈100 Hz.

IV. ROBUST ENTANGLING GATES

The robustness of the gate can be enhanced by utilizing
more general driving schemes that exploit coherences in the
full two-qubit Hilbert space [61]. We use the gradient ascent
pulse engineering (GRAPE) algorithm [62] to design a MW
pulse, �opteiξopt (t ), that implements the entangling gate Eq. (4).
This method has the critical advantage of allowing us to obtain
pulses that offer robust performance over a range of param-
eters that span realistic experimental uncertainties. Specifi-
cally, we use GRAPE to obtain stepwise functions {�opt, ξopt}
[�opt(t ) � 0], in 5 μs steps, that maximize the average fidelity
for three values of the Rabi frequency, �(t ) = f��opt(t ) with
f� = {0.9, 1.0, 1.1}, and a range of detunings �1 kHz; see
Appendix B for details on our implementation of the GRAPE
algorithm. We show in Fig. 3(b) the fidelity of the time-
evolution operator corresponding to such a GRAPE-optimized
pulse, assuming that the molecules are in the motional ground
state of their traps. The fidelity reaches very high values, F >
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FIG. 3. (a) Fidelity of the protocol with a Gaussian pulse (solid
line) when realized with a constant shift in transition frequency
ωmol. The horizontal dashed line marks 0.95 fidelity, while verti-
cal dotted lines mark errors of ±100 Hz. Other pulse parameters
are τgate = 0.5 ms, τrms = 0.118 ms, max[�(t )] = 2π × 1200 rad/s,
and � = −2π × 1970 rad/s. (b) Fidelity of the protocol with the
GRAPE pulse as a function of detuning and relative Rabi frequency
f�; see text for details. The red dotted lines indicate F = 0.9999,
while the black solid lines indicate F = 0.999. GRAPE optimization
parameters are the gate duration τgate = 0.5 ms and max[�(t )] =
2π × 50 × 103 rad/s.

0.9999, for wide regions of the parameter space, and remains
above the quantum-error-correction threshold, F > 0.999, for
errors �1 kHz in detuning and �10% in the Rabi frequency.

We further extend this approach to deal with a thermal
occupation of excited motional states of the trap, if the system
is deeply in the Lamb-Dicke regime. We assume that the
system is initially in a product state of internal and motional
states, ρ(t = 0) = ρint ⊗ ρmotion, and that ρmotion is an inco-
herent superposition of trap states. We design a pulse that
drives the system into ρ(t = τgate ) = (T ρint ) ⊗ ρmotion, and
thus implements T irrespective of motional excitations; see
Appendix B for details of our modeling of the motional degree
of freedom, its coupling with the internal (“qubit”) state, and
thermal excitations. The complexity of the pulse optimization
grows quickly as we require it to generate the same phases for
an increasing number of motional states. The effectiveness of
this approach is thus limited to samples cooled to temperatures
lower than h ftrap/kB, where ftrap is the trap frequency, so
that the population of excited motional states is exponentially
suppressed. Then, the effect of thermal excitation can be dealt
with by truncating the space of motional excitations to a
maximum of one in total for the two traps (see Appendix B 1).

The fidelity of the pulse, when applied to an initial state
with up to one motional excitation, is shown in Fig. 5(b); it
is only mildly lower than that in Fig. 3(b) which is applied to
the motional ground state. The difference stems mostly from
the phase acquired by |�−〉, which has not been included in
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FIG. 4. Energies of the two-molecule states as a function of �,
when one molecule is in n = 0 and the other in n = 1. A common
energy, 2E + h ftrap, has been subtracted. The parameters are V =
−h × 1850 Hz, � = 2π × 731 rad/s, and δ ftrap = 1 kHz.

the optimization procedure. Despite this, the fidelity is still
greater than 0.999 for practically the same region in parameter
space.

Scalable application of this protocol within a many-
molecule array can be achieved by spectrally selecting a target
pair of nearby molecules. In an array of tweezers, this can be
accomplished, for example, by staggering the intensities of
the tweezers to Stark shift all neighbors with the exception of
the chosen pair out of resonance. In an optical lattice setup,
ωmol of the target pair can be similarly shifted >100 kHz
with minimal effect on the confinement using an addressing
beam [57] or crossed laser beams [58,59].

FIG. 5. Rabi frequency amplitude (a) and phase (b) of the
GRAPE-optimized pulse implementing the entangling gate Eq. (B3).
(c) Fidelity as a function of detuning, �, and Rabi amplitude error,
f�. The black solid lines indicate F = 0.999. Parameters used:
ftrap = 200 kHz for one molecule and 204 kHz for the other. δ ftrap =
500 Hz for both molecules.

V. GUIDELINES FOR STATE SELECTION

We expect the dominant sources of error in implementa-
tions of our gates to stem from uncertainties in the transition
frequency, ωmol. Uncontrolled shifts in ωmol arise in experi-
ments due to imperfectly controlled Zeeman and tensor Stark
shifts. For a magnetic field stability of 1 mG, a 100 Hz stability
in ωmol requires a transition with magnetic sensitivity below
100 kHz/G. The transition in CaF highlighted in Fig. 1(b) has
a magnetic sensitivity of only 0.104(4) kHz/G [63], and so is
a good choice in this respect. The differential ac Stark shift of
states |0〉 and |1〉 leads to fluctuations in ωmol if the intensity
of the trap light, Itr , fluctuates. Let α1,0Itr be the Stark shifts
of |1〉 and |0〉, and let �α = α1 − α0 and ᾱ = (α1 + α0)/2.
We assume �α � ᾱ. If the intensity changes by δItr , then
ωmol changes by (�α/ᾱ)(δItr/Itr )Utrap/h̄, where Utrap is the
trap depth. Taking Utrap/h = 1 MHz and δItr/Itr = 10−3, a
frequency stability of 100 Hz translates to the requirement
(�α/ᾱ) < 0.1. Through a careful choice of states, magnetic
field magnitude, and polarization angle of the trap light, it
is often possible to tune �α to values much smaller than
this [31].

VI. DISCUSSION AND OUTLOOK

A key element of our protocol is the energy shift that the
DDI creates in the two-molecule spectrum. This has the same
origin as the dipole blockade in Rydberg systems [64–71],
which is at the core of the Rydberg phase gate [64]. However,
our scheme is not susceptible to decoherence and losses in
the strongly interacting states because our large-EDM states
are low-lying rotational states with negligible spontaneous
decay rates (�10−8 s−1 [40]). This highlights one of the
advantages of cold polar molecules for quantum information
processing [25,26,31,40].

The idea of switching the DDI that underpins our proposal
is similar to the “dipolar switching” in Ref. [23], but our
proposal does not involve a static electric field or a third
molecular level resonantly coupled with those in the qubit
space. As a result, our proposal is simpler to implement and
less susceptible to environmental perturbations.

Recently, Ref. [40] put forward a proposal for an iSWAP
gate between molecules with F � 0.9999 based on a switch-
able DDI. This protocol encodes the qubit states in nuclear
spin states of the lowest rotational manifold, which are res-
onantly coupled using MWs to a rotationally excited state
with rotation-hyperfine coupling. This allows control of the
DDI between two molecules by moving them towards each
other and then back apart. Careful timing of this sequence
ensures that the two-molecule state acquires the phases re-
quired to generate the iSWAP gate. In addition, all molecular
states in [40] are insensitive to electric and magnetic fields,
providing protection from sources of dephasing. In contrast to
this approach, our proposal involves only two levels and does
not call for physical displacements of the molecules; this is
simpler and reduces the risk of motional excitation during the
gate. We take advantage of the large Zeeman splitting between
states and the high controllability and stability of modern
MW sources to obtain gate times and high fidelities similar to
those of Ref. [40]. Earlier, Ref. [38] employed optimal control
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theory (OCT) to design a pulse to generate a controlled-NOT

(CNOT) gate between two polar molecules, achieving a 99%
fidelity under ideal conditions; however, the decay of this
fidelity against experimental imperfections was not analyzed.
By contrast, the robustness of our scheme to uncertainties in
ωmol, �, and to thermal excitations paves the way for prac-
tical near-term quantum information processing with polar
molecules exploiting their DDI. Similar ideas of pulse shaping
have proven instrumental in state-of-the-art multiqubit gates
in a variety of experimental platforms [42–44,72].

In summary, we have designed a protocol that uses a
time-varying microwave field to entangle two polar molecules
by controlling the intermolecular DDI. Our calculations,
based on levels in CaF and RbCs that are precisely known
from molecular spectroscopy, demonstrate the possibility of
producing maximally entangled two-molecule states with
�99.9% fidelity in less than 1 ms, in a manner that is robust
with respect to the main experimental imperfections. Together
with single-molecule gates that can be realized in tweezer ar-
rays or optical lattices by Stark shifting the levels of the target
molecule, these results establish the feasibility of building a
fault-tolerant quantum processor with cold polar molecules in
a scalable optical setup.

Our tools for controlling the states of single molecules and
molecular pairs may be applied to advance other quantum
technologies with polar molecules. For example, the possi-
bility of controlling molecular EDMs with easily accessible
magnetic and MW fields will expand the range of models
that can be simulated using ultracold molecules [27–32].
In addition, shaped MW pulses will allow fast control of
state-dependent interactions between molecules. This can be
used to explore open questions about the out-of-equilibrium
dynamics of power-law-interacting quantum systems, e.g., on
quantum thermalization [73] and its interplay with conserva-
tion laws [74,75], the transport of excitations [76,77], or the
spreading of correlations [78,79]. Finally, the large EDMs
achievable with MW-dressed molecular eigenstates makes
them highly sensitive to external electric fields, which can
be exploited to design sensitive detectors of low-frequency ac
fields with molecular gases or even single molecules [33,34].
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APPENDIX A: SINGLE-MOLECULE AND
TWO-MOLECULE HAMILTONIANS IN THE ROTATING

WAVE APPROXIMATION

We derive here in detail the effective two-molecule Hamil-
tonian in the rotating wave approximation, in the presence of
a bias magnetic field and a nearly resonant microwave field.

1. Single molecule under MW

We start our discussion from the single-molecule case in
the presence of the bias magnetic field, which reduces the
effective Hilbert space to that of a two-level system, spanned
by Zeeman states that we label |1〉 and |0〉. As described in
the main text, the effective Hamiltonian in the electric dipole
approximation is

H (1)
mol = E1(B) + E0(B)

2
I2 + h̄ωmol(B)

2
σ z

+1

2
[h̄� exp(iωmwt )σ x + H.c.], (A1)

where In is the n × n identity matrix, σ z = |1〉〈1| − |0〉〈0|,
σ x = |1〉〈0| + |0〉〈1|, Ej (B) is the eigenenergy of state j =
0, 1 as a function of magnetic field, and ωmol(B) = [E1(B) −
E0(B)]/h̄.

It is now useful to move to the interaction picture with
respect to the effective molecular Hamiltonian Eq. (A1).
To this end, we introduce the unitary operator U =
exp(iωmwt/2)|1〉〈1| + exp(−iωmwt/2)|0〉〈0| (where we used
the orthogonality of |0〉, |1〉).

When we move to the interaction frame by the transfor-
mation U , the time evolution of a generic state vector in this
frame, |ψ ′〉 = U |ψ〉, is

ih̄∂t |ψ ′〉 = ih̄∂t (U |ψ〉) = ih̄(∂tU )|ψ〉 + Uih̄∂t |ψ〉
= [

ih̄(∂tU )U † + UH (1)
molU

†
]|ψ ′〉 ≡ H (I )|ψ ′〉, (A2)

where we introduce the Hamiltonian in the interaction
frame, H (I ). We now introduce E = [E1(B) + E0(B)]/2 and
�(B) = ωmol(B) − ωmw. Under the conditions that |�|,� �
2ωmw, the terms containing the exponentials e±2iωmwt oscillate
very quickly and average to zero on the timescales set by
�−1, �−1, and can therefore be neglected if we are interested
in the dynamics only on such timescales; this is the rotating
wave approximation (RWA). Collecting all the terms, the
resulting time-independent single-molecule Hamiltonian in
the interaction picture is that in Eq. (1) in the main text,
namely

Hmol = EI2 + h̄�σ z/2 + h̄�σ x/2

=
(

E + h̄�/2 h̄�/2
h̄�/2 E − h̄�/2

)
(A3)

in the basis {|1〉, |0〉}, where |0〉 is the state |0〉 shifted up in
energy by h̄ωmw. Its eigenenergies are

E↑,↓ = E ± 1

2
h̄
√

�2 + �2. (A4)

2. Two molecules

We now consider the case of two identical molecules
separated by a distance vector R and subject to the same
magnetic and MW fields. We assume that both molecules
see the same MW field, E(t ), which is a good approxima-
tion for separations R = |R| � 2πc/ωmol (≈3 cm for ωmol ≈
2π × 109 rad/s), with c the speed of light. Therefore, the
Hamiltonian describing the two-molecule system is the sum of
the two single-molecule Hamiltonians and the dipole–dipole
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interaction between the two molecules:

H (1)
2mol = HA ⊗ I2 + I2 ⊗ HB + Hddi. (A5)

Here, A, B label the two molecules and Hj = H (1)
mol is the

Hamiltonian describing the internal space of molecule j =
{A, B} in the presence of the magnetic and MW fields
[Eq. (A1)]. As described in the main text, Hddi can be written

Hddi = V σ x
A ⊗ σ x

B = V

⎛
⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎠, (A6)

where the matrix representation is in the basis
{|11〉, |10〉, |01〉, |00〉} of the two-molecule space; here
the two-molecule basis states are defined as product states,
|iAiB〉 = |iA〉 ⊗ |iB〉.

As with the single-molecule problem, it is useful now to
move to the frame rotating at frequency ωmw, using the unitary
transformation

U = exp(iγ )|11〉〈11| + |10〉〈10|
+ |01〉〈01| + exp(−iγ )|00〉〈00|, (A7)

with γ = ωmwt .
The noninteracting part of the Hamiltonian transforms to

H (I )
2mol-ni = ih̄(∂tU )U † + U (HA ⊗ IB + IA ⊗ HB)U †

= 2EI4 + h̄�(|11〉〈11| − |00〉〈00|)

+
{

h̄�+
2

(|11〉〈10| + |11〉〈01| + |10〉〈00|

+ |01〉〈00|) + H.c.

}

=

⎛
⎜⎜⎝

2E + h̄� h̄�+ h̄�+ 0
h̄�− 2E 0 h̄�+
h̄�− 0 2E h̄�+

0 h̄�− h̄�− 2E − h̄�

⎞
⎟⎟⎠, (A8)

with the matrix expression evaluated in the basis
{|11〉, |10〉, |01〉, |00〉}. Here, �± = 1

2 (1 + e±2iγ )� and
the detuning is �(B) = ωmol(B) − ωmw as before.

For the DDI contribution,

UHddiU
† = V {e2iγ |11〉〈00| + |10〉〈01| + H.c.}

= V

⎛
⎜⎝

0 0 0 e2iγ

0 0 1 0
0 1 0 0

e−2iγ 0 0 0

⎞
⎟⎠, (A9)

with V = Vddi in case (i), V = 0 in case (ii), and V = −2Vddi

in case (iii), depending on the orientations of the molecules,
as described in the main text. Hence, collecting all terms,

H (I )
2mol = i(∂tU )U † + UH2molU

†

= 2EI4 + h̄�{|11〉〈11| − |00〉〈00|}

+
{

h̄�+
2

(|11〉〈10| + |11〉〈01| + |10〉〈00|

+ |01〉〈00|) + H.c.

}

+ V {e2iγ |11〉〈00| + |10〉〈01| + H.c.}

=

⎛
⎜⎜⎝

2E + h̄� h̄�+ h̄�+ e2iγV
h̄�− 2E V h̄�+
h̄�− V 2E h̄�+

e−2iγV h̄�− h̄�− 2E − h̄�

⎞
⎟⎟⎠, (A10)

where the matrix representation is in the basis
{|11〉, |10〉, |01〉, |00〉}. As before, we assume {|�|,�} �
ωmw and also |V |/h̄ � ωmw. If we are interested in the
dynamics at timescales longer than {1/�, 1/�}, we can
neglect the terms oscillating at ±2ωmw, i.e., set �± �→ �/2
and exp(2iγ ) �→ 0. In this RWA, the two-molecule
Hamiltonian is

H2mol = 2EI4 + h̄�

2

(
I2 ⊗ σ z

B + σ z
A ⊗ I2

)

+ h̄�

2

(
I2 ⊗ σ x

B + σ x
A ⊗ I2

)
+ V (σ+

A ⊗ σ−
B + σ−

A ⊗ σ+
B ). (A11)

Here σ+
j = |1〉 j〈0| and σ−

j = (σ+
j )† are the raising and low-

ering operators in the qubit space of molecule j. The terms in
Eq. (A11) involving � and � arise from the single-molecule
coupling to the MW field, while the last line describes the DDI
in the rotating frame. This comprises exchange processes of
the form |01〉 ↔ |10〉. Double-flip processes (i.e., transitions
|11〉 ↔ |00〉) involve the absorption or emission of two MW
photons and are neglected in the RWA.

In the basis {|11〉, |10〉, |01〉, |00〉}, this Hamiltonian can be
written as the matrix

H2mol =

⎛
⎜⎜⎝

2E + h̄� h̄�/2 h̄�/2 0
h̄�/2 2E V h̄�/2
h̄�/2 V 2E h̄�/2

0 h̄�/2 h̄�/2 2E − h̄�

⎞
⎟⎟⎠. (A12)

The avoided crossing between two levels of the single-
molecule problem now translates into a set of avoided cross-
ings among the four two-molecule states.

Finally, we express H2mol in the basis
{|11〉, |�+〉, |00〉, |�−〉}, which shows explicitly how the
symmetric and antisymmetric subspaces decouple:

H2mol = 2EI4 + h̄�(|11〉〈11| − |00〉〈00|) + V |�+〉〈�+|

− V |�−〉〈�−|+ h̄�√
2

(|00〉〈�+| + |11〉〈�+| + H.c.)

= 2EI4 +

⎛
⎜⎜⎝

h̄� h̄�/
√

2 0 0
h̄�/

√
2 V h̄�/

√
2 0

0 h̄�/
√

2 −h̄� 0
0 0 0 −V

⎞
⎟⎟⎠.

(A13)

This expression agrees with Eq. (3) in the main text. It makes
it clear that the DDI shifts the states |�±〉 away from the cross-
ing that would occur on resonance (� = 0), resulting in the
separation into three distinct crossings within the symmetric
subspace in Fig. 2 in the main text.
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3. Limits of validity of our approach

We consider here two potential sources of error outside the
derivation above.

First, we consider the possibility that the driving MW pulse
may induce an off-resonant transition to a state outside the
qubit space, {|0〉, |1〉}. The excitation probability to such states
is approximately equal to �2

off/�
2
off, where �off and �off are

the Rabi frequency of, and detuning from, the off-resonant
excitation. We use Rabi frequencies not larger than 55 kHz,
and the closest state is approximately 10 MHz away. The
fraction of off-resonant excitation is thus expected to be below
4 × 10−5 and we neglect it.

A second potential limitation stems from effects beyond
the rotating-wave approximation. The dominant error from
the breakdown of the RWA is the Bloch-Siegert shift, i.e.,
the ac Stark shift due to the counter-rotating terms that have
been dropped above [80]. A key element of our protocol is
the energy shift that the DDI creates in the two-molecule
spectrum. This has the same origin as the dipole blockade in
Rydberg systems [64–71], which is at the core of the Rydberg
phase gate [64]. This shift is of the order of �2/ωmw, which
in our system is always much less than 1 Hz, and thus very
small in comparison with the Rabi frequencies of tens of kHz.
Moreover, this shift is well within the region of high fidelity
F � 99.9% offered by our optimized pulses and its effect on
the overall fidelity of our gate is thus negligible.

APPENDIX B: EFFECT OF THERMAL EXCITATIONS

1. Population of motional states

We discuss briefly the effect of thermal excitation, resulting
in a distribution of the motional quantum number, n, of
each molecule in its trapping potential. We assume effective
cooling towards the motional ground state, so that n̄ � 1.
Then, the effect of thermal excitation can be understood
by truncating the space of motional excitations to a max-
imum of n = 1 in total for both traps. We therefore con-
sider three motional states {|nA = 0, nB = 0〉, |nA = 0, nB =
1〉, |nA = 1, nB = 0〉}, where n j is the number of motional
excitations of molecule j.

The infidelity due to such motionally excited states is
reduced under the assumption that these states are not cou-
pled by the MWs to the ground motional state. This is a
reasonable approximation given the very small momentum
recoil associated with the absorption or emission of a MW
photon of frequency ωmol, i.e., the system is in the Lamb-
Dicke regime. As we demonstrate in the following, under
these conditions, it is possible to design an optimal pulse
that takes an initial state that is a product of internal and
thermal motional states, ρ(t = 0) = ρint ⊗ ρmotion, and drives
it into ρ(t = τgate ) = (T ρint ) ⊗ ρmotion, and thus implements
the desired quantum gate irrespective of motional excitations.

To start, let us consider the energies of the two-molecule
system as a function of � in the case where one molecule
is in the motional ground state, nA = 0, and the other in
nB = 1; these are shown in Fig. 4. Here, we have taken the
difference in trap frequency for states |0〉 and |1〉, δ ftrap, as
1 kHz. We choose this large value to illustrate clearly what
happens. The other parameters are identical to those used in

Fig. 2. There are two main differences compared to Fig. 2.
First, the pattern of levels is shifted in � by δ ftrap/2. This
error in � reduces the fidelity of the entangling protocol
by the amount shown in Fig. 3(a) for the simple Gaussian
pulse or in Fig. 3(b) for the GRAPE pulse. Secondly, the
antisymmetric state |�−〉, which has a constant eigenenergy V
when � = 0 and δ ftrap = 0, no longer completely uncouples
from the symmetric subspace. Instead, avoided crossings open
up between |�−〉 and |00〉 at negative �, and between |�−〉
and |11〉 at positive �. They arise because the states |0, n =
0〉A|1, n = 1〉B and |1, n = 0〉A|0, n = 1〉B are not degenerate
when δ ftrap �= 0. As a result, terms that can couple |�−〉 to
the other states no longer cancel in second-order perturbation
theory. The widths of these avoided crossings scale with � and
with δ ftrap. For all relevant values of δ ftrap, these new avoided
crossings are smaller than the one at � = 0. A similar level
scheme exists for the states with motional excitations nA = 1,
nB = 0 and, higher in energy, for states with nA = nB = 1,
and so on.

2. Spatial dependence of dipole-dipole interaction

The spatial extent of the molecule wave functions in their
traps affects the strength of the DDI. To model this, we
consider the effect of motion along the line joining the two
molecules, i.e., in the direction of R. The distance operator
between the two molecules is given by R̂ = Re + x̂B − x̂A,
where Re is the distance between the equilibrium position of
the traps and x̂ j is the displacement operator of molecule j
from the equilibrium position of its trap along the direction
of R.

In order to calculate how the DDI acts on the internal and
motional states, we express the wave functions of two given
internal ⊗ motional states as a function of xA and xB using
the eigenstates of the quantum harmonic oscillator, noting that
δ ftrap causes the wave function of excited motional states to
depend on the internal state of the molecules. We also express
the DDI operator between internal states |01〉 and |10〉 as a
diagonal operator in the basis of displacements xA and xB

using Hddi = −2d2
10

4πε0R̂3 |10〉〈01| + H.c. for two dipoles aligned
head to tail. We then use numerical integration over the
displacements xA and xB to find the matrix element of the DDI
between the given internal ⊗ motional states. After repeating
the procedure for all pairs of internal ⊗ motional states, these
matrix elements were used to build the Hamiltonian in the
12 × 12 basis of four internal states ⊗ three motional states.
Additional optimization could similarly consider the motional
degrees of freedom perpendicular to R, but this is beyond the
scope of this work.

The spatial extent of the harmonic wave functions has
two effects on the DDI. The first is to modify the expecta-
tion value of V̂ for a given motional state compared to its
value if the dipoles were point particles separated by Re.
In our calculations, we have V = −h × 1847 Hz for point
CaF dipoles separated by Re = 0.8 μm, while for the trap
parameters used in Fig. 5, the expectation values 〈V̂ 〉 are
(rounded to the nearest h × 1 Hz) −h × 1862 Hz in motional
state |nA = 0, nB = 0〉 and −h × 1877 Hz in motional states
|nA = 0, nB = 1〉 and |nA = 1, nB = 0〉.
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The second effect is to couple different motional states.
The off-diagonal coupling between the ground motional state
|nA = 0, nB = 0〉 and either excited motional state (|nA =
0, nB = 1〉 or |nA = 1, nB = 0〉) is h × 145 Hz. This is much
smaller than the energy difference between the ground and
excited motional states, h × ftrap ( ftrap ≈ 200 kHz). It follows
that population transfer between ground and excited motional
states induced by the DDI is of the order of |145/(200 ×
103)|2 ∼ 10−6.

Similarly, there is a weak coupling of h × 15 Hz between
the excited states |nA = 0, nB = 1〉 and |nA = 1, nB = 0〉. By
the same reasoning as in the previous paragraph, this coupling
leads to a population transfer of order [15/( f A

trap − f B
trap)]2,

where f j
trap is the trapping frequency of molecule j ∈ {A, B}.

It follows that a small difference in trapping frequencies
| f A

trap − f B
trap| � 2 kHz is sufficient to bound the population

transfer between |nA = 0, nB = 1〉 and |nA = 1, nB = 0〉 to
O(10−4).

We have included both these shifts and couplings between
motional states in our numerical calculation of the propagator
U (t ) and hence the gate fidelity F . The results are shown in
Fig. 5(c). These results should be contrasted with the results
for the fidelity in Fig. 3(b) of the main text, which shows
the fidelity corresponding to the same GRAPE-optimized
pulse when considering only the ground motional space,
|nA = 0, nB = 0〉. Comparison of these calculations indicates
that fidelity F � 0.999 is still accessible in a wide region
of parameter space when the initial state contains a small
contribution from motionally excited states.

3. Internal-state and motional-state separation

If the two-molecule state is a product of internal and
motional states, the unitary operator

Uideal = T ⊗ I3 (B1)

generates the desired gate in the internal space for all three
motional subspaces for generic states that are a product of
internal and motional states. In practice, it is difficult to
design a pulse that ensures this equality in phases, but we
can still design a pulse assuming the relevant situation that
the motional part is an incoherent superposition of motional
states, such as a thermal state. Then, we can write the two-
molecule state in the form

ρ = ρint ⊗ ρmotion, (B2)

with ρmotion = ∑
nA,nB

pnA,nB |(nA, nB)〉〈(nA, nB)|. Consider
now a unitary operator of the form

U = T ⊗ Umotion, (B3)

with Umotion = diag[exp(iφnAnB )] a diagonal matrix. The uni-
tary operator U generates a different phase in each motional
subspace, but all internal states acquire the same motional
phase within that motional subspace |(nA, nB)〉, i.e., apart
from the motional phases, all internal states are transformed
according to the desired T . The action of U in Eq. (B3) on ρ

is

U †ρU = (T †ρintT ) ⊗ (U †
motionρmotionUmotion )

= T †ρintT

⊗
∑
nA,nB

pnAnB e−iφnAnB |(nA, nB)〉〈e|iφnAnB

= T †ρintT ⊗ ρmotion

≡ U †
ideal(ρint ⊗ ρmotion )Uideal. (B4)

This means that, as long as the motional part is an incoherent
superposition of motional eigenstates, it suffices to design a
pulse that implements our target gate T with high fidelity
in each motional subspace separately, as the motional phases
φnA,nB will not appear in the transformed state, U †ρU .

We show in Figs. 5(a) and 5(b) the Rabi frequency am-
plitude and phase of a pulse designed in this way. Fig-
ure 5(c) shows the fidelity of the time evolution gener-
ated with this pulse as a function of detuning and rela-
tive Rabi frequency. We calculate the fidelity by numer-
ically determining the motional phases, φnA,nB , generated
and using F = tr[(T ⊗ Umotion )†U (τgate )], with U (τgate ) the
unitary operator evolving the two-molecule state in the full
12 × 12 (internal ⊗ motional) space. We observe that it is
possible to achieve fidelities F � 0.999, which supports
the robustness of our approach to entangle two molecules
even in the presence of some residual incoherent motional
excitation.

In practice, the effectiveness of this approach is con-
strained to well cooled samples, T � h ftrap/kB, because
the complexity of the pulse optimization grows quickly as
one requires it to generate the same phases on the internal
states for an increasing number of motional state blocks;
cf. Eq. (B3).

APPENDIX C: SUMMARY OF GRAPE ALGORITHM
IMPLEMENTATION

Gradient ascent pulse engineering (GRAPE) [62] is a
powerful optimal control algorithm used to design control
pulses which can generate unitary dynamics in a quan-
tum system. A quantum system interacting with time-
dependent electromagnetic fields can be described by the
Hamiltonian

H = H0 + Hc(t ). (C1)

Here, H0 is the time-independent internal Hamiltonian,
whereas Hc(t ) is the time-varying external control field. In
our system, we employ GRAPE to design a pulse that im-
plements the desired gate T in the 3 × 3 symmetric inter-
nal space. Afterwards, we assess the fidelity of the gate
by evolving the two-molecule state within the whole 4 × 4
internal space.

In this approach, the forms taken by H0 and Hc(t ) are as
follows:

H0 =
⎛
⎝� 0 0

0 V 0
0 0 −�

⎞
⎠, (C2)

Hc(t ) = �x(t )Ix + �y(t )Iy (C3)

in the basis {|11〉, |10〉, |01〉}. Here �x(t ) and �y(t ) are MW
frequency control fields along the X and Y quadratures de-
scribed by Pauli spin-1 operators Ix and Iy, respectively. We
shall work in natural units where h̄ = 1. The time evolution
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of this system is given by the propagator U (t ). We want to
evolve the system in time by tuning the control fields �x(t )
and �y(t ) such that the propagator U (t ) is as close as possible
to the desired target unitary UT . In other words, we want to
maximize the fidelity given by

F = |〈UT |U (t )〉|2. (C4)

The GRAPE algorithm is an efficient numerical algorithm
to calculate the control fields �x(t ) and �y(t ) which maximize
the fidelity F . Since the terms in the Hamiltonian H are
noncommuting, calculating the propagator U (t ) is difficult. To
deal with this, the total evolution time T is discretized into N
time steps of duration dt = T/N . The heart of the GRAPE
algorithm lies in efficiently calculating the gradient of control
fields at each time step as described in [62]. The convergence
of the GRAPE algorithm can be accelerated by using the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) iterative method,
which employs second-order gradients to solve the nonlinear
optimization problem underlying the GRAPE algorithm; the
combined algorithm is known as BFGS-GRAPE [81,82]. We
use this approach to design the MW pulses.

To deal with potential variations or uncertainties in the
level splitting, �, as well as in the control fields, �x(t ) and
�y(t ), we require the output control fields to maximize the

fidelity over a range of � and �(t ) =
√

�2
x (t ) + �2

y (t ) using
averaging techniques as described in [62]. The optimal Rabi
frequency displayed in Figs. 5(a) and 5(b) (parametrized as
�opt(t ) =

√
�2

x (t ) + �2
y (t ) and ξ (t ) = arctan[�y(t )/�x(t )])

is thus the Rabi frequency that maximizes the average fidelity
for 0.9, 1.0, and 1.1 times the nominal MW Rabi frequency.

Let us emphasize again that, while the output of the
GRAPE optimization is designed taking into account the
3 × 3 symmetric space, the fidelities reported in Fig. 3 of
the main text have been calculated evolving the two-molecule
state within the whole 4 × 4 space.

In the preceding discussion we have described the algo-
rithm to obtain the optimal control fields taking into account
only the internal dynamics of the two-molecule system. As
discussed in Appendix B 3, at sufficiently low excitation ener-
gies in which no more than one motional excitation is present
in the system, the DDI leads to small shifts in the energy of the
states. Importantly, it also leads to weak couplings between
motional states. We used the BFGS-GRAPE algorithm to de-
sign a pulse that maximizes the average fidelity F within the
internal space in the three separate motional spaces, {|nA =
0, nB = 0〉, |nA = 0, nB = 1〉, |nA = 1, nB = 0〉}, taking into
account the slightly different internal-space level splittings
induced by the DDI. The optimized pulse was then used to
calculate the time evolution with the full Hamiltonian that
includes both the DDI shifts and coupling between motional
states. That is, the numerically calculated time-evolution

propagator U (t ) includes processes like

|01〉internal ⊗ |nA = 1, nB = 0〉motion

→ |10〉internal ⊗ |nA = 0, nB = 1〉motion,

that can be understood as “phonon-induced spin flips.” The
numerical results for the process fidelity shown in Fig. 5
demonstrate that the pulse optimized in this way is robust
with respect to such processes, as long as the low-excitation
requirement is fulfilled and there is a sufficient difference in
the trap frequency of the molecules to make these processes
off resonant as described in Appendix B 2.

APPENDIX D: ENTANGLING GATE CALCULATIONS FOR
87Rb 133Cs MOLECULES

The same coupling scheme and entangling gate can also
be applied to RbCs. For this molecule, we label the states
|(N, mF ) j〉, where j indexes levels with the same N and mF

in ascending order of energy, starting from j = 0. We set a
magnetic field of 181.5 G to separate the Zeeman states and
choose |0〉 = |(0, 4)1〉 and |1〉 = |(1, 4)1〉 as our qubit states.
These levels have a transition dipole moment d10 = 0.482 D
when π polarized microwaves of angular frequency ωmol =
2π × 980.138 × 106 rad/s are applied in a tweezer trap of
intensity 5 kW/cm2. As for the CaF states discussed in the
main text, these states are chosen to optimize the stability of
ωmol to fluctuations in the tweezer light intensity and magnetic
fields.

The calculations for the two-qubit gate in the absence of
motional excitations depend in practice only on the magnitude
of Vddi. It follows that the same optimized pulse used for CaF
can be used with RbCs, once the Rabi field amplitude and
times are scaled accordingly:

�RbCs(t ) = �CaF(tζ )/ζ , (D1)

ζ =
∣∣∣∣V

RbCs
ddi

V CaF
ddi

∣∣∣∣ =
(

dRbCs
10

dCaF
10

)2(
RCaF

RRbCs

)3

. (D2)

Thus we can generate the same entangling gate between
two RbCs molecules in a time τRbCs

gate = τCaF
gate /ζ using Rabi

frequencies scaled by a factor ζ . The fidelity shows the same
robustness against detuning and noise in the Rabi frequency,
f�, behavior as in Fig. 3 in the main text, apart from a
rescaling of the detuning axis. For example, given d10 =
0.482 D, if the two RbCs molecules are trapped in optical
tweezers 0.8 μm apart (as for CaF in the main text), we obtain
ζ = (0.482/1.77)2 ≈ 0.074: the entangling gate can be gen-
erated in (0.54 ms)/ζ ≈ 7.3 ms. If the molecules are trapped
instead in an optical lattice with lattice constant 532 nm,
ζ = (0.482/1.77)2 × (800/532)3 ≈ 0.25, and the entangling
gate can be run in ≈2.2 ms.
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