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Abstract

Motivated by the revolution brought by the internet and communication technology in daily life,

this paper examines how the online travel agencies (OTA) can use these technologies to improve

customer value. We consider the design of a fixed number of package tours offered to customers in

the digital travel industry. This can be formulated as a Team Orienteering Problem (TOP) with

restrictions on budget and time. Different from the classical TOP, our work is the first one to

introduce controlled diversity between tours. This enables the OTA to offer tourists a diversified

portfolio of tour packages for a given period of time, each potential customer choosing a single tour in

the selected set, rather than multiple independent tours over several periods as in the classical TOP.

Tuning the similarity parameter between tours enables to manage the trade-off between individual

preferences in consumers’ choices and economies of scale in agencies’ bargaining power. We propose

compact and extended formulations and solve the master problem by a branch-and-price method, and

an alternative branch-cut-and-price method. The latter uses a delayed dominance rule in the shortest

path pricing problem solved by dynamic programming. Our methods are tested over benchmark

TOP instances of the literature, and a real dataset collected from a Chinese OTA. We explore the

impact of tours diversity on all stakeholders, and assess the computational performance of various

approaches.

Keywords: Integer programming, team orienteering problem, diversity, branch-cut-and-price,

digital travel industry

1. Introduction

This paper considers a variant of the Team Orienteering Problem (TOP) where pairwise diversity

constraints hold between tours. The TOP has been extensively studied in the literature in the

last two decades (Chao et al., 1996a,b; Archetti et al., 2006, 2007, 2013, 2015; Boussier et al.,
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2007; Vansteenwegen et al., 2009a,b, 2011; Poggi et al., 2010; Labadie et al., 2012; Lin & Vincent,

2012; Dang et al., 2013; Ke et al., 2013; Luo et al., 2013; Tarantilis et al., 2013; Hu & Lim, 2014;

Verbeeck et al., 2014a; Divsalar et al., 2014; Mei et al., 2016; Gunawan et al., 2016; Riera-Ledesma

& Salazar-González, 2017). Contrary to the classical TOP, our problem is to design a set of tours

for an Online Travel Agency (OTA) such that any potential customer will choose a single tour in

the portfolio at a given period. This allows common cities in some tours to ensure economies of

scale for the OTA when negotiating prices with suppliers, in a competitive context of satisfying

customers’ needs with more attractive and diverse travel products. The problem is motivated by

the needs of a specific Chinese OTA to improve its portfolio of online products. The explosive

progress in information and communication technology (ICT), especially in the accessible Internet

and mobile devices, facilitates consumers to search and discover desirable tour products instantly

(Lewis et al., 1998; Abbaspour & Samadzadegan, 2011). According to a survey conducted over US

adults, more than 95% of respondents said they prefer an online channel to search for vacations and

over 58% said they use user-generated content on the Internet for travel planning. Overall 564.87

billions USD of travel products, including air flight, hotel, accommodation, car rental, etc., were

sold online worldwide in 2016 (Statista, 2016). The huge increase in digital transactions of travel

products naturally leads to a general revenue growth for online travel agencies such as Expedia

and Priceline (Prieto, 2017). The OTAs, or so-called digital tour operators, provide travel-related

information and service to consumers through the Internet. Their online products, for example,

weekly or monthly tours bundling transportation, accommodations and sightseeing, release vast

consumers from the tedious work of searching trip components and evaluating tour compositions

(Sheldon & Mak, 1987; Wong & Kwong, 2004). However, there is still improvement potential for

OTAs. Another study in the US reveals that over 68% and 49% of consumers completed their final

flight and hotel bookings from direct suppliers, rather than from OTA channels (Statista, 2015). An

emerging shopping trend is that a large proportion of consumers resort to the travel recommendation

(guidance, reviews, suggestions, etc.) on the OTAs’ websites at the information acquisition and pre-

purchase stages, while they skip their digital products and go for the suppliers to place customized

orders at the purchase stage (Chiappa, 2013). Such a transformation reduces the transaction success

rate, worsens the operational environment and poses great challenges for the OTA players (Werthner,

2002). Therefore, to yield higher revenue, OTAs need to provide more attractive travel products

with ambitious quality and competitive price.

In this article, we describe a new problem of travel products design. Our research is motivated

by the digital tour design operations of a Chinese OTA (http://www.niding.net), whose annual

sales value was around USD 100 million on average from 2016 to 2018. Customers indicate their
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requirement on a few resources (typically, time and budget) and potential vacation destinations to

the company. After collecting information on candidate destinations, dwelling times, travel hori-

zon, travel data concerning flights and hotels, the company offers customers a selected set of best

itineraries under resource restriction.

Currently, the company owns a data-driven point of interests (POIs) identification system to help

capture more attention from customers. It seeks to increase its transaction success rate to improve

online sales performance: as they reported, 4% of page views on average generate a completed

transaction order in the online travel industry. Conflicting criteria are at stake: customization of

tours versus uniformity. Indeed, if the OTA designs personalized tours for each individual, the over-

dispersed trips will blow up the number of cities visited. This not only increases the workload of the

OTA employees and cost, but also prevents the company from taking advantage of the economies

of scale (discounting) benefits when bargaining with upstream suppliers, thus leading to sales losses

because of high prices (Clemons et al., 2002). On the reverse, if the OTA website offers only one

standard set of cities meeting some resource requirement, the homogeneous products cannot cover

the diversified demand from various consumers, which may decrease sales due to a narrow range

of products. As a result, the company is trapped into a dilemma about the diversity of its digital

products.

The contributions of the paper are the following. We study a new problem named TOP-DC,

which is a Team Orienteering Problem with additional Diversity Constraints between the m selected

tours that meet the resource requirements. To manage the trade-off between individual preferences

of customers (customization) and purchase discount from suppliers (uniformity and economies of

scale), we introduce a maximum similarity parameter s on the number of common cities between

any two tours, and present a compact formulation for the TOP-DC incorporating the diversity

constraints. We propose a two-index extended formulation and branch-and-price algorithm. Because

of symmetries arising in the former formulation, we design a more complex branch-cut-and-price

algorithm based on a one-index reformulation that avoids symmetry phenomena. This method uses

row generation with diversity cuts generated “on the fly”, which requires to adapt the dynamic

programming procedure with a tailored delayed dominance rule for the pricing subproblem. Finally,

we conduct numerical experiments with a benchmark dataset from the literature and a real dataset

from the Chinese OTA, to analyze the performance of the above methods and to derive managerial

insights.

The paper is structured as follows. Section 2 provides a literature review on the related TOP.

Section 3 presents the compact formulation for the TOP-DC. Section 4 describes the two-index

extended formulation and associated branch-and-price method, with a focus on the pricing sub-
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problem. Section 5 gives the one-index master reformulation, the associated branch-cut-and-price

method and modification of the dominance rule for the subproblem. Section 6 describes the results

of numerical experiments and detailed analysis. Section 7 gives concluding remarks.

2. Literature review

Our research lies on the intersection of several related streams of literature: travel industry,

tour planning, and solution methods. In this section, we review key contributions of each stream of

literature and position our paper with the existing research.

2.1. Research on the travel industry

The travel industry has been extensively studied in the literature. It comprises, among others,

studies on tour packages (Sheldon, 1986; Sheldon & Mak, 1987; Morrison, 1989), tour operators

(Sheldon, 1986; Heung & Chu, 2000), and tour planning (Laporte & Martello, 1990; Fischetti et al.,

1998; Abbaspour & Samadzadegan, 2011). See Law et al. (2004) for detailed reviews.

In the travel industry, tour operators negotiate with hotels, transportation companies and other

suppliers, then combine their products into a tour product (Sheldon, 1986). A tour product is a

combination of several heterogeneous components in a vacation, such as transportation, accommo-

dation, sightseeing and meals, which are sold to customers at a single price (Sheldon & Mak, 1987;

Heung & Chu, 2000). The tour products enable tourists to visit a large number of sites on a trip with

constrained resources through a relatively safe way (Enoch, 1996; Wong & Kwong, 2004). However,

the design of tour products is not only determined by the popularity of its destinations, but also by

its profitability for operators. If operators could acquire a large volume discount from suppliers, they

would offer better prices to customers. The existence of tour operators is beneficial to both suppliers

and consumers, not only because they increase sales and decrease promotional costs for suppliers,

but also they reduce customers’ transaction costs by limiting communications and bookings to one

operator rather than many suppliers (Sheldon, 1986).

However, a few inevitable drawbacks can be found with the travel products provided by tour

operators. First of all, operators prefer to provide uniform products in order to condense same

destinations and exploit economies of scale (Lee et al., 2013), which does not favor customization.

If tourists require some personalized trips, such products have to be designed individually for each

customer, and by diversifying the travel products, the OTA may disperse customers to many over-

spreading short trips, losing economies of scale in purchasing from upstream suppliers. On the

reverse, concentrating the demand on fewer tours would enable the OTA to negotiate better prices

with suppliers. Finding a good compromise or trade-off between customization and uniformization of
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tour products has not been thoroughly investigated so far, to the best of our knowledge. Addressing

this issue is one main objective of this paper.

2.2. Research on tour planning and orienteering problems

Tour planning usually refers to generating a schedule or itinerary to visit some POIs in a trans-

portation network while satisfying some objectives and constraints (e.g., time and budget) (Gavalas

et al., 2014). The operations research literature on tour planning is vast. We describe the state-

of-the-art problems most related to ours, namely the Orienteering Problem and Team Orienteering

Problem, then we focus on exact solving approaches for these problems.

Orienteering Problem. The Orienteering Problem (OP), also called the selective traveling

salesperson problem (Laporte & Martello, 1990; Chao et al., 1996a; Righini & Salani, 2006), or the

maximum collection problem (Butt & Cavalier, 1994), has received increasing attention during the

last decades. We refer the reader to the survey by Gunawan et al. (2016) for an extensive review on

this problem and its practical applications. In this problem, a set of control points is given, along

with associated scores and a connecting network. The OP deals with finding a path from specific

start and end points with maximum total score, subject to a given set of constraints (Boussier et al.,

2007). Obviously, due to the resource constraints, the decision-maker might exclude some POIs

(Abbaspour & Samadzadegan, 2011). According to Chao et al. (1996a), the OP can be seen as a

two-level optimization problem. At the first decision level, one chooses a subset of nodes to visit.

At the second level, one solves a maximization Traveling Salesman Problem (TSP) over the selected

nodes. Since the TSP is NP-hard, so is the OP (Laporte & Martello, 1990). Often in practice,

the tour operator has to design different tours over several days, turning the one-tour Orienteering

Problem into a multiple-tour Team Orienteering Problem.

Team Orienteering Problem. The extension of the OP to multiple tours, which is a special

case of the VRP with profits, was introduced under the name of Team Orienteering Problem by Chao

et al. (1996b). The TOP (Tang & Miller-Hooks, 2005) or multiple tour maximum collection problem

(MTMCP) (Butt & Cavalier, 1994) is to find a set of m paths (tours), each constrained by a time

limit T , that maximizes the total collected scores of selected nodes. The main difference between

the TOP and classical vehicle routing problem (VRP) is that not all nodes have to be visited in

the TOP (Boussier et al., 2007). Consequently, the TOP can be seen as a three-level optimization

problem. The first decision level is to select the subset of nodes to be visited overall, the second

level is to assign nodes to each team member, and the third level is to construct a path connecting

the nodes assigned to each team member (Chao et al., 1996b). The TOP is at least as difficult as

the OP, which is a special TOP with m = 1.
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An application of the TOP in the travel industry is called the Tourist Trip Design Problem

(TTDP), which is defined as a route-planning problem for tourists interested in visiting multiple

POIs (Godart, 1999; Gunawan et al., 2016). As mentioned before, most of the TTDP correspond to

the OP or TOP, we refer readers to the survey by Gavalas et al. (2014) for a comprehensive review

on this problem.

Recently, Souffriau et al. (2008) developed a mobile tourist guide to help travelers design their

one-day or several-days trip. Herzog & Wörndl (2014) studied another OP variant for an individual

user where trips are composed of multiple regions. Verbeeck et al. (2014b) introduced another OP-

like variant called Cycle Trip Planning Problem (CTPP), which is to find a closed path maximizing

the total collected score. At last, Malucelli et al. (2015) studied the problem of designing the

most attractive itineraries for different classes of users with different preference patterns, which was

formulated as a multi-commodity OP with a single origin-destination pair.

To our knowledge, most of the tour planning papers focus on the optimal trip design in a vertical

view, that is, to provide one/several-days tours for a tourist. When the TOP is applied to the travel

industry, a customer follows each of the m tours, one every day. However, in this paper, we design

tours in a horizontal view. Our aim is to propose a set of m possible tours with given time and

budget so that each customer chooses only one tour in the set, but these m tours should be diverse

enough to offer the customer a wide variety of choice for her tour.

2.3. Research on exact methods

Previous studies listed several methods for the TOP and OP, ranging from exact methods to

heuristics and metaheuristics. Heuristics include local search (Chao et al., 1996a), tabu search (Tang

& Miller-Hooks, 2005), variable neighborhood search (Vansteenwegen et al., 2009b) and simulated

annealing (Sylejmani et al., 2014). We could also find metaheuristics in Archetti et al. (2007, 2015)

and Vansteenwegen et al. (2009a). In this paper, we only cover studies on exact methods. For a

general review on solution approaches, we refer readers to Gavalas et al. (2014) and Gunawan et al.

(2016).

Branch and Price (BP). Branch-and-Price is widely used when solving vehicle routing prob-

lems with exact methods (Costa et al., 2018). A few BP algorithms were proposed to solve the TOP.

Butt & Ryan (1999) gave a set-partitioning formulation, and was the first to use a column generation

approach, solving instances with up to 100 nodes. Later, branch-and-price, i.e, branch-and-bound

where the LP-relaxation is solved by column generation, was applied in Boussier et al. (2007) for

solving the TOP to optimality. This BP scheme was also used to solve the TOP with time-windows.

Keshtkaran et al. (2016) proposed an enhanced branch-and-price method to solve the TOP on the
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basis of Boussier’s work. Recently, Riera-Ledesma & Salazar-González (2017) proposed two exact

column generation algorithms to solve the team orienteering arc routing problem efficiently.

Branch Cut and Price (BCP). Cutting plane methods were also adopted to solve TOP

instances. Fischetti et al. (1998) presented a branch-and-cut algorithm by adding some valid in-

equalities and conditional cuts, and their method was able to solve instances with 500 cities to

optimality. Poggi et al. (2010) proposed a branch-cut-and-price algorithm for solving the classical

TOP, where a few additional inequalities and cuts for the problem were incorporated to improve

the bounds obtained by column generation. Archetti et al. (2013) proposed some valid and facet-

inducing inequalities in their branch-and-cut algorithm and tested their algorithm on large-scale

instances.

We only found one paper, Song et al. (2018), mentioning similarity among tours for the TOP.

However, they measured similarity of solutions ex post, whereas similarity is explicitly modeled

in the problem definition in our case. The introduction of diversity constraints generates higher

complexity and potential symmetry in the solutions depending on the formulation, which will be

further discussed in the following sections.

3. Compact formulation

The Team Orienteering Problem with Diversity Constraints (TOP-DC) can be defined on a

complete directed graph G = (V,A), where V = {0, ..., n} is the set of nodes representing cities, and

A = {(i, j)}(i 6= j) is the set of arcs. Among the node set V , nodes 0 and n represent the hub city

as initial and terminal node of each tour. For convenience, we note V = V \{0, n}. Travel times and

costs on arcs (i, j) ∈ A are noted tij and cij . Travel times tij include both the flight time to connect

i and j, and the time spent at city i to make the scheduled visits and resting. Moreover, ui is the

customer utility or satisfaction collected when visiting city i ∈ V , measuring the attractiveness of

the city. The time and budget limits of a tour are noted tmax and cmax. We define the TOP-DC

problem as follows.

Definition 1. The Team Orienteering Problem with Diversity Constraints is to find m paths (tours)

with time (and/or budget) no more than tmax (resp., cmax) such that any two paths share no more

than s common nodes in V , while maximizing the total utility collected.

Obviously, the classical TOP is a special TOP-DC with similarity parameter s = 0, which implies

that a node is in no more than one of the m tours. Therefore, the TOP-DC is also NP-hard. When

s = |V |, i.e., similarity between tours is unconstrained, the problems turns into the OP as the m

tours will be identical for maximizing score, so the model will output a single tour. The TOP-DC
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also differs from the split-delivery VRP in that it obtains all the utility once visiting a node rather

than a proportion (Archetti et al., 2006). To model the TOP-DC as a Mixed-Integer Program (MIP),

we index the m tours by k = 1, . . . ,m and define the following decision variables:

xkij =

1, if arc (i, j) is selected in tour k, (i, j) ∈ A, k = 1, ...,m,

0, otherwise.

zkk
′

i = if node i is visited by both tours k and k′, ∀k′ > k, k = 1, ...,m,

fkij = cumulative cost spent until visiting arc (i, j) in tour k, k = 1, ...,m.

The objective is to maximize the total utility of the m tours:

max

m∑
k=1

∑
(i,j)∈A

uix
k
ij (1)

The constraints can be partitioned in two parts: (i) local tour-definition constraints for each tour,

and (ii) global diversity constraints linking all tours. The tour definition constraints are as follows:

∑
(i,j)∈A

tijx
k
ij ≤ tmax, k = 1, ...,m (2)

∑
(i,j)∈A

cijx
k
ij ≤ cmax, k = 1, ...,m (3)

∑
j∈V

xk0j = 1, k = 1, ...,m (4)

∑
i∈V

xkin = 1, k = 1, ...,m (5)

∑
(i,j)∈A

xkij =
∑

(j,l)∈A

xkjl,∀j ∈ V , k = 1, ...,m (6)

∑
j∈V,i6=j

xkij ≤ 1,∀i ∈ V, k = 1, ...,m (7)

xkij + xkji ≤ 1,∀(i, j) ∈ A, k = 1, ...,m (8)∑
j∈V

fkij −
∑
r∈V

(fkri + crix
k
ri) = 0,∀i ∈ V , k = 1, ...,m (9)

cijx
k
ij ≤ fkij ≤ (cmax − cij)xkij ,∀(i, j) ∈ A, k = 1, ...,m (10)

fk0j = 0,∀j ∈ V , k = 1, ...,m (11)

fkij ≥ 0,∀(i, j) ∈ A, k = 1, ...,m (12)

xkij ∈ {0, 1},∀(i, j) ∈ A, k = 1, ...,m (13)
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Constraints (2)-(3) ensure that the total time and cost of a tour do not exceed resource capacity

tmax and cmax. Constraints (4)-(5) state that a tour can only leave and return the hub once.

Constraints (6) are classical flow balance equations on each node in V . Constraints (7)-(8) enforce

each arc and edge to be selected at most once. Constraints (9)-(11) are the single-commodity flow

constraints used to ensure the flow conservation and eliminate any subtour without the hub. To

incorporate the diversity restrictions, the TOP-DC formulation also includes the global constraints

linking different tours k and k′:

∑
j∈V

xkij +
∑
j∈V

xk
′

ij − zkk
′

i ≤ 1,∀i ∈ V , k = 1, ...,m, k′ > k (14)

∑
i∈V

zkk
′

i ≤ s, k = 1, ...,m, k′ > k (15)

zkk
′

i ≥ 0,∀i ∈ V , k = 1, ...,m, k′ > k (16)

Continuous Variables zkk
′

i indicates if node i is visited by both tours k and k′, with zkk
′

i = 0 if

node i is not shared by the two tours. Constraints (14) will force zkk
′

i = 1 if node i is in both tours

k and k′, and constraints (15) guarantee that the number of common nodes between two tours k

and k′ does not exceed s.

The above formulation (1)-(16) includes at least O(m|A|) variables and O(m2n) constraints. This

becomes intractable for commercial solvers for medium to large-size instances, as we see further in

the numerical experiments. Thus, we explore other solution approaches in the following sections: a

Branch-and-Price (BP) and a Branch-Cut-and-Price (BCP) algorithm.

4. Branch-and-Price method

Branch and Price is a method to solve mixed integer linear programs with many variables (Barn-

hart et al., 1998). It is a branch and bound method in which at each node of the search tree the

LP-relaxation is computed by column generation. It begins by solving a restricted master prob-

lem (RMP) and a pricing subproblem. If the optimal solution of the RMP is not integer, then a

branching strategy is applied by adding constraints to derive integral solutions.

4.1. Two-index extended formulation

Let R represent the set of feasible tours for a tourist, that is, a set of tours originating from the

hub city 0 and ending at the hub city n, with total time and cost at most tmax and cmax, respectively.

A city in V can be visited at most once in each tour r ∈ R, but it can appear in several of the m

tours. Let ari = 1 if city i ∈ V is visited in tour r ∈ R, ari = 0 otherwise. One notes pr =
∑
i∈V a

r
iui
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the total utility collected by tour r ∈ R. We introduce the following decision variables:

λrk =

1 if column r is assigned to tour index k = 1, ...,m,

0 otherwise.

zkk
′

i = if node i is visited by both tours k and k′, ∀k′ > k, k = 1, ...,m.

Then the compact formulation (1)-(16) can be reformulated as the following Master Problem (MP)

with a compact set of O(m2) constraints:

max

m∑
k=1

∑
r∈R

prλrk (17)

subject to

∑
r∈R

λrk ≤ 1,∀k = 1, ...,m (18)∑
r∈R

ariλrk ≤ 1,∀i ∈ V , k = 1, ...,m (19)∑
r∈R

ariλrk +
∑
r∈R

ariλrk′ − zkk
′

i ≤ 1,∀i ∈ V , k = 1, ...,m, k′ > k (20)∑
i∈V

zkk
′

i ≤ s, k = 1, ...,m, k′ > k (21)

λrk ∈ {0, 1}, k = 1, ...,m, k′ > k (22)

zkk
′

i ≥ 0,∀i ∈ V , k = 1, ...,m, k′ > k (23)

The objective function (17) maximizes the sum of the utilities of the selected tours (or equiva-

lently, the average utility over the m tours). Constraints (19) states that a city cannot be visited

more than once in a tour, which strengthen the formulation and generate less branching nodes.

Constraints (20)-(21) ensure that no more than s cities are in common in any two tours.

4.2. Column generation scheme

The well-known iterative principle of column generation can be summarized as follows on the

TOP-DC (Lusby et al., 2017). Let MP denote the linear relaxation of MP. The aim is to solve MP

to optimality and get a lower bound. We start to solve a Restricted Master Problem (RMP), i.e.,

problem MP restricted to a small set of tours (columns) R̂ ⊂ R, by the Simplex method. This LP-

solving of the RMP provides dual variables αk, σ
k
i , µ

kk′

i associated with the respective constraints

(18)-(20). Then one checks whether there exists a tour r ∈ R with positive reduced utility that could

be added to the RMP in order to improve the LP bound. If no such improving column exists then
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the current solution of the last RMP is optimal for MP, otherwise a subset of columns with positive

reduced-utility is added to the RMP and one reiterates the process until no improving column is

found. Finding a column with positive reduced utility at each iteration of column generation is

called the Pricing problem. Finally, all columns with positive reduced utility are added to the RMP,

and also no column generation stabilization technique is used.

4.3. Pricing problem

Given the current dual variables αk, σ
k
i , µ

kk′

i output by the LP-solving of the last RMP, the

reduced utility of a column r ∈ R for an assigned tour k is:

ckr = pr − αk −
∑
i∈V

ari (σ
k
i +

∑
k′>k

µkk
′

i +
∑
k′<k

µk
′k
i )

=
∑

(i,j)∈A

briju
k
ij − αk (where ukij = ui − σki −

∑
k′>k

µkk
′

i −
∑
k′<k

µk
′k
i )

(24)

The modified-utility of a node i is conveniently located on its outgoing arcs, hence the ukij notation

in (24). The parameter brij indicates whether arc (i, j) will be used in the generated column r ∈

R and obtained through the dynamic programming method introduced later. Then, solving the

subproblems amounts to find a shortest path r on the modified support graph Gk(k = 1, ...,m) with

values only on arcs. Since the solution tours must respect the time and budget constraints, it is an

NP-hard elementary shortest path problem with resource constraints (ESSPRC). In the following,

we consider only one support graph Gk.

The ESSPRC on Gk can be solved by dynamic programming using a labeling algorithm (Feillet

et al., 2004; Irnich & Desaulniers, 2005; Desaulniers et al., 2016), where labels are used to represent

partial paths that start from the hub city 0. Starting from an initial label associated with 0, paths are

constructed iteratively by extending this label and its descendents forwardly in Gk, using Resource

Extension Functions (REFs). Each generated label is checked for feasibility with respect to the

resource limitations and infeasible labels are discarded. Furthermore, since the time complexity

of the dynamic programming is exponential because of the explosion of labels, in order to avoid

enumerating all feasible 0−n paths, a dominance check eliminates partial paths that are impossible

to appear in an optimal solution, as shown by Feillet et al. (2004).

In a forward labeling algorithm for ESPPRC, a partial path p from hub 0 to a node i ∈ V is

represented by a label Li = (Ui, Ti, Ci, (N
v
i )v∈V ), where the label components are as follows:

• Ui: reduced utility of path p;

• Ti: total time used along path p;
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• Ci: total money spent along path p;

• Nv
i : binary value indicating whether city v has been visited or not along the partial path p.

It is also set to 1 if city v is not visited but it is unreachable from p. A city v is said to be

unreachable if Ti + tiv > tmax or Ci + civ > cmax, in which case it cannot be part of any

feasible extension of path p.

The initialization of the label at node 0 is to set all components to 0. The extension of a label

Li = (Ui, Ti, Ci, (N
v
i )v∈V ) along an arc (i, j) ∈ A is performed as the following REFs:

Uj = Ui + ukij , (25)

Tj = Ti + tij , (26)

Cj = Ci + cij , (27)

Nv
j =

N
v
i + 1, if j = v,

max{Nv
i , URv(Tj , Cj)}, otherwise.

(28)

URv(Tj , Cj) = 1 if city v is unreachable from label Lj , i.e., if at least one of the following

conditions holds (assume triangle inequality holds for at least one of the travel times and costs): (i)

City v has already been visited, (ii) Tj + tjv > tmax, (iii) Cj + cjv > cmax. Given conditions (i),

(ii), (iii) for a city to be unreachable from a label, the infeasibility check to reach city v is addressed

by Nv
j = 1 in the (Nv

i )v∈V vector of the label. Furthermore, we can obtain formula (28) from

Gutiérrez-Jarpa et al. (2010) and explain it as follows:

• If j = v, since we extend the subpath ending at node i by adding arc (i, j), it means that j = v

was not in that path so we had Nv
i = 0, and hence Nv

j = Nv
i + 1 = 1.

• If j 6= v, there are two cases: (a) if v was not visited in the path to i and v is reachable. From

j, Nv
i = 0 and URv(Tj , Cj) = 0, then Nv

j = max(Nv
i , URv(Tj , Cj)) = 0. (b) if v was visited

in the path to i or v is not reachable from j, then Nv
i = 1 or URv(Tj , Cj) = 1. Consequently,

Nv
j = max(Nv

i , URv(Tj , Cj)) = 1. In any case, we indeed find Nv
j = max(Nv

i , URv(Tj , Cj)).

This path is feasible if all the following conditions hold:

Tj = Ti + tij ≤ tmax, (29)

Cj = Ci + cij ≤ cmax, (30)

Nv
j ≤ 1, v ∈ V (31)
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In order to avoid enumerating all feasible paths/tours, given that all the REFs are nondecreasing

functions, a dominance rule can apply to discard those unpromising labels.

Definition 2. (Dominance rule) Let L1
i = (U1

i , T
1
i , C

1
i , (N

1,v
i )v∈V ) and L2

i = (U2
i , T

2
i , C

2
i , (N

2,v
i )v∈V )

represent two labels associated with different tours ending at the same city i. Then label L1
i is said

to dominate L2
i if U1

i ≥ U2
i , T

1
i ≤ T 2

i , C
1
i ≤ C2

i and (N1,v
i )v∈V ≤ (N2,v

i )v∈V holds, and at least one

of them is strict.

4.4. Acceleration strategies for the pricing problem

We use two strategies to accelerate the pricing problem solution. The first strategy is to relax

the subproblem by allowing paths containing cycles. Several relaxations relying on this principle

have been developed in VRP studies (Desaulniers et al., 2014, 2016), and the ng-route relaxation

proposed in Baldacci et al. (2011) was proven the most effective.

An ng-route is a route that may contain cycles if they satisfy some conditions. More precisely,

we define a neighborhood NGi ⊂ V that contains node i and its ξ closest nodes in V , where ξ is a

predefined parameter on the neighborhood size. An ng-route is allowed to visit a node i twice if it

visits at least one node j in between two visits to i and i 6∈ NGj . Using this route relaxation, the

subproblem becomes a shortest ng-path problem with resource constraints (ng-SPPRC) which can

be solved by the labeling algorithm. On the one hand, if ξ is small, the subproblem becomes easier

to solve but with a weaker bound; on the other hand, a larger size ξ yields better bounds but with

intensively computational efforts.

To incorporate the ng-route into the labeling algorithm, the resource function (Nv
i )v∈V in a label

should be processed. For a subpath r = (0, j1, ..., jq) and ∀l = 0, 1, ..., q, we know that Nv
jl

= 1 if

v belongs to path r (that is, v = jl for l ∈ {1, ..., q}) and v ∈ NGjl′ for all l′ ∈ {l, ..., q}, and 0

otherwise. On the contrary, for a node v, Nv
j = 0 holds if v has not been visited or if it does not

belong to the neighborhood of a node visited after its last visit. To perform the extension along arc

(i, j) through the REFs, for each node v ∈ V , we set

Nv
j =

1, if j = v or if Nv
i = 1 and v ∈ NGj ,

0, otherwise.

(32)

In the dynamic programming algorithm to solve the ESPPRC (Feillet et al., 2004), the state

of a subpath associated with a label L on a node includes the triplet (U, T,C) and the full vector

of unreachable nodes. Therefore, there exist at worst case O(2|V |) labels on a node. However, by

replacing the unreachable vector with the forbidden set in the ng-route, the label space is significantly
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reduced. As for each pair of (U, T,C), the number of Nv equal to 1 is less than or equal to ξ, the

label space is reduced to less than O(2ξ) (Gianessi et al., 2016).

The second acceleration strategy is to rapidly generate columns with positive reduced utility

using a heuristic-based labeling algorithm. More precisely, the various labels Li at node i are sorted

first by decreasing reduced utility, then by increasing time and cost consumption (Righini & Salani,

2009). Based on this efficient list structure, we propose a relaxed dominance condition which is to

introduce a redundant label component φi =
∑
v∈V N

v
i in Li. The dominance check can be sped up

by modulating between weak and strong dominance levels. At the weak level, we keep the first three

conditions but replace the fourth one with φ1i ≤ φ2i , until no column with positive reduced utility

can be generated. Then we restore the fourth condition to its strong version (Nv
1 )v∈V ≤ (Nv

2 )v∈V

and continue the labeling algorithm until no positive column can be found. The weak dominance

check enables to solve the subproblem faster in the first iterations.

4.5. Warm-up and lower bound

The pool of initial columns is generated by a primal-heuristic (PH). We enumerate all feasible

tours which visit one node and two nodes respectively, i.e., we generate the sets:

R1 = {(0, i, n) | c0i + cin ≤ cmax, t0i + tin ≤ tmax,∀i ∈ V }

R2 = {(0, i, j, n) | c0i + bijcij + cjn ≤ cmax, t0i + bijtij + tjn ≤ tmax,∀(i, j) ∈ A}

By incorporating R1 and R2 as the initial pool of columns, the dual variables help to find the

most promising node pairs in the future columns.

At the end of the column generation phase, when no positive reduced utility column is found,

the value of the RMP is the value of MP. We run a MIP solver on the subset of columns of the

last RMP. This MIP-based heuristic (MIP-H) provides a lower bound for integer solutions and helps

pruning unpromising nodes in the branch-and-bound tree.

4.6. Branching scheme

If the solution of MP obtained from the column generation phase is fractional and the correspond-

ing dual bound is not below any known lower bound, the associated node in the search tree cannot be

pruned, and branching occurs. The branching strategy we choose for TOP-DC is to branch on nodes

at first, then on arcs, as in Boussier et al. (2007). When the solution is fractional, we first branch

on a node i ∈ V that is visited a fractional number of times in a tour k (0 <
∑
r∈R̂ a

r
iλrk < 1), and

has the largest reduced utility
∑
j u

k
ijb

r
ijλrk. Two branches are created by updating constraints (19)

in the MP as follows:
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• In the enforcement branch, node i must be visited in tour k, that is,
∑
r∈R a

r
iλrk = 1.

• In the forbidden branch, node i is not allowed to be visited in tour k, that is,
∑
r∈R a

r
iλrk = 0.

Moreover, we need to remove node i in Gk, such that node i will never be visited in the future

columns.

When the flow traversing each node is integer, the branching is then applied to an arc (i, j) with

a fractional value in selected tour k. If the arc flow
∑
r∈R̂ b

r
ijλrk is fractional for several arcs (i, j),

we choose an arc whose fractional part of the flow is the closest to 0.5. For the selected arc (i, j) in

tour k, we consider two cases as in Boussier et al. (2007), depending on whether i or j is served or

not. For more details on selected arc (i, j) in Gk, we refer to Desrosiers & Lübbecke (2005).

The branch-and-bound search tree is explored with a best-first search strategy. A node is eval-

uated at each subtree, only the node whose dual bound is greater than the current lower bound is

added to the search-tree for future exploration. The current lower bound can be obtained by either

the MIP-H heuristic, or the integer solution found in the previous subtree exploration. This process

is repeated until completing the exploration of the search tree and getting the final optimal integer

solution.

The above branch-and-price method based on the two-index reformulation provides a tractable

way to solve the TOP-DC problem. However, for most of the instances, we encounter a symmetry

problem which induces redundant nodes in the search tree and increases the pruning burden. Indeed

with the two-index variables λrk, given two columns r = 1, 2 and tour indices k = 3, 4, switching

the pair of variables (λ13, λ24) to (λ23, λ14) provides exactly the same solution and same value of

(z34i )i∈V . To avoid the branching symmetry problem, we further provide a one-index reformulation

and a Branch-Cut-and-Price method which is shown to outperform the above BP method a majority

of cases.

5. Branch-Cut-and-Price method

Branch-Cut-and-Price (BCP) combines branch and bound, column generation and cutting plane

algorithms for solving mixed integer programs. Compared to a pure BP, adding cut generation in

BCP can yield a stronger LP relaxation. However, the pricing problem may become much harder

because the new added rows can destroy the structure of the pricing problem (Barnhart et al., 1998).

5.1. One-index master reformulation

Given a subset of nodes S ⊆ V , let arS = 1 if all nodes of S are visited in tour r ∈ R, and

arS = 0 otherwise. When S = {i} for some i ∈ V , it means as before whether node i is visited or
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not. The binary variables associated to the selection of a feasible tour or column are not indexed by

k anymore:

θr =

1, if column r is selected in the solution,

0, otherwise.

And the new one-index master reformulation is:

max
∑
r∈R

prθr (33)

subject to

∑
r∈R

θr = m (34)∑
r∈R

arSθr ≤ 1,∀S ⊆ V : |S| ≥ s+ 1 (35)

θr ∈ {0, 1},∀r ∈ R (36)

The objective function (33) maximizes the sum of the utilities of the selected tours as before. Con-

straints (34) ensures that m tours will be selected in the final solution. Constraints (35) are used to

cut-off those solutions violating the diversity conditions. Because all potential columns cannot be

generated at once, constraints (35) are generated on the fly from incompatible columns in the RMP,

and we denote by Ŝ the collection of common-node sets S generated up to the current iteration of

column generation.

The column generation procedure in the BCP is similar to that in the BP. However, due to the

existence of cut generation constraints (35), the number of dual variables are increasing such that

the structure of the pricing problem is changed at each iteration. As a result, the algorithm to solve

the new pricing problem needs to be adapted in order to find columns with positive reduced utility.

5.2. Pricing problem

Let π and ηS be the dual variables associated to constraints (34) and (35). The reduced utility

of a column r ∈ R for the new BCP pricing problem is:

cr = pr − π −
∑
S∈Ŝ

arSηS (37)

The pricing problem for BCP is also solved by the ESPPRC algorithm but with a modified dominance

rule due to constraints (35). Indeed, the previous dominance rule would delete some promising labels

and prevent the generation of optimal columns, as shown in the following example.
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Figure 1: An example of delayed dominance check

Example. In Figure 1, the values on nodes and arcs represent their respective utility and travel

time. Suppose tmax = 50 and s = 2. The ESPPRC algorithm on this graph, after extending labels

to node 5, generates the following labels: L1
5 = (50, 24), L2

5 = (30, 34), L3
5 = (45, 22), L4

5 = (25, 26),

associated with subpaths r1 = (0, 1, 3, 5), r2 = (0, 1, 4, 5), r3 = (0, 2, 3, 5), r4 = (0, 2, 4, 5). Obviously,

L1
5(L3

5) dominates L2
5(L4

5). Finally, two complete paths r1 = (0, 1, 3, 5, 6, n) and r3 = (0, 2, 3, 5, 6, n)

would be added to the column pool. Assume these two paths are selected in the final solution

with values θ1 = 1 and θ3 = 1. However, this solution violates the diversity constraints since they

share 3 common nodes S = {3, 5, 6}. According to our cut-generation constraints, a new constraint

θ1 + θ3 ≤ 1 would be added to the MP and the model is resolved immediately. Suppose the dual

value to the new cut (constraint) is η{3,5,6} = −27, which is given to the pricing problem for the

next iteration of column generation. In the new iteration of ESSPRC, the previous dominance rule

cannot be applied to node 5 any more, as it would delay the dominance check. That is, assuming

the above four labels are kept at node 5 and extended to node 6 now, the new labels in node

6 are: L1
6 = (65 − 27, 28) = (38, 28), L2

6 = (45, 38), L3
6 = (60 − 27, 26) = (33, 26), L4

6 = (40, 30)

with associated subpaths r′1 = (0, 1, 3, 5, 6), r′2 = (0, 1, 4, 5, 6), r′3 = (0, 2, 3, 5, 6), r′4 = (0, 2, 4, 5, 6).

Thus, labels L2
6 and L4

6 are not dominated any more and will be preserved in the final column pool.

However, if we apply the traditional dominance rule at node 5, we are not able to get these two

labels at the end of the dynamic programming procedure because they are removed earlier. Thus,

to implement the ESPPRC algorithm in BCP, we propose a new delayed dominance rule as follows.

We add a new vector and scalar to a label: Li = (Ui, Ti, Ci, (N
v
i )v∈V , (a

ri
S )S∈Ŝ , Hi), where ri is the

related path to label Li and the last two items in Li indicate:

• ariS = 1 if subset S ∈ Ŝ has already been visited in the path ri, or cannot be visited because

of the unreachable property; otherwise, ariS = 0.

• Hi = 1 if ariS = 1,∀S ∈ Ŝ; otherwise, Hi = 0 .
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If the label Li is extending from city i to city j, such that Lj is the new label and rj is related path.

Considering the two additional resources, the corresponding REFs are described as

Uj = Ui + ukij −
∑
S∈Ŝ

a
rj
S ηS , (38)

Tj = Ti + tij , (39)

Cj = Ci + cij , (40)

Nv
j =

N
v
i + 1, if j = v,

max{Nv
i , URv(Tj , Cj)}, otherwise.

(41)

a
rj
S =

a
ri
S + 1, if subset S ∈ Ŝ is visited in the path rj ,

max{ariS , URS(Tj , Cj)}, otherwise.

(42)

We redefine URS(Tj , Cj) = 1 if any city v ∈ S is unreachable from label Lj , i.e., either Tj+tjv > tmax

or Cj + cjv > cmax holds. Given vector (a
rj
S )S∈Ŝ , we can check whether Hj = 1 holds during the

label extension. This path Lj is feasible if all the REFs hold as (29), (30) and (31), and the new

additional resources should satisfy (a
rj
S )S∈Ŝ ≤ 1 and Hj ≤ 1 respectively.

Definition 3. (Delayed dominance rule) Let L1
i = (U1

i , T
1
i , C

1
i , (N

1,v
i )v∈V , (a

r1i
S )S∈Ŝ , H

1
i ) and L2

i =

(U2
i , T

2
i , C

2
i , (N

2,v
i )v∈V , (a

r2i
S )S∈Ŝ , H

2
i ) represent two labels associated with different tours (i.e., r1i

and r2i ) ending at the same city i. Label L1
i is said to dominate L2

i if and only if both H1
i = 1 and

H2
i = 1, and U1

i ≥ U2
i , T

1
i ≤ T 2

i , C
1
i ≤ C2

i and (N1,v
i )v∈V ≤ (N2,v

i )v∈V holds, and at least one of

them is strict.

The acceleration strategy for the BCP pricing uses the ng-routes and the strong-level dominance

check presented in Section 4 .

5.3. Cutting planes

To process a node of the search tree, the column and row generation are implemented in a loop.

Each loop starts with column generation, solving a RMP with the Simplex method to optimality,

characterized by a set of branching constraints and a set of valid inequalities. Then if the solution

violates the diversity constraints, cutting plane occurs. When a cut (indeed, a row) is generated, it

is added to the last RMP of the current node and the new RMP is solved with the Simplex method

again. Otherwise, if all diversity violation constraints are added, the algorithm exits from the loop.

If the solution is integer, then we have found an optimal integer solution, otherwise, either the node

is pruned by the lower bound, or branching occurs.
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Separation algorithm. Note that, since we work on an extended formulation, we do not need

a complex separation algorithm on the space of the original arc variables. Cuts are separated as

follows. From the last solution given by column generation, we identify the set R̂+ ⊂ R̂ of variables

with θr > 0. For any two columns r, r′ ∈ R̂+, we compute S∗r,r′ the largest set of common nodes

between r and r′. Then we add the set of cuts:

θr + θr′ ≤ 1, ∀r, r′ ∈ R̂+ : S∗r,r′ 6∈ Ŝ, |S∗r,r′ | ≥ s+ 1 (43)

If S∗r,r′ ∈ Ŝ for some pair r, r′ ∈ R̂+, i.e. the common-node set has already been generated before,

and |S∗r,r′ | ≥ s+ 1, then for this S = S∗r,r′ we just need to modify the corresponding constraint as:

∑
r∈R̂

arSθr ≤ 1 (44)

The iterative row generation stops when the solution satisfies the diversity constraints.

5.4. Branching scheme

In the search tree, branching occurs when the master problem is solved at optimality and the

corresponding solution of the arc-flow formulation is not integer. We have implemented a branching

scheme consisting of three hierarchical levels of additional constraints in the master problem and

the pricing problem.

1. For a node i ∈ V , if
∑
r∈R a

r
i θr = Ψi with Ψi fractional, then we create two child nodes:

one with the constraint
∑
r∈R a

r
i θr ≥ dΨie, the other one with

∑
r∈R a

r
i θr ≤ bΨic. Note that

incorporating the dual variable βi associated with each additional constraint to the pricing

problem (37) does not change its structure.

2. If ∀i ∈ V ,
∑
r∈R a

r
i θr ∈ N holds, but there exists an arc (i, j) ∈ A such that

∑
r∈R b

r
ijθr = Φij

with Φij fractional, then two child nodes are created: one with constraint
∑
r∈R b

r
ijθr ≥ dΦije,

the other one with
∑
r∈R b

r
ijθr ≤ bΦijc. Again, adding the dual values δij associated with

these arc-traversing constraints does not affect the structure of the subproblem (37).

3. Even if the above node-visiting and arc-flow variables are integer, it does not ensure optimal

solutions to be integer. For example, assume m = 2 and s = 2, and we got a solution of optimal

tours given by r1 = (0, 1, 3, 4, n), r2 = (0, 2, 3, 4, n), r3 = (0, 1, 3, 5, n), r4 = (0, 2, 3, 5, n). If the

path flow for each tour is 0.5, the arc-flow variables are all integer, however, the solution is

still fractional. Therefore, if none of conditions 1. and 2. holds, it is necessary to check

whether there are two arcs (i, j) ∈ A and (j, l) ∈ A traversed consecutively for a fractional
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number of times:
∑
r∈R h

r
ijlθr = Λijl, where hrijl = 1 if arc (j, l) is visited immediately after

arc (i, j) in tour r. If Λijl is fractional, two branches are added in the master problem: one

with
∑
r∈R h

r
ijlθr ≥ dΛijle on the first child node, the other one with

∑
r∈R h

r
ijlθr ≤ bΛijlc.

We note νijl the dual variables associated to these constraints, which are to be given again

to the pricing subproblem. The labeling algorithm should be modified then by adding one

additional resource to indicate the consecutive arcs’ extension status. The REF for such

additional resource is similar to the manipulation of generating cuts (i.e., (ariS )S∈Ŝ and Hi) as

we mentioned before. That is, we introduce a vector and a scalar: the vector is used to check

whether the consecutive two-arcs with positive dual values are visited in the extending label.

If yes, the corresponding dual value is deducted from the collected utility. The scalar indicates

whether all identified two-arcs have been checked such that this label is ready for dominance

check. However, this triplet branching rules rarely happen. For more details, we refer to the

work Salani & Vacca (2011).

With the above branchings, the reduced utility of a column becomes:

cr = pr − π −
∑
S∈Ŝ

arSηS −
∑
i∈V

ariβi −
∑

(i,j)∈A

brijδij −
∑

(i,j)∈A,(j,l)∈A

hrijlνijl (45)

The procedure to implement the whole branch-cut-and-price algorithm is summarized in the

Figure 2. We now give the numerical results of the above solving strategies and managerial insights.

6. Computational experiments

We first use a benchmark dataset from the literature to test the performance of our BP and BCP

methods. Then, we conduct experiments on a real-case study with data provided by a Chinese OTA

(niding.net) based at Beijing who offers global travel products. Beyond the computational aspects,

we analyze the obtained solutions and derive managerial insights. In particular, we analyze the

trade-off between high diversity, which provides a richer offer for customers, and low diversity, which

ensures to select less suppliers with better prices. Our implementation has been coded in C++ on

Linux running on an Intel Core i7 with 64 GB RAM, with a time limit of 3600s. All algorithms use

IBM ILOG Cplex 12.9 as a LP-solver in multi-threads (8 threads).
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Figure 2: The procedure to implement a branch-cut-and-price algorithm

6.1. Benchmark dataset tests

Dataset description.

The benchmark dataset we used are the TOP instances tested in Chao et al. (1996b), Boussier

et al. (2007) and Keshtkaran et al. (2016). When s ≥ 1, there are no benchmark results as this

problem has not been solved before. To assess the performance of our algorithms, we test instances

with 21 nodes and 66 nodes from the dataset except those without feasible solutions (which gives

46 instances for 66 nodes out of the initial 50 instances). Each dataset with given number of

nodes differs in the resource limitation tmax and the number of tours selected m. Each node has
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known coordinates and score. We use only the time resource for the TOP-DC, and the travel

times/costs are the Euclidean distances calculated from node coordinates. The experimental results

are summarized in Tables 1 to 6. In the tables, columns BP, BCP and CF provide the results

obtained from Branch-and-Price, Branch-Cut-and-Price, and the compact formulation solved by

Cplex; subcolumns val (i.e., optimal or best-known value), optgap (i.e., (upperbound - optimal or

best-known value)/upperbound ), rootgap (i.e., (root node LP relaxation value - optimal or best-

known value)/root node LP relaxation value ), nodes (i.e., number of branching nodes) and time

(i.e., computational time in seconds) for each instance. We also provide the Tour Details: #cities

in the optimal/best-known solutions, including the total (i.e., total number of cities visited over

all tours), average, max, min (i.e., average, maximum and minimum number of cities per tour).

Because of the pages limitation, we only report the rootgap and Tour Details: #cities for scenarios

s = 1, but we observe similar phenomena for general value of s. The mark ‘-’ indicates we cannot

provide a gap since no upper bound was found.

Numerical results and analysis.

First of all, after comparison the optgaps and the rootgaps in the Tables 1 to 6, we can draw

several interesting conclusions: the optgaps differences show that our BP and BCP algorithms

outperform CPLEX solver for the compact formulation, and give optimal solutions for most of the

instances within a reasonable time (also note that our methods could also solve the classical TOP

(s = 0) with reasonable times, without competing with up-to-date TOP methods as our methods

are tailored for the specific TOP-DC). Moreover, the comparison of rootgaps demonstrates that our

two-index extended formulation and one-index reformulation provide tighter initial LP relaxation

values than the (arc-flow) compact formulation, accelerating the convergence to optimality of the

designed algorithms.

Secondly and not surprisingly, the smaller s, the harder the problem is to solve, as a stricter

diversity requirement is to be satisfied. Our numerical experiments also showed that BCP clearly

outperforms BP for the TOP-DC for the larger graphs. For example, among all 46 instances in

the scenario n = 66 nodes, the average computing time of BCP is faster than the BP (46 vs. 129

seconds), and the former could solve more instances to optimal (99.2% vs. 97.5%). Also, the root

gap is significantly better for BCP for n = 66. As we can observe, the larger s, the less pairs of

tours violating the diversity constraints, and less cuts are generated, which favors BCP.

Thirdly, we notice that the computational time increases with m and n for a given s, as more

iterations are needed to solve the subproblems by dynamic programming. We also observe that the

subproblems in the two-index formulations are solved more fastly but with a less tight bound, while

that in the one-index formulation are slower but with a tighter bound. Therefore, the two methods
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are somewhat complementary.
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Table 1: Computational results for TOP-DC instances with nodes n = 21 and similarity parameter s = 1

BP BCP CF Tour Details:#cities
Instance tmax m val optgap rootgap nodes time val optgap rootgap nodes time val optgap rootgap nodes time total average max min

p2.2.a 7.5 2 105 0 0 0 0 105 0 6.2% 5 0 105 0 14.6% 0 0 8 5 6 5
p2.2.b 10 130 0 0 0 0 130 0 13.3% 33 1 130 0 31.5% 0 0 10 6 7 6
p2.2.c 11.5 165 0 0 0 0 165 0 4.1% 11 1 165 0 24.3% 0 0 11 7 8 6
p2.2.d 12.5 175 0 0 0 0 175 0 5.4% 37 10 175 0 24.2% 84 0 12 7 8 7
p2.2.e 13.5 195 0 0 7 0 195 0 5.3% 63 16 195 0 20.4% 3562 2 13 8 9 7
p2.2.f 15 225 0 0 0 0 225 0 6.3% 263 157 225 0 25.5% 260 1 14 8 9 8
p2.2.g 16 225 0 0 0 0 225 - 18.2% 381 3600 225 0 32.0% 59 1 14 8 10 7
p2.2.h 17.5 250 0 0 0 7 230 - 28.6% 1432 3600 250 0 31.3% 3498 3 15 9 11 7
p2.2.i 19 255 0 0 0 1 230 - 37.0% 108 3600 255 0 35.8% 1351 2 15 9 12 6
p2.2.j 20 280 0 0 3 0 230 - 39.8% 102 3600 280 0 33.5% 5936 12 16 9 10 9
p2.2.k 22.5 290 0 3.3% 75 14 260 - 32.4% 43 3600 290 0 38.6% 12655 24 16 9 10 9
p2.3.a 5 3 95 0 9.5% 13 0 95 0 0 0 0 95 0 13.6% 0 0 6 4 5 3
p2.3.b 6.7 120 0 15.5% 37 0 120 0 7.7% 11 0 120 0 15.5% 0 0 7 4 5 4
p2.3.c 7.7 150 0 12.8% 61 0 150 0 6.3% 15 0 150 0 23.1% 0 0 8 5 7 4
p2.3.d 8.3 150 0 14.8% 179 0 150 0 8.5% 25 0 150 0 30.9% 0 0 8 5 6 4
p2.3.e 9 155 0 17.1% 543 1 155 0 17.6% 51 0 155 0 28.6% 1524 0 10 5 6 5
p2.3.f 10 170 0 12.8% 179 0 170 0 15.8% 81 3 170 0 40.4% 3506 2 10 5 7 4
p2.3.g 10.7 175 0 13.4% 1033 3 175 0 27.1% 297 33 175 0 42.6% 8592 7 11 5 8 4
p2.3.h 11.7 215 0 13.0% 109 0 215 0 12.6% 1007 506 215 0 35.1% 5236 8 12 6 8 5
p2.3.i 12.7 240 0 8.4% 129 1 240 0 14.9% 3265 2101 240 0 31.8% 8737 12 13 6 7 6
p2.3.j 13.3 255 0 12.7% 513 6 250 - 16.7% 2979 3600 255 0 30.0% 16070 38 14 7 7 7
p2.3.k 15 265 0 21.4% 3913 45 200 - 44.0% 711 3600 265 0 41.6% 12589 52 14 7 8 5
p2.4.a 3.8 4 40 0 0 0 0 40 0 0 0 0 40 0 0 0 0 3 3 3 3
p2.4.b 5 120 0 14.3% 61 0 120 0 0 0 0 120 0 18.4% 0 0 6 3 5 3
p2.4.c 5.8 135 0 0 105 0 135 0 0 0 0 135 0 26.6% 16 0 6 4 5 3
p2.4.d 6.2 155 0 8.8% 53 0 155 0 0 0 0 155 0 18.4% 65 0 7 4 6 4
p2.4.e 6.8 155 0 18.4% 225 0 155 0 3.7% 13 0 155 0 18.4% 56 0 7 4 5 4
p2.4.f 7.5 170 0 19.1% 1571 3 170 0 4.0% 41 0 170 0 30.9% 800 0 8 4 6 4
p2.4.g 8 185 0 20.3% 1357 3 185 0 5.1% 45 1 185 0 36.2% 950 0 8 4 6 4
p2.4.h 8.8 195 0 22.0% 3639 12 195 0 6.3% 65 0 195 0 32.7% 4594 2 9 5 6 5
p2.4.i 9.5 205 0 21.2% 4251 17 205 0 6.8% 343 4 205 0 43.4% 7928 10 10 5 6 5
p2.4.j 10 210 0 19.2% 3933 16 210 0 7.9% 183 5 210 0 44.7% 57460 41 10 5 7 5
p2.4.k 11.2 250 0 16.7% 1605 10 250 0 11.4% 79 33 250 0 41.3% 113906 147 12 6 7 5
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Table 2: Computational results for TOP-DC instances with nodes n = 21 and similarity parameter s = 2, 3

s=2 s=3
BP BCP CF BP BCP CF

Instance tmax m val optgap nodes time val optgap nodes time val optgap nodes time val optgap nodes time val optgap nodes time val optgap nodes time

p2.2.a 7.5 2 110 0 0 0 110 0 5 0 110 0 0 0 120 0 0 0 120 0 0 0 120 0 0 0
p2.2.b 10 140 0 5 0 140 0 11 0 140 0 938 0 150 0 0 0 150 0 3 0 150 0 0 1
p2.2.c 11.5 170 0 0 0 170 0 7 0 170 0 679 1 170 0 23 0 170 0 7 0 170 0 0 1
p2.2.d 12.5 180 0 7 0 180 0 11 2 180 0 3969 3 190 0 0 0 190 0 0 0 190 0 2540 2
p2.2.e 13.5 200 0 9 0 200 0 53 6 200 0 793 2 210 0 0 0 210 0 0 0 210 0 2482 2
p2.2.f 15 240 0 0 0 240 0 5 1 240 0 2586 3 240 0 0 0 240 0 0 0 240 0 1215 2
p2.2.g 16 245 0 0 0 245 0 833 537 245 0 316 2 265 0 0 0 265 0 143 49 265 0 1953 3
p2.2.h 17.5 260 0 14 0 230 - 2042 3600 260 0 4840 14 270 0 49 3 265 - 4425 3600 270 0 8020 21
p2.2.i 19 275 0 0 0 230 - 184 3600 275 0 2862 5 290 0 0 0 230 - 580 3600 290 0 1644 3
p2.2.j 20 285 0 29 2 230 - 116 3600 285 0 8347 25 295 0 65 7 230 - 172 3600 295 0 2689 5
p2.2.k 22.5 310 0 27 5 260 - 47 3600 310 0 18106 58 325 0 9 4 260 - 42 3600 325 0 6108 9
p2.3.a 5 3 105 0 0 0 105 0 0 0 105 0 0 0 105 0 0 0 105 0 0 0 105 0 0 0
p2.3.b 6.7 145 0 47 0 145 0 5 0 145 0 0 0 160 0 23 0 160 0 0 0 160 0 0 0
p2.3.c 7.7 175 0 59 0 175 0 5 0 175 0 0 0 190 0 13 0 190 0 0 0 190 0 0 0
p2.3.d 8.3 185 0 31 0 185 0 7 0 185 0 249 0 210 0 5 0 210 0 0 0 210 0 0 0
p2.3.e 9 185 0 145 0 185 0 39 0 185 0 1017 1 210 0 0 0 210 0 0 0 210 0 0 0
p2.3.f 10 195 0 335 2 195 0 45 0 195 0 6070 8 220 0 17 0 220 0 5 0 220 0 7388 4
p2.3.g 10.7 210 0 49 1 210 0 123 6 210 0 19040 20 225 0 89 2 225 0 63 1 225 0 24138 22
p2.3.h 11.7 235 0 233 2 235 0 599 62 235 0 5299 14 250 0 131 3 250 0 85 0 250 0 12264 17
p2.3.i 12.7 260 0 341 2 260 0 1163 286 260 0 20235 35 285 0 17 1 285 0 0 0 285 0 4973 7
p2.3.j 13.3 275 0 833 3 275 0 1797 461 275 0 17103 45 300 0 59 1 300 0 209 31 300 0 12457 22
p2.3.k 15 315 0 1597 54 310 7535 3600 315 0 20387 111 345 0 327 22 345 0 741 294 345 0 15778 38
p2.4.a 3.8 4 40 0 0 0 40 0 0 0 40 0 0 0 40 0 0 0 40 0 0 0 40 0 0 0
p2.4.b 5 140 0 0 0 140 0 0 0 140 0 0 0 140 0 0 0 140 0 0 0 140 0 0 0
p2.4.c 5.8 160 0 0 0 160 0 0 0 160 0 0 0 160 0 0 0 160 0 0 0 160 0 0 0
p2.4.d 6.2 190 0 21 0 190 0 0 0 190 0 0 0 200 0 0 0 200 0 0 0 200 0 0 0
p2.4.e 6.8 190 0 313 2 190 0 5 0 190 0 0 0 210 0 117 0 210 0 0 0 210 0 0 0
p2.4.f 7.5 205 0 199 2 205 0 0 0 205 0 1038 2 225 0 189 1 225 0 0 0 225 0 0 1
p2.4.g 8 240 0 67 0 240 0 0 0 240 0 161 0 250 0 71 0 250 0 0 0 250 0 223 1
p2.4.h 8.8 240 0 527 33 240 0 115 0 240 0 5755 7 270 0 133 8 270 0 0 0 270 0 1325 1
p2.4.i 9.5 245 0 2871 16 245 0 109 1 245 0 16634 21 280 0 245 2 280 0 5 0 280 0 5544 4
p2.4.j 10 250 0 3789 15 250 0 265 2 250 0 22868 33 285 0 371 3 285 0 39 0 285 0 10429 15
p2.4.k 11.2 285 0 1697 10 285 0 1435 58 285 0 255576 813 310 0 807 13 310 0 711 13 310 0 167708 306
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Table 3: Computational results for TOP-DC instances with nodes n = 21 and similarity parameter s = 4, 5

s=4 s=5
BP BCP CF BP BCP CF

Instance tmax m val optgap nodes time val optgap nodes time val optgap nodes time val optgap nodes time val optgap nodes time val optgap nodes time

p2.2.a 2 7.5 120 0 0 0 120 0 0 0 120 0 0 0 120 0 0 0 120 0 0 0 120 0 0 0
p2.2.b 10 160 0 0 0 160 0 0 0 160 0 0 0 160 0 0 0 160 0 0 0 160 0 0 0
p2.2.c 11.5 180 0 0 0 180 0 0 0 180 0 0 0 180 0 0 0 180 0 0 0 180 0 341 1
p2.2.d 12.5 190 0 13 0 190 0 0 0 190 0 646 1 195 0 5 1 190 0 0 0 195 0 918 1
p2.2.e 13.5 210 0 5 0 210 0 0 0 210 0 1026 1 210 0 9 1 210 0 0 1 210 0 3809 2
p2.2.f 15 240 0 0 0 240 0 0 0 240 0 7246 4 240 0 0 0 240 0 0 0 240 0 3180 3
p2.2.g 16 270 0 9 1 270 0 9 1 270 0 1683 2 280 0 0 1 280 0 0 0 280 0 450 1
p2.2.h 17.5 285 0 39 5 285 0 2239 1726 285 0 1096 3 305 0 0 0 305 0 0 0 305 0 3840 4
p2.2.i 19 305 0 7 1 300 - 1329 3600 305 0 873 3 315 0 19 2 315 - 1869 3600 315 0 891 3
p2.2.j 20 315 0 11 1 260 - 85 3601 315 0 965 3 330 0 9 1 240 - 355 3600 330 0 287 2
p2.2.k 22.5 345 0 0 1 260 - 63 3600 345 0 1056 4 355 0 25 7 260 - 85 3601 355 0 16134 33
p2.3.a 3 5 105 0 0 0 105 0 0 0 105 0 0 0 105 0 0 0 105 0 0 0 105 0 0 0
p2.3.b 6.7 180 0 0 0 180 0 0 0 180 0 0 0 180 0 0 0 180 0 0 0 180 0 0 0
p2.3.c 7.7 190 0 55 0 190 0 0 0 190 0 0 0 210 0 0 0 210 0 0 0 210 0 0 0
p2.3.d 8.3 210 0 0 0 210 0 0 0 210 0 0 0 210 0 0 0 210 0 0 0 210 0 0 0
p2.3.e 9 210 0 0 0 210 0 0 0 210 0 0 0 210 0 0 0 210 0 0 0 210 0 0 0
p2.3.f 10 230 0 21 0 230 0 0 0 230 0 3428 2 240 0 0 0 240 0 0 0 240 0 1280 2
p2.3.g 10.7 245 0 19 1 245 0 0 0 245 0 2888 3 255 0 27 0 255 0 0 0 255 0 2147 2
p2.3.h 11.7 260 0 69 2 260 0 0 0 260 0 14941 16 265 0 63 1 265 0 0 0 265 0 31662 24
p2.3.i 12.7 295 0 9 0 295 0 0 0 295 0 5234 9 295 0 9 0 295 0 0 0 295 0 10366 10
p2.3.j 13.3 310 0 105 3 310 0 0 0 310 0 5487 10 310 0 45 1 310 0 0 0 310 0 8271 10
p2.3.k 15 355 0 119 7 355 0 39 8 355 0 22882 49 360 0 7 1 360 0 0 0 360 0 30460 42
p2.4.a 4 3.8 40 0 0 0 40 0 0 0 40 0 0 0 40 0 0 0 40 0 0 0 40 0 0 0
p2.4.b 5 140 0 0 0 140 0 0 0 140 0 0 0 140 0 0 0 140 0 0 0 140 0 0 0
p2.4.c 5.8 160 0 0 0 160 0 0 0 160 0 0 0 160 0 0 0 160 0 0 0 160 0 0 0
p2.4.d 6.2 200 0 0 0 200 0 0 0 200 0 0 0 200 0 0 0 200 0 0 0 200 0 0 0
p2.4.e 6.8 240 0 0 0 240 0 0 0 240 0 0 0 240 0 0 0 240 0 0 0 240 0 0 0
p2.4.f 7.5 240 0 0 0 240 0 0 0 240 0 0 0 240 0 0 0 240 0 0 0 240 0 0 0
p2.4.g 8 250 0 369 1 250 0 0 0 250 0 0 0 280 0 0 0 280 0 0 0 280 0 0 0
p2.4.h 8.8 280 0 0 0 280 0 0 0 280 0 0 1 280 0 0 0 280 0 0 0 280 0 0 1
p2.4.i 9.5 300 0 205 1 300 0 0 0 300 0 12952 10 320 0 0 0 320 0 0 0 320 0 0 1
p2.4.j 10 300 0 251 2 300 0 0 0 300 0 188308 111 320 0 0 0 320 0 0 0 320 0 18797 13
p2.4.k 11.2 325 0 955 14 325 0 0 0 325 0 136811 125 340 0 283 5 340 0 0 0 340 0 207054 186
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Table 4: Computational results for TOP-DC instances with nodes n = 66 and similarity parameter s = 1

BP BCP CF Tour Details:#cities
Instance tmax m val optgap rootgap nodes time val optgap rootgap nodes time val optgap rootgap nodes time total average max min

p5.2.b 5 2 20 0 0 0 0 20 0 0 0 0 20 0 15.5% 0 0 6 4 4 0
p5.2.c 7.5 50 0 0 0 0 50 0 0 0 0 50 0 39.5% 426 3 8 5 5 5
p5.2.d 10 80 0 0 0 0 80 0 0 0 0 80 0 47.2% 124764 1274 11 6 6 6
p5.2.e 12.5 180 0 0 0 0 180 0 0 0 0 180 0 21.1% 938 15 14 8 8 8
p5.2.f 15 240 0 0 0 0 240 0 0 0 0 240 0 22.4% 112954 854 14 8 8 8
p5.2.g 17.5 320 0 0 0 0 320 0 0 0 0 320 0 18.4% 244002 1576 18 10 10 10
p5.2.h 20 410 0 0 0 0 410 0 0 0 0 410 0 14.0% 78026 606 20 11 11 11
p5.2.i 22.5 480 0 0 0 2 480 0 0 0 1 480 4.5% 14.6% 179569 3600 22 12 12 12
p5.2.j 25 580 0 0 0 2 580 0 0 0 3 580 0 10.4% 154262 2305 22 12 12 12
p5.2.k 27.5 670 0 0 0 3 670 0 0 0 5 670 2.2% 8.7% 280060 3600 28 15 15 15
p5.3.b 3.3 3 15 0 0 0 0 15 0 0 0 0 15 0 0 0 0 3 3 3 3
p5.3.c 5 30 0 0 11 0 30 0 0 0 0 30 0 15.5% 0 0 6 4 4 4
p5.3.d 6.7 60 0 0 7 0 60 0 0 0 0 60 0 36.9% 1062 8 7 4 4 4
p5.3.e 8.3 105 0 12.5% 83 0 105 0 0 0 0 105 0 32.3% 25439 160 11 5 6 5
p5.3.f 10 120 0 0 9 0 120 0 0 0 0 120 46.8% 47.2% 90076 3600 12 6 6 6
p5.3.g 11.7 190 0 2.6% 49 0 190 0 0 0 0 190 24.2% 37.6% 160699 3600 15 6 7 6
p5.3.h 13.3 270 0 0 7 0 270 0 0 0 0 270 16.4% 29.1% 114450 3600 18 8 8 8
p5.3.i 15 340 0 5.6% 525 17 340 0 2.9% 9 2 340 15.6% 26.7% 117824 3600 19 8 8 8
p5.3.j 16.7 475 0 1.0% 17 2 475 0 0 0 0 475 0 13.4% 156636 2608 24 9 10 9
p5.3.k 18.3 495 0 0 9 2 495 0 0 0 0 490 17.4% 22.1% 88953 3600 24 9 11 9
p5.3.l 20 605 0 1.6% 199 47 605 0 0 2 5 605 9.9% 15.4% 85900 3600 27 11 11 11
p5.3.m 21.7 660 0 0 4 1 660 0 0 0 1 660 15.2% 17.7% 49580 3600 30 12 12 12
p5.3.n 23.3 755 0 1.3% 3423 2372 755 0 0.7% 69 1359 755 11.3% 14.6% 41571 3600 32 12 13 11
p5.3.o 25 870 0 0 0 2 870 0 0 0 3 870 4.8% 10.4% 54458 3600 32 12 12 12
p5.3.p 26.7 990 0 0 0 3 990 0 0 0 5 990 1.5% 6.5% 233758 3600 38 14 14 14
p5.4.c 3.8 4 20 0 0 0 0 20 0 0 0 0 20 0 0 0 0 3 3 3 3
p5.4.d 5 40 0 0 19 0 40 0 0 0 0 40 0 15.5% 0 0 6 4 4 4
p5.4.e 6.2 40 0 0 19 0 40 0 0 0 0 40 0 61.9% 2432 35 6 4 4 4
p5.4.f 7.5 90 0 10.0% 659 2 90 0 0 0 0 90 23.2% 45.5% 153157 3600 10 4 5 4
p5.4.g 8.8 150 0 6.3% 177 0 150 0 0 0 0 150 17.6% 35.9% 132553 3600 14 5 6 5
p5.4.h 10 160 0 0 35 1 160 0 0 0 0 160 54.1% 47.2% 70466 3600 14 6 6 6
p5.4.i 11.2 240 0 7.7% 1335 13 240 0 0 0 0 240 31.5% 36.0% 90799 3600 18 6 7 5
p5.4.j 12.5 350 0 2.8% 149 2 350 0 0 0 0 350 13.8% 23.3% 76102 3600 22 7 8 7
p5.4.k 13.8 360 0 0 9 1 360 0 0 0 0 360 35.9% 33.3% 43969 3600 22 8 8 8
p5.4.l 15 440 0 8.3% 17303 709 440 0 1.6% 21 6 440 29.7% 28.8% 31098 3600 24 8 8 8
p5.4.m 16.2 560 0 9.7% 6341 404 560 0 1.1% 99 61 550 14.2% 21.2% 67376 3600 28 9 9 9
p5.4.n 17.5 640 0 0 7 1 640 0 0 0 0 640 15.0% 18.4% 40823 3600 30 10 10 10
p5.4.o 18.8 700 0 2.8% 4039 746 700 0 0 3 3 675 22.4% 22.6% 27690 3600 32 10 10 10
p5.4.p 20 800 0 2.4% 5575 1717 800 0 0 2 2 800 13.6% 16.1% 24760 3600 34 11 11 11
p5.4.q 21.2 880 0 0 9 3 880 0 0 0 1 875 12.6% 15.5% 23425 3600 38 12 12 12
p5.4.r 22.5 960 0 0 19 10 960 0 0 0 1 875 23.3% 22.2% 14687 3600 42 12 12 12
p5.4.s 23.8 1060 0 1.9% 3063 3600 1060 0 0 2 102 1030 13.5% 15.1% 13354 3600 40 12 12 12
p5.4.t 25 1160 0 0 19 19 1160 0 0 0 3 1150 8.4% 11.2% 15058 3600 42 12 12 12
p5.4.u 26.2 1300 0 0 19 24 1300 0 0 0 4 1300 1.8% 5.6% 17527 3600 46 13 13 13
p5.4.v 27.5 1330 0.4% 0.8% 1167 3600 1325 - 0.5% 65 3600 1330 7.7% 9.4% 15318 3600 50 14 15 14
p5.4.w 28.8 1430 2.7% 3.4% 877 3600 1365 - 7.1% 39 3600 1440 6.0% 7.5% 35398 3600 50 15 15 15
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Table 5: Computational results for TOP-DC instances with nodes n = 66 and similarity parameter s = 2, 3

s=2 s=3
BP BCP CF BP BCP CF

Instance tmax m val optgap nodes time val optgap nodes time val optgap nodes time val optgap nodes time val optgap nodes time val optgap nodes time

p5.2.b 5 2 20 0 0 0 20 0 0 0 20 0 0 0 20 0 0 0 20 0 0 0 20 0 0 0
p5.2.c 7.5 50 0 0 0 50 0 0 0 50 0 707 5 50 0 0 0 50 0 0 0 50 0 620 3
p5.2.d 10 80 0 0 0 80 0 0 0 80 0 197299 1621 80 0 0 0 80 0 0 0 80 0 115221 479
p5.2.e 12.5 180 0 0 0 180 0 0 0 180 0 2602 16 180 0 0 0 180 0 0 0 180 0 923 10
p5.2.f 15 240 0 0 0 240 0 0 0 240 0 38565 375 240 0 0 0 240 0 0 0 240 0 82859 600
p5.2.g 17.5 320 0 0 0 320 0 0 0 320 0 257382 2305 320 0 0 0 320 0 0 0 320 0 314991 2987
p5.2.h 20 410 0 0 0 410 0 0 0 410 0 172183 1192 410 0 0 0 410 0 0 1 410 0 179132 1382
p5.2.i 22.5 480 0 0 3 480 0 0 2 480 7.6% 153833 3600 480 0 0 0 480 0 0 1 480 6.7% 169463 3600
p5.2.j 25 580 0 0 2 580 0 0 3 580 0 282868 2058 580 0 0 0 580 0 0 3 580 0 202340 1289
p5.2.k 27.5 670 0 0 3 670 0 0 6 670 3.3% 283466 3600 670 0 0 3 670 0 0 5 670 2.8% 291199 3600
p5.3.b 3.3 3 15 0 0 0 15 0 0 0 15 0 0 0 15 0 0 0 15 0 0 0 15 0 0 0
p5.3.c 5 30 0 0 0 30 0 0 0 30 0 0 0 30 0 0 0 30 0 0 0 30 0 0 0
p5.3.d 6.7 60 0 0 0 60 0 0 0 60 0 1986 10 60 0 0 0 60 0 0 0 60 0 1185 8
p5.3.e 8.3 110 0 23 0 110 0 0 0 110 0 14449 65 115 0 0 0 115 0 0 0 115 0 1883 16
p5.3.f 10 120 0 9 0 120 0 0 0 120 44.8% 111976 3600 120 0 9 0 120 0 0 0 120 46.7% 106583 3600
p5.3.g 11.7 190 0 89 0 190 0 0 0 190 21.4% 187139 3600 190 0 59 0 190 0 0 0 190 33.8% 111447 3600
p5.3.h 13.3 270 0 9 0 270 0 0 0 270 16.5% 117954 3600 270 0 19 1 270 0 0 0 270 19.6% 146728 3600
p5.3.i 15 340 0 715 27 340 0 0 3 340 18.3% 102437 3600 350 0 119 6 350 0 0 0 350 12.3% 159817 3600
p5.3.j 16.7 475 0 31 2 475 0 0 1 475 0 170706 1328 475 0 35 3 475 0 0 0 475 0 179641 2260
p5.3.k 18.3 495 0 9 1 495 0 0 0 495 17.7% 119686 3600 495 0 9 1 495 0 0 0 495 16.8% 111741 3600
p5.3.l 20 615 0 7 2 615 0 0 0 615 8.2% 88041 3600 615 0 9 3 615 0 0 0 615 7.7% 101447 3600
p5.3.m 21.7 660 0 7 3 660 0 0 1 660 14.9% 72845 3600 660 0 9 4 660 0 0 1 660 15.0% 78673 3600
p5.3.n 23.3 755 0.1% 4317 3600 755 0 53 571 755 11.7% 66135 3600 760 0 959 735 760 0 1 12 760 9.5% 83680 3600
p5.3.o 25 870 0 0 3 870 0 0 3 870 4.9% 66015 3600 870 0 0 3 870 0 0 3 870 6.5% 84314 3600
p5.3.p 26.7 990 0 0 2 990 0 0 4 990 2.3% 135899 3600 990 0 0 3 990 0 0 5 990 1.3% 254776 3600
p5.4.c 3.8 4 20 0 0 0 20 0 0 0 20 0 0 0 20 0 0 0 20 0 0 0 20 0 0 0
p5.4.d 5 40 0 0 0 40 0 0 0 40 0 0 0 40 0 0 0 40 0 0 0 40 0 0 0
p5.4.e 6.2 40 0 0 0 40 0 0 0 40 0 4710 32 40 0 0 0 40 0 0 0 40 0 5223 40
p5.4.f 7.5 100 0 27 0 100 0 0 0 100 0 139564 1255 100 0 0 0 100 0 0 0 100 0 314314 2136
p5.4.g 8.8 150 0 147 1 150 0 0 0 150 19.2% 127068 3600 150 0 295 3 150 0 0 0 150 13.4% 175178 3600
p5.4.h 10 160 0 39 1 160 0 0 0 160 53.3% 78823 3600 160 0 9 0 160 0 0 0 160 52.7% 93433 3600
p5.4.i 11.2 240 0 2193 39 240 0 0 0 240 29.8% 81495 3600 250 0 255 7 250 0 0 0 250 21.2% 116101 3600
p5.4.j 12.5 350 0 177 4 350 0 0 0 350 12.1% 90867 3600 350 0 147 5 350 0 0 0 350 10.7% 107523 3600
p5.4.k 13.8 360 0 25 1 360 0 0 0 360 32.8% 68930 3600 360 0 49 3 360 0 0 0 360 32.6% 62711 3600
p5.4.l 15 440 0 44685 2274 440 0 55 9 440 28.1% 53302 3600 460 0 1123 562 460 0 0 0 460 20.3% 55297 3600
p5.4.m 16.2 560 0 12455 946 560 0 99 27 560 13.8% 89844 3600 560 0 15537 1208 560 0 0 13 560 13.2% 72679 3600
p5.4.n 17.5 640 0 9 1 640 0 0 0 640 14.4% 64178 3600 640 0 29 4 640 0 0 0 640 14.5% 64515 3600
p5.4.o 18.8 700 0 5315 1072 700 0 0 0 700 17.8% 48070 3600 710 0 719 138 710 0 0 1 700 18.2% 42092 3600
p5.4.p 20 820 0 13 3 820 0 0 0 810 11.7% 33668 3600 820 0 29 8 820 0 0 0 800 12.1% 21170 3600
p5.4.q 21.2 880 0 19 8 880 0 0 2 880 12.2% 31255 3600 880 0 19 9 880 0 0 0 875 12.7% 38286 3600
p5.4.r 22.5 960 0 19 12 960 0 0 1 940 14.6% 22982 3600 960 0 19 13 960 0 0 2 920 16.5% 24167 3600
p5.4.s 23.8 1080 0 19 16 1080 0 0 2 1050 10.9% 17112 3600 1080 0 19 16 1080 0 0 3 1050 11.6% 33539 3600
p5.4.t 25 1160 0 9 9 1160 0 0 3 1160 7.2% 22197 3600 1160 0 39 36 1160 0 0 3 1160 7.5% 29299 3600
p5.4.u 26.2 1300 0 9 14 1300 0 0 4 1300 2.3% 19086 3600 1300 0 27 41 1300 0 0 5 1300 2.0% 23510 3600
p5.4.v 27.5 1340 0 47 87 1330 0 63 1807 1330 7.2% 26042 3600 1340 0 5 9 1340 0 0 26 1335 6.8% 34124 3600
p5.4.w 28.8 1470 0.1% 1071 3600 1465 0 25 1301 1470 2.9% 45733 3600 1470 0.3% 1313 3600 1470 0 0 14 1470 3.8% 123114 3600
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Table 6: Computational results for TOP-DC instances with nodes n = 66 and similarity parameter s = 4, 5

s=4 s=5
BP BCP CF BP BCP CF

Instance tmax m val optgap nodes time val optgap nodes time val optgap nodes time val optgap nodes time val optgap nodes time val optgap nodes time

p5.2.b 5 2 20 0 0 0 20 0 0 0 20 0 0 0 20 0 0 0 20 0 0 0 20 0 0 0
p5.2.c 7.5 50 0 0 0 50 0 0 0 50 0 1284 6 50 0 0 0 50 0 0 0 50 0 0 3
p5.2.d 10 80 0 0 0 80 0 0 0 80 0 126747 816 80 0 0 0 80 0 0 0 80 0 180390 658
p5.2.e 12.5 180 0 0 0 180 0 0 0 180 0 2630 16 180 0 0 0 180 0 0 0 180 0 2493 9
p5.2.f 15 240 0 0 0 240 0 0 0 240 0 76630 657 240 0 0 0 240 0 0 0 240 0 121287 461
p5.2.g 17.5 320 0 0 0 320 0 0 1 320 0 226052 1542 320 0 0 0 320 0 0 0 320 0 170443 840
p5.2.h 20 410 0 0 0 410 0 0 1 410 0 155374 663 410 0 0 0 410 0 0 1 410 0 188317 526
p5.2.i 22.5 480 0 0 1 480 0 0 1 480 5.3% 191868 3600 480 0 0 2 480 0 0 2 480 3.8% 246879 3600
p5.2.j 25 580 0 0 2 580 0 0 3 580 0 273288 2022 580 0 0 2 580 0 0 3 580 0 149652 485
p5.2.k 27.5 670 0 0 3 670 0 0 6 670 1.9% 400063 3600 670 0 0 4 670 0 0 6 670 0 697241 3031
p5.3.b 3.3 3 15 0 0 0 15 0 0 0 15 0 0 0 15 0 0 0 15 0 0 0 15 0 0 0
p5.3.c 5 30 0 0 0 30 0 0 0 30 0 0 0 30 0 0 0 30 0 0 0 30 0 0 0
p5.3.d 6.7 60 0 0 0 60 0 0 0 60 0 1047 10 60 0 0 0 60 0 0 0 60 0 1483 5
p5.3.e 8.3 120 0 0 0 120 0 0 0 120 0 188 10 120 0 0 0 120 0 0 0 120 0 253 6
p5.3.f 10 120 0 0 0 120 0 0 0 120 47.0% 121687 3600 120 0 0 0 120 0 0 0 120 43.5% 203246 3600
p5.3.g 11.7 195 0 9 0 195 0 0 0 195 21.0% 168609 3600 195 0 0 1 195 0 0 0 195 22.4% 194641 3600
p5.3.h 13.3 270 0 9 0 270 0 0 0 270 16.5% 124716 3600 270 0 19 1 270 0 0 0 270 16.3% 181429 3600
p5.3.i 15 360 0 7 0 360 0 0 0 360 11.2% 131226 3600 360 0 9 1 360 0 0 0 360 10.9% 165316 3600
p5.3.j 16.7 475 0 35 3 475 0 0 0 475 0 179774 2141 475 0 35 3 475 0 0 0 475 0 149512 792
p5.3.k 18.3 495 0 17 3 495 0 0 0 495 17.4% 101592 3600 495 0 17 3 495 0 0 0 495 15.8% 182101 3600
p5.3.l 20 615 0 9 3 615 0 0 0 615 7.9% 100710 3600 615 0 9 3 615 0 0 0 615 7.5% 126563 3600
p5.3.m 21.7 660 0 9 5 660 0 0 1 660 14.7% 94375 3600 660 0 19 11 660 0 0 1 660 13.7% 137257 360
p5.3.n 23.3 765 0 29 18 765 0 0 0 765 9.4% 77076 3600 765 0 9 9 765 0 0 4 765 9.4% 128675 3600
p5.3.o 25 870 0 0 3 870 0 0 3 870 5.7% 90890 3600 870 0 0 3 870 0 0 0 870 5.6% 163549 3600
p5.3.p 26.7 990 0 7 10 990 0 0 5 990 1.3% 213965 3600 990 0 5 11 990 0 0 5 990 1.7% 226524 3600
p5.4.c 3.8 4 20 0 0 0 20 0 0 0 20 0 0 0 20 0 0 0 20 0 0 0 20 0 0 0
p5.4.d 5 40 0 0 0 40 0 0 0 40 0 0 0 40 0 0 0 40 0 0 0 40 0 0 0
p5.4.e 6.2 40 0 0 0 40 0 0 0 40 0 26559 134 40 0 0 0 40 0 0 0 40 0 23059 78
p5.4.f 7.5 100 0 0 0 100 0 0 0 100 0 293665 1611 100 0 0 0 100 0 0 0 100 0 131072 556
p5.4.g 8.8 160 0 0 6 160 0 0 0 160 0 228992 3347 160 0 0 0 160 0 0 0 160 0 104641 750
p5.4.h 10 160 0 0 0 160 0 0 0 160 54.2% 87427 3600 160 0 0 0 160 0 0 0 160 51.8% 144135 3600
p5.4.i 11.2 260 0 27 0 260 0 0 0 260 19.3% 95751 3600 260 0 0 0 260 0 0 0 260 16.3% 178557 3600
p5.4.j 12.5 350 0 175 3 350 0 0 0 350 12.3% 99120 3600 350 0 331 11 350 0 0 0 350 8.8% 158193 3600
p5.4.k 13.8 360 0 39 1 360 0 0 0 360 32.1% 80378 3600 360 0 39 2 360 0 0 0 360 31.0% 98499 3600
p5.4.l 15 480 0 25 3 480 0 0 0 480 15.9% 80981 3600 480 0 27 2 480 0 0 0 480 16.4% 95923 3600
p5.4.m 16.2 560 0 35207 3010 560 0 55 9 560 12.8% 79605 3600 590 0 4715 479 590 0 0 0 590 7.7% 90738 3600
p5.4.n 17.5 640 0 19 2 640 0 0 0 640 15.0% 67292 3600 640 0 39 6 640 0 0 0 640 14.1% 108516 3600
p5.4.o 18.8 720 0 29 5 720 0 0 1 710 16.2% 48136 3600 720 0 37 10 720 0 0 1 710 16.3% 85323 3600
p5.4.p 20 820 0 9 4 820 0 0 0 820 9.9% 69294 3600 820 0 29 11 820 0 0 0 810 10.1% 91337 3600
p5.4.q 21.2 880 0 37 10 880 0 0 2 880 11.8% 47105 3600 880 0 31 18 880 0 0 2 880 11.4% 89259 3600
p5.4.r 22.5 960 0 77 43 960 0 0 1 935 14.4% 26341 3600 960 0 49 91 960 0 0 2 960 11.8% 81063 3600
p5.4.s 23.8 1080 0 27 21 1080 0 0 2 1050 10.9% 31850 3600 1080 0 29 38 1080 0 0 3 1070 7.6% 78796 3600
p5.4.t 25 1160 0 9 10 1160 0 0 3 1160 7.2% 28329 3600 1160 0 39 57 1160 0 0 3 1160 6.2% 72292 3600
p5.4.u 26.2 1300 0 25 41 1300 0 0 4 1300 2.1% 80058 3600 1300 0 29 72 1300 0 0 5 1300 1.0% 76979 3600
p5.4.v 27.5 1340 0 9 12 1340 0 0 25 1340 6.8% 69760 3600 1340 0 19 47 1340 0 0 24 1340 6.8% 159074 3600
p5.4.w 28.8 1480 0 11 23 1480 0 0 7 1480 3.0% 124195 3600 1480 0 9 25 1480 0 0 8 1480 2.9% 184502 3600
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6.2. Tests on a Chinese OTA dataset

Dataset description.

The Chinese OTA niding.net provided us with 1379 orders information of tour products sold

in the last three years. These orders cover famous tourism destinations distributed among Europe,

Asia and North/South America. To construct our dataset, the tour products were decomposed into

several elementary components, including the visited cities and the relevant stay times and costs. In

particular, 40 European cities (see Figure 3.a) among them were selected to represent the nodes in our

Europe dataset (EuroData). For the sake of triangular inequality requirement on travel times/costs

in solving subproblems, only the direct flights between cities were considered in our EuroData, even

though some close cities without flights may be connected by railways. Moreover, the attractiveness

(score) of destinations are measured by the “nights spent in tourist accommodation” in all NUTS-2

regions (EuroStat, 2016). The basic information of the selected European 40 cities are summarized

in Table 7.

Table 7: Basic information of the selected 40 cities in EuroData

city node # stay days daily cost* $ value** score/day city node stay days daily cost $ value score/day

Paris (Hub) 0 3 143 71.2 19 Ljubljana 20 1 91 6.8 3
Amsterdam 1 2 97 27.4 13 London 21 3 204 123.9 20

Athens 2 2 92 57.3 17 Lyon 22 2 152 49.1 16
Barcelona 3 3 131 79.8 20 Madrid 23 2 171 66.2 18
Belgrade 4 1 109 6.6 3 Malaga 24 1 117 9.0 4

Berlin 5 2 117 30.9 13 Malta 25 1 142 25.1 12
Bordeaux 6 2 118 32.9 14 Milan 26 2 170 37.2 15
Brussels 7 1 119 21.1 11 Munich 27 2 113 35.1 15

Budapest 8 1 74 10.5 4 Nice 28 2 78 51.8 17
Copenhagen 9 1 91 10.7 5 Oslo 29 1 83 7.0 3

Dublin 10 1 111 23.8 12 Prague 30 1 96 16.8 10
Dusseldorf 11 1 112 11.3 5 Reykjavik 31 1 165 7.8 3
Florence 12 2 106 44.2 16 Rome 32 2 118 32.1 14
Frankfurt 13 1 194 18.3 11 Split 33 3 126 74.2 19
Geneva 14 1 175 14.1 8 Stockholm 34 1 66 13.4 7

Hamburg 15 1 99 13.3 7 Stuttgart 35 1 227 11.7 6
Helsinki 16 1 110 5.5 3 Venice 36 2 74 65.4 18
Istanbul 17 1 179 17.6 10 Vienna 37 1 73 14.8 8

Koln 18 1 102 12.8 6 Warsaw 38 1 75 8.1 3
Lisbon 19 1 109 16.3 9 Zurich 39 1 180 15.7 9

*Daily cost is the hotel price from booking.com
**This value is the real number of “nights spent in tourist accommodation” (in millions) (EuroStat, 2016).

After analyzing the orders information in detail, we found that a tourist spent on average around

USD 2300 for a trip of around 10 days in Europe. In our test instances, the travel budget is restricted

by cmax ∈ {1500, 2300} USD and the travel time is limited by tmax ∈ {10, 14} days. By varying m

and s, we get the results in Table 8, where the composition of each tour is shown (with its collected

score in brackets).
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Table 8: Computational results for TOP-DC instances with EuroData from a Chinese OTA company

(tmax, cmax) m s score avgscore/day gap t Tour1 Tour2 Tour3 Tour4 actual uniformity

(10,1500) 3 0 479 16.4 0 0 0-10-23-3-0 (165) 0-21-30-36-0 (163) 0-22-32-2-0 (151) 0.33
(10,2300) 3 0 497 17.1 0 1 0-3-21-0 (177) 0-22-23-36-0 (161) 0-33-13-28-0 (159) 0.33
(14,1500) 3 0 526 16.0 0 0 0-2-23-12-0 (159) 0-27-33-5-0 (170) 0-28-3-30-36-0 (197) 0.33
(14,2300) 3 0 671 16.1 0 16 0-1-6-22-28-32-0 (205) 0-12-27-33-13-26-0 (217) 0-21-23-36-3-0 (249) 0.33
(10,1500) 4 0 638 16.4 0 4 0-10-23-3-0 (165) 0-21-30-36-0 (163) 0-22-32-2-0 (151) 0-28-7-33-0 (159) 0.25
(10,2300) 4 0 647 16.7 0 10 0-3-21-0 (177) 0-10-26-33-0 (156) 0-22-27-12-0 (151) 0-23-28-36-0 (163) 0.25
(14,1500) 4 0 671 16.3 0 4 0-2-23-12-0 (159) 0-27-33-5-0 (170) 0-28-3-36-30-0 (197) 0-6-21-0 (145) 0.25
(14,2300) 4 0 830 15.3 2.4 3600 0-1-5-7-26-30-36-0 (196) 0-2-3-10-22-0 (195) 0-6-23-27-33-13-0 (219) 0-12-21-28-32-39-0 (220) 0.25

(10,1500) 3 1 492 16.9 0 0 0-10-23-3-0 (165) 0-21-30-36-0 (163) 0-36-3-13-0 (164) 0.43
(10,2300) 3 1 504 17.5 0 0 0-3-21-0 (177) 0-10-21-28-0 (163) 0-36-7-21-0 (164) 0.44
(14,1500) 3 1 535 17.3 0 1 0-3-22-28-0 (183) 0-21-30-36-0 (163) 0-36-3-23-0 (189) 0.43
(14,2300) 3 1 694 16.6 0 45 0-21-23-3-36-0 (249) 0-3-12-13-27-28-0 (224) 0-26-33-7-28-22-0 (221) 0.39
(10,1500) 4 1 651 16.9 0 1 0-10-23-3-0 (165) 0-21-30-36-0 (163) 0-36-3-13-0 (164) 0-22-28-36-0 (159) 0.33
(10,2300) 4 1 669 17.3 0 2 0-3-21-0 (177) 0-10-21-28-0 (163) 0-36-7-21-0 (164) 0-10-23-3-0 (165) 0.39
(14,1500) 4 1 718 16.7 0 14 0-3-22-28-0 (183) 0-2-3-36-0 (187) 0-6-28-32-36-0 (183) 0-10-23-3-0 (165) 0.36
(14,2300) 4 1 917 16.5 0 374 0-21-23-3-36-0 (249) 0-6-23-27-33-13-0 (219) 0-12-27-28-32-36-0 (217) 0-21-22-5-33-0 (232) 0.35

(10,1500) 3 2 492 16.9 0 1 0-10-23-3-0 (165) 0-21-30-36-0 (163) 0-36-3-13-0 (164) 0.43
(14,1500) 3 2 575 17.1 0 0 0-2-3-36-0 (187) 0-36-3-23-0 (189) 0-28-36-3-25-0 (199) 0.56
(14,2300) 3 2 726 17.8 0 0 0-3-21-22-28-0 (243) 0-3-21-33-0 (234) 0-21-23-3-36-0 (249) 0.52
(10,1500) 4 2 656 16.9 0 4 0-10-23-3-0 (165) 0-21-30-36-0 (163) 0-36-3-13-0 (164) 0-3-7-36-0 (164) 0.38
(14,1500) 4 2 760 17.2 0 1 0-2-3-36-0 (187) 0-36-3-23-0 (189) 0-36-28-3-25-0 (199) 0-36-3-22-0 (185) 0.46
(14,2300) 4 2 950 17.4 0 77 0-3-21-22-28-0 (243) 0-3-21-33-0 (234) 0-21-23-3-36-0 (249) 0-1-7-21-28-36-0(224) 0.53

Numerical results and analysis.

In Table 8, we first observe that with the same resource capacity, the total number of distinct

cities visited by the m tours decreases with s, possibly in large amounts (e.g. for (14, 2300) and

m = 4, the selected tours visit 20, 13 and 9 cities in total for s = 0, 1, 2, respectively). As expected,

this demonstrates the opportunity to condense potential destinations into a small range of attractive

cities, in order to bargain better prices with suppliers. Moreover, the total score collected in a tour

package naturally increases with capacities (tmax, cmax), while the average score per day does not

necessarily follow the same trend, unless a certain level of similarity is allowed and each tour is long

enough. The reason is that for a lower s and a few short tours planning, it forces the tour to discard

some most attractive cities and select some with lower scores. Also, we note that for a given setting,

increasing m by one may completely reshuffle the composition of the tours (e.g., there is only one

common tour in the solutions of rows (14, 1500)|3|1 and (14, 1500)|4|1, and in the solutions of rows

(14, 2300)|3|1 and (14, 2300)|4|1), whereas in some other cases the m existing tours are kept when

increasing m (see the rows for s = 2).

Insights for digital travel.

As mentioned earlier, the OTA is recommended to offer several potential package tours to cus-

tomers in a given range of time and budget, rather than a single one. This enables to increase the

opportunities to satisfy the customers’ individual preference, and thus successful sales transactions.

By increasing the number of common cities between tours without sacrificing diversity of the offer,

the company confirmed they obtained better discounts from suppliers with economies of scale, which

finally brings customer value in a win-win logic. As shown in Figure 3, the occurrence of popular

cities and thus the average score of tours increase with the similarity parameter, indicating that the

company has more chance to aggregate their customers into these attractive destinations. This is an
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(a) Initial 40 cities (b) s = 0 (20 cities selected)

(c) s = 1 (13 cities selected) (d) s = 2 (9 cities selected)

Figure 3: The generated 4 tours under capacity (14, 2300) for different similarity parameter s

argument for not being too restrictive in the similarity parameter s when managing the trade-off be-

tween diversification of products, leading to more flexible choice for customers, and standardization,

meaning higher discounts from suppliers by economies of scale.

The last column “actual uniformity” in Table 8 indicates the percentage of tours where a city is

present in average. The value 0.33 in the first row means that in average, a city is present in 33% of

the 3 tours proposed in the optimal solution, hence in 1 tour over 3. A low uniformity means high

diversity. Naturally, the uniformity increases with a higher s for a given setting of other parameters.

Only rows (10, 1500)|3|1 and (10, 1500)|3|2 compare the same because the selected tours for s = 2

have similarity one in the diversity constraints, which is due to tight time capacity limiting the tour

length and feasible combinations of cities. However, we observe that the increase of uniformity with

s is generally lower for the highest time and cost capacities (see rows (14, 2300)|3|0 vs (14, 2300)|3|1).

The reason is that less tight capacities on the tours provides more flexibility to find multiple tours

with less common nodes. Higher customer resources favor the diversity of the products offered,

which makes sense.

A related issue is the integration of the few scenarios of different profiles (tmax, cmax) typically

asked by customers into a single decision model, to concentrate the whole demand on fewer selected

cities in a global view, thus linking all scenarios.
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Last but not least, regarding real-time changes on flights and hotels prices, it is convenient

for the company to implement our TOP-DC tool to update their travel products dynamically and

automatically, thus saving labor force for collecting data and re-building package products.

7. Conclusion

In this paper, we studied a problem of travel product design for online travel agencies. Our

research is motivated by the tour design operations of a Chinese company. We formulated the

problem as a Team Orienteering Problem with additional Diversity Constraints (TOP-DC). To

manage the trade-off between customers’ freedom of choice and suppliers discount, we design a

collection of tours with controlled diversity between tours. The conclusions are twofold. On a

tractability point of view, the two extended formulations were demonstrated to perform well on our

numerical experiments, with most of instances solved to optimality. The first extended formulation

is based on two-index assignment variables and a compact set of constraints, whereas the second one

is based on one-index tour selection variables and an exponential-size set of diversity constraints to

be generated on the fly. The Branch-Cut-and-Price method (column-and-row generation) associated

with the one-index formulation generally outperformed the Branch-and-Price method based on the

two-index formulation for larger graphs.

On managerial insights, we conclude that the similarity parameter between tours is a key decision

for online travel agencies to drive their sales performance. We found that one can align the goals

of satisfying individual preferences of customers and gaining discounting benefits from suppliers by

economies of scale. A reasonable setting is to limit the similarity between tours to less than 50%

of the cities (typically, two cities in common for package tours with 4 or 5 cities), in order to give

enough freedom to a customer for selecting one tour among the m tours proposed in her budget and

time limit, while concentrating the whole demand on much fewer cities than in the classical TOP,

which only allows completely disjoint tours. Lastly, as the decision model applies to a digital business

where flights, hotels and costs data can be dynamically updated, the decision tool can help to save

labor force for collecting data, in a very competitive environment, and re-design automatically the

offer of online-products based on new data. An interesting avenue of future research would also be

to control the number of cities selected overall, if several combinations of budget and time limit were

put inside the same model.
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Divsalar, A., Vansteenwegen, P., Sörensen, K., & Cattrysse, D. (2014). A memetic algorithm for the

orienteering problem with hotel selection. European Journal of Operational Research, 237 , 29–49.

Enoch, Y. (1996). Contents of tour packages: A cross-cultural comparison. Annals of Tourism

Research, 23 , 599–616.

EuroStat (2016). Nights spent in tourist accommodation, by NUTS 2 regions, 2016.

https://ec.europa.eu/eurostat/statistics-explained/index.php?title=File:

Nights_spent_in_tourist_accommodation,_by_NUTS_2_regions,_2016_(million_nights_

spent_by_residents_and_non-residents)-RYB18.png.

Feillet, D., Dejax, P., Gendreau, M., & Gueguen, C. (2004). An exact algorithm for the elementary

shortest path problem with resource constraints: Application to some vehicle routing problems.

Networks, 44 , 216–229.

Fischetti, M., Gonzalez, J. J. S., & Toth, P. (1998). Solving the orienteering problem through

branch-and-cut. INFORMS Journal on Computing , 10 , 133–148.

Gavalas, D., Konstantopoulos, C., Mastakas, K., & Pantziou, G. (2014). A survey on algorithmic

approaches for solving tourist trip design problems. Journal of Heuristics, 20 , 291–328.

Gianessi, P., Alfandari, L., Létocart, L., & Calvo, R. W. (2016). A column generation based heuristic

for the multicommodity-ring vehicle routing problem. Transportation Research Procedia, 12 , 227–

238.

35

https://ec.europa.eu/eurostat/statistics-explained/index.php?title=File:Nights_spent_in_tourist_accommodation,_by_NUTS_2_regions,_2016_(million_nights_spent_by_residents_and_non-residents)-RYB18.png
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=File:Nights_spent_in_tourist_accommodation,_by_NUTS_2_regions,_2016_(million_nights_spent_by_residents_and_non-residents)-RYB18.png
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=File:Nights_spent_in_tourist_accommodation,_by_NUTS_2_regions,_2016_(million_nights_spent_by_residents_and_non-residents)-RYB18.png


Godart, J.-M. (1999). Combinatorial optimisation based decision support system for trip planning.

In Information and Communication Technologies in Tourism 1999 (pp. 318–327). Springer.

Gunawan, A., Lau, H. C., & Vansteenwegen, P. (2016). Orienteering problem: A survey of recent

variants, solution approaches and applications. European Journal of Operational Research, 255 ,

315–332.

Gutiérrez-Jarpa, G., Desaulniers, G., Laporte, G., & Marianov, V. (2010). A branch-and-price

algorithm for the vehicle routing problem with deliveries, selective pickups and time windows.

European Journal of Operational Research, 206 , 341–349.

Herzog, D., & Wörndl, W. (2014). A travel recommender system for combining multiple travel

regions to a composite trip. In CBRecSys@ RecSys (pp. 42–48).

Heung, V. C., & Chu, R. (2000). Important factors affecting hong kong consumers choice of a travel

agency for all-inclusive package tours. Journal of Travel Research, 39 , 52–59.

Hu, Q., & Lim, A. (2014). An iterative three-component heuristic for the team orienteering problem

with time windows. European Journal of Operational Research, 232 , 276–286.

Irnich, S., & Desaulniers, G. (2005). Shortest path problems with resource constraints. In Column

Generation (pp. 33–65). New York: Springer.

Ke, L., Xu, Z., Feng, Z., Shang, K., & Qian, X. (2013). Proportion-based robust optimization and

team orienteering problem with interval data. European Journal of Operational Research, 226 ,

19–31.

Keshtkaran, M., Ziarati, K., Bettinelli, A., & Vigo, D. (2016). Enhanced exact solution methods for

the team orienteering problem. International Journal of Production Research, 54 , 591–601.

Labadie, N., Mansini, R., Wolfler Calvo, R., & Melechovskỳ, J. (2012). The team orienteering prob-
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