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Abstract—In this work, we proposed a novel method, called
Local Modified Zernike Moment per unit Mass (LMZMPM),
for face recognition, which is invariant to illumination, scal-
ing, noise, in-plane rotation, and translation, along with other
orthogonal and inherent properties of the Zernike Moments
(ZMs). The proposed LMZMPM is computed for each pixel in
a neighborhood of size 3 × 3, and then considers the complex
tuple that contains both the phase and magnitude coefficients
of LMZMPM as the extracted features. As it contains both the
phase and the magnitude components of the complex feature, it
has more information about the image and thus preserves both
the edge and structural information. We also propose a hybrid
similarity measure, combining the Jaccard Similarity with the L1
distance, and applied to the extracted feature set for classification.
The feasibility of the proposed LMZMPM technique on varying
illumination has been evaluated on the CMU-PIE and the
extended Yale B databases with an average Rank-1 Recognition
(R1R) accuracy of 99.8% and 98.66% respectively. To assess the
reliability of the method with variations in noise, rotation, scaling,
and translation, we evaluate it on the AR database and obtain an
average R1R higher than that of recent state-of-the-art methods.
The proposed method shows a very high recognition rate on
Heterogeneous Face Recognition as well, with 100% on CUFS,
and 98.80% on CASIA-HFB.

Index Terms—LMZMPM, Zernike Moments, face recognition,
heterogeneous face recognition,similarity measure.

I. INTRODUCTION

BESIDES being proficient in identifying faces of individ-
uals, human beings are also capable of relating such

faces with the right individual. Inherently, a human being
can remember hundreds or even thousands of faces and can
recognize a face with the state of different facial features and
facial contours in different perspective variations, illumina-
tions, ages, etc. As a consequence, any approach for automatic
recognition of faces could be designed wherein the geometrical
positions of the different facial features are measured first, and
then the details of each feature are used for further matching
[1], [2]. However, the problem becomes very challenging when
the other barriers, like noise, disturbance, scaling, occlusion,
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rotational changes, come together. A serious interest in the
domain of face recognition is, therefore, to develop an auto-
matic face recognition system that is robust to variance in the
pose, illumination, expression, and occlusion. Moreover, the
system has to take into consideration the computational cost
for real-time applications.

The growth of face recognition techniques over the past
three decades has been substantial, as benchmarked by the
National Institute of Standards and Technology (NIST) [3].
Earlier approaches proposed by the researchers are mainly
application-oriented. Some of the popular approaches use the
Eigenfaces [4], Fisherfaces [5], Laplacian faces [6], convolu-
tional neural networks [7], [8] and others [9], [10] for recog-
nition purpose. These algorithms work fine under a controlled
environment, but most of them fail to achieve their reputations
when the situation involves variation in illumination, pose,
facial expression, aging, partial occlusion, etc. Moreover, they
highly under-perform when there is a combination of such
variations [11]. Such an observation has steered the researcher
to work upon and develop more classy models that are tolerant
to these variations.

To cope with these types of real-world problems, in this
work, we propose a local moment-based approach for face
recognition, which is invariant to changes in illumination,
rotation, translation, and scale. Also, it is robust to noise and
is computationally efficient. Moments provide useful series
expansions for the representation of object shapes, while shape
plays a significant role in face recognition, shape recognition,
remote sensing, and classification. Inspired from the work of
local characteristic features in G-Face [12] and the superior
output results of Zernike moments(ZMs)-based methods [13],
[14], and Legendre moments (LM) [15] in face and texture
representation, we have proposed here a method called Local
Modified Zernike Moments Per unit Mass (LMZMPM) for
face recognition under uncontrolled environment that exploits
the illumination invariant property of the resultant moment
together with the invariant properties of orthogonal radial
polynomials in a 3 × 3 neighborhood, which acts as a local
characteristic and shape descriptor. This descriptor reveals the
surface characteristics together with the edge (shape) of that
neighborhood. The proposed LMZMPM method is not only
illumination-invariant but is also rotation, shift, scale, noise
and blur invariant. The key features of the proposed LMZMPM
method are summarized in the following:
• The proposed LMZMPM improves the limitations of

ZMs by making it invariant to scaling and illumination
and at the same time, retaining the properties of rotation,
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translation and blur invariant as well as robustness to
noise.

• The inclusion of the angle between the center of mass of a
neighborhood with respect to the center pixel, along with
the orthogonality property of the ZMs not only makes the
feature representations efficient but also keeps the relative
positions of key facial features intact.

• It preserves maximum information of the image with
the use of both magnitude and phase of the complex
moment of LMZMPM, making it suitable for recognition
problems.

• Our approach is based on a modified orthogonal moment
using Zernike polynomials, which decreases intra-class
variations and increases inter-class variations, resulting
in a unique method favorable for face recognition.

II. LITERATURE REVIEW

The concept of Invariant Moment came from the concept of
Algebraic Invariants. However, the use of moment invariants
in applications of pattern recognition and image analysis was
first introduced by Hu [16]. He has derived seven-moment
invariants by employing the general theory of algebraic in-
variants under the affine transformation of the image plane.
However, the approach was computationally expensive. Again,
in the extreme case of rotationally symmetric objects, each of
Hu’s seven-moment invariants are zero. Also, the recovery of
an image from the geometric moments is strongly ill-posed.
To overcome the shortcomings of the geometric moments,
Teague [17] was the first to introduce orthogonal moments
in image analysis based on the Legendre, Gegenbauer [18],
[19] and Zernike polynomials [20], [21]. The magnitude of the
orthogonal moments, i.e., Zernike moments (ZMs), is invariant
to rotation, scaling, and translation, but its phase changes
with rotation. So in most of the works on invariant moments,
the magnitudes of the orthogonal moments are considered
neglecting their phase, which results in loss of information.
Over the past years, various ZM-based methods have been
developed in the field of face recognition, which are discussed
as follows.

The authors in [22] proposed an illumination invariant
method for texture classification based on invariant moments.
Li et. al. [23] proposed shape-based image retrieval using the
phase coefficient ZMs. Authors in [24] have proposed a feature
descriptor by combining wavelet transforms with ZMs for face
recognition. An adaptively weighted patch pseudo ZM-based
method is proposed in [25] for face recognition. A combination
of Gabor filters-based texture features and ZMs is used in [26]
for face recognition. Fathi et. al. [27] introduced a multi-scale
and rotation invariant global-Gabor-Zernike feature descriptor
by applying the ZM to the Gabor filters outputs for face recog-
nition. Recently, Dhekane et. al. [15] proposed an Illumination
and Expression Invariant Face Recognition approach, which
is mainly a fusion of Legendre moments (LM) and Uniform
Local Binary Patterns (uLBP). Besides, Sariyanidi et. al. [13]
have proposed local ZM (LZM) for the extraction of local
features from face images and have shown that LZM features
are more robust than the global ZMs. Authors in [28], have

used Gauss scale space and LZM [13] for recognition of
faces in low-resolution images. Further, a variation of LZM,
called local Zernike XOR patterns (LZXP), is proposed in
[29] for robust face recognition, where LZXPs are derived by
encoding the LZM images using the XOR operator. Kahraman
et al. [30] have used reduced LZM for face pair matching
problem. Recently, Barasan et al. [14] proposed an efficient
multi-scale scheme using local Zernike Moments (MSLZM)
for Face Recognition. Also, Kaur et al. [31] proposed a method
for Iris Recognition using ZMs and Polar harmonic transforms.
In [32], a logarithmic total variation (LTV) model is proposed
for the recognition of faces under varying illumination. In
[33], the authors suggested another method based on Weber’s
law, called “Weber-face (W-face)” for illumination-invariant
face representation. Rivera et al. [34] proposed a local direc-
tional number patterns (LDN) descriptor for the extraction of
illumination-invariant features from face images. Recently, Kar
et. al. [35] proposed a local Centre of Mass (LCMF) approach
for Face recognition under illumination variation. The authors
in [36] combined fractal analysis and a logarithmic function
to extract logarithmic fractal analysis (LFA) features from
face images for illumination-invariant face recognition. Lai
et al. [37] proposed a multi-scale logarithm difference edge
maps (MSLDE), to obtain illumination-invariant features. Fan
et. al. [38] proposed another method for face recognition
under varying illumination conditions that integrates modified
homomorphic filtering (HF) and Histogram equalization (HQ)
methods.

Existing methods for heterogeneous face recognition can be
broadly categorized into three classes [39], [40]: common sub-
space projection-based techniques, synthesis-based techniques,
and modality invariant feature-based techniques. In the first
category, the heterogeneity of face images of different modal-
ities is minimized by projecting them into a latent subspace
[41], [42]. Besides, in synthesis-based techniques, face images
of different modalities are transformed into the same modality.
For example, Wang et. al. [43] proposed a sketch-photo
synthesis technique by using a local patch-based multiscale
Markov random field model. In [44], authors have used sparse
neighbour selection (SNS) and sparse-representation-based
enhancement (SRE) techniques for automatic sketch-photo
synthesis. Further, Wang et al. [45] proposed a transductive
face sketch-photo (TFSP) synthesis technique. In modality
invariant feature-based techniques, face images of different
modalities are encoded with local handcrafted features, which
are then used for recognition. For example, Klare et al. [46]
employed the scale-invariant feature transform (SIFT) and
multi-scale local binary pattern (MLBP) features for forensic
sketch recognition. In [47], authors have proposed a non-
linear kernel prototype random subspace (KP-RS) learning
for heterogeneous face recognition. Zhu et al. [48] proposed
a transductive heterogeneous face matching (THFM) method
for NIR-VIS face images. Hussain et. al. [49] proposed a
novel image descriptor, named local quantized pattern for in-
tensity images (I-LQP), for the representation of face images.
Recently, an attractive method is proposed by Peng et. al.
[40] for HFR based on sparse graphical representation-based
discriminant analysis (SGR-DA). Roy et.al. have proposed
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some interesting methods for HFR: MLGFP [50], zigzag
pattern of local extremum logarithm difference (ZZPLELD)
[51], quaternary pattern of local maximum quotient (QPLMQ
) [39], local wavelet energy mesh pattern (LWEMeP) [39] and
Local-Gravity-Face (LG-face) [11]. In [39], [40], the authors
have presented some useful reviews of HFR. Hence, interested
readers can refer these papers for further reading. Though the
performances of these algorithms were tested on face images
collected under well-controlled situations, they fail to handle
the major challenges of face recognition problems. So new
methods are needed to handle situations where there is not only
variation in modality but also in pose, illumination, expression,
and the other obstacles.

Over the past few years, several deep learning-based meth-
ods for both the standard and heterogeneous face recognition
with good performances were developed and reported in the
literature [8], [52]–[55]. However, the main drawback of
such methods is the reliance on the training data and the
computational cost needed for learning the network. Typically,
it requires a large number of training samples and high training
time. Also, due to the insufficient theoretical guidance, the
problem of designing any deep learning model might be
compounded.

The paper is organized as follows. In Section 3, the proposed
LMZMPM method has been described in detail. The approach
followed in Similarity Measurement is presented in Section 4.
Experimental Set-up and the results on various databases are
presented in Section 5, and finally, the paper is concluded in
Section 6.

III. THE PROPOSED METHOD

In this section, we start with the basics of ZMs and orthogo-
nal polynomials and then derived the proposed Local Modified
Zernike Moment per unit mass (LMZMPM) method. Then,
we move ahead with the theoretical proofs of the invariant
properties of the proposed LMZMPM method. At the same
time, we discuss how the feature vector is created from the
complex moment of LMZMPM by keeping intact both the
magnitude and phase coefficient of the complex feature. To
facilitate the understanding of the reader, all the frequently
used symbols are listed and described in Table-I.

A. The Basics of Zernike Moments
The Zernike polynomials [18] are a set of orthogonal poly-

nomials defined over the unit disk D = {(x, y), x2 + y2 = 1}
as:

Vpq(ρ, θ) = Rpq(ρ)e
iqθ (1)

where p ≥ 0 and 0 ≤ q ≤ p signify the order and repetition
of Zernike Moments (ZMs), respectively, with p−|q| is even;
ρ =

√
x2 + y2; θ = tan−1( yx ); and Rpq(ρ) is the radial

polynomial and can be defined as:

Rpq(ρ) =


∑( p−q

2
)

l=0
(−1)l(p−q)!ρp−2l

l![
(p+q)

2
−l]![ (p−q)

2
−l]!

, for p− q even

0, for p− q odd
(2)

Now, the conjugate of Vpq(ρ, θ) can be defined as

[Vpq(ρ, θ)]
∗ = Rpq(ρ)e

−iqθ (3)

Table I
FREQUENTLY USED SYMBOLS IN SECTION-III.

symbols Description

Vpq
Zernike polynomial; p and q signify the order

and repetition of Zernike Moments (ZMs)
Rpq Radial polynomial
Zpq Zernike Moment
I Face image
w Neighborhood of size k × k defined in the image I
θ Angle between pixels in w
V ′pq Modified radial orthogonal polynomial

θCoM
Angle between the center pixel pc

and the Center-of-Mass (CoM) in w
Z′pq Local modified Zernike moment
Cpq Local Modified Zernike Moment Per-unit Mass (LMZMPM)
R Reflectance component
L Luminance component
F Complex LMZMPM feature vector
FM , Fθ Complex magnitude and phase feature vectors
F ′M , F

′
θ Standardized complex magnitude and phase feature vector

where ∗ denotes the conjugate. However, these polynomials
must satisfy∫ ∫

[Vpq(ρ, θ)][Vp′q′(ρ, θ)]
∗dρdθ =

{
π
p+1

, for (p, q) = (p′, q′)

0, otherwise
(4)

Now, as for the image I , the ZM of order p with q repetition
can be written as the projection of the image I onto the
corresponding Zernike polynomial basis as:

Zpq =
(p+ 1)

π

∫ ∫
I(x, y)[Vpq(ρ, θ)]

∗dxdy;x2 + y2 ≤ 1 (5)

where I(x, y) denotes the intensity of the image I at location
(x, y). Now, for practical usage and easy computational work
the integral in Eq. (5) is replaced by the summation and
rewritten the Eq.(5) as:

Zpq =
(p+ 1)

π

∑
x

∑
y

I(x, y)Rpq(ρ)e
−iqθ;x2 + y2 ≤ 1 (6)

B. The LMZMPM Method

From the definition of ZM, it is seen that the ZMs are
computed in the unit circle D = {(x, y), x2 + y2 = 1}.
Hence, in this work, we have also defined our proposed Local
Modified Zernike Moment Per-unit Mass (LMZMPM) in the
neighborhood w of size k × k (here, k = 3) centered at pixel
pc. So, without loss of generality, it can be assumed that all
the eight neighboring pixels pi(i = 1, 2, . . . .8) of pc in w lies
on the circle and each of the consecutive neighboring pixels
is sustaining the same θ = π

4 angle, which is shown in Fig 1.
Now, at the very first step of the proposed LMZMPM

method, we have defined a set of modified radial orthogonal
polynomials as:

V ′pq =
Vpq

eiqθCoM
(7)

where the term Vpq denotes the standard radial Zernike or-
thogonal polynomials [20] defined over a neighborhood of size
3× 3, and θCoM is the angle between the center pixel pc and
the center-of-mass (CoM) in the neighborhood w.

From the theory of center-of-mass (CoM) [35], in a system
of particles, the CoM is the point where all the mass of the
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Figure 1. 3× 3 neighborhood of pixels sustaining the same angle θ = π
4

.

system is concentrated. Let us assume that we have a system of
n particles with masses m1,m2, . . . .,mn and position vectors
v1, v2. . . ., vn. Now, more formally, the CoM of a specific mass
distribution is a position vector

−→
V in the space, where the

masses are uniformly spread around it. The position vector
−→
V

is defined as:

−→
V =

m1
−→v 1 +m2

−→v 2 + · · ·+mn
−→v n

m1 +m2 + · · ·+mn
(8)

In the context of our problem, the pixel intensities in the
neighborhood w can be considered as the mass distribution
within w and the position vector

−→
V is computed as:

−→
V =

p1
−→v 1 + p2

−→v 2 + · · ·+ pn
−→v 9

p1 + p2 + · · ·+ p9
(9)

Theorem 1. V ′pq is also orthogonal

Proof. Let us consider the eq. (4)∫ ∫
[Vpq(ρ, θ)][Vp′q′(ρ, θ)]

∗dρdθ (10)

Now, putting eq. (7) in eq. (10), we have∫
x

∫
y
[V ′pq(x, y)][V ′p′q′(x, y)]∗dxdy

=

∫
x

∫
y

[V ′pq(x, y)][V
′
p′q′(x, y)]

∗dxdy

eiqθCoM e−iq′θCoM
(11)

where (x, y) signifies the location of the pixels in w.
Since

∫ ∫
[Vpq(ρ, θ)][Vp′q′ ]

∗dρdθ = 0 for(p, q) 6= (p′, q′)
(see eq. (4)),

∫
x

∫
y
[V ′pq(ρ, θ)][V

′
p′q′ ]

∗dxdy = 0 for (p, q) 6=
(p′, q′). This is because when (p, q) 6= (p′, q′), the whole
integral, i.e.,

∫
x

∫
y

[V ′pq(ρ,θ)][V
′
p′q′ ]

∗dxdy

eiqθCoM e−iq
′θCoM

becomes 0.
Likewise,

∫
x

∫
y
[V ′pq(ρ, θ)][V

′
p′q′ ]

∗dxdy = π
p+1 for (p, q) =

(p′, q′) (see eq. (4)).
Hence, V ′pq is a radial orthogonal polynomial and all the

properties of orthogonal moments are inherited.

Now, the Local Modified Zernike Moment (LMZM) Z ′pq is
defined as the projection of the neighborhood w of the image
I(x, y) onto the set of orthogonal polynomial basis as:

Z′pq =

(p+1)
π

∫ ∫
x,y∈w I(x, y)[Vpq(x, y)]

∗dxdy

e−iqθCoM
=

Zpq
e−iqθCoM

(12)
Finally, the proposed LMZMPM,Cpq is defined in the specified
neighborhood w as:

Cpq =
Z′pq∫ ∫

x,y∈w I(x, y)
=

Zpq
e−iqθCoM

∑∑
x,y∈w I(x, y)

(13)

=

(p+1)
π

∑∑
x,y∈w I(x, y)R(ρ)e

−iqθ

e−iqθCoM
∑∑

x,y∈w I(x, y)
(14)

It is noted that the proposed LMZMPM, Cpq , is invariant
to the geometric transformation such as rotation, translation,
and scaling of the neighborhood w. Also, it is invariant to the
illumination changes.

Theorem 2. For a neighborhood w of size 3 × 3, Cpq is
invariant to the illumination changes in the image I for any p
and q.

Proof. Taking into account the Illumination Reflectance
Model (IRM) [56], any given image I can be expressed as
I(x, y) = R(x, y)×L(x, y), where the term R(x, y) refers to
the reflectance component and the term L(x, y) refers to the
luminance component. Usually, the luminance component L
represents the slow spatial variation without any discontinuity
and the reflectance component R comprises data about the
image’s characteristics feature. So, it is quite meaningful
to consider that L(x, y), L(x + ∆x, y), L(x, y + ∆y) are
almost the same, when ∆x and ∆y are small. As a result,
if the L component is eliminated, the key facial attributes
can still be presented with the help of the R component
alone, which are considered to be the most crucial data for
a face recognition strategy. Removal of the L component will
result in the R component being illumination-invariant, which
causes the image I to be illumination-invariant, and enhances
the sharpness of image I . However, parting the R(x, y) and
L(x, y) components is an ill-posed issue [11]. The aim is to
prove that in the neighborhood w of size 3 × 3 Cpq is free
from L.

Now, the ZM of order p with q repetition of an image I in
the neighborhood w can be written as:

Zpq = [
(p+ 1)

π

∑ ∑
x,y∈w

I(x, y){Vpq(x, y)}∗] (15)

= [
(p+ 1)

π

∑ ∑
x,y∈w

R(x, y)L(x, y){Vpq(x, y)}∗] (16)

∵ I(x, y) = R(x, y)× L(x, y)

Since L(x, y) is approximately constant over a small neigh-
borhood [11], i.e., L(x, y) = l, the above equation can be
modified as:

Zpq = l[
(p+ 1)

π

∑ ∑
x,y∈w

R(x, y){Vpq(x, y)}∗] (17)

In a neighborhood of size 3×3, the value of ρ = 1. Hence,
the above equation, i.e., eq. (17), can be rewritten as:

Zpq = l[
p+ 1

π

∑ ∑
x,y∈w

R(x, y)Rpq(1)e−iqθ] (18)

= l[
(p+ 1)

π
Rpq(1)

∑ ∑
x,y∈w

R(x, y)e−iqθ] (19)

Now, putting eq. (19) into eq. (13), we have

Cpq =
l[ (p+1)

π
Rpq(1)

∑∑
x,y∈wR(x, y)e

−iqθ]

l[e−iqθCoM
∑∑

x,y∈wR(x, y)]
(20)

∵ I(x,y)=R(x,y)×L(x,y);L(x, y) = l

=
[ (p+1)

π
Rpq(1)

∑∑
x,y∈wR(x, y)e

−iqθ]

[e−iqθCoM
∑∑

x,y∈wR(x, y)]
(21)
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From eq. (23), it can be observed that it is free of luminance
component L. Hence, in the proposed LMZMPM, Cpq is
invariant to the illumination change for any p and q.

Theorem 3. For a neighborhood w of size 3 × 3, Cpq is
invariant to the uniform scaling for any p and q.

Proof. Suppose the image be scaled uniformly k times of its
original size. Then, the coordinates (x, y) of a pixel in the
neighborhood w will be (kx, ky). Now,

θscaled = tan−1(
ky

kx
) = tan−1(

y

x
) = θinitial (22)

Also, let the new coordinate of the CoM is (kxCoM , kyCoM ).
Therefore,

θCoM,scaled = tan−1(
kyCoM
kxCoM

) = tan−1(
yCoM
xCoM

) = θCoM,initial

(23)
Thus, Cpq remains unchanged after uniform scaling and hence
it is proved that Cpq is invariant to the uniform scaling of the
neighborhood w.

Theorem 4. For a neighborhood w of size 3 × 3, Cpq is
invariant under plane rotation for any p and q.

Proof. Let us assume that θCoM be the angle between CoM
and the center pixel pc in w. Now, let w be rotated by an angle
α and hence, the angle between the CoM and the pc of w is
now θCoM + α.

Since, w is assumed to be circular, when the rotation takes
place, the angle between the CoM and pc is also rotated by
the same angle α. Now, let us assume that C(R)

pq be the rotated
LMZMPM of the corresponding LMZMPM Cpq . Likewise, let
the rotated Zpq is denoted as Z(R)

pq , and is defined as:

Z(R)
pq = Zpqe

−iqα (24)

Now, from eq. (15), we can write

C(R)
pq =

Z
(R)
pq

e−iq(θCoM+α)
∑∑

x,y∈w I(x, y)
(25)

=
Zpqe

−iqα

e−iq(θCoM+α)
∑∑

x,y∈w I(x, y)
(26)

=
Zpqe

−iqα

e−iqθCoM e−iqα
∑∑

x,y∈w I(x, y)
(27)

=
Zpq

e−iqθCoM
∑∑

x,y∈w I(x, y)
= Cpq (28)

Hence, from eq. (30), we can conclude that the proposed Cpq
is invariant to the rotation of the neighborhood w.

Theorem 5. For a neighborhood w of size 3 × 3, Cpq is
invariant to the translation for any p and q.

Proof. Suppose an image I(x, y) be uniformly shifted by h
units horizontally and v units vertically. Now, let us consider
that the initial coordinates of the center pixel pc and its any
neighboring pixel pi in w be (x0, y0) and (xi, yi) respectively.
Therefore, initially

θinitial = tan−1(
yi − y0
xi − x0

) (29)

ρinitial =

√
(xi − x0)2 + (yi − y0)2 (30)

Now, after translation, the coordinates of the center pixel pc
and its any neighboring pixel in w are (x0 + h, y0 + v) and
(xi + h, yi + v) respectively. Thus,

θtrans = tan−1(
([yi + v]− [y0 + v])

([xi + h]− [x0 + h])
) = tan−1(

yi − y0
xi − x0

) (31)

ρtrans =

√
([xi + h]− [x0 + h])2 + ([yi + v]− [y0 + v])2 (32)

=

√
(xi − x0)2 + (yi − y0)2 (33)

Thus, from eqs. (31) and (33), θtrans = θinitial, and from eqs.
(32) and (35), ρtrans = ρinitial.

Also, let the coordinate of the CoM in the neighborhood
is (xCoM , yCoM ). In our previous work [35], we have al-
ready proved that the angle of the CoM remains unchanged
concerning the center pixel pc in w for translation, i.e.,
θCoM = tan−1( yCoMxCoM

) is also unchanged. At the same time,∑∑
x,y∈w I(x, y) is also constant in the neighborhood [11].

Therefore, the proposed Cpq is invariant to the translation of
the image I . Likewise, ρ, θ, θCoM are remain unchanged
for uniform translation of the neighborhood w. Thus, Cpq is
invariant to the translation of the neighborhood w.

Theorem 6. Cpq is invariant to blur.

Proof. Our proposed LMZMPM Cpq is, to some extent, in-
variant to blurring (convolution), which can be easily proved
from work in Ref. [57]. The work in [57], is based on the
conventional orthogonal Zernike Moments (ZMs). Besides,
our proposed LMZMPM Cpq is the modification of it. Hence,
from the theory of blur-invariant in [57], we can prove that
LMZMPM Cpq is invariant to the blurring effect.

From Theorem-2 in [57], we have the blur-invariant as:

I(q + 2l, q)(f) = Z
(f)
q+2l,q −

1

Z
(f)
0,0 .π

l−1∑
i=0

I(q + 2i, q)(f)
l−i∑
j=0

Z
(f)
2j,0.A(q, l, i, j)

(34)

which satisfy the equation:

I(q + 2l, q)(g) − I(q + 2l, q)(f) = 0 (35)

where, g(x, y) = (f ∗ h)(x, y) is the blurred image, f(x, y)
is the original image and h(x, y) is the circularly symmetric
point spread function (PSF) as in [57]. For the proof of above
, refer to Appendix-A in [57].

Now, from (34), it can be deduced that

I(2l, 0)(f) = (−1)l(2l + 1)Z
(f)
0,0 (36)

and I(0, 0)(f) = Z
(f)
0,0 will be used for the case q = 0 as an

invariant (see Remark-2 in [57]).
Note that,

Z
(f)
q+2l,q = C

(f)
q+2l,q(

∑
x

∑
y

f(x, y))e−iqθ
(f)
CoM (37)

where θ(f)CoM is the angle between the center-of-mass (CoM)
and the center pixel pc in the neighborhood w in f .

Hence,
Z

(f)
2j,0 = C

(f)
2j,0(

∑
x

∑
y

f(x, y)) (38)
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And thus,

C
(f)
0,0 =

Z
(f)
0,0∑

x

∑
y f(x, y)

=
1

π
(39)

Substituting the above in (34), we get:

I(q + 2l, q)(f) = C
(f)
q+2l,q.(

∑
x

∑
y

f(x, y)).e−iqθ
(f)
CoM

−
l−1∑
i=0

I(q + 2i, q)(f).

l−i∑
j=0

C
(f)
2j,0.A(q, l, i, j)

(40)

such that eq. (35) holds. This is our required blur invariant in
terms of lower order invariants and LMZMPM’s.

It is shown that the whole complex component, i.e., both the
magnitude and phase coefficient, of LMZMPM is invariant to
illumination change, rotation, translation and uniform scaling
in w. Typically, the ZMs [20] are not invariant to the illumina-
tion change, which is an important aspect of face recognition.
Thus, we have modified it in our proposed LMZMPM method
and make it invariant to the illumination change. Furthermore,
in conventional ZMs [20], the magnitude remains unchanged
while the phase would change with rotation. However, in our
approach, we have efficiently tackled this problem with the
inclusion of θCoM . Also, it carries the standard properties
of the ZMs. Here, the relationship between a given image
pixel and its local neighboring pixels is measured in the form
of magnitude and phase coefficients of LMZMPM. For each
pixel of the input image, we have computed LMZMPM in
a local neighborhood of size 3 × 3, and then considered the
complex tuple that contains both the magnitude and phase
coefficients of LMZMPM as the extracted features. Typically,
the magnitude of the conventional ZMs is invariant to ro-
tation, but its phase changes with rotation. Due to this, in
many applications [13], [14], [28]–[30] the phase component
has been neglected. Thus, any ZM-based extracted features
without the phase information could have relatively weak
descriptive efficiency. Besides, our extracted feature element is
quite informative, which is a complex moment containing both
phase and magnitude of the LMZMPM denoted by F = [Cpq].
For an image I of size M×N , where M and N are the height
and width of the image respectively, the size of the feature
vector will be [M ′ × N ′], M ′ = M − 2 and N ′ = N − 2.
This is because the extreme rows and columns are not taken
into account on the ground that they do not have a complete
3× 3 neighborhood around them. The implementation of the
LMZMPM face is summarized in Algorithm-1.

IV. SIMILARITY MEASURE

For an image I , we obtain a complex LMZMPM feature
vector F of size M ′ ×N ′, which is of the form:

F =

 C11 C12 . . . C1M′

C21 C22 . . . C2M′

. . . . . . . . . . . . . . . . . . . . . . . . . .
CN′1 CN′2 . . . CN′M′

 (41)

where Cij is the complex moments of the LMZMPM calcu-
lated with eq. (14), in which i in [1, N ′] and j in [1,M ′]. Since
F is a complex feature, we further break it into two vectors:
i) magnitude (FM ) and ii) phase (Fθ).

FM =

 ||C11|| ||C12|| . . . ||C1M′ ||
||C21|| ||C22|| . . . ||C2M′ ||
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
||CN′1|| ||CN′2|| . . . ||CN′M′ ||

 (42)

Fθ =

 arg(C11) arg(C12) . . . arg(C1M′)
arg(C21) arg(C22) . . . arg(C2M′)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
arg(CN′1) arg(CN′2) . . . arg(CN′M′)

 (43)

After that, we standardize these two vectors, i.e., FM and
Fθ, so that their range is comparable and the difference in this
range of values does not affect the final feature vector.

The standardized magnitude value is given by:

F ′M =
FM −Min(FM )

Max(FM )−Min(FM )
(44)

and the standardized phase value is given by:

F ′θ =
Fθ −Min(Fθ)

Max(Fθ)−Min(Fθ)
(45)

After computation of F ′M and F ′θ, the face images are clas-
sified using the proposed hybrid similarity that combines L1

distance (scaled between 0 and 1) and the Jaccard distance (J)
[58] of (F ′M ) and (F ′θ), which is discussed in the following.

Suppose, for two face images, I1 and I2, the obtained
magnitude and phase vectors are (F ′M1, F

′
M2) and (F ′θ1, F

′
θ2)

respectively. Here, L1 distance is essentially the sum of the
standardized minimum magnitude difference and the standard-
ized minimum phase difference between them. Here, lesser
the distance between the two images, I1 and I2, more is the
similarity between them, revised from the idea of Zhang et
al. [59], shown in equation (46) and the Jaccard distance is
shown in equation (47) is given by:

L1 =

M′×N′∑
i=1

Min(|F ′M1i − F ′M2i|, |F ′θ1i − F ′θ2i|) (46)

J = 1− [

M′×N′∑
i=1

Min(F ′M1i, F
′
M2i)

Max(F ′M1i, F
′
M2i)

+

M′×N′∑
i=1

Min(F ′θ1i, F
′
θ2i)

Max(F ′θ1i, F
′
θ2i)

]

(47)
The face classification is based on the minimum value of

the similarity score S between I1, I2, reckoned according to
(48):

S =
1

2
(

L1 −Min(L1)

Max(L1)−Min(L1)
+

J −Min(J)

Max(J)−Min(J)
) (48)
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V. EXPERIMENTAL RESULTS

The efficiency of the proposed LMZMPM method has
been evaluated on various standard and challenging databases:
CMU-PIE [60], Extended Yale B [61], [62], AR database
[63], LFW [64], CUFS [43], and CASIA-HFB [65]. For the
challenges of variation in illumination, LMZMPM has been
tested on the CMU-PIE and the Extended Yale B databases.
The AR database is considered for analyzing the robustness
of LMZMPM method against noise, translation, scaling and
in-plane rotation. To test the proficiency of the LMZMPM
method under complicated variations of illumination, expres-
sion, pose, occlusion, and blurring, the “Labeled Faces in
the Wild” (LFW) database has been considered. The CUHK
Face Sketch (CUFS) and CASIA-HFB databases are used to
test the efficacy of the proposed LMZMPM method in the
Heterogeneous Face Recognition (HFR) scenario. The Rank-
1 Recognition (R1R) accuracy of the proposed LMZMPM
method, using the proposed hybrid similarity measure, was
computed for each of these databases.

The performance of the proposed LMZMPM method on
the datasets stated above is compared against several existing
related state-of-the-art methods. In this regard, it is noted that
we have provided six baselines performance on each scenario
in order to make the experimental section more consistent
and provide a comparison benchmark for the future. The
six state-of-the-art methods used as baselines are: two state-
of-the-art Zernike moments based methods, i.e., Multi-scale
Local Zernike Moment (MSLZM) [14] and Local Zernike Mo-
ments (LZM) [13], Multi-scale Local Gradient fuzzy Patterns
(MLGFP) [50], Multi-scale Logarithm Difference Edgemaps
(MSLDE) [37], Local Center of Mass Face (LCMF) [35], and
the convolutional neural network (CNN) [8]. For the sake
of impartial comparison, all of the stated baselines (except
CNN) are implemented in accordance with the description
defined in the respective published papers, and then they
were fine-tuned to obtain about the same performance as the
published papers. Besides, for CNN, we have adopted here a
transfer learning-based model using AlexNet [8]. For transfer
learning the model, we have randomly chosen 50% of the
images from each of the databases and the remaining images
are used to test the model. Firstly, we have used raw face
images for transfer learning the model and recorded the testing
accuracy, which is named here as “Raw Fimage + CNN (RF-
CNN)”. Then, LMZMPM face images are used for transfer
learning the model and the testing accuracy is recorded, which
is represented as “LMZMPM Fimage + CNN (LMZMPM-
CNN)”.

In addition, for different face matching scenarios, the pro-
posed LMZMPM method is compared with other existing
state-of-the-art methods on the respective fields, which dis-
cussed in the following subsection.

A. Results on Illumination-variations Databases

In this subsection, we evaluate the robustness of the pro-
posed LMZMPM method in recognizing faces under varying
illumination conditions. For this purpose, we have conducted

Figure 2. Rows (a), (c) and (e) present face images of a subject of CMU-PIE
database under varying illumination conditions; and rows (b), (d) and (f) show
the corresponding LMZMPM faces.

Figure 3. R1R accuracy using 68 different subjects, from the CMU-PIE
database, considering each image (one at a time) as a reference image.

experiments on two standard face databases of illumination-
variation, i.e., CMU-PIE [60] and Extended Yale B [61], [62],
and compared the proposed method with above-mentioned
baselines and other related state-of-the-art methods: HF+HQ
[38], LTV [32], LFA [36], LDN [34], W-Face [33], ZZPLELD
[51] and uLBP+LM [15].

1) Results on CMU-PIE Face Database: As we are in-
terested in measuring the illumination invariant property, we
have considered the subset C27 of the CMU-PIE database in
our experiment that consists of 41368 images of 68 different
subjects (21 images per subject). Here, all the images have a
frontal pose with a neutral expression, but they are all captured
under varying illumination conditions. We have cropped and
resized each of these images to obtain a 128×128 resolution.
Fig. 2 presents an example of 21 faces of a subject from
the subset C27 of the CMU-PIE database, along with their
corresponding LMZMPM faces. Only one image per subject
is randomly chosen as a reference image and the remaining
images of that class are used as testing images. The average
R1R accuracy results of the proposed LMZMPM method, six
baselines, and other related state-of-the-art methods mentioned
earlier are presented in Fig. 3. As can be seen from the
experimental results that the proposed LMZMPM method is
superior to that of the comparative methods. Also, it can
be seen that the ”LMZMPM Fimage + CNN” outperforms
”Raw Fimage + CNN” and LMZMPM method with a hybrid
similarity measure.
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Figure 4. (a) Sample face images of a subject from Extended Yale B under
varying illumination conditions, (b) The corresponding LMZMPM faces.

Table II
RESULTS ON EACH OF THE FIVE EXTENDED YALE B

DATABASE SUBSET.

Methods Set I Set II Set III Set IV Set V Average
HF+HQ 90.70 88.60 40.00 45.50 42.40 61.44
LTV 88.20 90.30 67.80 58.00 43.50 69.56
LFA 92.70 92.10 89.60 86.80 86.70 89.58
LDN 86.40 87.40 84.00 79.00 75.80 82.52
W-Face 88.47 86.89 83.57 83.11 81.72 84.75
ZZPLELD 99.00 100.00 96.70 92.50 94.30 96.50
uLBP+LM 98.50 98.30 97.20 96.50 91.80 96.46
MSLDE 97.20 98.00 93.40 92.40 88.90 93.98
MLGFP 99.80 98.30 97.00 91.00 90.00 95.22
LCMF 99.90 100.00 97.00 93.20 94.00 96.82
MSLZM 89.6 90.68 94.35 92.54 93.67 92.17
LZM 87.25 89.2 91.35 90.89 91.52 90.04
RF-CNN 100.00 99.83 98.70 97.67 96.57 98.54
LMZMPM 100.00 100.00 98.50 98.00 96.80 98.66
LMZMPM-CNN 100.00 100.00 99.50 98.75 98.24 99.29

2) Results on Extended Yale B Face Database: The Ex-
tended Yale B Face Database comprises 38 subjects with nine
different poses and each pose is subjected to 64 different
illumination angles. In our experiment, a total of (64× 38 =
2432) images with frontal poses were used. All the images
are cropped to extract only the facial portion and resized to
150 × 150 resolution. This database is divided into five dif-
ferent subsets based on the illumination angle using standard
protocols [66]. Set I consists of 266 images (7 images per
subject) with illumination angle of 0◦ to 12◦, Set II consists
of 456 images each (12 images per subject) with illumination
angle of 13◦ to 25◦, Set III also consists of 456 images each
(12 images per subject) with illumination angle of 26◦ to 50◦,
Set IV consists of 532 images (14 images per subject) with
illumination angle of 51◦ to 77◦ and Set V consists of 722
images (19 images per subject) with illumination angle above
78◦. A few sample face images and their resultant LMZMPM
faces from the Extended Yale B database are shown in Fig.
4. In the experiment, only one neutral image per subject was
considered as the reference image, while the rest of the images
were included in the test set for each class. The R1R accuracy
of the proposed LMZMPM approach on the Extended Yale B
database, along with that of other state-of-art techniques, is
presented in Table-II, from where it can be observed that the
proposed method (i.e., LMZMPM) is more remarkable than
the other methods in all the individual subsets, as well as when
the average over all the 5 subsets is taken. Again, ”LMZMPM
Fimage + CNN” gives a comparatively better result than that
of the LMZMPM with hybrid similarity measure.

Figure 5. (a) Face image of an individual from the AR-database and its
corresponding images with noise variations, (b) Corresponding LMZMPM
faces.

B. Results on varying noise, translation, scale and in-plane
rotation on AR Face Database

The AR database, comprises more than 4, 000 color images
of 126 subjects, of size 768×576 pixels. This database consists
of images with not only varying lighting conditions but also
images comprising expression changes. Two occlusion images
of each subject (one with sunglasses and another with a scarf)
are also a part of it. For our experiment, each image of this
database is cropped with a resolution of 128× 128 and then,
converted to the grayscale counterparts. The reference image
for a class was taken as the one having a neutral expression
with equal lighting conditions. The rest of the images were
taken as the test images for that class. In each of the cases,
the Fisher Criteria (FC) [61] and Standard Deviation (SD) are
evaluated to show the discriminative power and robustness
of the proposed method compared to other state-of-the-art
techniques.

1) Performance Against Additive Noise: The test images
have been added with Gaussian noise with Standard Deviations
(σ) as σ = 0.01, σ = 0.02, σ = 0.03 and σ = 0.04. Fig.
5(a) shows the original image of an individual from the AR
database and its corresponding images with noise variations
and Fig. 5(b) represents the equivalent LMZMPM images of
each face presented in Fig. 5(a). Despite high noise variations
of up to σ = 0.04 our proposed method is more invulnerable,
when compared to the other methods like noise-resistant local
binary pattern (NRLBP) [66] (which is a version of noise
robust LBP), six baselines, and other related state-of-the-art
methods such as HF+HQ [38], uLBP+LM [15], LFA [36]
and ZZPLELD [51], the results of which can be shown in
Table-III. Also, the proposed method has the highest R1R
accuracy, maximum FC and minimum SD, which shows the
discriminative power and vigor of LMZMPM over the other
approaches. Further, it can be seen that ”LMZMPM Fimage
+ CNN” gives comparatively better result than the LMZMPM
method (i.e., LMZMPM + hybrid similarity measure).

2) Performance against rotational changes and scale
changes: For rotational changes, the test images have been
subjected to rotations, with angle of rotation as 10◦, 20◦, 30◦

and 40◦. Fig. 6(a) shows the original image of an individual
and its corresponding images with different angle of rotation
and Fig. 6(b) represents the equivalent LMZMPM images.
For scaling changes the test images are scaled, with scaling
factors taken as S = 0.25, S = 1.5, S = 1.75 and S = 2.
Fig. 7(a) shows the original image of an individual and its
corresponding images with different values of the scaling
factor. Fig. 7(b) shows the equivalent LMZMPM images.
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Table III
RESULTS ON THE AR DATABASE WITH NOISE VARIATIONS.

Methods σ = 0.00 σ = 0.01 σ = 0.02 σ = 0.03 σ = 0.04
R1R SD FC R1R SD. FC R1R SD FC R1R SD FC R1R SD FC

HF+HQ 78.75 5.31 1.08 78.12 5.46 1.11 74.34 3.45 1.01 68.53 3.76 0.99 64.50 4.08 0.85
uLBP+LM 87.35 2.33 1.39 86.97 2.83 1.44 86.52 4.47 1.35 85.18 4.82 1.21 83.60 5.01 1.14
LFA 87.50 3.30 1.33 84.22 4.45 1.16 78.89 5.27 1.00 71.56 5.39 1.00 68.56 5.68 0.89
ZZPLELD 84.40 2.30 0.99 80.12 2.75 0.98 76.51 5.75 0.88 75.11 5.97 0.85 73.75 6.33 0.81
NRLBP 94.50 2.06 1.92 91.78 2.05 1.80 89.45 2.75 1.7 88.10 2.95 1.65 83.40 3.01 1.48
MSLDE 86.75 2.17 1.54 85.20 3.15 1.47 81.33 6.15 1.27 77.67 6.78 1.00 68.70 6.89 0.92
MLGFP 91.67 2.19 1.48 91.51 2.56 1.52 89.16 3.01 1.10 87.56 3.56 1.01 82.24 4.21 0.91
LCMF 91.60 2.26 1.70 90.83 2.25 1.65 88.56 3.00 1.55 86.33 3.10 1.44 85.00 3.75 1.35
MSLZM 92.65 4.27 1.09 89.65 3.75 1.00 88.44 3.67 1.17 88.24 3.67 1.25 87.67 3.48 1.57
LZM 90.57 4.58 0.98 88.45 3.89 0.87 88.21 4.87 1.05 87.25 3.25 1.16 85.67 3.82 1.14
RF-CNN 97.95 1.8 2.03 96.11 2.02 1.98 95.06 2.52 1.81 92.65 2.77 2.05 91.83 3.00 1.61
LMZMPM 98.74 1.71 2.47 96.72 1.76 2.21 95.17 1.8 2.19 94.51 2.25 2.10 92.10 2.25 2.01
LMZMPM-CNN 99.25 1.71 2.47 97.67 1.76 2.21 96.77 1.8 2.19 96.14 2.25 2.10 94.25 2.25 2.01

Figure 6. (a) Face image of an individual from the AR database and its
corresponding images with different angle of rotation, (b) The corresponding
LMZMPM faces.

Figure 7. (a) Original image of an individual from the AR-database and
its corresponding images with different values of the scaling factor, (b)
corresponding LMZMPM faces.

Tables-IV and V shows the R1R accuracy, FC and SD values
of LMZMPM along with other state-of-art techniques stated
in Sec. V.C.1 for different values of the angle and scaling
factor. From these tables, it is clear that LMZMPM method
performs better than other approaches with the highest R1R
accuracy, having maximum FC and minimum SD. Here, we
can also seen that ”LMZMPM Fimage + CNN” outperforms
the LMZMPM method with a hybrid similarity measure.

3) Performance Against Translation: For the test images,
the translations considered were (h = 10, v = 10), (h =
10, v = 0), (h = 10, v = −10) and (h = 20, v = −20).
Fig. 8(a) shows the original image of an individual and its
corresponding images with different translations. Fig. 8(b)
represents the equivalent LMZMPM images. Here, also, only
one image per subject without any translation is considered
as the reference image. Table-VI shows the R1R accuracy,
FC and SD values of LMZMPM along with other state-of-art
methods for different translations, from where it is clear that
the proposed LMZMPM method performs better than other
approaches with the highest R1R accuracy, maximum FC and
minimum SD. In this scenario, ”LMZMPM Fimage + CNN”
also gives comparatively better results than the LMZMPM
method.

Figure 8. (a) Original image of an individual from the AR database and
its corresponding images with translational variations, (b) corresponding
LMZMPM faces.

C. Results on LFW Face Database
Presently LFW database is the most challenging database to

work with complicated variations in illumination, expression,
pose, occlusion, and blurring. The database contains 13,233
images of 5749 different famous persons having two Views,
View1 is for fine-tuning and training and View2 is for testing.
Usually, three different standards are used to evaluate this
database. We followed the standard where neither parameter
tuning nor training is required. From this database, face
images of 30 individuals with 10 images per subject were
randomly chosen to test the effectiveness of the proposed
LMZMPM method. For each of the 30 individual subsets, the
experiment has been conducted separately using a leave-one-
out strategy. Fig. 9(a) shows some sample of face images from
the LFW database, which are cropped to take only the facial
portion. Fig. 9(b) shows their corresponding LMZMPM faces.
A comparison of the R1R accuracy, together with FC and
SD of the proposed method, six baselines, and other related
state-of-the-art techniques such as uLBP+LM [15], NRLBP
[66], ZZPLELD [51], PLS [41], and I-LQP[49] is presented
in Table-VII, from where it is evident that LMZMPM method
outperforms the other comparative methods (except ”Raw
Fimage + CNN”). Though the method of CNN shows a
slight better performance than the proposed approach, i.e.,
LMZMPM, it has its own set of disadvantages- high com-
putational complexity, time consuming and requires training.
However, ”LMZMPM Fimage + CNN” performs significantly
better than ”Raw Fimage + CNN”.

D. Heterogeneous Face Recognition
In this subsection, the efficacy of the proposed LMZMPM

method is evaluated in the Heterogeneous Face Recogni-
tion (HFR) scenario. For this purpose, we have conducted
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Table IV
RESULTS ON THE AR DATABASE WITH ROTATIONAL CHANGES.

Methods θ = 0◦ θ = 10◦ θ = 20◦ θ = 30◦ θ = 40◦

R1R SD FC R1R SD. FC R1R SD FC R1R SD FC R1R SD FC
HF+HQ 78.75 5.31 1.08 70.40 3.42 0.97 65.50 3.45 0.96 63.50 3.99 0.89 59.30 4.74 0.82
uLBP+LM 87.35 2.33 1.39 84.50 4.43 1.33 82.00 4.45 1.16 81.60 4.66 1.03 71.65 4.65 0.97
LFA 87.50 3.30 1.33 73.25 5.19 0.79 68.67 5.25 0.68 63.56 5.56 0.62 55.50 5.56 0.59
ZZPLELD 84.40 2.30 0.99 79.50 5.40 0.74 77.00 5.87 0.70 71.74 6.30 0.68 71.44 6.91 0.64
NRLBP 93.50 1.96 1.92 85.82 2.74 1.74 84.00 2.91 1.63 80.40 3.00 1.43 76.66 3.24 1.40
MSLDE 86.75 2.17 1.54 76.33 3.97 1.25 72.60 4.17 0.98 67.65 4.46 0.91 66.25 4.76 0.88
MLGFP 91.67 2.19 1.48 86.00 2.98 1.05 84.55 3.54 1.00 77.24 4.17 0.92 75.45 4.19 0.89
LCMF 91.60 2.26 1.70 87.40 3.06 1.54 82.33 3.15 1.42 81.40 3.74 1.33 80.60 3.92 1.31
MSLZM 92.65 4.27 1.09 90.65 3.45 1.19 88.34 4.21 1.17 88.24 3.94 1.25 87.67 3.37 1.45
LZM 90.57 4.58 0.98 89.45 3.89 0.97 87.16 4.87 1.05 86.94 3.56 1.11 84.95 3.15 1.09
RF-CNN 97.75 1.90 2.22 95.34 1.90 2.03 94.00 2.46 1.88 92.57 2.47 1.80 91.82 2.53 1.78
LMZMPM 98.74 1.71 2.47 97.30 1.72 2.25 94.75 2.23 2.09 93.50 2.24 2.00 92.75 2.29 1.98
LMZMPM-CNN 99.25 1.71 2.47 97.53 1.72 2.25 94.75 2.23 2.09 95.42 2.24 2.00 93.67 2.29 1.98

Table V
RESULTS ON THE AR DATABASE WITH SCALE CHANGES.

Methods S = 1 S = 0.25 S = 1.5 S = 1.75 S = 2
R1R SD FC R1R SD. FC R1R SD FC R1R SD FC R1R SD FC

HF+HQ 78.75 5.31 1.08 76.86 5.42 1.07 77.15 5.39 1.06 75.94 5.53 1.05 75.32 5.61 1.04
uLBP+LM 87.35 2.33 1.39 85.25 2.38 1.37 85.58 2.37 1.36 84.23 2.43 1.35 83.54 2.46 1.33
LFA 87.50 3.30 1.33 85.40 3.37 1.31 85.72 3.35 1.30 84.38 3.44 1.29 83.69 3.49 1.27
ZZPLELD 84.40 2.30 0.99 82.37 2.35 0.98 82.69 2.34 0.97 81.39 2.40 0.96 80.72 2.43 0.95
NRLBP 93.50 1.96 1.92 91.26 2.00 1.90 91.60 1.99 1.88 90.16 2.04 1.86 89.43 2.07 1.84
MSLDE 86.75 2.17 1.54 84.67 2.21 1.52 84.99 2.20 1.51 83.65 2.26 1.49 82.97 2.29 1.48
MLGFP 91.67 2.19 1.48 89.47 2.23 1.46 89.81 2.22 1.45 88.40 2.28 1.43 87.68 2.31 1.42
LCMF 91.60 2.26 1.70 89.40 2.30 1.68 89.74 2.29 1.66 88.33 2.36 1.65 87.61 2.39 1.63
MSLZM 92.65 4.27 1.09 91.461 3.45 1.19 88.34 4.21 1.17 88.24 3.94 1.25 87.67 3.37 1.45
LZM 90.57 4.58 0.98 89.45 3.89 0.97 87.16 4.87 1.05 86.94 3.56 1.11 84.95 3.15 1.09
RF-CNN 98.64 1.89 2.23 96.82 1.92 2.18 96.10 2.10 2.40 94.79 1.77 2.33 94.52 1.86 2.40
LMZMPM 98.74 1.71 2.47 96.92 1.75 2.44 95.78 1.75 2.42 94.79 1.79 2.39 94.53 1.81 2.37
LMZMPM-CNN 99.13 1.71 2.47 97.32 1.75 2.44 95.78 1.75 2.42 95.00 1.79 2.39 95.03 1.81 2.37

Table VI
RESULTS ON THE AR DATABASE WITH TRANSLATIONAL VARIATIONS.

Methods h = 0, v = 0 h = 10, v = 10 h = 10, v = 0 h = 10, v = −10 h = 20, v = −20
R1R SD FC R1R SD. FC R1R SD FC R1R SD FC R1R SD FC

HF+HQ 78.75 5.31 1.08 76.39 5.47 1.06 77.33 5.45 1.07 75.60 5.51 1.04 75.05 5.61 1.03
uLBP+LM 87.35 2.33 1.39 84.73 2.43 1.36 85.78 2.39 1.37 83.86 2.42 1.34 83.24 2.46 1.33
LFA 87.50 3.30 1.33 84.88 3.40 1.32 85.93 3.39 1.32 84.00 3.42 1.28 83.39 3.49 1.27
ZZPLELD 84.40 2.30 0.99 82.63 2.33 0.97 82.88 2.36 0.98 81.02 2.39 0.95 80.43 2.43 0.95
NRLBP 93.50 1.96 1.92 91.54 2.01 1.88 91.82 2.01 1.90 89.76 2.03 1.85 89.11 2.07 1.84
MSLDE 86.75 2.17 1.54 84.15 2.24 1.51 85.19 2.23 1.52 83.28 2.25 1.48 82.67 2.29 1.47
MLGFP 91.67 2.19 1.48 88.92 2.26 1.45 90.02 2.25 1.46 88.00 2.27 1.43 87.36 2.31 1.42
LCMF 91.60 2.26 1.70 89.68 2.33 1.68 89.95 2.32 1.68 87.94 2.34 1.64 87.29 2.39 1.63
MSLZM 92.65 4.27 1.09 90.65 3.15 1.29 88.34 4.33 1.17 89.42 3.98 1.25 87.67 3.72 1.65
LZM 90.57 4.58 0.98 89.14 3.92 1.06 87.16 4.87 1.05 87.49 4.16 1.11 84.95 4.15 1.17
RF-CNN 98.73 1.87 2.07 96.71 1.96 2.19 96.56 1.67 2.17 96.00 1.97 2.11 95.88 1.88 2.28
LMZMPM 98.74 1.72 2.47 96.81 1.75 2.43 96.85 1.76 2.44 95.7 1.78 2.38 95.19 1.82 2.36
LMZMPM-CNN 99.19 1.72 2.47 97.21 1.75 2.44 97.25 1.76 2.44 98.12 1.78 2.38 98 1.82 2.36

Figure 9. (a) Sample face images from the LFW database, (b) the corre-
sponding LMZMPM faces.

experiments on two standard heterogeneous face databases
such as CUHK Face Sketch Database (CUFS) [43] and the
CASIA-HFB [65], and compared the proposed method with
six baselines and other related state-of-the-art methods: SNS-
SRE [44], TFSP [45], SIFT+MLBP [46], PLS [41], THFM

Table VII
PERFORMANCE COMPARISON ON THE LFW DATABASE.

Methods R1R Avg. SD Avg. FC
uLBP+LM 77.1 2.344 1.362
NRLBP 82.67 2.125 2.421
ZZPLELD 76.4 2.056 1.912
PLS 85.47 2.34 2.23
I-LQP 76.42 3.016 2.278
MSLDE 73.6 3.342 1.725
MLGFP 85.47 3.125 1.716
LCMF 87.99 2.269 2.592
MSLZM 84.44 2.94 1.98
LZM 91.67 3.12 1.76
RF-CNN 92.72 2.126 2.785
LMZMPM 92.65 2.001 2.676
LMZMPM-CNN 94.75 2.00 2.72

[48], KP-RS [47], SGR-DA [40], I-LQP [49] and ZZPLELD
[51].



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Figure 10. (a) Sample face-sketch pairs from the CUFS database, (b) the
corresponding LMZMPM faces.

Table VIII
PERFORMANCE COMPARISON ON THE CUFS DATABASE.

Methods R1R Avg. SD Avg. FC
SNS-SRE 96.5 2.945 4.564
TFSP 97.1 2.414 4.173
SIFT+MLBP 98.74 2.125 4.948
PLS 96.6 2.342 4.52
THFM 94.34 2.753 4.235
KP-RS 96.4 2.056 5.419
SGR-DA 98.12 2.75 4.67
I-LQP 84.46 2.856 5.137
ZZPLELD 93.72 3.192 3.453
MSLDE 90.1 2.629 3.32
MLGFP 98.7 2.345 4.882
LCMF 99.89 2.001 5.594
MSLZM 95.28 2.74 1.87
LZM 94.16 2.98 1.66
RF-CNN 100 2.826 2.785
LMZMPM 100 1.98 4.47
LMZMPM-CNN 100 1.97 4.72

1) Results on the CUHK Face Sketch (CUFS) Database:
The CUFS database is a combination of three sketch-photo
pair databases: The CUHK Student Face database [67], AR
Sketch database [63] and the XM2VTS database [68]. In total,
the CUFS database consists of 606 sketch and photo pairs
that comprise 188 pairs from the CUHK Student Database,
295 pairs from the XM2VTS database and 123 pairs from
AR Database. Each pair consists of one photo of a subject
and its respective sketch image. In our analysis, the photo-
graph has been considered as the reference picture, while its
corresponding sketch is taken as the test image. Here, each
image is cropped of size 100 × 100 that includes only the
facial portion. Fig. 10(a) shows some samples of face and
sketch images from the CUFS database. Fig. 10(b) shows
their corresponding LMZMPM faces. A comparison of the
R1R accuracy, FC and SD of the proposed method and other
comparative methods stated earlier is presented in Table-VIII,
from where it is evident that the LMZMPM method leaves
behind the other recent techniques and tops the bench with a
100% accuracy, least SD and highest FC score compared to
other approaches.

2) Results on the CASIA-HFB NIR-VIS Database: CASIA-
HFB database is a database that has 200 subjects with gallery
images captured in the visible light and test images captured
in the near-infrared. Every single subject has 4 VIS pictures
and 4 NIR pictures with posture and articulation variations.
In each of these photos, the facial portion is cropped out
to fit a 120 × 120 resolution in such a way that they are
approximately at the same eye levels. The sample image NIR-
VIS and its corresponding LMZMPM image, is shown in Fig.
11. The R1R accuracy, SD and FC values of the proposed
LMZMPM is compared with other prevalent methods stated

Figure 11. (a) Sample NIR-VIS face images from CASIA-HFB database, (b)
corresponding LMZMPM faces .

Table IX
PERFORMANCE COMPARISON ON THE CASIA-HFB DATABASE.

Methods R1R Avg. SD Avg. FC
SNS-SRE 91.54 3.02 3.87
TFSP 93.12 3.07 4.26
SIFT+MLBP 96.48 3.21 4.19
PLS 94.56 3.00 4.40
THFM 82.46 3.15 2.50
KP-RS 97.64 1.98 5.42
SGR-DA 97.1 2.93 4.78
I-LQP 89.46 2.33 5.23
ZZPLELD 89.90 2.65 3.59
MSLDE 75.6 2.96 3.32
MLGFP 98.96 2.69 4.88
LCMF 94.35 3.65 2.89
MSLZM 90.1.6 2.64 2.21
LZM 88.45 3.25 1.81
RF-CNN 98.89 2.11 5.78
LMZMPM 98.85 1.73 5.92
LMZMPM-CNN 99.57 1.52 6.14

earlier, which is shown in Table-IX. As shown, the proposed
method outperforms all the comparative techniques by achiev-
ing an average R1R accuracy of 98.80% with a maximum
FC on this challenging database. Though ”Raw Fimage +
CNN” achieves a R1R accuracy of 98.89%, which is slightly
better than the proposed LMZMPM method, it shows a higher
SD and a lower FC score compared to that of the proposed
LMZMPM method. In this scenario, ”LMZMPM Fimage +
CNN” also gives better accuracy than the LMZMPM method,
but the FC is slightly higher than the LMZMPM method.

E. Performance Comparison of Different Similarity Measures

In this sub-section, the effectiveness of our proposed hybrid
similarity measure in recognizing faces is compared with
three state-of-the-art similarity measures including structural
similarity index (SSIM) [69], k-nearest neighbors (k-nn) [70],
and L1-norm distance measure [12]. We have conducted ex-
periments on face images of AR-database. Table-X illustrates
the performance of different similarity measures stated earlier
in recognizing faces in terms of R1R accuracy. It can be
observed that the proposed hybrid similarity measure performs
significantly better than other comparative methods. Typically,
our hybrid similarity measure considers common properties of
two objects to measure similarity between them. In effect, it
lowers the rate of error in recognition and thereby, improves
the classification accuracy. It can also be observed that the
R1R accuracy of L1-norm distance measure is considerably
lower than the proposed hybrid similarity measure. However,
when we integrate the Jaccard distance with the L1-distance
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Table X
PERFORMANCE COMPARISON OF DIFFERENT SIMILARITY MEASURES ON

THE AR-DATABASE.

Similarity
Measures R1R

SSIM 84.75
k-nn (k=3) 94.02
L1-distance 96.68
Proposed hybrid

similarity measure 98.74

(i.e., our hybrid similarity measure), the performance improves
notably.

F. Unbiased Face Recognition- Accuracy, Specificity and Sen-
sitivity Measure

Due to the biasedness of the R1R rate, it is not always
a truthful measure for performance evaluation of an ap-
proach. Therefore, for unbiased performance assessment of
the LMZMPM method, we have computed sensitivity (SN) and
specificity (SP) [71] along with accuracy (AC) measure. These
are computed as AC = (TP+TN )

(TP+TN+FP+FN ) , SN = TP
(TP+FN ) ,

and SP = TP
(TP+FP ) respectively, where (TP ), (FP ), (TN )

and (FN ) signify true positive , false positive , true negative
, and false negative, respectively.

To indicate better performance, besides having good AC,
both SN and SP should be high. In this experiment, datasets
are created for each database, consisting of a number of
classes. Each of the classes has a certain number of images
in it, out of which 80% of the images are of a particular
individual and the remaining 20% images are of other individ-
uals selected randomly from the database, leaving that specific
subject. From the 80% images of the particular individual, only
one image of that individual is considered as the reference
image, and the remaining images of the particular individual
are used for positive testing. The negative testing is done using
the rest 20% images of other individuals. The measure of AC,
SN and SP of the proposed LMZMPM method, along with
that of other state-of-art techniques are presented in Table-
XI,for CMU-PIE and Extended YALE B databases; Table-XII
for AR database with noise, rotation, scaling and translation;
Table-XIII for LFW; and Table-XIV for CUFS and CASIA-
HFB databases, from where it can be observed that besides
having a high accuracy value, the proposed approach also
shows a high SN and SP values on each of the databases
and outperforms the other state-of-art techniques. Though the
method of ”Raw Fimage + CNN” (Table-XII) shows a better
result than the proposed LMZMPM method in some cases, it
is computationally very complex, time-consuming and needs
training for performing efficiently. Again, ”LMZMPM Fimage
+ CNN” outperforms the LMZMPM method with hybrid
similarity measure.

VI. CONCLUSION AND FUTURE WORK

The paper puts forward a local orthogonal moment based
modified approach for face recognition, called LMZMPM,
which not only preserves the intrinsic properties of orthogonal
moments, like translation and scaling invariant features, but is

Table XI
RESULTS ON CMU-PIE AND EXTENDED YALE B DATABASES.

Methods CMU-PIE Extended Yale B
SN SP AC SN SP AC

HF+HQ 90.2 92.2 91.5 94.3 89.8 90.5
LTV 92.6 94.0 93.8 95.0 92.2 91.7
LFA 93.0 93.3 92.5 96.0 90.6 91.4
LDN 94.3 96.5 95.8 96.3 92.7 93.6
W-Face 90.0 94.3 92.7 89.9 86.3 87.0
ZZPLELD 95.3 96.9 98.7 97.6 92.2 94.0
uLBP+LM 93.5 95.3 94.3 97.1 92.0 93.2
MSLDE 91.0 92.6 94.4 93.2 90.1 91.6
MLGFP 95.4 95.1 94.3 96.9 92.5 94.4
LCMF 97.1 99.6 98.4 98.0 98.6 99.1
MSLZM 96.8 96.6 96.7 97.4 97.6 97.5
LZM 93.7 95.7 94.7 95.8 96.2 96.0
RF-CNN 99.5 99.8 99.8 99.2 99.4 99.5
LMZMPM 99.7 99.8 99.9 99.6 99.5 99.6
LMZMPM-CNN 100 100 100 100 99.75 99.75

also invariant to illumination and rotation. Further, most of
the work done on Zernike moment was done only taking into
consideration its magnitude and neglecting the phase, as the
phase is not rotation invariant, which results in information
loss of the facial image. We not only modified it to include
the phase with the magnitude, but also tuned it in such a
way that besides magnitude, the phase becomes invariant to
illumination, rotation, scale and translation changes. Hence
the whole complex moment becomes illumination, rotation,
scaling and translation invariant. Thus our LMZMPM feature
preserves the maximum information of images in the form
of magnitude and phase of the neighborhood. Besides being
robust to noise, it also works well for heterogeneous face
recognition. Due to the flexibility of LMZMPM, it can be
beneficial for a range of problems as it is able to hold
the basic structural information of faces, which serves as
a high discriminative feature (as demonstrated by its Fisher
score); and also it can be effectively used as a pre-processing
algorithm. It can also be used as local invariant characteristic
conserving algorithms in many biometric applications and
also for hybrid approaches to meet the upcoming challenges
of Face Recognition like plastic surgery, extreme rotation,
disguise etc. Further, the method can be combined with other
dimension reduction algorithms to compress the number of
features even though retaining maximum information, with a
lower order complexity.

REFERENCES

[1] S. Pankanti, R. M. Bolle, and A. Jain, “Biometrics: The future of
identification [guest eeditors’ introduction],” Computer, vol. 33, no. 2,
pp. 46–49, 2000.

[2] A. Pentland and T. Choudhury, “Face recognition for smart environ-
ments,” Computer, vol. 33, no. 2, pp. 50–55, 2000.

[3] P. Grother, G. Quinn, and P. Phillips, “Mbe 2010: Report on the eval-
uation of 2d still-image face recognition algorithms,” National Institute
of Standards and Technology, NISTIR, vol. 7709, p. 1, 2010.

[4] M. Turk and A. Pentland, “Eigenfaces for recognition,” Journal of
cognitive neuroscience, vol. 3, no. 1, pp. 71–86, 1991.

[5] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces
vs. fisherfaces: Recognition using class specific linear projection,”
IEEE Transactions on Pattern Analysis & Machine Intelligence, no. 7,
pp. 711–720, 1997.

[6] X. He, S. Yan, Y. Hu, P. Niyogi, and H.-J. Zhang, “Face recognition
using laplacianfaces,” IEEE Transactions on Pattern Analysis & Machine
Intelligence, no. 3, pp. 328–340, 2005.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

Table XII
RESULTS ON THE AR DATABASE WITH VARIATIONS IN NOISE, ROTATION, SCALING AND TRANSLATIONS.

Methods Noise Rotation Scaling Translation
SN SP AC SN SP AC SN SP AC SN SP AC

HF+HQ 87.8 89.5 91.5 88.7 88.9 90.3 87.8 89.5 90.3 87.8 89.5 91.5
uLBP+LM 92.3 94.3 94.8 90.7 90.3 93.7 91.9 96.4 94.3 92.3 94.3 94.8
LFA 92.5 91.5 92.5 89.4 89.2 92.5 90.2 91.5 90.0 92.5 91.5 92.5
ZZPLELD 95.7 96.5 96.8 91.0 91.4 95.7 92.5 97.7 95.7 95.7 96.5 96.8
NRLBP 98.9 96.7 97.5 90.7 93.8 93.3 91.5 96.4 95.8 95.9 98.7 97.5
MSLDE 90.5 90.0 93.4 87.5 89.3 92.4 91.0 91.8 91.6 90.5 90.0 93.4
MLGFP 97.2 94.6 94.3 89.6 89.6 94.5 92.9 93.0 93.5 97.2 94.6 94.3
LCMF 98.4 98.6 98.4 91.7 94.7 94.9 94.9 97.6 98.1 98.4 98.6 98.4
MSLZM 94.2 94.0 93.8 95.0 92.2 91.9 90.1 91.7 91.2 91.2 91.7 91.4
LZM 92.7 92.6 94.4 93.2 90.1 89.1 89.4 89.1 89.8 90.2 90.2 92.5
RF-CNN 100 99.4 100 98.1 100 98.1 96.7 98.9 100 99.3 98.6 98.9
LMZMPM 99.5 98.9 99.9 97.6 99.5 98.1 96.7 98.4 99.9 98.8 99.1 98.7
LMZMPM-CNN 100 100 100 99.1 100 99.6 98.4 99.7 100 100 100 100

Table XIII
RESULTS ON THE LFW DATABASE.

Methods SN SP AC
uLBP+LM 90.6 91.7 89.2
NRLBP 90.6 91.0 89.9
ZZPLELD 89.9 91.7 91.0
PLS 89.9 90.1 89.5
I-LQP 88.2 91.7 90.5
MSLDE 85.5 88.3 87.6
MLGFP 88.4 92.0 89.4
LCMF 91.0 91.5 90.9
MSLZM 87.97 89.31 88.67
LZM 86.21 87.52 86.90
RF-CNN 96.5 96.2 96.1
LMZMPM 96.9 96.5 96.9
LMZMPM-CNN 97.12 97.24 97.44

Table XIV
RESULTS ON CUFS AND CASIA-HFB DATABASES.

Methods CUFS CASIA-HFB
SN SP AC SN SP AC

TFSP 95.3 95.3 96.0 92.4 92.4 93.1
MLGFP 95.1 93.0 94.3 92.2 90.2 91.5
uLBP+LM 92.1 92.4 94.8 90.3 93.6 92.0
SNS-SRE 95.2 95.0 96.8 92.3 92.2 93.9
MSLDE 90.7 91.8 93.4 88.0 91.4 90.6
ZZPLELD 94.1 92.7 96.8 91.3 89.9 90.9
THFM 93.4 94.4 95.8 90.6 91.6 92.9
KP-RS 96.3 97.5 97.4 93.4 94.6 94.5
SGR-DA 95.7 97.1 97.2 92.8 94.2 94.3
SIFT+MLBP 97.5 97.9 98.1 94.6 95.0 95.2
PLS 98.2 96.8 98.4 95.3 93.9 95.4
I-LQP 97.3 97.1 97.5 94.4 94.2 94.6
LCMF 98.2 97.6 98.4 95.3 94.7 95.4
NRLBP 95.0 98.4 97.5 92.2 93.5 93.6
MSLZM 94.34 94.55 95.63 91.58 92.03 92.49
LZM 92.45 92.65 93.72 89.75 90.19 90.64
RF-CNN 99.8 99.9 100 98.1 98.9 98.5
LMZMPM 99.8 99.7 100 97.9 98.7 99.3
LMZMPM-CNN 100 99.7 100 98.51 99.44 99.56

[7] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, “Face recognition:
A convolutional neural-network approach,” IEEE transactions on neural
networks, vol. 8, no. 1, pp. 98–113, 1997.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, pp. 1097–1105, 2012.

[9] B. Moghaddam, T. Jebara, and A. Pentland, “Bayesian face recognition,”
Pattern recognition, vol. 33, no. 11, pp. 1771–1782, 2000.

[10] H. Roy and D. Bhattacharjee, “Heterogeneous face matching using geo-
metric edge-texture feature (getf) and multiple fuzzy-classifier system,”
Applied Soft Computing, vol. 46, pp. 967–979, 2016.

[11] H. Roy and D. Bhattacharjee, “Local-gravity-face (lg-face) for
illumination-invariant and heterogeneous face recognition,” IEEE Trans-
actions on Information Forensics and Security, vol. 11, no. 7, pp. 1412–
1424, 2016.

[12] T. Zhang, Y. Y. Tang, B. Fang, Z. Shang, and X. Liu, “Face recognition
under varying illumination using gradientfaces,” IEEE Transactions on
Image Processing, vol. 18, no. 11, pp. 2599–2606, 2009.
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