1 Supplementary file

2 Distribution fitting procedure

Clauset et al. (2009) and Rizzo et al (2017) proposed that the maximum likelihood estimator (MLE) should be preferred over use of least square regression analyses (R²) for the fitting of power-law distributions. Rizzo et al. (2017) performed the MLE on power-law, log-normal and exponential distributions by using a suite of custom MATLABTM functions, integrated into FracPaQ (Healy et al., 2017). The MLE approach maximizes the likelihood, gives estimate of the governing parameters (α for power-law distribution, λ for exponential distribution and μ and σ for the log-normal distribution) of the different fitting equations:

Power-law:
$$p(x|\alpha) = \frac{\alpha - 1}{x_{\min}} \left(\frac{x}{x_{\min}}\right)^{-\alpha}$$
 Eq. 1

Log-normal:
$$p(x|\mu,\sigma) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$
 Eq. 2

Exponential:
$$p(x|\lambda) = \lambda \exp(-\lambda x)$$
 Eq. 3

10

where x_{\min} in the power-law distribution, is a required parameter representing the lower bound 11 12 below which the power-law distribution is not valid (Clauset et al., 2009). The x_{min} parameter can be 13 estimated using the Kolmogorov-Smirnoff (KS) test which minimizes the difference between the data and the synthetic data generated using the parameters derived from the MLE (Clauset et al., 2009; 14 15 Rizzo et al., 2017). The K-S test generates an H-percentage (HP) which is the probability of accepting the H0 (null hypothesis) result over the total *n*-cycles (in this case n = 2500). If the *p*-value is less 16 than or equal to 0.05, the test suggests that "the observed data are inconsistent with the null 17 hypothesis, so the null hypothesis must be rejected, while if the *p*-value is far from zero and close to 18 1, the observed data are not inconsistent with the null hypothesis, and the chosen fitting method 19 20 can be applied" (Light et al., 2009). However having a p-value larger than 0.05, does not prove that the tested hypothesis is the most appropriate distribution. Clauset et al. (2009) suggest that the p-21 22 value for alternative distributions can be calculated to test between other possible distributions. We

used the KS probability value (reported in tables S2 & S2) to decide between log normal and power
law distributions. In almost all examples, the exponential fit yielded a noticeably poorer result so is
discounted.

26

Knowing that attributes collected from outcrop are naturally affected by truncation and censoring bias, we also performed the MLE and KS test for truncated populations defined by step-wise removal of data values from either end of the distribution (Fig. S1). We term these the upper cut (uc) and lower cut (lc) respectively. 40 values of censoring and truncation for uc and lc were considered, resulting in 800 simulations. The resulting values of KS values were visualized a checkerboard-like plots (e.g. Fig S1). The best-fit results produce the highest percentage values red colours in Fig 5.

34

In Table S1 and S2 we report the KS value (HP), and distribution coefficients obtained using
 the MLE for both non-truncated (power-law distributions) and for truncated (power-law
 distribution, exponential and log normal) populations aperture and length.

38

Complete (non-truncated) populations are generally best described by a log-normal distribution (they show consistently high percentage fitting values). However, the KS values for truncated log-normal and truncated power-law datasets are similar suggesting either distribution might be preferred. The choice of the best-fit distribution should not be based on complete population because population "end-points" (blue regions in Fig S1) are biased. For the datasets the aperture data can mostly be well describe by power-law distribution whereas the length data could be described by either power-law or log normal distributions.

46

47

48 Fig S1. Example fracture distributions and models that show their typical development (after Dichiarante et al In Review) a) An exponential or random distribution, b) a log-normal distribution producing fracture corridors and 49 50 c) a scale invariant power law distribution. d) an example of the modified Rizzo et al (2017) MLE distribution 51 fitting procedure for a basement outcrop dataset from Garrabost, Hebrides. Complete dataset shows a poor 52 power law fit, e) same dataset with a truncated (25%) picked as the minimum value of uc/lc from checkerboard 53 of KS results that gives a good fit (>99% Ks value – dark red colour). f) the log-normal result for same dataset 54 and g) the exponential result. All of the these fits are acceptable, however the exponential can be dismissed as 55 80% of the data have been removed from the analysis, the power law and log normal are very close with a slight 56 preference for the log normal distribution (slightly higher KS value and slightly more of the data included.

Table S1 - Fracture Aperture data - distribution fitting parameters

	Mainland Lowician														Mainland Lowician (contd)							
				IVI	ainiand Lev	visian																
Dataset Grid Reference Transect	AnB002 NC 0508 2624	Assynt3 L1 NC 2006 2582	Assynt ft NC 2101 2510	Assynt Shore_L1 NC 2028 2559	CaolasCum NC 2251 3392	Clachtoll NC 0425 2677	Gruinard2 NG 8625 9097	Gruinard NG 8625 9097	KLB_10 NC 2296 5621	KLB_1 NC 2296 5621	KLB_2 NC 2296 5621	KLB_L1 NC 2296 5621	Lagg_Fish NC 0835 3097	Loch Inver NC 1000 2357	OSM NC 2010 5832	Shegra2 NC 1804 6027	Shegra NC 1801 6004	Skerricha NC 2462 5100	TACperp2 NC 4510 6577	TACperp NC 4510 6577	TTr2A NC 4510 6577	
Orientation	10	2 2	12 13	9 15	8 5	3 16	9 152	152	167	280	316	5 28	0 1	35 2	28 5	8 30	7 9	3 14	1 62	2 26	5 350	
Lithology	Banded grey, medium grained orthogneisses	High grade intermediate to mafic orthogneisse	High grade intermediate to s mafic orthogneisse:	High grade intermediate to mafic orthogneisses	Grey acid orthogneisses	Banded grey, orthogneisses (intermediate to mafic), Canisp Shear fabrics	Granulite facies TTG gneisses	Granulite facies TTG gneisses	Light to dark grey diarite/granodiarite gneiss, with younger mafic pods. Granite and pegmatite intrusions	Light to dark grey diorite/granodiorite gneiss, with younger mafic pods. Granite and pegmatite intrusions	Light to dark grey diorite/granodiorite gneiss, with younger mafic pods. Granite and pegmatite intrusions	Light to dark grey diorite/granodiorite gneiss, with younger mafic pods Granite and pegmatite intrusion	 High grade intermediate to mafic orthogneisse 	Amphibolite-grade banded grey quart diorite and tonalitu gneisses with ts Scourie dykes	Light to dark grey diorite/granodiorite gneisse, banded in places with younge mafic pod	Light to dark grey diarite/granodiarite gneisse, banded in places with younge mafic pods. Granite and pegmatite intrusions	Light to dark grey diorite/granodiorite gneisse, banded in places with younger mafic pods. Granite and pegmatite intrusions	Light to dark grey diorite/granodiorite gneisse banded in places with younger mafic pods. Granitu and pegmatite intrusions	Light to dark grey , diorite/granodiorite gneisse, banded in places with e younger mafic pads. Granite and pegmatite intrusions	Light to dark grey diorite/granodiorite gneisse, banded in places with younger mafic pods. Granite and pegmatite intrusions	Light to dark grey diorite/granodiorite gneisse, banded in places with younger mafic pods. Granite and pegmatite intrusions	
Structure Number of	Assynt terrane, Canisp Shear zone margin	Assynt terrane, background gneiss fabrics	Assynt terrane, background gneiss fabrics	Assynt terrane, background gneiss fabrics	Assynt terrane, little pre-existing structure	Assynt terrane, Canisp Shear zone margin	Gairloch shear zone fabrics	Gairloch shear zone fabrics	Rhicconich terrane, close to Kinlochbervie fault	Rhicconich terrane, close to Kinlochbervie fault	Rhicconich terrane, clase to Kinlochbervie fault	Rhicconich terrane, close to Kinlochbervie fault	Assynt terrane, background gneiss fabrics	Assynt terrane, background gneiss fabrics	Rhicconich terrane, backgraund gneiss fabrics	Rhicconich terrane, background gneiss fabrics	Rhicconich terrane, background gneiss fabrics	Rhicconich terrane, background gneiss fabrics	Rhicconich Terrane, perpendicular to foliation	Rhicconich Terrane, parallel to foliation	Rhicconich Terrane, perpendicular to foliation	
fractures	20	. 80	53 5	0 4	2 50	0 6	5 76	76	81	. 94	61	L 8	1 .	47	72 5	3 ε	3 5	1 7	7 10	7 5	7 43	
Length (m)	12.72	28	8 3.2	5	6 11	3 14.	5 50	15	20	35	30) 3	0	9	20 1	3 3	0 2) 4	0 30	0 2	20	
Pl Broh		0 78.0	0.1	2 96	0	3 34 9			12.45	Power law fit for	entire sample	2 20.7	6	0	2 979	D	0		o (0	60.09	
PL ΠΟυ PL α	1.4	17 2.0	03 1.3	2 50. 7 2.0	7 1.4	5 1.4	2 1.45	1.59	1.68	1.68	1.56	5 1.9	3 1.	88 1.	5 1.5	D 1.4	4 1.6	2 1.5	2 1.43	3 1.4	5 1.96	
uc		0	0	0	0 0	0	0 0	C	C) (()	0	0	0	D	0)	0 0	0	0 0	
lc		0	0	0	0 (с с) (C	C) (0)	0	0	0	D	0)	0 (0 0	0 0	
								Truncated	and censored sampl	e distribution fittin	Using MLE appro	ach (see text)										
LN Prob	98.9	92 99	.2 99.3	6 99.4	4 98.1	2 98.	1 96	96.44	98.96	98.04	98.64	1 8	3 99.	84 99.	52 99.7	2 99.7	2 98.2	B 99.8	4 99.64	4 99.2	99.88	
LN nu LN siama	-1.4	•1 -0.•	+5 -0.5 22 0.7	2 0.1	4 -5.74 5 0.2	5 -5.4 5 0.8	-4.98	-5.40	-4.53	-5.93	-5.52	2 -0.1	3 -57916.	-6. 33 0	77 -3.4 75 0.8	-4.5	5 -6.4 1 0.4	-0.0 2 0.6	5 -0.0: 6 0.2	-4.5 7 0.4	-0.88	
uc		25 (55	0	0 10	0 1	5 0	0	1.0.	0 0	10)	0	15	30	5	0 1	0 8	0 1	5	5 30	
lc	2	20	0	0	0 8	5 2	5 90	70	80) 75	50)	0	65	5 0 7	5 7	5 6	5 1	5 75	5 7) 15	
Exp prob	0.0	JA 24.0 75 1 !	J8 52.9 58 1.3	2 0.8	7 97.6	4 99.6	J 83.80 R 128.21	97.30	148.62	71 73	4.72	2 24.6	4 94. 3 104	88 85. 10 36	36 99.0	4 74.7 9 100.7	6 U.U 8	J 71.4 190.4	4 97.20 8 90.00	0 97.2i	14.96	
uc	2	0	0	0	0 9	5 9	5 95	85	140.01) (155.05)	0	75	0 7	5 8	5 10) 9	5 85	5 9	5 0	
lc	ţ.	55 :	10 6	0 2	0 0	0	0 0	C	c) (c)	0	10	0	5	0)	0 .	5) 45	
PL Prob T&C	98.8	34 98.:	12 99.5	6 98.5	6 99.9	5 99.4	3 97.88	99.4	97.44	98.72	98.8	3 95.7	2 99.	84 99.	18 99.8	4 99.9	2 96.1	5 99.	8 99.88	B 99.7	5 99.84	
PLα	2.3	36 3.3	22 3.2	1 2.3	2 1.9	3 1.8	1 2.81	2.06	2.01	1.75	2.11	1 2.0	3 2.	15 1.	51 1.6	5 2.0 7	0 1.6	1 2.5	4 2.08	8 2.3	3.37	
xmin	0.1	1.0	•5 U.0	5 0.7	4 U.UU:	5 0.00	2 0.003	0.004	0.004	0.004	0.003	5 U.3	· 0.0	6E 0.0	5 0.00	, U.U	0.000	5 U.UU	/ U.UU	• U.U.	0.83	
lc		0	0	5	2 1	0 1	0 0	0	1		(,)	1	10	0 1	0	0 2)	0 0	0	5 0	

	Hebrides															
Dataset Grid Reference Transect	Borve1 NG 0387 9645	Borve 2 NG 0388 9755	DailBeag NB 2274 4601	Garrabost NB 5104 3308	GobThais NB 5354 5005	Hushinish NA 9936 1190	Orasaigh NB 3766 3944	Pabail NB 5328 3124	PortMholair NB 5647 3628	Seaforth NB 1925 1188	SeisPara NB 5593 3300	SeisPerp NB 5593 3300	SHSZ1 NF 9864 8946	SHSZ2 NF 9864 8946	SHSZ3 NF 9867 8943	Tolstadh NB 5412 4618
Orientation	40	330) 64	260	160	170	268	72	24	9 62	2 136	5 33	2 147	7 3	3 12	0 95
Lithology	Banded gneiss and granite. Outside OHFZ.	Banded gneiss (adjacent to granite). Outside OHFZ	Banded Gneiss. Outside the OHFZ.	Banded gneiss near the OHFZ.	Banded gneiss. Outside the OHFZ.	Granitic gneiss, adjacent to large NNW-SSE trending lineament.	Banded gneiss, within OHFZ.	Banded gneiss within OHFZ, adjacent to NNW SSE Mesozoic fault with several ms of gouge.	- Banded gneiss and granite, outside the OHFZ.	Banded gneiss, I outside the OHFZ. Along road cut.	Banded gneiss, within the OHFZ.	Banded gneiss within the OHFZ.	Foliation parallel within met	Banded gneiss	Banded gneiss.	Within the 'crush mélange' of the OHFZ – very heavily fractured cataclastic gneiss.
Structure Number of	Pre-Mesozoic faults and joints.	Pre-Mesozoic faults and joints.	Joint dominated fracture set striking NW-SE.	Mesozoic fault dominated, NNW-SSE and N- S striking faults.	Joint dominated.	Calcite vein and joint dominated	Sub-parallel with late E-W faults, joints and veins	Mesozoic calcite cemented minor fault dominated	Epidote bearing faulting and background jointing	Dominated by jointing (50 m from the Seaforth Fault)	Mesozoic fault dominated - perpendicular to main fault	Joint dominated parallel to main fault	- Joint dominated	Joint dominated	Joint dominated adjacent to NNE SSW striking fault	 gneiss, cut by Mesozoic structures
fractures	186	233	67	83	62	107	7 220	61	14	5 16	7 66	5 5	0 166	5 6	1 6	9 199
Length (m)	88.58	33.9	20.64	435.5	23.47	9.9	9 31.48	10.63	33.7	2 44.54	13.75	5 24.14	4 9.36	5 8.7	2 2.9	8 4.735
al and								Power law fit	for entire sample	0	0.7/	-			c	
PL Prob PL a	1 3717	1574	1 2833	s (11886	0 0 5 1 6165	1 439	5 13892	12.48	1 406	U 1 8 1329/	2 0.76	5 1 208	1 1 0 2 9	0.7	4 1708	0 (6 12349
uc	0) () () () 0	1.455) (0	1.400	0 () () (0 ()	0	0 0
lc	0) () () () 0	C) (0		0 () () (D ()	0	0 0
						Ti	runcated and censo	red sample distribu	ition fitting Using M	ILE approach (see t	ext)					
LN Prob	99.52	98.32	99.6	5 99. 6	96.08	97.52	2 97.4	94.4	97.3	6 93.44	91.88	3 95.72	2 95	5 99.6	8 99.3	2 95.64
LN mu	-5.7989	-10.329	-2.7422	-4.9169	-5.7669	-9.8716	-4.7767	-6.6067	-4.947	6 -7.953	-6.6272	-9.1982	-9.7692	-6.765	6 -5.787	5 -8.1019
LN sigma	1.0609	0.3738	3 0.92682	1.2833	0.72002	0.40806	5 1.3881	2.4468	1.202	2 1.103	0.34555	5 2.150	8 0.14786	5 2.089	6 0.5852	7 0.9286
uc	80	90		20	0 0	80) 80	55	-	0 50) 25	- 7	5 85		0	0 5
ic	0) () 60) (85	() (u u	/	5 20) 25		5	o /	0 9	0 75
Exp prob	97.16	97.88	3 99.2	99.72	94.36	99.96	5 97.12	99.6	99.5	2 99.9	5 77.8	3 10	99.04	1 10	0 93.9	6 22.72
Lambda	221.4325	101.3418	12.8907	1.3039	210.5263	16.3436	5 12.3069	19.8691	67.807	5 65.8243	441.5748	3 3.570	5 91.5858	3 100.411	4 633.06	5 26.832
uc	80) 95	5 55	80) 95	95	5 95	85	8	0 9!	5 () 9	5 95	5 8	5 7	0 95
lc	0) () () () 0	C) () 0		0 () 10) (D (0	0	0 0
PL Prob T&C	97.32	98.08	98.32	99.4	100	92.24	1 89.72	97.72	98.	4 100	92.8	3 96.8	4 98.08	3 99.2	8 95.3	2 96
PLα	1.7831	1.8576	5 2.11	1.4653	2.2459	1.6058	3 1.5961	1.379	1.671	4 1.6093	3 2.053	3 1.625	1 1.6785	5 1.50	4 2.110	2 1.5361
xmin	0.00084524	0.00098481	0.04	0.0046985	0.003	0.0005	0.0027189	0.000096593	0.0009396	9 0.0019924	0.00086603	3 0.00	3 0.00096593	3 0.0009659	3 0.0009659	3 0.00025
uc	80	90	70	25	95	80	9 85	55	6	5 95	o 30	. 8	5 90	. 8	5 8	5 80
IC .	0	, (, (0	l	, (0 1) 20	, ,	2 (J	0	υ (
	I															

						Clair						
										KM2067a_2core	KM2067a_2core	
Aperture	JP2067a_2	JP2067a_2core3	JP2067a_2core4	JP2067a_2core5	JP2067a_2core6	JP2067a_2core8	JP2067a_2core9	JP2068_8	KM2067a_2core3	4	8	
Grid Reference Transect	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	
Orientation	horizontal horizontal Banded gneiss Banded gneiss		horizontal	horizontal	horizontal	horizontal	horizontal	horizontal	horizontal	horizontal	horizontal	
Lithology	Banded gneiss	Banded gneiss	Banded gneiss	Banded gneiss	Banded gneiss	Banded gneiss	Banded gneiss	Banded gneiss	Banded gneiss	Banded gneiss	Banded gneiss	
Structure Number of	Fractured gneiss Fractured gneiss		Fractured gneiss	Fractured gneiss	Fractured gneiss	Fractured gneiss	Fractured gneiss	Fractured gneiss	Fractured gneiss	Fractured gneiss	Fractured gneiss	
fractures	75	а "л	34	36	20	23	22	33	132	131	45	
Lenath (m)	10) 10) 10	10	10	10	10	10	10	10	10	
					Powe	er law fit for entire	sample					
PL Prob	1.8	3 50.28	8 82.12	47.8	97.96	76.48	86.04	86.68	0	C	65.44	
PL α	1.31	L 1.32	1.42	1.31	1.41	1.35	1.33	1.37	1.25	1.24	1.32	
ис	0) () ()	0	0	C	0	C	0	C	0	
lc	0 0) 0	0	0	C	0	C	0	0 0	0	
				Truncated a	ind censored samp	le distribution fittir	g Using MLE appro	oach (see text)				
LN Prob	99.6	5 99.64	1 99.6	98.56	100	99.6	99.48	99.68	99.24	99.36	99.76	
LN mu	-5.3	-5.588	-5.88	-6.1	-6.8735	-6.491	-6.31	-5.87	-7.92	-7.19	-5.59	
LN sigma	1.38	3 1.577	7 1.33	1.39	0.91	1.32	1.49	1.45	0.71	0.8001	1.58	
uc	0) () 0	0	30	C	0	C	35	20	0	
lc) () 0	0	0	C	0	0 0	20	20	0 0	
Exp prob	94.68	3 97.96	5 96.84	96.8	99.4	98.44	88.76	96.4	97.08	81.76	97.64	
Lambda	90.93	3 75.89	9 154.92	91.52	87.71	300.43	181	119.68	97.07	346.34	75.89	
ис	5	5 25	5 10	60	30	10	10	20	85	40	25	
lc) () 0	0	0	C	0	0	0 0	0	10	
PL Prob T&C	97.4	1 97.5	5 97.88	95.56	99.8	99.04	98.04	99.16	99.6	99.76	96.28	
PLα	1.88	3 1.97	7 1.74	1.61	1.58	1.52	1.56	1.54	1.892	2.16	1.52	
xmin	0.0047	7 0.0065	5 0.019	0.0007	0.0007	0.0003	0.0006	0.0008	0.0007	0.003	0.001	
uc	45	5 60) 35	15	30	10	20	20	55	85	20	
lc) 1() ()	0	0	5	10	10	0	0	15	

Table S2 Fracture length attributes - distribution fitting parameters

									Mainland	Lewisan									
1D Length (P11)	ML_AchmelvichBeach_L1	ML_AnB3_L1	ML_AnB6_L1	ML_AnB8_L1	ML_AnBFT002_L1	ML_Assynt3_L1	ML_Assyntft_L1	ML_Assyntshore_L1	ML_Clachtoll_L1	ML_CSZ2_L1	ML_CSZ3_L1	ML_CSZmid_L1	ML_KLB_L1	ML_LochAssynt2_L1	ML_LochAssynt3_L1	ML_Oldshoremore1_L1	ML_Rispond_L1	ML_TraighAlltChailgeag_L1	ML_TTr2A_L1
Dataset	Achmelvich	Alitan na bradhan	Alitan na bradhan	Alltan na bradhan	Alltan na bradhan	Assynt	Assynt_fieldtrip location	AssyntShore_L1	Clachtoll	Canisp SZ	Canisp SZ	Canisp SZ	Kinlochbervie	Loch Assynt Shore	Loch Assynt	Oldshoremore	Rispond	Traigh Allt Chailgeag	Traigh Allt Chailgeag
Grid Reference	NC 0566 2498	NC 0508 2624	NC 0508 2624	NC 0508 2624	NC 0508 2624	NC 2006 2592	NC 2101 2510	NC 2028 2559	NC 0425 2677	NC 0529 2591	NC 0593 2550	NC 0591 2550	NC 2206 5621	NC 2028 2559	NC 2006 2592	NC 2010 5922	NC4509 6557	NC 4510 6577	NC 4510 6577
Transect Orientation	230	102	102	102	102	242	139	158	169	110 0320 2301	281	110 0301 2333	280	158	242	58	1	62	266
													Light to dark grey						Light to dark grey
										Banded grey,	Banded grey,		diorite/granodiorit					Light to dark grey	diorite/granodiorite
Lithology									Banded grey,	orthogneisses	orthogneisses	Banded grey,	e gneiss, with			Light to dark grey	Light to dark grey	diorite/granodiorite gneisse,	gneisse, with
	High grade intermediate to make	Randad area, madium arained	Rooded area, medium arained	d Rondad area madium arained	Rondad orau madium	Hish grade intermediate	a Hinh arada intermediata	High grade intermediate to	Orthogneisses	(intermediate to mafic). Canico Shoar	(intermediate to mafic). Coniro Shear	orthogneisses (intermediate to mafic)	younger majic	High grade intermediate to	High grade intermediate to	diorite/granodiorite gneisse,	diorite/granodiorite	s make pade Granite and pagenti	younger matic poas.
	orthogneisses	orthogneisses	orthogneisses	orthogneisses	arnined orthogneisses	to mafic orthogneisses	to mafic orthogneisses	mafic orthogneisses	Canisa Shear fabrics	fabrics	fabrics	Canisa Shear fabrics	neamatite	mafic orthogoneisses	mafic orthogneisses	mafic and	with younger matic nod	intrusions	neamatite intrusions
		and a grant and a grant a g	a and a design of the second sec		g	Assynt terrane,	Assynt terrane,			Assynt terrane,	Assynt terrane,		Rhicconich terrane,	indjie of thegretates	inity it in the grit states	iiiiga paa	Rhicconich terrane,		peg-100000
Structure	Background gneiss outside Cansip Shea	r Assynt terrane, Canisp Shear	Assynt terrane, Canisp Shear	Assynt terrane, Canisp Shear zone	Assynt terrane, Canisp	background gneiss	background gneiss	Assynt terrane, background	Assynt terrane, Canisp	Canisp Shear zone	Canisp Shear zone	Assynt terrane, Canisp	close to	Assynt terrane, background	Assynt terrane, background	Rhicconich terrane, background	background gneiss	Rhicconich Terrane, perpendiculo	r Rhicconich Terrane,
	zone	zone margin	zone margin	margin	Shear zone margin	fabrics	fabrics	gneiss fabrics	Shear zone margin	margin	margin	Shear zone margin	Kinlochbervie fault	gneiss fabrics	gneiss fabrics	gneiss fabrics	fabrics	to foliation	parallel to foliation
number of fractures	44	43	43	40	208	53	50	42	65	38	42	40	94	42	53	53	49	107	57
length (m)	8.1	6	b	6	12.728	0	3.43 Rower low fit for entire romo	6	14.5	0	6	0	35	6	0	15	24	30	20
PL Prob	17.88	72.68	68.88	98.44	0	76.68	0	96.36	51.72	96.44	87.92	94.56	79.92	96.16	78.52	76.6	80.96	71.64	56.56
PLα	1.4403	1.7352	1.9641	2.1124	1.4657	2.0321	1.3711	2.0743	1.9171	1.9718	1.6109	1.8465	1.9314	2.0743	2.0321	2.0127	1.7809	1.7415	1.9641
uc	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
lc	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Xmin																			
(M.Bash	99.44	69.79	99.4	00.9	99.74	Truncated and censored so	ample distribution fitting Usin	ng MLE apparaoch (see text)	99.57	99.04	09.74	99.6	97.4	99.04	09.79	99.76	99.22	00.44	99.4
LNPTOD	0.42992	-0 10305	.0 62497	0 42022	1 5519	0.40407	-0.50601	0.0062306	0.45417	0 16591	0 14974	0 40724	0.7279	0.0062706	0.20409	0 15736	0 19291	-0.42471	0 62497
LN siama	0.90444	0.63293	0.5312	0.50431	0.49571	0.48127	0.72165	0.67445	0.41534	0.74359	0.76437	0.64703	0.64823	0.67445	0.5115	0.37238	0.47237	0.40024	0.5312
uc	0	10	10	0	20	30	0	0	15	0	15	10	15	0	20	45	0	40	0
lc	0	0	0	0	0	0	0	0	0	0	0	0	10	0	0	0	0	0	0
	100	90	90	100	80	70	100	100	85	100	85	90	75	100	80	55	100	60	100
Exp prob	96.44	95.52	4.52	89.88	26.44	2.84	50.88	19.84	65.84	81.04	95.8	52.92	85.64	18.96	3	73.92	59.24	55.88	16.8
Lambda	1.0916	0.24821	1.8881	0.51613	1.335	1.0041	1.3872	1.1318	0.43459	0.49648	0.38642	0.83796	0.26683	1.1318	1.0041	0.4013	0.92983	0.60378	1.8724
uc	55	70	5	85	0	0	0	0	85	85	15	0	85	0	0	90	0	0	0
lc	0	5	0	0	5	0	60	85	5	0	0	10	0	55	0	0	25	0	0
	45	25	95	15	95	100	40	15	10	15	85	90	15	45	100	10	75	100	100
PL Prob T&C	98.48	99.2	98.12	98.44	99	98.48	99.64	98.52	98.72	98.48	99.04	99.64	98.64	98.48	98.6	98.48	98.76	99.36	98.68
PLα	2.3311	2.0278	2.3764	2.1124	2.3741	2.5943	3.2061	2.1675	2.3049	2.2797	1.7625	2.7298	2.1977	2.3197	2.3863	3.7526	2.3236	2.0629	2.3764
<i>xmin</i>	0.584	0.51	0.35	0.31	0.217	0.8	0.63	0.5	0.49	0.53	0.545	1.32	0.5	0.74	0.67	1.57	0.74	0.78	0.35
uc	40	10	15	0	40	30	45	15	20	25	10	55	20	35	15	55	35	35	15
lc	0	0	0	0	5	0	0	5	0	0	5	0	5	5	5	0	0	0	0
	60	90	85	100	55	70	55	80	80	75	85	45	75	60	80	45	65	65	85

		Clair regional length datasets									
	CL_EW2_L1	CL_NS1_L1	CL_NS2_L1	CL_NW-SE2_L1	CL_NE-SW1_L1	CL_NE-SW2_L12					
Dataset	Clair seismic attribute	Clair seismic attribute	Clair seismic attribute	Clair seismic attribute	Clair seismic attribute	Clair seismic attribute					
Grid Reference	n/a	n/a	n/a	n/a	n/a	n/a					
Transect Orientation		0	0	315	45	45					
Lithology	Lewisian Gneisses	Lewisian Gneisses	Lewisian Gneisses	Lewisian Gneisses	Lewisian Gneisses	Lewisian Gneisses					
Structure	Rona Ridge	Rona Ridae	Rona Ridae	Rona Ridae	Rona Ridae	Rona Ridae					
number of fractures	39	30	41	31	49	46					
Length (m)	15 900	14 100	14 300	10 500	24 700	24 000					
PL Prob	97.2	75.6	98.92	99.04	52.36	54.56					
PL α	1.91	1.61	1.89	1.72	1.97	1.66					
uc	0	0	0	0	0	0					
lc	0	0	0	0	0	0					
(N Droh	08.04	00.03	06.76	08.06	07.49	00.94					
LN PTOD	7 22	99.92	90.70	96.90	97.40	6 0092					
LN siama	0.74	0.9	0.85	7.3	7.25	0.552					
Liv sigma	5	0.5	0.05	0.57	0.0	45					
lc	0	0	0	0	0	0					
Eva prob	95	99.2	76.24	97.96	4.4	69					
Lambda	0.00013	0.00039	0.00053	0.00044	0.00083	0.0005					
uc	90	0	0	0	0.00000	0.0000					
lc	0	0	0	0	0	0					
PL Prob T&C	98.2	98.4	98.92	99.04	94.96	99.44					
PL α	1.92	2.1	1.89	1.72	2.43	3.29					
xmin	626	1114	515	412	793	2075					
uc	5	30	0	0	10	45					
lc	0	0	0	0	15	0					

		Regional-	scale length da	ata (2D)
	HB_Hebrides_L2	ML_Assynt_L2	ML_Rhiconich_L2	N	/IL_Scourie_L2
Dataset					
Grid Reference	n/a	n/a	n/a		n/a
Transect Orientation					
Lithology	Lewisian Gneisses	of Assynt terrane	terrane		terrane
	basement fabrics and	basement fabrics			
Structure	faults	and faults	basement fabrics and	d faults	basement fabrics and faults
number of fractures	1743	2233	835		918
Area (km2)	2179	21.3	108.2		113.
PL Prob	0	0		0	
PLα	1.7382	1.316		1.1949	1.2322
uc	0	0		0	
lc	0	0		0	
LN Prob	97.36	96.44		98.36	96.04
LN mu	6.9597	6.1499		6.3272	6.101
LN sigma	0.67701	0.44067		0.12044	0.33314
uc	60	15		30	20
lc	15	5		40	
Exp prob	0	0		0	
Lambda					
ис					
lc	-				
PL Prob T&C	97.16	95.48		98.52	98.10
PL α	3.1362	3.32		3.0059	2.744
xmin	1753.9192	1470.4323		647.7691	491.805
ис	75	90		65	5
lc	0	0		0	
	25	10		35	49

Sample No	Sample Area	Total Trace-length		Y	Х	E	Total	No. Lines	No. Branches	Average Line Length	Avge Branch Length	Connect/line	Connect/branch	Frequency	Intensity
AnB T1b	716743.2549) 16881.43844	134	168	21	45	323	151	361	1 111.80	46.76	2.50	1.63	3 0.0005	0.024
AnB T2	364893.8289	11509.77525	90	215	68	43	373	152.5	503.5	5 75.47	22.86	3.71	1.87	2 0.0014	0.032
AnB T3	785397.5	5 19634.95408	55	277	28	50	360	166	499) 118.28	39.35	3.67	1.89	9 0.0006	0.025
AnB T4	502654.4	14765.48547	34	238	14	47	286	136	402	108.57	36.73	3.71	1.97	2 0.0008	0.029
AnB T5	125663.6	6911.503838	31	341	22	44	394	186	571	1 37.16	. 12.10	3.90	1.95	5 0.0045	0.055
AnB T6	785397.5	5 16100.66235	42	171	8	41	221	106.5	293.5	5 151.18	54.86	3.36	1.86	6 0.0004	0.021
AnB T7a	1433720.525	5 29181.66511	58	360	25	55	443	209	619) 139.63	47.14	3.68	1.93	1 0.0004	0.020
AnB T7b	1433720.525	32895.69522	73	574	61	62	708	323.5	1019.5	5 101.69	32.27	3.93	1.93	3 0.0007	0.023
AnB T8	2286419.986	36851.55531	69	280	29	55	378	174.5	512.5	5 211.18	3 71.91	3.54	1.8	7 0.0002	0.016
AnB T9	180523.8104	4 11672.77364	51	393	32	62	476	222	679	52.58	3 17.19	3.83	1.92	2 0.0038	0.065
AnB T10	275979.3576	5 14432.61802	62	405	20	62	487	233.5	678.5	61.81	21.27	3.64	1.93	1 0.0025	0.052
Clair 1 a	3061.875173	3 373.163	6	5	6	14	17	5.5	22.5	67.85	16.59	4.00	1.73	3 0.0073	0.122
Clair 1 b	3061.875173	3 402.862	9	17	4	12	30	13	38	30.99	10.60	3.23	1.76	6 0.0124	0.132
Clair 6	3061.875173	3 385.464	5	9	3	12	17	7	22	2 55.07	17.52	3.43	1.7	7 0.0072	0.126
Clair 1 c	3061.875173	3 697.436	6	52	6	24	64	29	93	3 24.05	7.50	, 4.00	1.94	4 0.0304	0.228
Clair 1 d	3061.875173	3 565.945	5	41	1	23	47	23	66	5 24.61	8.57	3.65	1.92	2 0.0216	0.185
Clair 2 a	3061.875173	3 612.268	8	35	7	18	50	21.5	70.5	28.48	\$ 8.68	3.91	1.89	9 0.0230	0.200
Clair 2 b	3061.875173	3 732.328	6	62	5	20	73	34	106	5 21.54	6.91	3.94	1.94	4 0.0346	0.239
Clair 2 c	3061.875173	3 326.205	6	10	2	5	18	8	22	2 40.78	3 14.83	; 3.00	1.73	3 0.0072	0.107
Clair2_d	3061.875173	3 361.948	2	17	0	13	19	9.5	26.5	38.10) 13.66	3.58	1.92	2 0.0087	0.118
RR1	3061.875	679.536	2	39	6	22	47	20.5	71.5	33.15	9.50) 4.39	1.9	7 0.0234	0.222
RR2	3061.875	5 421.048	5	30	0	17	35	17.5	47.5	5 24.06	8.86	3.43	1.89	9 0.0155	0.138
RR3	3061.875	5 763.406	5	63	6	24	74	34	109	22.45	7.00	4.06	1.95	5 0.0356	0.249
RR4	3061.875	5 1078.614	5	173	10	32	188	89	282	2 12.12	3.82	4.11	1.98	8 0.0921	0.352
RR5	3061.875	5 532.007	4	30	0	15	34	17	47	/ 31.29) 11.32	3.53	1.92	1 0.0154	0.174
RR6	3061.875	5 841.229	20	72	6	26	98	46	130) 18.29	6.47	3.39	1.85	5 0.0425	0.275
Assynt Regiona	I 3.03608E+13	3 188445192.4	246	194	161	82	601	220	736.00	856569.06	256039.66	3.23	1.6	7 0.0000	0.000