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Abstract 9 

Upfaulted ridges of Neoarchean crystalline basement rocks formed in the Faeroe-Shetland basin as a 10 

consequence of Mesozoic rift processes and are an active target for oil exploration. We carried out a 11 

comprehensive fault and fracture attribute study on the extensive exposures of geologically 12 

equivalent crystalline basement rocks onshore in NW Scotland (Lewisian Gneiss Complex) as an 13 

analogue for the offshore oil and gas reservoirs of the uplifted Rona Ridge basement high. Our analysis 14 

shows a power-law distribution for fracture sizes (aperture and length), with random to clustered 15 

spacing, and high connectivity indices. Regional variations between the Scottish mainland and the 16 

Outer Hebrides are recognised that compare directly with variations observed along the Rona Ridge 17 

in the Faeroe-Shetland basin.  Here we develop a model for the scaling properties of the fracture 18 

systems in which variations in the aperture attributes are a function of the depth of erosion beneath 19 

the top basement unconformity. More generally, the combination of size, spatial, and connectivity 20 

attributes we found in these basement highs demonstrates that they can form highly effective, well 21 

plumbed reservoir systems in their own right. 22 

  23 
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The metamorphic basement rocks of the Lewisian Gneiss Complex may once have seemed an unlikely 24 

target for hydrocarbons, but a series of recent discoveries means that they are now a focus for 25 

exploration activity in the Faeroe-Shetland basin (Fig. 1). The delineation of the Clair and Lancaster 26 

fields, and associated prospects confirms that there are significant oil accumulations in Neoarchaean 27 

basement lithologies of similar age to the onshore Lewisian Gneiss Complex in NW Scotland. These 28 

crystalline basement ridges were uplifted and exposed at surface during Mesozoic rifting before being 29 

buried again during the Cenozoic Atlantic margin opening (Stoker et al. 2018). Given that permeability 30 

in basement reservoirs is predominantly fracture-controlled (e.g. Achtziger-Zupančič et al. 2017) and 31 

given the general uncertainty associated with fractured reservoirs systems (Nelson 1985), a renewed 32 

interest in studying analogue basement-hosted fracture systems is unsurprising.  33 

Well -exposed outcrops of the Lewisian Gneiss Complex occur in the mainland of NW Scotland 34 

and in the Outer Hebrides, the latter being an elongate uplifted crustal block with similar dimensions 35 

to the Rona Ridge offshore, and along-strike, where significant hydrocarbon discoveries have been 36 

made (Fig. 1). 37 

Although rare, producing basement reservoirs in a range of fractured igneous and 38 

metamorphic host rocks are known from 27 countries worldwide (Gutmanis et al. 2009; 2015). They 39 

form by conventional means with migration from a mature basinal source rock into a fractured 40 

reservoir trap and are contained by a low permeability top seal. Oil accumulation in the crystalline 41 

basement of the Clair field has long been known (e.g., Coney 1993), but recent discoveries in other 42 

parts of the Rona Ridge, where basement has been specifically targeted include the Lancaster field, 43 

and the Lincoln, Halifax and Whirlwind prospects (Slightam 2012; Trice 2014).  44 

The Lewisian Gneiss Complex of NW Scotland has, over its c. 3.2 Ga history, formed part of an 45 

active accretionary margin, a collisional foreland, a rifted margin (at least twice) and most recently a 46 

passive margin, and therefore retains a record of several generations of both ductile and brittle 47 
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deformation, metamorphism and fluid flow events. This complex history has produced a highly 48 

heterogeneous array of lithologies, metamorphic grades and structural styles (e.g. Park 1970).  49 

Here, we present an analysis of fracture attribute datasets collected from brittle structures 50 

exposed across the onshore Lewisian Complex. The comprehensive nature of the data compilation 51 

(some 80 individual datasets) enables us to identify correlations between the mainland Lewisian and 52 

the Clair basement, and the Hebrides exposures with the Lancaster field. We then propose a simple 53 

model that accounts for the first order differences in fracture attributes and their scaling that is linked 54 

to recent work on the geological nature and development of the fracture systems and their infills 55 

(Holdsworth et al. 2019a, b, Trice et al. 2019). This work has led to a new understanding of the 56 

significance of fissuring processes in enhancing the capability of uplifted rift blocks of fractured 57 

crystalline basement to host significant accumulations of hydrocarbons and also provides a general 58 

model for explaining fluid flow in other uplifted basement lithologies in similar settings below regional 59 

unconformities. 60 

Geological Setting 61 

Location and regional structure 62 
The Precambrian rocks of the Lewisian Gneiss Complex of NW Scotland form a fragment of the 63 

continental basement of Laurentia that was isolated from North America by the opening of the North 64 

Atlantic (Bridgwater et al. 1973). The rocks comprise trondjemitic, tonalitic and granodioritic 65 

orthogneisses, with subordinate units of metabasic-ultrabasic and granitic composition, together with 66 

local units of metasedimentary rock. The complex then underwent a long history of major, crustal-67 

scale geological events during the Archaean and Palaeoproterozoic (see Wheeler 2010 and references 68 

therein) and is divided into a number of tectonic regions or ‘terranes’ that are separated by mainly 69 

steeply-dipping shear zones or faults.  70 

 71 
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Two different tectonic views exist concerning the early geological evolution of the Lewisian 72 

Gneiss Complex. The first, based on the classic geological mapping by Sutton and Watson (1951), 73 

suggests that much of the basement gneiss is a single piece of continental crust that shares a common 74 

early history. This model was rooted in the recognition of two fundamentally separate groups of 75 

tectonothermal events, one predating and one postdating the intrusion of a regional swarm of NW-76 

SE tending mafic to ultramafic dykes known as the Scourie Dyke swarm (Sutton and Watson 1951). 77 

Areas where evidence for these early events is not preserved were thought to have undergone intense 78 

overprinting and reworking during later Paleoproterozoic events (‘Laxfordian’). A more recent 79 

alternative hypothesis, proposed by Friend and Kinny (2001) and Kinny et al. (2005), is founded in 80 

zircon geochronology and suggests that each terrane has different Archaean age spectra. They view 81 

the Lewisian as a collage of lithologically and geochronologically distinct tectonic units or terranes 82 

bounded by regional shear zones that were assembled progressively during a series of Precambrian 83 

amalgamation episodes.  84 

Neoarchaean orthogneisses of broadly similar composition and age extend north of the 85 

Scottish mainland at least as far as the northernmost tip of Shetland (Holdsworth et al. 2018; Kinny et 86 

al. 2019). Equivalent units underlie much of the Faroe-Shetland basin and the ca 200km Rona Ridge, 87 

as shown by analyses of basement-penetrating offshore cores (Fig 1; see Ritchie et al. 2011). These 88 

basement rocks have protoliths and early amphibolite facies tectonothermal events of broadly the 89 

same age as those of the Lewisian Gneisses (ca. 2.8-2.7Ga), but lack the Palaeoproterozoic (Laxfordian) 90 

overprinting events (Holdsworth et al. 2018). These rocks are directly comparable to those of the 91 

North Atlantic Craton in Eastern Greenland and Canada, whilst the reworked rocks of the Lewisian 92 

Gneiss Complex in NW Scotland and the Hebrides are thought to be southeasterly equivalents of the 93 

Nagssugtoqidian gneisses of Eastern Greenland (Mason & Brewer, 2004; Holdsworth et al. 2018). 94 

Early metamorphic assemblages and structures, together with the Scourie dykes, are 95 

heterogeneously overprinted by Laxfordian reworking in parts of the Lewisian Gneiss Complex. These 96 
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older features are only clearly preserved in certain areas of the mainland complex, most notably the 97 

‘Central Region’ or Assynt Terrane (Fig 2). The main phases of the Laxfordian deformation and 98 

metamorphism predominate in the Rhiconnich and Gruinard terranes that lie to the north and south 99 

of the Assynt Terrane respectively (Fig. 2). The NW-SE strike-slip-dominated shear zones that form the 100 

terrane boundaries on the Scottish mainland – and another 1 km wide structure in the centre of the 101 

Assynt Terrane known as the Canisp Shear Zone (Fig 2) - are thought to have formed and perhaps 102 

initially juxtaposed the three terranes during an early (Inverian) event ca 2.4 Ga (Park et al. 2002). All 103 

were then reactivated during episodic Laxfordian shearing (ca 1.9-1.66 Ga) often with alternating 104 

shear senses (Park et al. 2002). The predominantly amphibolite facies granodioritic orthogneisses of 105 

the Outer Hebrides, preserve a superficially similar relative chronology of structures and metamorphic 106 

assemblages as on the mainland. 107 

Faulting and fracturing history 108 

Currently exposed levels of the Lewisian Gneiss Complex passed through the brittle-ductile transition 109 

at some point after ca. 1.66 Ga and were close to the surface by ca. 1.2 Ga, the depositional age of the 110 

unconformably overlying, unmetamorphosed Stoer Group on the Scottish mainland (Beacom et al. 111 

2001; Holdsworth et al. 2020). Unsurprisingly for rocks that preserve a record of brittle deformation 112 

processes that occurred across a range of crustal depths, the Lewisian displays a wide range of micro- 113 

to regional-scale brittle fractures. A broad spectrum of types is developed that are difficult to strictly 114 

separate using an arbitrary classification scheme (Pless 2012, Franklin 2013). These include the 115 

following: 116 

Joints are predominantly Mode 1-type tensile fractures based on a general lack of observed offsets of 117 

pre-existing features such as compositional banding. They are typically closed and only become open 118 

due to the effects of weathering - either in the geological past or present day - or due to later tectonic 119 

processes (such as fissuring – see below). They occur on a variety of scales but, like many Mode 1 120 
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fractures developed in crystalline basement rocks worldwide (e.g. Wang et al. 2019), are commonly 121 

of large lateral extent both horizontally and vertically (Fig. 3a).  122 

Veins are dominantly mm- to m-scale tensile or hybrid fractures filled with a variety of hydrothermal 123 

minerals including (commonly) quartz, epidote, carbonates (calcite, siderite), chlorite, K-feldspar 124 

(adularia), iron oxides and (less commonly) base metal sulphides, prehnite and a variety of zeolites 125 

(Fig. 3b). The majority are entirely occluded by their mineral fills, but in some cases, partial fills and 126 

vuggy textures are preserved. Like many basement terrains, veins completely filled with dark, 127 

aphanitic pseudotachylyte (friction melts) are well developed locally and are typically associated with 128 

fault zones formed relatively early in the brittle deformation history (e.g. Imber et al. 2001; 129 

Holdsworth et al. 2020). 130 

Fissures are mm to dm-scale dilational (predominantly Mode 1) fractures filled or partially filled with 131 

often complex, composite fills formed at a range of crustal depths. Many formed close to the surface 132 

in the geological past and are spatially associated with regional unconformities at the base of the 133 

Torridonian or Mesozoic cover sequences (e.g. Beacom et al. 1999; Jonk et al. 2004). Fills here include 134 

wall rock collapse breccia, hydrothermal minerals, and fine-grained sediment, sometimes with a 135 

laminated structure and cement consistent with having been deposited by flowing water in 136 

subterranean open cavity systems (Fig 3c, d). Deeper fissure fills include magma, i.e. Palaeozoic to 137 

Cenozoic dykes, and wall rock collapse breccias mixed with friction melt and hydrothermal minerals 138 

(Fig 3c, e). 139 

Shear fractures range from simple ‘clean break’ brittle faults with sub-mm-scale offsets through to 140 

large complex fault zones with km-scale offsets. Fault rocks typically begin to appear once 141 

displacement exceeds more than a few mm, and include early-formed pseudotachylytes and 142 

cataclasites, breccias, and gouges; all with associated hydrothermal mineral assemblages similar to 143 

those seen in associated vein systems. Fault rocks formed earlier in the brittle deformation history are 144 
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generally cohesive and highly indurated whilst those formed later and nearer to the surface are 145 

typically incohesive and easily weathered. Polished fault surfaces with slickenlines or hydrothermal 146 

mineral slickenfibres – particularly of quartz, epidote, chlorite or carbonate – are widely preserved 147 

(Fig 3f). Large-scale fault zones – such as the Seaforth Fault in Lewis (Fig. 2; Franklin 2013) are typified 148 

by the development of well-defined cores with foliated gouges (Fig 3g) and broad, chaotically 149 

fractured damage zones (e.g. Pless et al. 2015). Some – but not all - show evidence of reactivation (e.g. 150 

Imber et al. 2001; Holdsworth et al. 2020). 151 

A long history of fracturing is recognized on the Scottish mainland with at least three main 152 

fault/fracture sets preserved in the foreland region west of the Caledonian Moine Thrust zone (Fig. 2). 153 

Each is associated with different fault geometries, kinematics and fault rock assemblages. These are 154 

(from earliest to latest): 155 

1) NW-SE ‘Assyntian’ or ‘Late Laxfordian’ sinistral fault arrays (Holdsworth et al. 2020) which are 156 

most abundant as reactivation events in pre-existing NW-SE Laxfordian shear zones (e.g. 157 

Canisp shear zone, Fig 2) and along the margins of pre-existing Scourie Dykes (Beacom et al. 158 

2001; Pless 2012). These structures are associated with the development of cohesive 159 

cataclasites and pseudotachylytes. Their Mesoproterozoic (ca. 1.55 Ga) age is constrained by 160 

Re-Os dating of associated copper sulphide mineralization in the Assynt terrane (Holdsworth 161 

et al. 2020) and they demonstrably predate deposition of the unconformably overlying Stoer 162 

Group ca 1.2 Ga. A generally N to NE-trending set of complex polymodal fracture arrays was 163 

thought by Beacom et al. (1999, 2001) to be associated with the Stoer Group age rifting, but 164 

more recent fieldwork and thin section analysis (Hardman 2019) have shown that these 165 

fractures are synchronous with the NW-SE structures. The NE-SW structures are commonly 166 

associated with dilation and collapse brecciation, pseudotachylyte injection and epidote 167 

mineralisation that pre-dates Stoer Group deposition (Holdsworth et al. 2020). 168 
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2) Post-Torridonan (ca 1.04 Ga) faults, including isolated thrusts and strike slip faults related to 169 

the Palaeozoic Moine Thrust Zone; many of the NW-SE Late Laxfordian faults also show 170 

evidence of reactivation close to the thrust belt (Krabbendam & Leslie 2010; Pless 171 

2012).  Most are clean breaks or are associated with the development of well-cemented 172 

breccia and gouge. Multiple sets of microfractures and fills of mainly Palaeozoic age may also 173 

be present (e.g. Laubach & Diaz-Tushmann 2009; Ellis et al. 2012). 174 

3) Mesozoic age structures that are generally NE-SW and NW-SE-trending dip-slip & strike-slip 175 

fracture sets that are widely associated with incohesive gouges & carbonate mineralization 176 

(Laubach & Marshak 1987). Many of the fissure structures are thought to have formed during 177 

Mesozoic rifting events when the basement was at or close to surface. These structures are 178 

likely more widespread than has generally been assumed and they typically show little 179 

evidence for reactivation except along major faults (e.g. Coigach Fault; Roberts & Holdsworth 180 

1999). Holford et al. (2010) showed that NW Scotland has experienced multiple episodes of 181 

Mesozoic and Cenozoic burial and exhumation associated with passive margin formation, 182 

rifting processes and inversion. 183 

 184 

The early brittle faulting history of the Outer Hebrides is dominated by the development of the 185 

SE-dipping Outer Hebrides Fault Zone (OHFZ) that initially developed as a mylonitic shear zone possibly 186 

of Laxfordian or Grenvillian age (Imber et al. 2001, 2002) (Fig. 2). It then experienced a series of 187 

reactivation events from the Neoproterozoic to the Mesozoic, but direct geological or radioisotopic 188 

evidence for the age of movements is sparse. The likely presence of Torridonian rocks within Minch 189 

Basin (Figure 2) suggests that the OHFZ may have been active as a normal fault ca. 1.04 Ga, but there 190 

is no clear record of this faulting yet recognized in outcrops. Onshore, post-mylonite deformation 191 

along the OHFZ was initially brittle and was associated with the development of pseudotachylyte-192 

bearing fault veins and thick, SE- to E-dipping pseudotachylyte-ultracataclasite crush zones all along 193 

the eastern margin of the Hebridean island chain (e.g. Sibson 1977). The brittle faults & crush zones 194 
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are overprinted by a network of macroscopically ductile, greenschist facies phyllonitic shear zones 195 

that developed due to the influx of hydrothermal fluids during top-to-the-NE sinistral strike-slip 196 

shearing along the OHFZ (Butler et al. 1995; Imber et al. 2001). These shear zones were themselves 197 

then reactivated during late Caledonian brittle-ductile top-to-the-E extensional deformation (Imber et 198 

al 2001). The Permo-Triassic Stornoway Formation (Steel et al. 1975) was deposited in eastwardly-199 

prograding alluvial fans associated with normal fault scarps developed in hangingwall of the OHFZ (Fig 200 

2). The sedimentary sequence contains clasts of basement gneisses and OHFZ-derived fault rocks, 201 

suggesting that the northern Outer Hebrides was exhumed by the earliest Mesozoic era. The rocks of 202 

both the Lewisian Gneiss Complex (including the OHFZ) and the Stornoway Formation are cut by E-W, 203 

NW-SE and NE-SW fractures, some of which – together with generally NNW-trending Tertiary dykes, 204 

form prominent topographic lineaments (e.g. Loch Seaforth) (Fig. 2) (Franklin 2013). Faulting events 205 

are widely associated with the development of generally incohesive gouge, breccia and fissure fills 206 

with local widths of at least 30m, but perhaps up to 100m, together with extensive carbonate 207 

mineralization. The Tertiary dykes mostly cross-cut the faults and fault rocks which are assumed 208 

therefore to be of Mesozoic age, but some fault sets show evidence of significant post-dyke 209 

reactivation during the Cenozoic, notably a prominent set of E-W trending structures which are also 210 

characterized by a later phase of milky carbonate mineralization (Franklin 2013). 211 

 212 

Methodologies 213 

 214 

Sampling of fault and fracture networks 215 

The datasets reported in this study were mainly acquired using the 1D linear scanline method (Priest 216 

& Hudson 1981; Baecher, 1983; McCaffrey & Johnston, 1996; Ortega et al. 2006). This method allows 217 

a relatively simple characterization, albeit with known biases, of fracture sizes and intensities, and 218 

generally can be deployed at most field localities. The data (observations along a sample line) are 219 
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closely analogous to logs from borehole or drill core taken from a prospect or reservoir. To gain 2D 220 

(map) information on the spatial and topological relationships within the fractured system, we also 221 

conducted 2D window sampling (Odling 1992; Mauldon  et al. 2001; Rohrbaugh et al. 2002; Zeeb et al. 222 

2013; Watkins et al. 2015; Sanderson and Nixon, 2015), enabling access to connectivity estimates for 223 

the fracture array, which are a key input for modelling fluid-flow. 224 

For the linear scanlines, fracture orientations, lengths and apertures, together with 225 

composition and texture of fracture infills and fracture terminations on joints and other faults were 226 

recorded at measured intervals along the sample line. The start and end point of each transect was 227 

recorded using a hand-held GPS unit. Most of the fractures are filled, or partially filled with minerals 228 

(mainly quartz, epidote or calcite) and, following Laubach (2003) and Ortega et al. (2006), the 229 

apertures measured in this study are the opening displacement where the scan line intersects the 230 

fracture including any fill, i.e. the ‘kinematic aperture’. This is equivalent to the fracture thickness of 231 

McCaffrey & Johnston (1996) and Massiot et al. (2015).  232 

Fracture samples 233 

The 1D datasets were collected in the field mainly from natural exposures of the Lewisian Gneiss 234 

Complex (well exposed in coastal settings), but also from road cuttings where natural fractures may 235 

be easily distinguished from those created by blasting (for detailed descriptions of the sample 236 

locations see Pless 2012 and Franklin 2013). The locations of study sites across the mainland Scotland 237 

and Hebrides are shown in Figure 2 with full details of individual sample lines given in the 238 

supplementary tables. The initial studies focused on size (aperture, length), spatial characterization 239 

(orientation and spacing) and the topological characteristics of the fracture systems. Our database 240 

contains more than 100 individual datasets (48 aperture and 29 length samples and 27 topological 241 

estimates) chosen because they capture the fracture systems that formed from Proterozoic to 242 

Cenozoic times (see above). Details of the fracture samples, including location, host lithology, number 243 

of fractures, sample line length for 1D samples, area for 2D samples, types of structure intersected 244 
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are given in the Supplementary file (Tables S1 and S2). To extend the analysis to other scales, the 245 

above-mentioned scanline methods were adapted and applied to aerial photographs and optical data 246 

(BGS NextMap data) to quantify fracture lengths in 1D (see lineaments shown on Figure 2). These 247 

datasets were collected before we had fully appreciated the importance and extent of fissure 248 

formation in the basement, particularly in the Hebrides, nonetheless we think the study provides 249 

important baseline information. 250 

Data from the Clair field comprise fractures logged in wells 206/7a-2 and 206/8-8 that were 251 

drilled by Elf into crystalline basement gneisses of the Clair ridge (see Holdsworth et al. 2018 Fig. 2). 252 

Core samples were examined at the Iron Mountain core storage facility, Aberdeen and a fracture 253 

analysis was conducted by Pless (2012) and in this study. The basement core slab samples from 254 

206/7a-2 are in 10m lengths at irregular intervals from measured depths of 2140m to 2600m (see 255 

Holdsworth et al. 2018 and S1).  256 

At regional scales, a fracture interpretation of Clair 3D top basement seismic attribute maps 257 

was performed (see Pless 2012 and Fig. 2 inset). From this fracture map we were able to derive 258 

fracture length distributions along 1D sample lines across the maps and in 2D windows. An equivalent 259 

study of fracture lengths in 1D and 2D was carried out on the onshore lineament maps from the 260 

mainland and Hebrides (see Fig. 2). The lineament maps show density variations related to the amount 261 

of younger cover rocks or Quaternary material (Fig 2) and so our length analyses were conducted on 262 

lines that cross, or windows that sample, regions with high density and thin cover. We carefully filtered 263 

the datasets to make sure that those with low numbers (c. n < 40) were omitted. We also checked that 264 

the datasets were collected and formatted in a comparable way as they have been assembled from a 265 

number of studies.  266 

For the topology study, photographs from outcrops in the Assynt terrane, Clair core 206/7a-2 267 

supplemented by samples from the 205/21-1A from further along the Rona Ridge (Lancaster field) 268 
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collected at BGS core store form the basis for picking of nodes and branches. All node and branch 269 

picking was carried out manually to ensure the correct network topology was recorded.  270 

 271 

Data analysis 272 

In this study we assessed the distribution of fracture size (aperture and length) attributes, collected 273 

from the 1-dimensional sample lines as a primary characterisation of the brittle deformation within 274 

the basement Lewisian Gneiss Complex. We collected fracture data from drill core samples from the 275 

basement of the Clair field for comparative purposes. We only report the aperture data here as the 276 

fracture lengths are heavily censored by the dimensions of the drillcore. However, we report regional 277 

scale 2D length data from onshore Lewisian terranes from the lineament dataset derived from the 278 

optical data that is equivalent in scale to the offshore seismic attribute maps. This allows us to 279 

constrain further the upscaling of fracture attribute and compare the offshore basement fracture 280 

mapping to that performed on seismic attribute maps.  281 

Fracture sizes 282 

Fracture intensity plotted as cumulative distribution (population) plots enables an assessment of the 283 

distribution, spatial and scaling properties of the fracture population (i.e. the ratio of small to large 284 

fractures for a given sample line length). Fracture attribute distributions display three main types of 285 

statistical distribution (Gillespie et al. 1993; Bonnet et al. 2001, Zeeb et al. 2013): (a) Exponential, 286 

random or Poisson distributions are characteristic of a system with a randomised variable; (b) Log-287 

normal distributions are generally produced by systems with a characteristic length scale, for example 288 

layer-bound jointing (Narr, 1991 and Olson, 2007); (c) Power-law distributions lack a characteristic 289 

length scale in the fracture growth process (Zeeb et al. 2013) (see Supplementary file S1). Although 290 

some fracture populations are better described by scale-limited laws, such as log-normal or 291 

exponential distributions, it is generally accepted that power-law distributions and fractal geometry 292 

provide a widely applied descriptive tool for fracture system characterization (e.g. Bonnet et al. 2001). 293 
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Ideally, the best-fit power-law distribution should be constrained over several orders of magnitude 294 

(Walsh and Watterson, 1993; McCaffrey and Johnston, 1996). However, in practice this is typically 295 

very difficult to achieve at a given scale due to sampling limitations. Fracture sampling issues (e.g. 296 

censoring and truncation) are commonly encountered and can result in an incomplete description of 297 

the full population. For instance, when large fractures are incompletely sampled in a power-law 298 

population, the resulting plot can resemble a log-normal distribution. Following Ortega et al. (2006), 299 

Dichiarante et al. (2020) have shown how a multi-scale approach can be used to better constrain the 300 

scaling laws for fracture size attributes. As pointed out by Clauset et al. (2009), use of the maximum 301 

likelihood estimator (MLE) is preferred over a least square regression analyses (R2) for the fitting of 302 

power-law distributions. In this study we used MLE scripts developed by Rizzo et al. (2017) as used in 303 

the FracPaQ toolbox (Healy et al. 2017). In addition, we followed the Dichiarante et al. (2020) 304 

modification in which the MLE for power-law, exponential and log-normal fits are calculated on 305 

systematically truncated and censored datasets to find the optimum distribution parameters (see S1). 306 

Fracture spatial organization 307 

The spatial organisation of fracture systems are a property of the orientation and clustering of 308 

fractures in 1D sample lines. For many years the Coefficient of Variation (Cv) - the standard deviation 309 

of all spaces between adjacent fractures divided by the mean spacing (Gillespie et al. 1993; 1999) - 310 

has been used as to describe clustering. These authors showed that a Cv > 1 reflected a clustered 311 

distribution and could be expected in non-layered rocks (like basement). A random or Poisson 312 

distribution gives an exponential (Cv = 1). Superimposition of power law distributions can give a 313 

‘Kolmogorov’ distribution (log-normal) (Cv < 1). Log-normal (and normal distributions) are also 314 

produced by ‘saturation’ models when fractures are produced in well bedded sequences (Bai et al. 315 

2000). The Cv values for 1D basement sample lines are reported in this study, however we note that 316 

that there are issues with the sensitivity of this method and that the method does not taken into 317 

account the size of structures or the scale of clustering (Marrett et al. 2018). The correlation analysis 318 

method subsequently developed by Marrett et al. (2018) is now the preferred method for analysing 319 
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fracture spatial distributions and will be the subject of further work on the datasets collected in this 320 

study. 321 

 322 

Fracture topology 323 

While the 1D scanline data provides information about fractures as single entities and their 324 

distribution, 2D topology analyses consider fractures as part of a network and provide access to 325 

fracture connectivity assessment. The 2D analysis used here has been carried out on fracture maps at 326 

regional scale (metre-decametre) DEM images and seismic attribute maps (see Fig 2). At smaller scales 327 

(centimeter-metre) we carried out topological analysis on core samples and outcrops. We followed 328 

the methodology of Sanderson and Nixon (2015) in defining nodes and branches. ‘Nodes’ are defined 329 

as the point where a fracture terminates (I-type), abuts against/splays from another fracture (Y-type)  330 

or intersects (cross-cuts) another fracture (X-type). ‘Branches’ are the portions of a fracture confined 331 

between two nodes.  332 

The number of nodes and branches for a given fracture network is strictly related, meaning 333 

that by knowing one of the two elements for the fracture network, it is possible to quantify all its 334 

components. NI, NY and NX are defined as the number of I-, Y- and X-type nodes and PI, PY and PX 335 

their relative proportions. Once the number of nodes and/or branches making up a fracture array are 336 

known, the connectivity can be visualized using a ternary plot of the component proportions or can 337 

be quantified by calculating the number of connections existing in the 2D map. In general, X-type 338 

nodes provide 4 times and Y-type nodes 3 times more connectivity than I-type nodes (Sanderson and 339 

Nixon 2015). An array dominated by I-nodes is isolated, while arrays dominated by Y- and X-type nodes 340 

are increasingly more connected. 341 

 342 
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Results 343 

Fracture lineaments from the Mainland (Assynt and Rhiconnich) terranes show strong NE-SW and 344 

WNW-ESE trends (Pless 2012; Fig. 2). In contrast in the Hebrides, the main lineament trend is NNW-345 

SSE with a subordinate ENE-WSW trend (Franklin 2013; Fig. 2). The lineament maps show density 346 

variations that particularly reflect the amount of Quaternary cover, e.g. see southern and western 347 

Lewis compared to the northern region (Fig. 2). At the regional scale, there is no qualitative variation 348 

in density of lineaments in relation to major structures such as the Outer Hebrides fault zone, Canisp 349 

Shear zone or the Seaforth fault (Fig. 2). We also see no systematic variation at this scale with the host 350 

lithological units (Fig. 2). Pless et al (2012) has conducted an analysis of fracture density maps which 351 

confirms the qualitative observations. 352 

Aperture data 353 

Figure 4 shows cumulative distribution plots for the aperture distributions for localities in Lewisian 354 

Complex gneisses on the Mainland (20 sample lines), Hebrides (17 lines) and Clair basement core (12 355 

lines). Details of the individual samples and the distribution fitting parameters are given in Table S1. 356 

For the Mainland, there is high degree of variability, but the data span more than 3 orders of 357 

magnitude from 0.00005m to 0.5m (0.05-500mm) in aperture (Fig. 4a). We note that some constant 358 

values appear in the plots at small sizes and are a rounding effect that occurs during the field 359 

acquisition. We generally remove repeated values, as recommended by Ortega et al. (2006), but the 360 

application of the Terzhagi true thickness correction tends to smear out these clusters of sub-mm 361 

values towards even smaller values. In terms of the fracture intensity or spacing (y axes), the data 362 

show about an order of magnitude spread from low strain (0.05 fractures of 10 mm size per metre) to 363 

high strain (1 x 10 mm fracture per metre) (Fig. 4a). For the Hebrides, data span nearly 5 orders of 364 

magnitude from about 0.05 mm to 1000mm (Fig. 4b). Fracture intensity or spacing (y axes) vary by 365 

about an order of magnitude from 0.1 x 10mm fracture per metre to higher strain of about 2 x 10 mm 366 

per metre. For the Clair core datasets, aperture values range from 0.05mm to 100mm and the intensity 367 
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values are less variable than the onshore datasets ranging from 0.5 to 1.2 per metre for 10mm 368 

aperture fractures. 369 

Aperture distribution data for all regions can be described by power-law scaling or log normal 370 

distributions with greater than 95% confidence calculated using the MLE method with a slight 371 

preference for power-law distributions (Fig. 4 and Table S1).  The sample lines (Garrabost, Memorial 372 

Cairn, Pabail and Seisadar) identified by Franklin (2013 and Supplementary file S1) are those taken 373 

across Mesozoic structures and tend to be those that display the highest absolute aperture values (Fig. 374 

4).  375 

The advantage of plotting many datasets together (Fig. 4) is that general trends emerge above 376 

variations displayed by individual samples (see Discussion below).  One clear signal that emerges is 377 

that the power law exponent is lower for samples from the Hebrides than for the Mainland and the 378 

Clair basement. This can be seen qualitatively in Figure 4. For the Mainland and Clair data (Fig. 4a), the 379 

averages lie along the grey shaded reference area which has boundaries with a slope = -1 on the plot 380 

except at the lower and upper ranges where truncation and censoring effects are likely. For the 381 

Hebrides, the data sets clearly plot along a shallower slope line compared to the shaded reference 382 

area. To test this inference, we performed a significance test of the difference between the MLE power 383 

law scaling exponents (individual slope with > 95 % confidence fits) for the two regions. An average 384 

power law exponent for each region was calculated and the t test statistics confirm that the Mainland 385 

(average slope α = 1.23, SD = 0.49) and Hebrides (average α = 0.74, SD = 0.26) conditions; t(37) = 4.15, 386 

p = 0.0002 are different. These results show that the Hebrides and Mainland fractures show different 387 

scaling properties, and this implies that there are fewer small aperture fractures in the Hebrides 388 

relative to the largest fractures when compared to those seen in the Mainland.  389 

Length distributions 390 
The fracture length distributions for faults and fractures from both onshore and offshore regions are 391 

presented as cumulative distribution plots of intensity versus length in Figure 5. Length data at smaller 392 
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scales from outcrops (c 0.1-10m) are plotted alongside line samples across the top Clair basement (c 393 

0.5 -50 km) (Fig. 5a). Details of individual samples and distribution fitting are given in Table S2. Again, 394 

most of the samples can be described by power-law or log normal distributions with greater than 95% 395 

confidence with a slight preference for log normal distributions. A general scaling relationship (power-396 

law) from outcrop to regional scale is suggested (Fig 5a). 397 

The regional scale 2D length data from both onshore lineament mapping and offshore top 398 

basement seismic attribute map (Fig 2 inset) are shown in Figure 5b with details of distribution fitting 399 

given in Table S2. The data show good agreement between the onshore Lewisian and the Clair field 400 

(similar intensity values and slopes) at fracture lengths 1-50km (Fig. 5b). Below 0.5-1 km, the 401 

distributions show truncation effects (inflection points on the curves) that are dependent on the scale 402 

at which the fractures have been mapped and the level of exposure (onshore this is c. 500m and 403 

offshore it is c. 1 km).  404 

Spatial organisation 405 
The Cv values for the spaces between adjacent fractures for each sample lines are shown on Figure 6 406 

plotted against the overall fracture intensity for each of the sample line datasets assembled in this 407 

study. Plotting in this way enables us to compare Cv values and assess the spatial organisation at 408 

different scales. The values show a range of behaviours from more uniform spacing (<1) to more 409 

clustered distributions (>1). There is a large amount of variation, but two overall observations may be 410 

suggested: 1) Regional-scale data tend to be more uniform and outcrop data more clustered (e.g. 411 

compare Clair regional and core Cv values); and 2) the Hebrides data show a tendency for more 412 

clustered spacing distributions compared to the Mainland (Assynt and Rhiconnich) terranes. Franklin 413 

(2013) indicated that this effect is most pronounced at the outcrop scale (Fig. 6) and is likely due to 414 

the prominent influence of Mesozoic faulting in the Hebrides region. 415 

Topology results 416 
The topology analyses were carried out on a range of onshore and offshore samples including drillcore, 417 

outcrop images, seismic attribute and regional datasets. Figure 7 shows a summary of the topology 418 
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values that have been obtained from Clair and other Rona Ridge (Lancaster) core and the Assynt 419 

terrane (See Table S3 for full results). All basement samples show connected fracture networks with 420 

CB values >> 1 which is the threshold CB (connections per branch) for a connected network. Most 421 

outcrop and core samples show a predominance of Y node-dominated fracture networks (Fig. 7).  422 

Discussion 423 
This study, which reports the largest attribute dataset ever assembled for basement-hosted fractures, 424 

shows that the Scottish mainland exposures broadly show similar scaling and connectivity properties 425 

to the Clair basement and the greater Rona Ridge. Aperture scaling from all three areas (Hebrides, 426 

Mainland and Clair) can be described by a power-law distribution when appropriate censoring and 427 

truncation of individual datasets are taken into account (Fig. 3 and Table S1). A number of individual 428 

datasets, which tend to be those with lower sample numbers, may be equally or slightly better 429 

described by log normal distributions. Fracture length datasets from both onshore and offshore may 430 

be described by either power-law or log normal distributions. Length distributions are known to be 431 

particularly prone to censoring and truncation (Odling et al. 1999). However, Odling et al. (1999) and 432 

Dichiarante et al. (2020) have shown that a multi-scale analysis can help to confirm that power-law 433 

scaling is an appropriate choice to model the fracture length distributions. In the present study, the 434 

basement fracture lengths sampled in 1D show a scaling relationship across 8 orders of magnitude 435 

and the 2D sample windows show consistent and comparable length distributions between onshore 436 

and offshore datasets. Fractures onshore and offshore show similar spatial characteristics as 437 

demonstrated by the Cv values. The fracture topology analyses show similar levels of connectivity 438 

between onshore and offshore basement terranes. We note that the fracture networks at three scales 439 

(regional, outcrop and core) from kilometre to centimetre scale appear to be strongly Y-node 440 

dominated, which supports the conclusions that the networks are all well connected (Sanderson & 441 

Nixon 2015). Y-node dominated connectivity might be expected in relatively massive basement rocks 442 

which have multiple fracturing events in which large apertures form. Later formed fractures will tend 443 

to abut against the earlier fractures rather than cross-cut, hence Y-node development is favoured over 444 
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X-node. The power-law fracture distributions are typical of massive crystalline rocks (e.g. Genter et al. 445 

1997; Gillespie et al. 1999, Odling et al. 1999). The long history of brittle deformation and reactivation 446 

of structures within the Lewisian gneisses produced areas in which there are multiple fracture sets 447 

with power-law size distributions and good connectivity but, as been noted previously, these 448 

attributes alone are not enough to make a viable fractured reservoir (Nelson 1985).  449 

Our characterisation demonstrates that certainly the onshore basement terranes provide a 450 

good first-order analogue for the offshore Clair basement and greater Rona Ridge. Importantly 451 

however, our analysis has also shown that important differences do exist between the areas, e.g. the 452 

Hebrides has different aperture scaling to the Mainland and Clair which we discuss in the following 453 

sections as it potentially provides further insight into what produces better reservoir potential in the 454 

basement gneisses. If it is accepted that our MLE analysis indicates a general power law behaviour for 455 

the fracture aperture distributions, the large number of datasets collated in this study enables the 456 

overall scaling properties of the distributions to emerge. In most fracture studies there is generally 457 

high variability in scaling and fracture intensity between individual sample lines (e.g. see McCaffrey et 458 

al. 2003). In previous work, we have shown for basement lithologies, at the outcrop scale, that fracture 459 

distributions are affected by lithology and proximity to higher order structures. Beacom et al. (2001) 460 

showed that fracture densities and clustering are higher in metasedimentary rocks compared to the 461 

more common intermediate to acidic gneisses. Pless et al. (2015) analysed a well exposed basement 462 

outcrop in the Rhiconnich terrane and found that fracture density is higher within a 220m envelope 463 

adjacent to the Kinlochbervie fault (Fig 2). The outcrop-scale datasets reported in this study are all 464 

deliberately taken from intermediate to felsic gneisses which minimises significant variation caused 465 

by lithology. This lithology also dominates in the offshore basement (e.g. Holdsworth et al. 2018). The 466 

variation in fracture intensity of about an order of magnitude in the outcrop data for the mainland 467 

(Assynt and Rhicconich terranes) does include variation due to proximity to major structures (Fig. 3, 468 

4).   469 
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An increase in fracture intensity with proximity to major structures explains the difference we 470 

see in the variability between the onshore and the offshore datasets. We find that the Clair core 471 

aperture dataset, of equivalent scale to the outcrop data, show similar power law scaling to mainland 472 

Scotland with exponents in the range of 1-1.2. However, all of the Clair datasets plot in the higher 473 

fracture intensity range and do not show the lower intensity patterns displayed by the Mainland. 474 

Specifically, the Clair data generally occupy the area defined by the grey box defined in Figure 4 475 

whereas only the higher fracture intensity samples from the Mainland do this – including those closer 476 

to major structures like the Kinlochbervie fault (Figs 2 and 4). The Clair fracture intensity data have a 477 

much more limited spatial coverage compared to the Mainland fracture sample lines in that they come 478 

from a single horizontal well that was drilled close to the top-basement interface; the Clair Ridge fault. 479 

Holdsworth et al. (2019a) also reported that the Clair core aperture distributions (the same datasets 480 

as plotted herein) show a systematic variation with highest fracture intensity in cores taken closest to 481 

the top basement interface. The above discussion and the findings of Holdsworth et al. (2019a) show 482 

that variations in fracture intensity of about an order of magnitude in aperture distributions might be 483 

expected due to proximity to major structures. What this variation does not account for is the 484 

significant variation in scaling (slope of the lines) between the Hebrides aperture datasets and those 485 

of the Mainland terranes and Clair. As we have shown in this study, the fracture apertures collected 486 

from the Hebrides, from both high and low intensity regions, show significantly lower scaling 487 

exponents (in range 0.5-0.8) compared with Clair or the Mainland (1-1.2 (Fig. 4). In simple terms, this 488 

means that in any sample we take from the Hebrides, we see more fractures with large aperture and 489 

relatively fewer with smaller apertures. Given that the fracture length distributions appear similar for 490 

all the datasets, we seek an explanation that can account for the presence of relatively more larger 491 

aperture structures in the Hebrides. One explanation could be that the Hebrides has experienced more 492 

Mesozoic faulting, but there is no evidence from the data that the overall fracture intensities are 493 

higher here than on the Mainland or at Clair. Using geological observations, we propose a simple 494 
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conceptual model based on the development of fissures in basement blocks in the near-surface during 495 

the Mesozoic in order to account for the scaling differences we observe.  496 

In recent related work, Holdsworth et al. (2019a; 2019b) report structures and textures from 497 

offshore fracture fills that reveal the widespread development of steeply inclined to sub-vertical, rift-498 

related tensile fissures in the basement lithologies of the Rona Ridge. They suggest that near-surface 499 

fissuring during rift-related faulting, as seen in modern rift systems - such as those exposed in Iceland 500 

(Kettermann et al. 2019) - allowed pervasive influx of clastic sediment fills from above and 501 

hydrothermal mineral fills from below. These partial sediment and vuggy mineral fills could act as 502 

natural props holding open fracture systems enabling long-term permeability pathways and 503 

facilitating hydrocarbon migration (Holdsworth et al. 2019a, b). In the following section, we explore 504 

whether this model might explain the different scaling properties that we see in onshore-offshore NW 505 

Scotland. 506 

 Our model is based on the following assumptions: 1) The fracture systems in the Lewisian 507 

basement and equivalents offshore are a both cumulative products of multiple episodes of brittle 508 

deformation that produced shear, hybrid and tensile fractures; some of which display evidence for 509 

reactivation. 2) The basement was exposed at surface during its history for significant periods of time 510 

as indicated by the preservation of the basal Torridonian (ca 1.2 Ga Stoer, ca 1.04 Ga Torridan groups), 511 

Cambrian (ca 0.5 Ga) and Mesozoic (< 0.3 Ga) unconformities. 3) The basement experienced at least 512 

one (most likely several) phases of rifting whilst at surface that produced significant fissure-type 513 

fracturing with sediment and mineral infills (e.g. Beacom et al. 1999; Jonk et al. 2004; Holdsworth et 514 

al. 2019a, b).  The model presented in Figure 8 shows a basement block with cover sediments 515 

(representing older sequences such as the Devonian-Carboniferous Clair Group, for example) that has 516 

been deformed by brittle deformation related to rifting. We know that many of the larger fractures 517 

onshore in the Hebrides (Franklin 2013) and offshore (Holdsworth et al. 2019a, b) are sediment filled, 518 

contain vuggy cavities in mineral fills, and show clear evidence for past fluid flow (mineralisation) and 519 
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even present-day fluid transport. These types of structures have been recorded in other settings 520 

where high strength crystalline (e.g. Montenat et al 1991) or carbonate rocks (e.g. Wright et al. 2009) 521 

are exposed at surface; sub-unconformity fissure fills and related structures are also widely recorded 522 

in active rift settings (e.g. Frenzel & Woodcock 2014; Ketterman et al. 2016; 2019; Koehn et al. 2019). 523 

Analogue modelling studies (e.g. van Gent et al. 2010; Holland et al. 2011) demonstrate that 524 

fissure structures which form open tensile fractures (with sediment infills) at surface, likely change 525 

character with depth transitioning through hybrid (shear tensile structures) to shear fractures at depth 526 

with a concomitant reduction in consistent fracture aperture. This variation in fissure/fault character 527 

with depth becomes important when considering the erosional level of the basement terranes of 528 

Scotland and the Rona Ridge at various times in their geological history (Fig. 8). We hypothesise that 529 

near surface, large aperture tensile fractures with a more distributed deformation (a lower aperture 530 

exponent  < 1 and Cv < 1) indicate a position near the top of a basement block. For example, a sample 531 

from well A-A’ in Figure 8, or an onshore exposure located at an equivalent position.  In contrast, 532 

where the faults and fractures intersected have more of a shear component with damage zones 533 

clustered around the larger fault structures (thus aperture exponents > 1 and Cv >1), it indicates that 534 

erosion levels are somewhat greater (Well B’-B’ in Figure 8 or equivalent exposure). We suggest that 535 

less eroded fault blocks represent the Hebridean basement terranes (and perhaps also the basement 536 

of Lancaster – see Holdsworth et al.  2019b) whereas the Clair basement and the mainland exposure 537 

represent more deeply eroded equivalents.  538 

Further work is needed both on subsurface datasets and the onshore analogues to better 539 

constrain the speculative model proposed here. This study largely compiles datasets collected prior to 540 

our new understanding of the key role of fissuring in creating viable basement reservoirs. There is a 541 

need for new datasets that focus on the fissure structures to test this hypothesis, but at the moment 542 

it serves as a semi-quantitative predictor of the fracture attributes and hence also their fluid storage 543 

capacities and flow performance. Our model for the Rona ridge, Mainland, and Clair basement 544 
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fracture systems suggests a possible depth-dependent influence component on the basement fracture 545 

systems. Whilst this is primarily due to a downward change in fissure and fault characteristics, it is the 546 

appreciation of the depth of erosion of the uplifted fault blocks in each of the rift episodes that is key 547 

to understanding the preserved fracture attributes and their influence on reservoir behaviour. Other 548 

factors that need to be explored include the effect on fracture attributes of the presence and thickness 549 

of cover sequence present during rifting, but our model provides a hypothesis that can be further 550 

tested. Fracture characterisation of reservoir analogues can help to reduce uncertainties in the 551 

development of subsurface models that are created to determine drilling locations and quantifying 552 

the likely economic returns in terms of hydrocarbon production and resource in fractured basement 553 

fields such as Lancaster and Clair. However, we agree with Nelson (1985) when he said that ‘Finding 554 

fractures is not enough’. It is finding where the right type of fractures are preserved, in this case places 555 

where Mesozoic sub-unconformity fissures have formed, that is key to a good reservoir in the offshore 556 

crystalline basement of NW Scotland.  557 

Conclusions 558 

One of the most extensive investigations of fault and fracture attributes collected from brittle 559 

structures in the onshore and offshore Lewisian Gneiss Complex rocks of NW Scotland shows that 560 

fracture sizes display power-law scaling of aperture and length attributes and are highly connected 561 

across a wide range of scales. The results show that the onshore fracture systems may be used as a 562 

good analogue for the basement reservoirs of the Rona Ridge and likely other fractured basement 563 

reservoirs worldwide. The high connectivity and size attribute scaling characteristics of the faults and 564 

fractures that may form in uplifted, crystalline basement rift blocks confirms that given the right 565 

geological history – notably the development and preservation of near surface, rift-related fissure 566 

systems beneath unconformities - they may make good reservoir targets in their own right. 567 

 568 
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 769 

Figure Captions 770 

Figure 1. Map of the NW UK continental shelf showing location of fields, prospects, top basement depth map 771 

offshore and onshore crystalline basement exposures. 772 

 773 

Figure 2. Lineament interpretation for well exposed parts of the Mainland and Hebrides basement of NW 774 

Scotland. Outcrop fracture sample sites are labelled and shown in blue (Hebrides), light green (Mainland – 775 

Rhiconnich terrain) and dark green (Assynt terrain). Summary rose diagrams of fracture orientations for the 776 

Mainland and Hebrides. Inset map shows Clair field (outline of Clair first development phase in black line) with 777 

lineaments from Pless (2012). Underlying onshore geology from BGS 1:625,000 geology map. Main units include 778 

Neoarchaean with/without Palaeoproterozoic (Laxfordian) overprint: A = intermediate to granitic gneiss 779 

(Lewisian), Paleoproterozoic: Z = felsic intrusive rocks, Zm = Mafic intrusive rocks, Zs = metasedimentary rocks, 780 

M = Moine metasediments, Mesoproterozoic: S = Stoer Gp, Neoproterozoic: T = Torridonian, CO = Cambro-781 

Ordovician sedimentary rocks, OS = Ordovcian/Silurian alkaline syenite, F= fault rocks (mylonites, cataclasites 782 

and pseudotachylytes), PT = Permo-Triassic sedimentary rocks. Major structures are labelled – KLB F = 783 

Kinlochbervie fault.  784 

 785 

Fig. 3. Typical basement fracture types and fills. (a) closely spaced laterally and vertically extensive jointing in 786 

granitic gneiss Lewisian basement, Uyea, Shetland (see Kinny et al. 2019). Note that later Devonian-age dykes 787 

have exploited these well-developed joint systems. (b) Composite carbonate veins cutting mafic gneisses, Traigh 788 
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Dhail Mor, Isle of Lewis (for location, see Fig. 2). Note large open vug (V). (c) Cross sectional view of part of a ca 789 

30m wide fissure filled with chaotic mm- to m-sized angular clasts of basement, and possible red sediment locally 790 

cemented by carbonate. Age of fill uncertain, but note that the contact with the wall rock has been exploited by 791 

a Cenozoic basalt dyke, suggesting that the breccia is likely Mesozoic in age. Traigh Dhail Mor, Isle of Lewis. (d) 792 

Close-up view of crudely laminated nature of the fill at Traigh Dhail Mhor suggesting an element of water-lain 793 

deposition. (e) Fissure filled with chaotic collapse breccia where the matrix is cataclasite and pseudotachylyte, 794 

Canisp Shear Zone, Achmelvich. Note that in this case, the development of the dilational cavity is thought to be 795 

related to seismogenic slip events along the well-developed foliation in the wall rocks at depths >5 km (see 796 

Hardman 2019 for details). (f) Foliated multicoloured gouges and breccias from the core of the Seaforth Fault, a 797 

major N-S Mesozoic normal fault with km-scale offsets that cuts the Isle of Lewis (Fig. 2; see Franklin 2013 for 798 

details). 799 

Figure 4. Fracture aperture intensity data for: a) Mainland Scotland; b) Hebrides; and c) Clair basement. The grey 800 

polygon highlights the same Fracture Intensity/Aperture space with a slope of -1 and is shown for comparison 801 

in each plot. Orange bars show comparative fracture intensity ranges for 10mm aperture fractures as discussed 802 

in text. Data from locations that sample Mesozoic structures on the Hebrides include Garrabost, Memorial Cairn, 803 

Pabail, Seisadar, and Tolstadh. 804 

Figure 5. Two measures of fracture length intensity scaling. a) Fracture lengths intersected in 1D samples plotted 805 

on a multi-scale diagram from Mainland outcrops and the Clair top-basement seismic attribute map. b) The 806 

intensity of fractures per unit area (m) is shown for 2D length data from window samples taken across Mainland, 807 

Hebrides and Clair seismic attribute and topographic maps.  808 

Figure 6. Plot of Coefficient of variation (Cv) versus Fracture Intensity for outcrop, mesoscale (virtual model) and 809 

regional (lineament maps) datasets from Mainland (Assynt and Rhiconich), Hebrides and Clair.  810 

Figure 7. Fracture topology results from Clair drill core samples, the greater Rona ridge, and the Assynt Terrane 811 

(outcrops and regional lineament samples). Examples of the three scales sampled are shown: regional scale; 812 

outcrop scale; and core scale. 813 

Figure 8. Conceptual model for fracture systems and their attributes developed in an uplifted basement block 814 

(see also Holdsworth et al. 2019b). Cartoon logs A’-A’ and B-B’ correspond to 2 hypothetical, horizontally 815 
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deviated wells drilled through the block at different structural levels or through their onshore analogue 816 

equivalents exposed in outcrop. 817 
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