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Abstract. This paper concerns the long term behaviour of a growth model describ-
ing a random sequential allocation of particles on a finite graph. The probability of
allocating a particle at a vertex is proportional to a log-linear function of numbers of
existing particles in a neighbourhood of a vertex. When this function depends only
on the number of particles in the vertex, the model becomes a special case of the
generalised Polya urn model. In this special case all but finitely many particles are
allocated at a single random vertex almost surely. In our model interaction leads
to the fact that, with probability one, all but finitely many particles are allocated
at vertices of a maximal clique.

1. The model and main results

Let G = (V, E) be a non-oriented, finite connected graph with vertex set V' and
edge set E. We write v ~ u to denote that vertices v and u are adjacent, and v ~ u,
if they are not. By convention, v ~ v for all v € V. Let Z, be the set of all non-
negative integers and let R be the set of real numbers. Given x = (z,, v € V) € ZY
define the growth rates as

[y(x) i= 2@ Lunu®u gV (1.1)
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where o, 8 € R are two given constants. Consider a discrete-time Markov chain
X(n) = (Xy(n), v € V) € ZY with the following transition probabilities

P(X(n+1)=X(n)+e,)|X(n) =x) = II“U((XX)), xeZY, veV,
(1.2)
P(x) = 30Ty (),
veV

where e, € ZY is the v-th unit vector and T',(x) is defined in (1.1).

Definition 1.1. The Markov chain X (n) = (X,(n), v € V) € ZY with transition
probabilities (1.2) is called the growth process with parameters («, /) on the graph
G =(V,E).

The growth process X(n) = (X,(n), v € V) describes a random sequential al-
location of particles on the graph, where X, (n) is interpreted as the number of
particles at vertex v at time n. The growth process can be regarded as a particular
variant of an interacting urn model on a graph. The latter is a probabilistic model
obtained from an urn model by adding graph based interaction (e.g., Benaim et al.,
2015 and Fleurke et al.; 2011). The growth process is motivated by cooperative
sequential adsorption model (CSA). CSA is widely used in physics and chemistry
for modelling various adsorption processes (Evans, 1993). The main peculiarity of
adsorption processes is that adsorbed particles can change adsorption properties of
the material. For instance, the subsequent particles might be more likely adsorbed
around the locations of previously adsorbed particles. In this paper we study the
long term behaviour of the growth process with positive parameters o and 5. Pos-
itive parameters generate strong interaction so that existing particles increase the
growth rates in the neighbourhood of their locations. This results in that, with
probability one, all but finitely many particles are allocated at vertices of a max-
imal clique (see Definition 1.2 below). In a sense, the localisation effect is similar
to localisation phenomena observed in other random processes with reinforcement
(e.g. Basdevant et al., 2014 and Volkov, 2001).

The growth rates defined in equation (1.1) can be generalised as follows

[y(x) = Xt ium Putu 4 eV, x = (z,, ueV), (1.3)

where (a,, v € V) and (Byy, v,u € V) are arrays of real numbers. Setting a, = a,
Bouw = B gives the growth process defined in Definition 1.1. Originally, the growth

process with parameters o, = By, = A € R on a cycle graph G was studied
in Shcherbakov and Volkov (2010b). The limit cases of the model in Shcherbakov
and Volkov (2010b) (A = oo and A = —oo with convention co - 0 = 0) were studied

in Shcherbakov and Volkov (2010a). The growth process on a cycle graph G and
with growth rates given by (1.3), where a, = By = Ay > 0, v,u € V, was studied
in Costa et al. (2018). Note that if 8 = 0 in (1.1), then the growth process is a
special case of the generalised Polya urn model with exponential weights (see, e.g.
Davis, 1990).

We need the following definitions from the graph theory.

Definition 1.2. Let G = (V, E) be a finite graph.

1) Given a subset of vertices V/ C V the corresponding induced subgraph is
a graph G’ = (V’', E’) whose edge set E’ consists of all of the edges in F
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that have both endpoints in V’/. The induced subgraph G’ is also known as
a subgraph induced by vertices v € V.

2) A complete induced subgraph is called a clique. A maximal clique is a
clique that is not an induced subgraph of another clique.

Theorem 1.3 below is the main result of the paper.

Theorem 1.3. Let X (n) = (X,(n), v € V) € ZY be a growth process with param-
eters (a, 8) on a finite connected graph G = (V, E) with at least two vertices and
let 0 < o < 3. Then for every initial state X (0) = x € ZY with probability one
there exists a random maximal clique with a vertex set U C 'V such that

ILm Xy(n) =00 if and only if v € U, and

X,(n)
A X )

=%, for v,uel,

where

Chou = A lim vaw(n)u{ww,wm} ~ Lwmuwnny)s if 0 <A i=a =8, and
we
Cou=0, f 0<a<p.

Remark 1.4. In other words, Theorem 1.3 states that, with probability one, starting
from a finite random time moment all subsequent particles are allocated at a random
maximal clique. This is what we call localisation of the growth process. Note that
quantities C,, are random and depend on the state of the process at the time
moment, when localisation starts at the maximal clique.

Ezample 1.5. In Figure 1.1 we provide an example of a connected graph, where
a growth process with parameters 0 < « < f can localise in five possible ways.
The graph has eight vertices labeled by numbers 1,2,3,4,5,6,7 and 8. There are
five maximal cliques induced by vertex sets {1,2}, {2,7}, {4,8}, {7,8}, {4,5,6}
and {2,3,4,5} respectively. By Theorem 1.3, a growth process with parameters
0 < a < B can localise at any of these maximal cliques with positive probability,
and no other limiting behaviour is possible.

For completeness, we state and prove the following result concerning the limit
behaviour of the growth process in the case 0 < 8 < a.

Theorem 1.6. Let X (n) = (X,(n), v € V) € ZY be a growth process with param-
eters (a, 8) on a finite connected graph G = (V, E) and let 0 < § < «. Then for
every initial state X(0) =x € ZK with probability one there exists a random vertex
v such that

nh_)n;o Xu(n) = oo if and only if u = v.

In other words, with probability one, all but a finite number of particles are allocated
at a single random vertex.

Remark 1.7. It is noted above, that if 5 = 0, i.e. in the absence of interaction, our
model becomes a special case of the generalised Polya urn model, where a particle
is allocated at a vertex v with probability proportional to e®*, if the process is at
state x = (2, v € V) € ZY. In this case all but a finite number of particles are
allocated at a random single vertex with probability one, if o > 0. Note that this
particular result follows from a well known more general result for the generalised
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FIGURE 1.1. Graph with five cliques

Pélya urn model (Davis, 1990). The attractive interaction introduced in our model
by a positive parameter 3 leads to the fact that the growth process localises at a
maximal clique rather than at a single vertex.

Remark 1.8. In Janson et al. (2019) and Shcherbakov and Volkov (2015) the long
term behaviour of a continuous time Markov chain (CTMC) £(t) € ZY, where V
is vertex set of a finite graph G(V, E), was studied. Given state x = &(t) € ZY
a component &,(t) of the Markov chain increases by one with the rate equal to
the growth rate I',(x) defined in (1.1), and a non-zero component decreases by
one with the unit rate. Both papers Janson et al. (2019) and Shcherbakov and
Volkov (2015) were mostly concerned with classification of the long term behaviour
of the Markov chain, namely, whether the Markov chain is recurrent or transient
depending on both the parameters «, 8 and the graph G. The typical asymptotic
behaviour of the Markov chain was studied in Shcherbakov and Volkov (2015) in
some transient cases. First of all, it was shown in Shcherbakov and Volkov (2015)
that if both @ > 0 and 8 > 0, then, with probability one, there is a random finite
time after which none of the components of CTMC &(t) decreases. In other words,
with probability one, the corresponding discrete time Markov chain (known also
as the embedded Markov chain) asymptotically evolves as the growth process with
parameters (a,3). Further, if 0 < 8 < «, then, with probability one, a single
component of CTMC £(¢) explodes. Theorem 1.6 above is basically the same result
formulated in terms of the growth process. Another result of paper Shcherbakov
and Volkov (2015) is that if 0 < o < 8 and the graph G is connected, has at least
two vertices and does not have cliques of size more than 2, then, with probability
one, only a pair of adjacent components of the Markov chain explodes. Theorem 1.3
in the present paper yields the following generalisation of this result on the case of
arbitrary graphs. Namely, if 0 < a < (3, then, with probability one, only a group
of CTMC £(t) components labeled by vertices of a maximal clique explodes.
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Remark 1.9. Note also that in the case of a cycle graph and a = 8 > 0 locali-
sation of the growth process at a pair of adjacent vertices was previously shown
in Shcherbakov and Volkov (2010b, Theorem 3) and Costa et al. (2018, Theorem 1).

Let us briefly comment on proofs of Theorems 1.3 and 1.6. In both cases, given
any initial state X (0) = x we identify special events that result in localisation of
the growth process as described in the theorems. We show that the probability of
any event of interest is bounded below uniformly over initial configurations. Then
it follows from a renewal argument that almost surely one of these events eventually
occurs. Note that the same renewal argument was used in Costa et al. (2018).

In the case of Theorem 1.6 we show by a direct computation that given any
initial state X (0) = x, with positive probability (depending only on the model
parameters), all particles will be allocated at a single vertex with the maximal
growth rate.

In the case of Theorem 1.3, we start with detecting a maximal clique, where the
growth process can potentially localise. To this end, we use a special algorithm
explained in Section 2.3. Given any initial state X (0) = x the algorithm outputs
a maximal clique satisfying certain conditions (we call it final maximal clique, see
Section 2.3). The key step in the proof is to obtain a uniform lower bound for
the probability that all particles are allocated at vertices of a final maximal clique
(Lemma 3.1 below). Given that all particles are allocated at vertices of a maximal
clique we show that the pairwise ratios of numbers of allocated particles at the clique
vertices converge, as claimed in Theorem 1.3. If @ = 3, then convergence of the
ratios follows from the strong law of large numbers for the i.i.d. case and a certain
stochastic dominance argument. If a < (3, then for complete graphs convergence of
the ratios follows from a strong law of large numbers for these graphs (Lemma 3.5).
In the case a < 8 and arbitrary graphs the convergence of ratios follows from the
result for complete graphs combined with the stochastic dominance argument.

The rest of the paper is organised as follows. In Section 2, we introduce notations
and give definitions used in the proofs. The proof of Theorem 1.3 appears in
Section 3, and Theorem 1.6 is proved in Section 4.

2. Preliminaries

2.1. Partition of the graph. Let G = (V, E) be a finite connected graph with at least
two vertices. Let G(v1, ..., v, ) denote a subgraph induced by vertices vy, ..., Up,.

Definition 2.1. (D-sets.) Let (v1,...,v,) € V be an ordered subset of vertices
and let subgraph G(vs, ..., v,,) be a maximal clique. Define the following subsets of
vertices Dy, ..., Dy,

1) Dy, ={veV:vwuv and v # v1} and

2) D,, ={veV:ivwuvg, v#v, and v ~ vy, ..., vp_1} for 2 < k < m.

It follows from the definition of D-sets that

{vi,..c,vm} N Dy, =0, k=1,..,m, (2.1)
Dy, N Dy, =0, vp # vj for vg,v; € {v1,...,vm}, (2.2)
V={v1,...,om}UD,, U...UD,,_. (2.3)

Ezxample 2.2. Tt should be noted that a D-set can be empty. For instance, let
G be the graph in Figure 1.1. Consider the clique with ordered set of vertices



478 M. Menshikov and V. Shcherbakov

(v = 1,v3 = 2),i.e. G(1,2). Then D,,, := Dy = {3,4,5,6,7,8} and D,,, :== Dy = 0.
On the other hand, for the clique G(v1,v2) := G(2,1), i.e. the clique with the reverse
order of vertices, we have that D,, =: Dy = {6,8} and D,, := D1 = {3,5,4,7}.

2.2. Measure Qx . In this section we introduce an auxiliary probability measure
associated with the growth process. This measure naturally appears in the proof
of Lemma 3.1 below and plays an important role in the proof.

Let vy, ..., v, be an ordered set of vertices such that the induced graph G(vq, ...,
Um) is a maximal clique and let D,,,..., D, be the corresponding D-sets. Define

Vi ={w}UD,,, k=1,..,m. (2.4)
Given i € {1,...,m} define the following events

Ayt = {at time n a particle is placed at site v;}, n > 1, (2.5)
AYi = {at time n a particle is placed at site v € V;}, n > 1. (2.6)

Let Px(-) = P(-|X(0) = x) denote the distribution of the growth process started at
X € ZX. Define the following set of vertex sequences

S(n) ={(kQ),....,k(n)) : k() € (1,....,m),i=1,....,n}, n> 1. (2.7

A sequence (k(1),...,k(n)) € S(n) corresponds to an event, where a particle is
allocated at vertex vy € (v, ey Upp) At time 4, i = 1,...,n.

Remark 2.3. Note that a sequence (vi(1), ..., Vp(n)) € S(n) uniquely determines a
path x(1), ...,x(n) of length n of the growth process, where

J
x(j)=x+ Zevm)7 ji=1..,n.
i=1

It is easy to see that for each (vj(1y, ..., Ug(n)) € S(n)

Vi(i+1)
. <AM

J
Vk(i) | _ _ VWH)) _: -
Q AZ ) PerZﬁ:l e <A1 , 7=0,...,n—1. (2.8)

Let Qx,,, denote a measure on S(n) defined as follows

n—1
Vi Vi
Qun((Uk(1)s -+ 01m))) = P (A7) TT P e, (are). @)
j=1
It follows from equations (2.1)-(2.4) that Vi, k = 1,...,m, is a partition of the
vertex set V' of the graph. In turn, this fact implies the following proposition.

Proposition 2.4. Qy . is a probability measure on S(n), that is

Qo (VU (1)s -+ V() = 1, (2.10)
(Vk(1) s+, Vk(n)) ES(N)

where the sum is taken over all elements of S(n).
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2.3. Final mazimal clique. For every initial state X (0) = x we detect a maximal
clique, where the growth process can potentially localise, by using an algorithm
described below. Denote for short T, =T, (x), v € V.

o Step 1. Let vy be a vertex such that I'y, = max(T', : v € V). If there are
several vertices with the maximal growth rate, then choose any of these
vertices arbitrary.

e Step 2. Given vertex v; with the maximal growth rate, let v be a vertex
such that Ty, = max(T, : v ~ vy). If there is more than one such vertex,
then choose any of them arbitrarily. By construction, a subgraph G(v1,v2)
induced by vertices v; and vq is complete and T',,, > T'p,. If G(v1,v2) is
a maximal clique, then the algorithm terminates and outputs the maximal
clique G(v1,vz). Otherwise, the algorithm continues.

o General step. Having selected vertices w1, ...,v; such that a subgraph
G(v1,v9,...,v;) induced by these vertices is complete and T',, > T, >
...>T,,, proceed as follows. If G(v1,ve,...,v) is a maximal clique, then
the algorithm terminates and outputs the maximal clique G(v1, va, ..., V).
If G(v1,v9,...,v;) is not a maximal clique, then select a vertex vj41 such
that I'y, ., = max (I'y : v ~vj, j = 1,..., k). If there is more than one such
vertex, then choose any of them arbitrary. In other words, at this step of
the algorithm, we select a vertex vgy such that v ~wv;, 7 =1,...,k, and
Iy, 2Ty, >2... 2Ty, >2Ty,,,. Having selected vi11 repeat the general
step with complete subgraph G(vy, ..., vk, Vk11).

Definition 2.5. Given state x € ZY with growth rates I', = I',(x), v € V, a max-
imal clique G(vy, ..., v,,) obtained by the algorithm above is called a final maximal
clique for state x.

Let G(v1,...,vm) be a final maximal clique for state x. Then

Iy, =max(T, :v € V), (2.11)
Ty >...>0, (2.12)
Lpppy =max (Ty i ~wy, j=1,... k), k=1,..,m—1. (2.13)

FEzample 2.6. Let G be the graph in Figure 1.1. In this case, if the growth rates
are such that vertices 5 and 6 are chosen at the first and the second step of the
detection algorithm respectively, then the algorithm outputs final maximal clique
G(5,6,4).

Proposition 2.7. Let subgraph G(vi,...,vm) be a final maximal clique for state

X € ZX and let Dy, i = 1,...,m, be the corresponding D-sets. Let (V(1y, ..., Vp(n)) €

S(n) be such that r particles are allocated at vertex vy, during the time interval
v n—1 1

A" N A;’W) > - (2.14)

[1,n —1]. Then
Py | An"™
( ' i T 14 |V]emor’

where |V is the number of vertices of the graph G = (V, E).
Proof of Proposition 2.7. Observe that

n—1
Vi(n) | g Vi(n) Vk() | Vk(n)
Px <An An ) ﬂ Az ) - Py (Al

i=1

AY’“"”) , (2.15)
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where y = x+ E?;ll €u,- If Dy, (., = 0, then the conditional probability in (2.15)
is trivially equal to 1. Suppose that Do,y # (). Recall that, by assumption, there
are r particles at vertex vy(,) at time n — 1. Therefore,

ka(n) (y) = kam) (X)ear+ﬁ(n71,7~),
I'u(y) < Ty(x)e’™ 17" for ve D

Vk(n)"*
Consequently,
+A(n—1—
P (A’Uk(n) AVk(n)) > ka(n) (X)Ca’l‘ (Tl 7‘)
Y ! ! a F'Uk:(n) (X)ear+ﬁ(n_1_r) + efn=1-7) ZUED r, (X)
Yk(n)
B 1
- —ar Iy (x)
1+e ZUEDuk(n) Ty )
By assumption, the subgraph (vy,...,v,,) is a final maximal clique for the state x.
This implies that T',, | (x) > I'y(x) forv € Dy, and, hence, ) Fr“i(x()x) <
. : Yk(n) T Vk(n)

|V'|. Finally, we obtain that

v 1
p (A k(n) Avk(n)> N 7
Y\t ! T 14 |V]emar

as claimed. O

3. Proof of Theorem 1.3

3.1. Localisation in a final mazimal clique. Define the following events.

Alvisvm) — fat time n a particle is placed at site v € (v1, ..., v;)}, 7 € Zy, (3.1)

n
AEf,l',;]m’vM) _ m A;ﬁm,‘..,vm)’ n € Zy U{oc}. (3.2)
k=1

Lemma 3.1. Let X(n) = (Xy(n), v € V) be a growth process with parameters
(o, B) on a finite connected graph G = (V, E) with at least two vertices. Given a
state x € ZK let a subgraph G(v1, ..., 0m) be a final mazimal clique for the state x,
and let 0 < a < B. Then there exists € > 0 depending only on o« and the number of
the graph vertices such that

Px (Affl ----- W) > e (3.3)

,00]
In other words, all particles can be allocated at vertices of a final maximal clique
with probability that is not less than some € > 0 not depending on the initial state.

Proof of Lemma 3.1: It is easy to see that

(v )~“7'U7n) _ n Vs
Al = U (ﬂ Aik()> ’
(Vk(1)s+-Vk(n))ES(n) \i=1

where events A;*" are defined in (2.5) , S(n) is the set of sequences defined in (2.7),

and the union is taken over all elements of S(n). Therefore

Py (Aff;]ww) — Z ( )Px (éAfku)) _ (3.4)

(Vk(1)s+++>Vk(n))ES
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Next, given (vk(l), vy Uk(n)) € S(n) we are going to obtain a lower bound for the
probability Py (N, 4;""). Noting that AY* N Az/’ = { for k # j and recalling
equation (2.8) we obtain that

n—1
Vi (n) Vi (i)
Py (An ) A )
=1
n—1
Vk Vi (i Vk )
A, (n), ﬂ Ai (i) P, [ A, (n

— Px <Azk(")

nﬁ Af’“”) (3.5)

i=1 i=1
n—1
B Vie(n) Vk(n) V(i) Vk(n)
=Py | An A, m 4; PXJFZ?:_ll Cur(i) (Al .
=1

Suppose that X,, ., (n —1) = Xy, ,,(0) +r for some 0 < r < n — 1. In other
words, r particles are allocated at vertex vy(,) during the time interval [1,n — 1].
Then, by Proposition 2.7,

Py (AZW

Combining (3.5) and (3.6) gives that

Py <A2k<">

Consequently,

- n—1 n—1
Px (ﬂ A:k(i)> =Py <A2k(n) m Afk(i)) P <n A;k(i)>
i=1 i o

1
1 Vi(n) ¥ Uk (1)
> e e, (477) P (4
i=1

Suppose that (vi(1), ..., Ug(n)) is such that n; out of first n particles are allocated
at vertex v;, i« = 1,..,m, where ny,...,ny, : N1 + ... + n,y, = n. Then, iterating
equation (3.8) gives the following lower bound

n—1
Vie Vh(i 1
ApFm /L [ e — 3.6
n ’ m z ~— 1+ |V|€70”“ ( )

i=1

n—1
Vi (i 1 Vi
k(i) k(n)
i >Zuwww%@H%m@l>' 3.1)

i=1

(3.8)

n m n;—1
Vs ’ 1
P | |Al.}k<1) > I I | I - .
x (i_l i ) = u (r_l 1+ Veo”’> Qx,n((vk(l)v 7Uk(n)))7 (3 9)

where probability Qx,, is defined in (2.9). It is easy to see that

Py (ﬂ A;’W) > £ Quen ((Vk(1)s s Vk(m)))s (3.10)

i=1
where

n—1 m o m
1 1
= > . = . 11
En (H ]_+|V|ea'r> - <H 1+|V|€ar> e>0 (3 )

r=1 r=1
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Therefore, for every (vj(1), ..., Vp(n)) € S(n) we have that

Px (ﬂ A;k(i)> > 5Qx,n((vk(1)a () Uk(n)))
i=1
Combining the preceding display with the fact that Qx, is a probability measure
on S(n) (Proposition 2.4) gives that

P (AET’Z]WM)) > e Z Qx,n((vk(l)a -~'7Uk(n))) =¢&.
(Vk(1)5+++»Vk(n) ) ES (1)
Consequently, Px <Afflo’c"']"”’")) > ¢, where € > 0 (defined in (3.11)) does not depend
on x. The lemma is proved. (]

3.2. Eventual localisation. Let us show that, with probability one, the growth pro-
cess eventually localises at a random maximal clique, as claimed. To this end,
we use the renewal argument from the proof of Costa et al. (2018, Theorem 1).
Given an arbitrary initial state X (0) = (X,(0), v € V) € ZY define the following
sequence of random times Ty, k& > 0. Set Ty = 0. Suppose that time moments
T1,...,Ty are defined. Then, given a process state X (7)) at time ¢t = T} let G
be a final maximal clique corresponding to state X (T}). Define Tyyq as the first
time moment when a particle is allocated in a vertex not belonging to Gi. By
Lemma 3.1 P(Tk11 < 00|X(T;)) < 1 — € for some € > 0. This yields that with
probability one only a finite number of events {7} < oo} occur. In other words,
with probability one, eventually the growth process localises at a random maximal
clique, as claimed.

3.3. Convergence of ratios X, (n)/X,(n). Next we are going to show that if all par-
ticles are allocated at vertices of a maximal clique, then pairwise ratios
Xy(n)/Xyu(n), where v,u are any two vertices of the maximal clique, must con-
verge, as claimed in Theorem 1.3. There are two cases to consider.

3.3.1. Case: a = . Let A := a = . Given state x = (z,, v € V) € ZX let an
induced subgraph G(vy, ..., v,) be a final maximal clique for state x. Define

Ty, (x) _
P = =, i=1,...,m. (3.12)
Zj:l ij (x)

Given § > 0 define the following subset of trajectories of the growth process
B;s = {i | Xy, (n) —pin| > on for infinitely many n} (3.13)
i=1
and let B§ be the complement of Bs. Then
Px (Affloo]v)> =Py (Bg ﬂAEfloo]”)> + Px (B§ ﬂAEfloo]U)> . (3.14)
Proposition 3.2. For every 6 >0 and x € ZK

Py (Ba N Aﬁ”;']"””‘)) =0.
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Proof of Proposition 5.2: Let (vg(1, ..., UVk(n)) € S(n). Observe that the assumption
a = 3 implies the following equation

n—1
P, <Aff(") A,gUlw--'Unl)’ ﬂ Af’““) = Di(n)>

i=1
where probabilities p;,i = 1,...,m, are defined in (3.12). Therefore,

n—1
v
Py | A
i=1

ﬂ A?k(i))
n—1
=Py <A:Lk(n) Aglvl,u.vm), m A?k(i)) Py (Aslvl,...vm)

=1
< Py (A’:f‘")

n—1
ASZJI’""U"‘), ﬂ A;jk(i)) = Pk(n)»

=1
n—1 n—1
A:k(i) Py A;’k(i)
o )es ()

() | Vie(n)
() e
< Pr(n (ﬂ Avk“)>

Let (vg(1), .- Uk(n)) be such that

n m m
g €y = g Nnkey,, where g ng =n,
j=1 k=1 k=1

i.e., n; out of first n particles are allocated at vertex v;. Then, iterating equa-
tion (3.16) gives the following upper bound for the probability of a fixed path of
length n of the growth process

n—1
N Af““) (3.15)

i=1

and, hence,

(3.16)

ﬂA’Uk:(]) <p . pnm (3-17)

j=1

Consider a random process Y (n) = (Y1(n), ..., Yi(n)) describing results of indepen-
dent trials, where in each trial a particle is allocated in one of m boxes labeled by
i = 1,...,m with respective probabilities p;, i = 1,...,m, and Y;(n) is the number
of particles in box ¢ after n trials. Let P denote distribution of this process. It
is easy to see that the right hand side of equation (3.17) is equal to probability
5(K(n) = r;, i = 1,..,m), computed given that the boxes are initially empty.
Define

m
Bs = {Z |Y:(n) — p;n| > én for infinitely many n} .

Equation (3.17) implies that Py (35 N A(Ul’ ’Um)) <P (E(;). By the strong law of

large numbers for the i.i.d. case we have that 3 (Eg) = 0, and, hence,

Px (Bs() A =0,
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as claimed. O

It follows from Proposition 3.2 and equation (3.14) that
X, i
Px ( 1(n) — piv as n— 0o AEflt)’O]wm)) - L

Xo;(n)  pj
for i,7 = 1,...,m. Finally, a direct computation gives that ;’—;{ = Lwl)

where
CUW - )‘nlgrolo Z Xuw l{wwvl,wwv,} l{w”"Ui,/LUNUj}:I’ for i, =1,...,m
weV
The proof of Theorem 1.3 in the case o = 8 is now finished.

3.3.2. Case: a < . We start with an auxiliary statement (Lemma 3.3) that might
be of interest on its own right.

Lemma 3.3. Let X(n) = (X1(n),..., Xm(n)) be a growth process with parameters
0 < a < B on a complete graph with m > 2 vertices labeled by 1,...,m, and let
Zi;(n) = X;(n) — Xpn(n), i = 1,....,m — 1. Then Z(n) := (Z1(n), ..., Zm—1(n)) €
Z™ 1 is an irreducible positive recurrent Markov chain.

Proof of Lemma 3.5: Let X(0) = x = (21, ..., %) € Z7. For short, denote I'; =
Ii(x),i=1,....m,and =X\ =a— < 0. Note that if y = (1 +7r1,...,Zm +7m) €
Z"', where Y. | r; = n, then

Di(y) = DyemritAn=ro — pye=righn i =1 .. m.

Therefore
P(Z(n+1) = Z(n) + e:|Z(n) = 2) = Lie (3.18)
n =Z(n W\ Z(n) = )
T+ >0 ! T,e= =i
fori=1,...m—1, and
|
P(Z(n+1)=Z(n)—e|lZ(n)=12) = (3.19)

m+zm lre Az

for all z = (21,..., 2m_1) € Z™ 1, where e; is now the i-th unit vector in Z™~1,
and e =ej + -+ e,_1 € Z™ L. Thus, Z(n) is a Markov chain with transition
probabilities given by (3.18)-(3.19). It is easy to see that this Markov chain is
irreducible. Further, define the following function

m—1
Z z7, (215 ey Zm_1) € Z™1, (3.20)

i=1
and show that given € > 0
E(f(Z(n+1)) - f(Z(n))|Z(n) = 2) < —¢,
for z=(21,..., Zm-1) € ZT_l el 4+ lEme1] > C

provided that C = C(e) > 0 is sufficiently large. Indeed, fix e > 0. A direct
computation gives that

(3.21)

E 2+ 1)~ HZ0) Z00) = ) 2 = TERE D g
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where h;(z,¢) = (2z—|— 1 +5)aie_)‘z —2z+1for z € R, a; = FFl yi=1,...,m—1,
and W(z) =1+> " Ya;e=% . Tt is easy to see that for each i = 1,...,m — 1, there
exists C; > 0 such that h;(z,e) < —|z| for |z| > C;. Define
H(e):= max sup  (hi(z,e) + |z]).
i=1,...,m—1 —oco<z<0o0

Note that H(e) > 0, as h;(0,e) =a; + 1+ >0,i=1,...,m— 1. It follows from
the definition of H that

m—1 m—1 m—1
D hilzine) = Y (hi(zie) + |z:]) = |zl < (m = DH(e) = Y 2.
i=1 i=1 i=

1
Combining the preceding equation with equation (3.22) gives equation (3.21), where
C =e+ (m—1)H(e). Thus, positive recurrence of Markov chain Z(n) follows from
the Foster criterion for positive recurrence of a Markov chain (e.g. Menshikov et al.,
2017, Theorem 2.6.4) with the Lyapunov function f. d

Remark 3.4. Note that Lemma 3.3 is reminiscent of Shcherbakov and Volkov
(2010b, Theorem 1, Part (1)). Moreover, to show positive recurrence of the Markov
chain Z(n) we use the criterion for positive recurrence with the same Lyapunov
function (3.20) as in the proof of positive recurrence of a similar Markov chain
in Shcherbakov and Volkov (2010b, Theorem 1, Part (1)).

The next step of the proof is to show the convergence of the ratios in the case
of a complete graph. This is the subject of the following lemma.

Lemma 3.5 (The strong law of large numbers for a growth process on a complete
graph). Let X(n) = (X1(n),..., X;n(n)) be a growth process with parameters
0 < a< B on a complete graph with m > 1 vertices labeled by 1,...,m. For every
initial state X(0) =x € Z7 and § > 0 with probability one

E ’Xi(n) -z ‘ >né for finitely many n.
m
i=1

Xiln) = L 5=,

n m’

In other words, with probability one lim,,_,

Proof of Lemma 3.5: Note that if Y. | |X;(n) —n/m| > nd, then Y ;" |Z (n)] >
nd/m?, where Z(n) is the Markov chain defined in Lemma 3.3. Therefore to prove
the lemma it suffices to show that, given ¢’ > 0 with probability one, only a finite
number of events > .| |Z (n)| > nd" oceurs.

Let 09 = 0 and let o = inf (n > o1 : Z(n) = 0) for k > 1. In other words,
oy is the k-th return time to the origin for the Markov chain Z(n). Define the
following events

m—1
Wk,é’ = { max Z |Z | > n5/} 5 k > 1. (323)

n€(ok,0k41) “

Note that Z:’;l |Z;(n)| can increase at most by (m — 1) at each time step, and,
besides, o > k. This yields that

Wis €< Opt1 —0f > ko' (3.24)
e L e e .
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Assume, without loss of generality, that Z(0) = 0. Then random variables o), —
ok—1, k > 1, are identically distributed with the same distribution as the first return
o1. It follows from Lemma 3.3 that E(o1) < co. Therefore,

iPak—ak L > k' /(m — 1)|Z(0) ZP01>I<:6’ m —1)|Z(0) = 0)
k=1

< CE(UI|Z( )=0)<

and, hence, by the Borel-Cantelli lemma, with probability one, only a finite number
of events {0}, — o1 > kdé’/(m — 1)}, k > 1, occur. Recalling equation (3.24) gives
that, with probability one, only a finite number of events W, s occur. Consequently,
with probability one, 221_11 |Z;(n)| > nd’ only for finitely many n, and the lemma
is proved. ([l

Finally, we are going to show the convergence of the ratios for the growth pro-
cess with parameters 0 < a < 8 on an arbitrary connected graph G(V, E). Let
(V1,.svm) €V be vertices of a clique. Fix (vi(1), .., Vg(ny) € S(n). A direct
computation gives the following analogue of bound (3.15)

P (A7) = Py (A7 [afr ) Py (Af )

- T (3.25)
Al m)) _

Vk(1)
ZZL:I ka 7

where, as before, we denoted T, = T, (x), K = 1,...,m. Similarly, we have for

every j = 2,...,n that

ﬂ A?k(i))

j—1
Virs
Px (A,k(])
J
i=1
j—1
_ Vi) | 4 (V1) 0m) V(i) (V1. Vm,)
- x(AjJAj ) A )PX<AJ.
i=1
Ty, e ATkt

j—1
Vk(5) (V15e.0m) V(i) | _ Vk(5)
S Px (AJ Aj ) m Al ) - Z’ZL . Fv e_)\'fk,j—17
=1 = k

where A = —(a — ) and 74 j_1, k =1, ..., m, are such that

<P, (A}Jk“)

j—1
N A?’““)) (3.26)

i=1

m
E €upy = E Tkj—1€v, for j>2 and 70 =0.
i= k=1

In other words, 74 ;1 is the number of particles at vertex k at time j — 1. Then,
it follows from equations (3.25) and (3.26) that

ATh(i),i—1

(ﬂAvk()> < H Z:k(l)r i T (3.27)

Consider a growth process X (n) with parameters («, ) on the complete graph with
vertices 1, ..., m, whose growth rates are computed as follows

[i(X) = Ty, e TP 2527 X = (&1,..., 7)) € 2T, (3.28)

where, in contrast to growth rates (1.1), additional coefficients I',, appear. Assume
that X (0) = 0. Then, it is easy to see that the right-hand side of equation (3.27) is
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the probability of a trajectory of length n of the growth process X (n) corresponding
to the sequence (vg(1), ..., Vk(n)) € S(n) as follows. This is a trajectory such that
a particle is allocated at vertex k(i) € (1,...,m) at time ¢ = 1,..,n. Further, given
d > 0 the following analogue of equation (3.14) holds

(V1503 0m) V1yeeyUm) V1yeeyUrn)
Px (A[ljoo] ) —p, (35 NAL ) 4P, (B(;ﬂA[l y ) . (3.29)
where now
= {Z ’Xvi (n) — %‘ > dn for infinitely many n}
i=1

and Bf is, as before, the complement of Bs. It follows from equation (3.27) that

Px (Ba ﬂAEf;j"Um)) <P (Es) ;
where P is the distribution of the growth process X (n) on the complete graph with
m vertices (with growth rates (3.28)) starting at X (0) = 0 € Z7 and

m
Bs = {Z ‘)Z'Ui (n) — %’ > dn for infinitely many n} i

i=1
Note that both Lemma 3.3 and Lemma 3.5 remain true for this growth pro-

cess (the proofs can be repeated verbatim). Therefore, P <§5) = 0, and, hence,
Py (35 NALL “*")) = 0. This yields that

(1,00]

X,
Py v (n) —1, as n — oo
Xy, (n)

(V14030m) _

for i,j =1,...,m, as claimed.
The proof of Theorem 1.3 in the case 0 < o < f is finished.

4. Proof of Theorem 1.6
Start with the following proposition.

Proposition 4.1. Let X(n) = (X,(n), v € V) be a growth process with parameters
(o, B) on a finite connected graph G = (V,E) and let 0 < 8 < «. Given state
x € ZY with growth rates T',(x), v € V, suppose that T',(x) = max(Ly(x) : v € V).

Then Px (A[l ]> > ¢ for some & > 0 that depends only on «, 8 and |V|. In other

words, with positive probability, all subsequent particles will be allocated at a vertex
with the maximal growth rate.

Proof of Proposition j.1. The proof of the lemma is similar to the proof of Lemma 1
in Costa et al. (2018). We provide the details for the sake of completeness. Note
that T'y(x+ne,) = T'y(x)e®” and T, (x +ne,) < Ty (x)e’”, v # u. Therefore, using
that ', (x) > T',(x) for v # u we obtain that

x+neu

Ve (a=8)n
F (x + ney) <|Vle ’
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which, in turn, gives that

o0

N B Ty (x)e*”
Px (A[l,oo]) - 1—[0 T, (x)e + Z#u Ly(x+ ney)

n=

o0 1
> _— = > 0’
* I e =

as claimed. O

The proof of Theorem 1.6 can be finished by using the renewal argument similarly
to the proof of Theorem 1.3. We omit the details.
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