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Abstract

This paper considers nonparametric predictive inference (NPI) for reproducibility of
likelihood ratio tests with the test criterion in terms of the sample mean. Given a
sample of size n used for the actual test, the NPI approach provides lower and upper
probabilities for the event that a repeat of the test, also with n observations, will lead
to the same overall test conclusion, that is rejecting a null-hypothesis or not. This is
achieved by considering all orderings of n future observations among the n data obser-
vations, which based on an exchangeability assumption are equally likely. However,
exact lower and upper probabilities can only be derived for relatively small values of
n due to computational limitations. Therefore, the main aim of this paper is to ex-
plore sampling of the orderings of the future data among the observed data in order
to approximate the lower and upper reproducibility probabilities. The approach is ap-
plied for the Exponential and Normal distributions and the performance of the ordering
sampling for approximation of the NPI lower and upper reproducibility probabilities is
investigated. An application with real data of the methodology developed is provided.
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1 Introduction

The reproducibility probability (RP) of a statistical test measures how likely it is that
if a statistical test were repeated under the same circumstances, it would lead to the
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same conclusion, that is the rejection or non-rejection of the null hypothesis. This is
an important property which was first addressed by Goodman (1992) and then by Shao
and Chow (2002); De Martini (2008); De Capitani and De Martini (2011); Shao and
Chow (2002) who dealt with this issue as being an estimation of the power of a test
problem.

In Coolen and Bin Himd (2014) a new perspective was presented using the non-
parametric predictive inference (NPI) framework of frequentist statistical methods (Au-
gustin and Coolen, 2004; Coolen, 2006, 2011). This NPI approach for the reproducibil-
ity probability of a test (NPI-RP) considers the test result for a predicted future sample
of the same size as the original sample, this approach will be detailed in Section 2. The
NPI approach for reproducibility of likelihood ratio tests was introduced in Marques et
al. (2019a) and used in Marques et al. (2019b) to study the reprocibility of hypotheses
testing between two Beta distributions. In Marques et al. (2019a) the authors consid-
ered only simple hypotheses and discussed the reproducibility property of some basic
tests. In Marques et al. (2019a), only small samples of sizes 5 and 10 were considered,
since for larger samples the methodology proposed is difficult to implement in com-
putational terms. The number of orderings required for exact computation of the NPI
lower and upper reproducibility probabilities is equal to

(
2n
n

)
, which is only feasible for

small data sets. One way to overcome this problem is by using an NPI-based bootstrap
method (Coolen and Bin Himd, 2020), which however has the disadvantage that impre-
cision is no longer present. To remain closer to the nature of NPI, using lower and upper
probabilities to quantify uncertainty and reflecting the amount of information through
imprecision, we propose and alternative computational method, namely by estimating
the NPI lower and upper RP probabilities via sampling of the future orderings.

In this work, we study the reproducibility property of likelihood ratio tests for com-
posite hypotheses on the mean value, such that the decision rule may be expressed in
terms of the sample mean. Furthermore, a new sampling methodology is proposed,
based on the sampling of future orderings, to overcome the computational limitations
described in Marques et al. (2019a) to address scenarios with larger sample sizes.

Although, the sampling of future orderings technique is illustrated for likelihood
ratio tests with test criterion based on the sample mean, which somehow limits the
distributions that may be assumed in this testing procedure, this methodology may also
be applied to other testing procedures for which the test criterion may be expressed
in terms of the sample mean. Moreover, convergence theorems such as the Central
Limit Theorem allow us to extend the results to other distributions and even in cases
where the distributions are not known. We emphasize that the sampling of orderings
to estimate NPI lower and upper RPs is far more widely applicable, and enables the
NPI-RP approach to be implemented to a wide range of statistical tests and not only
for likelihood ratio tests.

This paper is organized as follows; in Section 2 we present the methodology used
to compute the lower and upper reproducibility probabilities for likelihood ratio tests
on the mean value where decision rule is based on the mean sample. In Section 3,
the computation of the reproducibility probabilities is illustrated for samples from the
Normal and Exponential distributions. The new sampling methodology is introduced
in Section 4 together with numerical studies which show the adequacy of the method-
ology proposed. Section 5 is dedicated to simulations. In Section 6, the procedure for
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the computation of lower and upper reproducibility probabilities, for two sided tests,
is briefly illustrated. An application with real data is presented in Section 7. The dis-
cussions and conclusions are presented in Section 8. troduces NPI-RP to the important
setting of likelihood ratio tests (LRT). These tests were introduced by Neyman and
Pearson in 1928 and since then have been widely applied in the most different fields
of statistics, for example, applications can be easily found in engineering, economics,
medicine and

2 NPI-RP for LRT

As mentioned in Marques et al. (2019a), nonparametric predictive inference (Augustin
and Coolen, 2004; Coolen, 2006, 2011) is a frequentist statistical method based on
Hill’s assumption A(n) (Hill, 1968). This assumption considers a single future real-
valued observation Xn+1, given n data observations, with the assumption that there
are no ties among the data (this assumption will also be made throughout this paper),
and assigns probability 1/(n+1) forXn+1 to each open interval in the partition created
by the n observations. We denote the n data observations by x1 < x2 < . . . < xn.
For distributions with unlimited support we have to define bounds which we denote by
x0 = L and xn+1 = R. No further assumptions are made, in particular not on the
distribution of the probability 1/(n+ 1) within each interval.

This assumptions may be generalized for m ≥ 1 future real-valued observations,
based on n data observations, considering the sequential assumptionsA(n), . . . , A(n+m−1)

(Arts et al., 2004), These assumptions lead to the following inferential method: given n
data observations and m future observations, the

(
m+n
m

)
different orderings of all these

observations are all equally likely, with again no further assumptions on where future
observations would be within intervals between consecutive data observations.

Considering m = n, we denote the
(
2n
n

)
different orderings of the n future real-

valued observations among the n data observations, by Oj for j = 1, . . . ,
(
2n
n

)
. Each

ordering Oj can be represented by (sj1, . . . , s
j
n+1), where sji is the number of future

observations in the interval (xi−1, xi), according to ordering Oj . Here sji ≥ 0 and∑n+1
i=1 s

j
i = n.

The general idea of the NPI-RP approach is as follows (Coolen and Bin Himd,
2014; Marques et al., 2019a). Given n real-valued observations for which the original
test is performed, we consider the

(
2n
n

)
different orderings of the n future observations

among the n data observations; these orderings all have the same probability
(
2n
n

)−1
to

occur. For each such future ordering Oj , we do not know precise values of the future
data, but Oj specifies the number sji of observations in the interval (xi−1, xi), for each
i = 1, . . . , n + 1. For these future observations nothing more is assumed, so they can
take on any value within the specific interval. We wish to perform the same test on the
future data as was applied to the real data, hence we need to consider the mean of the
n future observations for each ordering Oj .

In this work, we are considering likelihood ratio tests which result in the following
test criterion involving the mean of the observed values. We will mainly consider a
null hypothesis H0 with a single-sided alternative hypothesis, leading (without loss of

3



generality) to the test criterion that H0 is rejected if and only if

1

n

n∑
i=1

xi > c (1)

with c dependent on the assumed statistical model and significance level for the test.
When considering a specific ordering Oj of the n future observations in the NPI

approach, we cannot derive a precise value for their mean, as we do not assume precise
values within the intervals (xi−1, xi). Hence, we can only derive the maximum lower
bound and minimum upper bound for the mean corresponding to Oj , we denote these
by mj and mj , respectively. They are easily derived as

mj =
1

n

n+1∑
i=1

sjixi−1 (2)

mj =
1

n

n+1∑
i=1

sjixi (3)

where sji is the number of future observations in the interval (xi−1, xi), according to
ordering Oj . Suppose that the original data sample of size n led to rejection of H0,
so their mean exceeds c. Then, this test result is reproduced if the future sample, also
of size n, also leads to rejection of H0. For an ordering Oj , this occurs certainly if
mj > c, while it certainly does not occur if mj ≤ c. However, if mj ≤ c < mj then
we cannot conclude whether the original test result is reproduced or not. Remembering
that all orderingsOj are equally likely, we derive the NPI lower and upper probabilities
for test reproducibility, for the case that H0 was rejected for the original test data, as

RP =

(
2n

n

)−1∑
j

1{mj > c} (4)

RP =

(
2n

n

)−1∑
j

1{mj > c} (5)

where the summations are taken over j = 1, 2, . . . ,
(
2n
n

)
and 1{A} is the indicator

function which is equal to 1 if A is true and 0 if A is not true.
If the original data did not lead to rejection of H0, then the reasoning is similar and

the resulting NPI lower and upper probabilities for test reproducibility are

RP =

(
2n

n

)−1∑
j

1{mj ≤ c} (6)

RP =

(
2n

n

)−1∑
j

1{mj ≤ c} . (7)

It is now easy to see why we must assume a finite range [L,R] of possible values
for the future observations, where L and R can depend on the actual data observations.
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Suppose that we did not restrict the range, and allowed all real values in the method
described above. Half of the

(
2n
n

)
orderings have at least one observation in the interval

(−∞, x1). This follows easily from combinatorics, as it requires the smallest future
observation to be in this interval while the n− 1 further observations can be anywhere,
hence there are

(
2n−1
n−1

)
orderings with this property, which is precisely half of the

(
2n
n

)
orderings. A further simple argument to see that indeed precisely half of the orderings
have at least one future observation that is less than x1 follows immediately from the
assumed exchangeability of all 2n observations, which implies that the smallest of
these 2n observations has equal probability to be among the n observations in the data
set and to be among the n future observations. If we allow x0 = −∞, then for each of
these orderings, mj < c for all finite values of c. If we allow xn+1 =∞, by the same
reasoning, also half the orderings have mj > c for all finite c. Hence, we would have
RP ≤ 0.5 andRP ≥ 0.5 for all values of n and for any possible data set. Furthermore,
there are

(
2n−2
n−2

)
orderings which have both at least one future observation less than x1

and at least one future observation greater than xn. Note that this is about a quarter
of all the orderings. For these orderings, mj < c and mj > c for all finite c, which
implies that the imprecision in the reproducibility inferences, that is RP − RP , is at
least (about) 0.25, for all values of n. As we will see later, by assuming finite values
for L and R we will get inferences that have more attractive properties for increasing
values of n, in particular reducing imprecision.

Of course, we need to assume values L < x1 and R > xn such that the data ob-
servations are within [L,R]. For the specific choice of L and R, however, there do not
appear to be compelling theoretic arguments, yet it does influence the reproducibility
inference. In Section 5, we will explore a few heuristic arguments for specific choices
of L and R and we will investigate the sensitivity of the inferences to the choice of
these values.

In the next section, we will illustrate the NPI-RP methodology for a few scenarios
with small sample sizes, so that these NPI lower and upper reproducibility probabilities
can be computed exactly. Thereafter, using sampling of the orderings, we will consider
larger samples sizes.

3 Applications for small sample sizes

We consider likelihood ratio tests for the mean value, for which the hypotheses may be
formulated as

H0 : µ ≤ µ0 vs H1 : µ > µ0 (8)

and such that the test criterion may be expressed in terms of the sample mean. The
main focus of the paper is on likelihood ratio tests, but the methodology proposed can
also be applied to other test procedures. We will apply the methodology introduced in
Section 2 when the underlying population has an Exponential or Normal distribution.
Note that the Normal distribution, for known variance, and the Exponential distribution
belong to the regular Exponential family with one unknown parameter, for which the
density function may be expressed as

fX(x|θ) = h(x)g(θ) exp{t(x)w(θ)}
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and that ifw(θ) is an increasing function of θ, then we have a monotone likelihood ratio
in T (X) =

∑n
i=1 t(Xi). Both the Exponential and Normal distribution have monotone

likelihood ratios in the statistic T (X) =
∑n
i=1Xi. In this section we consider the

method described in Section 2 for small sample sizes. In this case, all the
(
2n
n

)
orderings

are considered for the computation of the upper and lower RPs. Both for the Normal
and Exponential distributions, a sample of size n, X1, . . . , Xn, is considered to test the
null hypothesis in (8). The decision rule for the likelihood ratio test may be expressed in
terms of the sample mean X and the test criterion in (1) is to reject the null hypothesis,
for a significance level α, if

X > q1−α (9)

where q1−α is the 1 − α quantile of X . It is well known that for independent and
identically distributed Xi ∼ Exp(λ), i = 1, . . . , n, the distribution of the mean is

X ∼ Gamma(n, λ/n)

and for Xi ∼ N(µ, σ), i = 1, . . . , n,

X ∼ N(µ, σ/
√
n)

thus the quantile q1−α can be easily determined in both cases. To apply the method-
ology introduced in Section 2, and since the distributions considered are not bounded,
we need to define upper and lower limits, L and R. Our first heuristic approach is as
follows. For n data observations, x1 < x2 < · · · < xn, L and R may be defined as
L = x1 − xn−x1

n−1 and R = xn + xn−x1

n−1 . In Section 5 we will discuss and analyze two
other options for the choice of L and R. Note that when the underlying distribution is
Exponential we use L = 0.

In Figure 1, we simulated 50 replicates of samples of sizes n = 5 and n = 10
extracted from the Normal distribution, N(2, 3), and also from the Exponential distri-
bution with expected value 5, Exp(5), that is we simulated under the null hypothesis
in (8), considering µ0 = 2 for the Normal distribution and µ0 = 5 for the Exponential
distribution. The decision rule is given in (9). For original samples of sizes n = 5 and
n = 10, and for future samples of the same size there are respectively 252 and 184756
possible orderings. All the orderings were considered in the computation of the upper
and lower RPs. The observed likelihood ratio statistic and the upper and lower RPs
were determined for each of the 50 replications. In Figure 1, the vertical line indicates
the q0.95 quantile, the black circles and squares are respectively the lower and upper
RPs. From Figure 1, it is possible to observe similar patterns to the ones described in
the paper that introduced this topic (Marques et al., 2019a). The upper and lower RPs
tend to increase when |LRobs− q0.95| increases and it seems that there is some oscilla-
tion of the values of the RPs. This may be due to the method used to define L and R or
to the definition of the lower and upper RPs. These properties are also present in Table
1 where three samples of sizes 5 and 10 from the N(2, 3) and Exp(5) are considered.
In this table, for each sample, the observed sample mean, the test threshold and lower
and upper RPs are presented.
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Normal distribution, N(2, 3)
n = m = 5 n = m = 10
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Exponential distribution, Exp(5)
n = m = 5 n = m = 10
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Figure 1: Values of the upper (squares) and lower (circles) RPs, for 50 replications
of samples of sizes 5 and 10 from the Normal distribution with mean 2 and standard
deviation 3 and also from the Exponential distribution with mean 5. The vertical line
indicates the q0.95 quantile.

4 Sampling of orderings for larger sample sizes

As there are
(
2n
n

)
orderings Oj of n future observations among n data observations,

exact computation of the NPI lower and upper reproducibility probabilities, as pre-
sented in the previous section, is only possible for small values of n. One possibility to
overcome this is by sampling the orderings, and for each sampled ordering determine
mj and mj , which enables estimation of RP and RP following the standard theory
of estimation of proportions, as long as the sampling process of the orderings satisfies
the conditions for ‘simple random sampling’ (SRS). There are several possible ways to
achieve this, one that is easy to implement is explained below and implemented in the
computations in this paper. Note that the standard theory of estimation of proportions
also enables us to determine a suitable size for the sample of orderings, depending on
a required accuracy of the estimates.

For SRS, at each selection of an ordering to be included in the sample, each order-
ing must have the same probability of being selected, and the selection of an ordering
should be independent of the other selections. It is important to emphasize that, once n
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Normal distribution with µ = 2 and σ = 3

Sample mean Test threshold RP RP
Sample 1 4.680 4.207 0.36 0.74

n = m = 5 Sample 2 -0.128 4.207 0.94 1.00
Sample 3 1.824 4.207 0.70 0.94
Sample 1 2.012 3.560 0.90 0.97

n = m = 10 Sample 2 1.917 3.560 0.72 0.92
Sample 3 2.201 3.560 0.78 0.93

Exponential distribution with parameter λ = 5

Sample mean Test threshold RP RP
Sample 1 6.919 9.154 0.49 0.81

n = m = 5 Sample 2 3.661 9.154 0.98 1.00
Sample 3 4.826 9.154 0.90 0.99
Sample 1 3.348 7.853 0.97 1.00

n = m = 10 Sample 2 6.986 7.853 0.46 0.75
Sample 3 4.971 7.853 0.73 0.93

Table 1: Upper and lower RPs for three observed samples of sizes n = 5 and n = 10

is not very small, the total number of orderings is large enough in order to neglect any
possible differences between sampling with or without replacement, for simplicity we
will sample with replacement throughout this paper.

Each ordering Oj , for j = 1, . . . ,
(
2n
n

)
, of n future observations is characterized by

(sj1, . . . , s
j
n+1), where sji is the number of future observations in the interval (xi−1, xi).

Hence, for SRS of the orderings we must randomly select such vectors. An easy way to
do this is by simple random sampling of a vector of integers (r1, . . . , rn), with r1 ≥ 1,
rl > rl−1 for all l = 2, . . . , n and rn ≤ 2n. Then rl is considered to be the rank of
the j-th ordered data observation among the 2n combined data and future observations.
Defining r0 = 0 and rn+1 = 2n+1, and with a sampled vector (r1, . . . , rn), we define
sjl = rl− rl−1− 1 for l = 1, . . . , n+1, thus creating the j-th sampled future ordering
in the SRS process. It is easy to verify that this process ensures that, at each selection,
each of the possible orderings is equally likely to be selected, and as each selection is
executed independently of the other selections, the conditions for SRS are satisfied.

To illustrate this SRS methodology, 50 replications of samples of size 25 were
considered for the Normal distribution N(2, 3) and for the Exponential distribution
Exp(5). The computation of the lower and upper RPs was achieved by sampling or-
derings of sizes n∗ = 500, 1000, 2000, 3000.

Figure 2, shows that there are no substantial differences on the patterns for different
values of n∗. In Tables 2, 3 and 4, we computed the lower and upper RPs and the corre-
sponding 95% confidence intervals, for three samples of sizes 25, 50 and 100, and for
different numbers of orderings sampled. From these tables we may see that reasonable
results, for the approximating values of the lower and upper RPs, may be obtained by
considering the number orderings sampled equal or greater than 2000 which is a quite
small number when compared with the number of all possible orderings. This is an ex-
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Normal distribution, N(2, 3), n = m = 25
(i) n∗ = 500 (ii) n∗ = 1000
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(iii) n∗ = 2000 (iv) n∗ = 3000
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Exponential distribution, Exp(5), n = m = 25
(i) n∗ = 500 (ii) n∗ = 1000
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(iii) n∗ = 2000 (iv) n∗ = 3000
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Figure 2: Simulated values of the upper (squares) and lower (circles) RPs, for 50 repli-
cations of the original sample of size n = 25 from the Normal distribution with mean
2 and standard deviation 3, and also from the Exponential distribution with parameter
5, when n = m and n∗ = 500, 1000, 2000, 3000. The vertical line indicates the q0.95
quantile of X .

9



Normal distribution with µ = 2 and σ = 3
n∗ lower CI(0.95) upper CI(0.95)

100 0.63000 (0.53537,0.72463) 0.85000 (0.78002,0.91999)
500 0.59400 (0.55096,0.63705) 0.81000 (0.77561,0.84439)

1000 0.62400 (0.59398,0.65402) 0.81400 (0.78988,0.83812)
2000 0.64250 (0.62150,0.66350) 0.82300 (0.80627,0.83973)
5000 0.63320 (0.61984,0.64656) 0.81500 (0.80424,0.82576)

10000 0.62070 (0.61119,0.63021) 0.80540 (0.79764,0.81316)
20000 0.62705 (0.62035,0.63375) 0.81340 (0.80800,0.81880)
50000 0.62418 (0.61994,0.62843) 0.81164 (0.80821,0.81507)

100000 0.62756 (0.62456,0.63056) 0.81265 (0.81023,0.81507)

Exponential distribution with parameter λ = 5
100 0.79000 (0.71017,0.86983) 0.92000 (0.86683,0.97317)
500 0.76600 (0.72889,0.80311) 0.91000 (0.88492,0.93508)

1000 0.72100 (0.69320,0.74880) 0.88200 (0.86200,0.90200)
2000 0.73350 (0.71412,0.75288) 0.88050 (0.86628,0.89472)
5000 0.74460 (0.73251,0.75669) 0.88680 (0.87802,0.89558)

10000 0.74660 (0.73807,0.75513) 0.88490 (0.87864,0.89116)
20000 0.74165 (0.73558,0.74772) 0.88515 (0.88073,0.88957)
50000 0.73368 (0.72981,0.73755) 0.87696 (0.87408,0.87984)

100000 0.73889 (0.73617,0.74161) 0.88308 (0.88109,0.88507)

Table 2: Upper and lower RPs for an observed sample of size n = 25 and for increasing
values of the number of the orderings sampled

cellent property of the SRS methodology that allows us to overcome the computational
difficulties, identified in Marques et al. (2019a), in the computation of the lower and
upper RPs, for samples larger than 10. Of course, if one wants to obtain more accurate
approximations for the RPs, then one can increase the number of orderings sampled.

In order to assess the precision of the SRS methodology for the computation of
the lower and upper RPs when the orders are sampled, we computed the exact lower
and upper RPs, for n = m = 14, considering the 40 116 600 possible orderings and
assuming as underlying distributions the Normal and Exponential distributions. Then,
using the SRS technique, we performed 100 simulations with n∗ equal to 100 and 1000,
and in each simulation the 95% confidence interval was computed, for both the lower
and upper RPs. The coverage probabilities of the 95% confidence intervals, assuming
the Normal distribution with µ = 2 and σ = 3, based on an observed sample of size
14, for the exact values RP = 0.87 and RP = 0.70, were respectively 0.96 and 0.95
for n∗ = 100 and 0.99 and 1.00 for n∗ = 1000. For the Exponential distribution
with parameter, λ = 5, the coverage probabilities of the 95% confidence intervals
for the exact values RP = 0.72 and exact RP = 0.49, were respectively 0.96 and
0.98 for n∗ = 100 and 0.99 and 1.00 for n∗ = 1000 . For the computation of these
confidence intervals for proportions, p, we used the standard result based on the normal
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Normal distribution with µ = 2 and σ = 3
n = 50

n∗ lower CI(0.95) upper CI(0.95)
100 0.68000 (0.58857,0.77143) 0.82000 (0.74470,0.89530)
500 0.70600 (0.66607,0.74593) 0.84000 (0.80787,0.87213)

1000 0.70400 (0.67571,0.73229) 0.83000 (0.80672,0.85328)
2000 0.71050 (0.69062,0.73038) 0.83950 (0.82341,0.85559)
5000 0.71340 (0.70087,0.72593) 0.83620 (0.82594,0.84646)

10000 0.71540 (0.70656,0.72424) 0.83930 (0.83210,0.84650)
20000 0.71550 (0.70925,0.72175) 0.83970 (0.83462,0.84478)
50000 0.71628 (0.71233,0.72023) 0.84118 (0.83798,0.84438)

100000 0.71804 (0.71525,0.72083) 0.84131 (0.83905,0.84357)

Exponential distribution with parameter λ = 5
100 0.57000 (0.47297,0.66703) 0.73000 (0.64299,0.81701)
500 0.61000 (0.56725,0.65275) 0.75400 (0.71625,0.79175)

1000 0.63600 (0.60618,0.66582) 0.79100 (0.76580,0.81620)
2000 0.61600 (0.59468,0.63732) 0.76200 (0.74334,0.78066)
5000 0.63000 (0.61662,0.64338) 0.78420 (0.77280,0.79560)

10000 0.62700 (0.61752,0.63648) 0.77120 (0.76297,0.77943)
20000 0.63075 (0.62406,0.63744) 0.77430 (0.76851,0.78009)
50000 0.62982 (0.62559,0.63405) 0.77796 (0.77432,0.78160)

100000 0.62658 (0.62358,0.62958) 0.77482 (0.77223,0.77741)

Table 3: Upper and lower RPs for an observed sample of size 50 and for increasing
values of the number of the orderings sampled

approximation
p̂± zα/2

√
p̂(1− p̂)/n∗

where zα/2 is the 1 − α/2 quantile of the standard Normal distribution, and p̂ is the
estimated value of the lower or upper RP. In the literature (Brown et al., 2001; Mantalos
and Zografos, 2008), it is well documented that some problems may arise when using
these intervals for proportions; this may explain the high values for the coverage prob-
abilities when n∗ = 1000. However, our interest is only to document the reliability of
the SRS method in the computation of approximating values for the lower and upper
RPs and this is well stated in the results presented.

5 Simulations

In this section we will (i) analyze the impact of the increase of the sample size in the
patterns of the lower and upper RPs, (ii) compare the results obtained for the lower
and upper RPs considering three different methods to determine L and R, and (iii)
illustrate, through simulations, the changes on the pattern of the upper and lower RPs
when the simulations are performed by sampling under the alternative hypothesis.
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Normal distribution with µ = 2 and σ = 3
n = 100

n∗ lower CI(0.95) upper CI(0.95)
100 0.88000 (0.81631,0.94369) 0.93000 (0.87999,0.98001)
500 0.79800 (0.76281,0.83319) 0.88000 (0.85152,0.90848)

1000 0.81400 (0.78988,0.83812) 0.87800 (0.85771,0.89829)
2000 0.82650 (0.80990,0.84310) 0.90050 (0.88738,0.91362)
5000 0.81280 (0.80199,0.82361) 0.89200 (0.88340,0.90060)

10000 0.82110 (0.81359,0.82861) 0.89310 (0.88704,0.89916)
20000 0.81910 (0.81377,0.82443) 0.89435 (0.89009,0.89861)
50000 0.81872 (0.81534,0.82210) 0.89284 (0.89013,0.89555)

100000 0.81824 (0.81585,0.82063) 0.89200 (0.89008,0.89392)

Exponential distribution with parameter λ = 5
100 0.80000 (0.72160,0.87840) 0.89000 (0.82867,0.95133)
500 0.80800 (0.77348,0.84252) 0.91000 (0.88492,0.93508)

1000 0.85000 (0.82787,0.87213) 0.91300 (0.89553,0.93047)
2000 0.82750 (0.81094,0.84406) 0.90400 (0.89109,0.91691)
5000 0.83340 (0.82307,0.84373) 0.91480 (0.90706,0.92254)

10000 0.82630 (0.81887,0.83373) 0.90680 (0.90110,0.91250)
20000 0.83170 (0.82651,0.83689) 0.90640 (0.90236,0.91044)
50000 0.82694 (0.82362,0.83026) 0.90514 (0.90257,0.90771)

100000 0.82877 (0.82644,0.83110) 0.90896 (0.90718,0.91074)

Table 4: Upper and lower RPs for an observed sample of size 100 and for increasing
values of the number of the orderings sampled

5.1 Sample size effect on the lower and upper RPs

To study the impact of the sample size on the upper and lower RPs, we consider
the same number of orderings sampled, n∗ = 2000, and different sample sizes n =
25, 50, 100, 200. For each sample size we considered 50 replications from the Normal
distribution, N(2, 3) and from the Exponential distribution, Exp(5). The results are
presented in Figures 3 and 4.
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Normal distribution, N(2, 3), n∗ = 2000
(i) n = 25 (ii) n = 50
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(iii) n = 100 (iv) n = 200
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Figure 3: Simulated values of the upper (squares) and lower (circles) RPs, for 50 repli-
cations of different sizes, n, of the original sample from the Normal distribution with
mean 2 and standard deviation 3 when n = m and n∗ = 2000. The vertical line
indicates the q0.95 quantile of X .
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Exponential distribution, Exp(5), n∗ = 2000
(i) n = 25 (ii) n = 50
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Figure 4: Simulated values of the upper (squares) and lower (circles) RPs, for 50 repli-
cations of different sizes, n, of the original sample from the Exponential distribution
with parameter 5, when n = m and n∗ = 2000. The vertical line indicates the q0.95
quantile of X .

In Figures 3 and 4, it is interesting to note that, when n increases, the lower RP
value seems to tend to 0.5 when the observed likelihood ratios are close to the quantile
and the range between the lower and upper RPs decreases.

5.2 Choice of L and R

In this section we consider three heuristic methods to determine the values of L and R,
and the results obtained in the computation of the lower and upper RPs are compared.
For n data observations, x1 < x2 < · · · < xn, L and R may be defined as follows

(I) the method already introduced in Section 3 and used throughout this work, with
L = x1 − xn−x1

n−1 and R = xn + xn−x1

n−1 ;

(II) L = qα and R = q1−α, for α = 0.0001, where qα and q1−α are the α and
1 − α quantiles of the distribution assumed under H0, provided that all data
observations are within (L,R);

(III) L = x1+xn

2 − y and R = x1+xn

2 + y; y is defined, for the Normal case, as the
solution of the system of equations

P

(
W1 ≥

x1 + xn
2

+ y

)
=

1

2n+ 1
with W1 ∼ N

(
x1+xn

2 , σ
)

P (W1 ≥ xn) =
1

n+ 1
with W1 ∼ N

(
x1+xn

2 , σ
)
.
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Normal distribution, N(2, 3), n = m = 5
(I) (II) (III)
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Normal distribution, N(2, 3), n = m = 10
(I) (II) (III)
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Figure 5: Simulated values of the upper (squares) and lower (circles) RPs, for 50 repli-
cations of samples of sizes 5 and 10 from the Normal distribution with mean 2 and
standard deviation 3, using methods (I), (II) and (III). The vertical line indicates the
q0.95 quantile.

For the Exponential case, using a similar method, R is defined as

R =
log(2n+ 1)

log(n+ 1)
Xn .

We should point out that for the Exponential distribution, in the previous three
methods and throughout the paper, L is considered to be equal to 0.

In Figures 5 and 6, we simulated 50 replicates of samples of sizes n = 5 and
n = 10 extracted from the Normal distribution, N(2, 3), and also from the Exponential
distribution, Exp(5). Since the samples are small, for each replications, we computed
the exact lower and upper RPs.

From Figures 5 and 6 we may see that the patterns are similar using methods (I), (II)
or (III). Although, it seems that with method (II) there is less oscillation of the values of
RP andRP , but there is more imprecision away from the test threshold. In Table 5, we
considered three samples and computed the values of the RP and RP using the three
methods. From this table we may see that, for the same observed sample, the upper
and lower RPs may differ substantially, mainly between method (II) and methods (I)
and (III). This may be explained by the fact that, in method (II), using the 0.0001 upper
or lower quantiles we may be considering the first or last intervals with a larger length
than the ones obtained using methods (I) and (III).

5.3 Simulations under the alternative hypothesis

This subsection illustrates, through simulations, the changes on the pattern of the upper
and lower RPs when the simulations are performed assuming the underlying popula-
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Exponential distribution, Exp(5), n = m = 5
(I) (II) (III)
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Exponential distribution, Exp(5), n = m = 10
(I) (II) (III)
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Figure 6: Simulated values of the upper (squares) and lower (circles) RPs, for 50 repli-
cations of samples of sizes 5 and 10 from the Exponential distribution, Exp(5), using
methods (I), (II) and (III). The vertical line indicates the q0.95 quantile.

tions under the alternative hypothesis. For the hypotheses in (8), and for the Normal
case, we consider samples of size 25 from the following distributions (i) N(2, 3) (ii)
N(δ1, 3) and (iii)N(2δ1−2, 3) where δ1 = q1−α is the threshold considered in the test
criterion and marked with a vertical line in the plots of Figure 7. For the Exponential
distribution, we also considered samples of size 25 from (i) Exp(5), (ii) Exp(δ2) and
(iii) Exp(2δ2 − 5), where δ2 = q1−α is also the threshold considered in the test crite-
rion and is also marked with a vertical line in the plots. We considered 50 replications,
and in all cases we defined n∗ = 2000 and used the method (I), introduced in Section
3, to define L and R. In the results presented in Figure 7 we may observe a change on
the pattern of the RPs obtained through simulations, together with the change of “side”
of the observed mean values in relation to the threshold considered.

6 Two sided test

This work focused on the right sided test, however a similar procedure may be imple-
mented for the left sided test or even for the two sided tests. In this section, we illustrate
briefly, the procedure for the computation of the upper and lower RPs for the two sided
test. Suppose we want to test the hypotheses

H0 : µ = µ0 vs H1 : µ 6= µ0 . (10)

The decision rule for this test may be expressed in terms of the sample mean X and the
test criterion is to reject the null hypothesis, for a significance level α, if

X < qα/2 ∨ X > q1−α/2 (11)
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Normal distribution with µ = 2 and σ = 3
Sample 1 Sample 2 Sample 3

(I) 0.36 0.74 0.94 1.00 0.70 0.94
n = m = 5 (II) 0.33 0.72 0.77 1.00 0.60 0.94

(III) 0.37 0.73 0.96 1.00 0.73 0.94
Sample 1 Sample 2 Sample 3

(I) 0.90 0.97 0.72 0.92 0.78 0.93
n = m = 10 (II) 0.68 0.98 0.65 0.93 0.63 0.94

(III) 0.89 0.97 0.72 0.92 0.78 0.93
Exponential distribution with parameter λ = 5

Sample 1 Sample 2 Sample 3
(I) 0.49 0.81 0.98 1.00 0.90 0.99

n = m = 5 (II) 0.40 0.81 0.59 1.00 0.54 0.99
(III) 0.48 0.81 0.97 1.00 0.87 0.99

Sample 1 Sample 2 Sample 3
(I) 0.97 1.00 0.46 0.75 0.73 0.93

n = m = 10 (II) 0.73 1.00 0.40 0.75 0.60 0.93
(III) 0.95 1.00 0.43 0.75 0.70 0.93

Table 5: Upper and lower RPs for three observed samples of sizes n = 5 and n = 10
using the three methods

where qα/2 and q1−α/2 are the α/2 and 1− α/2 quantiles of X .
For a given order Oj , the maximum lower bound, mj , and minimum upper bound,

mj , for the mean are still determined as in equations (3) and (2) respectively.
However, the procedure for the computation of RP and RP is different since it

needs to account for the two rejection regions. Thus, for the two sided test, if the
decision for the initial observed sample is the rejection of the null hypothesis, we have

RP =

(
2n

n

)−1∑
j

1{mj > q1−α/2 ∨ mj < qα/2} (12)

RP =

(
2n

n

)−1∑
j

1{mj > q1−α/2 ∨ mj < qα/2} . (13)

If the original data did not lead to rejection of H0, then the lower and upper RPs are
determined as follows

RP =

(
2n

n

)−1∑
j

1{mj > qα/2 ∧ mj < q1−α/2} (14)

RP =

(
2n

n

)−1∑
j

1{mj > qα/2 ∧ mj < q1−α/2} . (15)

In Figure 8, we have simulated from the Normal and Exponential distributions 50 sam-
ples of sizes 50, 100 and 200 and, in each case, we computed the lower and upper RPs.
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Normal distribution, n = 25, n∗ = 2000
(i) N(2, 3) (ii) N(δ1, 3) (ii) N(2δ1 − 2, 3)
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Exponential distribution, n = 25, n∗ = 2000
(i) Exp(5) (ii) Exp(δ2) (ii) Exp(2δ2 − 5)
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Figure 7: Simulated values of the upper (squares) and lower (circles) RPs, for 50 repli-
cations of different sizes of the original sample n = 25, when n = m and n∗ = 2000.
The vertical line indicates the q0.95 quantile of X .

Consistent with the methodology used throughout this work, we used method (I) to
determine the values for the range [L,R]; remember that, for the Exponential distri-
bution we used L = 0. In these computations we used the SRS methodology taking
n∗ = 2000.

Figure 8 shows that reproducibility for the two sided test is, of course, worst if the
actual test results lead to mean values close to a test threshold. A main observation is
that the maximum values of the reproducibility for cases where the null hypothesis is
not rejected, so in between the two thresholds, may perhaps be lower than many would
expect, with even the NPI upper RP value for some cases not going much above 0.8.
For larger values of n the differences between upper and lower RP values decrease and
randomness of the values is reduced, this is in line with our earlier observations for
single-sided test.

7 An application

In this section we provide an illustration of a possible practical use of the results pre-
sented in this work. We consider the data available in https://dasl.datadescription.com/
datafile/farmed-salmon/ and in Hites (2004). From this data set, about organochlorine
contaminants in farmed salmon, we selected the values of Mirex measured in farmed
salmon in two countries, Chile and Scotland. It is known that high levels of concen-
tration of Mirex may be dangerous for public health. In the American Cancer Society
web-page the substance Mirex is listed as to be “reasonably anticipated to be human
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Normal distribution, N(2, 3), n∗ = 2000
(i) n = 50 (ii) n = 100 (ii) n = 200
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Exponential distribution Exp(5), n = 25, n∗ = 2000
(i) n = 50 (ii) n = 100 (ii) n = 200
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Figure 8: Simulated values of the upper (squares) and lower (circles) RPs, for 50 repli-
cations of different sizes of the original sample n = 25, when n = m and n∗ = 2000.
The vertical line indicates the q0.05 and q0.95 quantiles of X .

carcinogens”. Thus, we may be interested in testing the hypotheses

H0 : µ ≤ ` vs H1 : µ > ` (16)

where ` stands for a given limit above which the levels of Mirex may be considered
dangerous. Instead of considering a specific value for ` we considered a range of
values. For each value of ` we tested the null hypotheses in (16) and then we computed
the lower and upper RPs of the test, which give us a prediction of how likely is to obtain
the same decision if we repeat the test. For the computations of the lower and upper
RPs we consider n∗ = 2000. We have two samples of size 30, one from Chile and
another from Scotland, of measurements of Mirex in farmed salmons. In the data set it
is possible to find data from other countries and also measurements of other substances,
however for this simple illustration we decided to consider only the data from Chile and
Scotland of measurement of Mirex in farmed salmons.

The obtained values are presented in Tables 6 and 7. From these tables we may
observe that, for the data from Chile, we have RP > 0.8 for ` ≤ 0.05, thus in these
cases, if the test were repeated in the same circumstances, we would expect the result to
be rejection of the null hypothesis, and since RP > 0.8 for ` ≥ 0.06 we would expect
a non-rejection of the null hypothesis in a repetition of the test. Similar conclusions can
be drawn from the data from Scotland, but for different values of `, thus if the test were
repeated in the same circumstances, we would expect the same decision for ` ≤ 0.115
–rejection– or for ` ≥ 0.135 – non-rejection of the null hypothesis.

19



Data from Chile
` Rejection RP CI(0.95) RP CI(0.95)

0.040 Yes 1.000 (1.000,1.000) 1.000 (1.000,1.000)
0.042 Yes 0.999 (0.999,1.000) 1.000 (1.000,1.000)
0.044 Yes 0.998 (0.996,1.000) 1.000 (0.999,1.000)
0.046 Yes 0.988 (0.983,0.993) 1.000 (0.999,1.000)
0.048 Yes 0.949 (0.939,0.958) 0.989 (0.984,0.994)
0.050 Yes 0.868 (0.853,0.883) 0.954 (0.944,0.963)
0.052 Yes 0.689 (0.668,0.709) 0.851 (0.835,0.867)
0.054 Yes 0.498 (0.476,0.519) 0.695 (0.675,0.715)
0.056 No 0.498 (0.476,0.520) 0.687 (0.667,0.707)
0.058 No 0.677 (0.656,0.697) 0.822 (0.805,0.838)
0.060 No 0.825 (0.808,0.841) 0.916 (0.903,0.928)
0.062 No 0.905 (0.892,0.918) 0.965 (0.956,0.973)
0.064 No 0.957 (0.948,0.965) 0.984 (0.979,0.989)
0.066 No 0.983 (0.977,0.989) 0.994 (0.991,0.997)
0.068 No 0.995 (0.991,0.998) 1.000 (0.999,1.000)
0.070 No 0.999 (0.998,1.000) 1.000 (0.999,1.000)
0.072 No 1.000 (1.000,1.000) 1.000 (1.000,1.000)
0.074 No 1.000 (1.000,1.000) 1.0000 (1.000,1.000)

Table 6: Upper and lower RPs for different values of `.

8 Concluding remarks

In this paper we have investigated the use of sampling of orderings of future data among
observed data for inference on reproducibility of tests. Due to the very large number
of such orderings, for all but very small data sample sizes, one cannot consider all the
orderings, and it was shown that simple random sampling leads to excellent approx-
imations, already based on quite small numbers of orderings being sampled. In fact,
both to approximate the NPI lower and upper reproducibility probabilities, the scenario
is just regular estimation of a proportion, hence required numbers of orderings in order
to achieve an accuracy requirement follow from basic theory of statistics. For most
practical applications, sampling 2 000 orderings provides a good impression of repro-
ducibility, while sampling 100 000 orderings ensures excellent approximations of the
NPI lower and upper reproducibility probabilities and the numerical computations for
such numbers of orderings require little time.

There are alternative approaches for approximating the NPI lower and upper RP.
In particular, Bin Himd (2014) developed a bootstrap-based approach linked to NPI
and explored its use for reproducibility computations from NPI perspective. While that
approach does enable application of the NPI-RP idea in case of larger sample sizes,
it does not provide estimates for the NPI lower and upper RPs but single values in
between these. It may also be possible to quickly identify a proportion of all orderings
for which one knows with certainty that the test necessarily leads to rejection or to non-
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Data from Scotland
` Rejection RP CI(0.95) RP CI(0.95)

0.080 Yes 1.000 (1.000,1.000) 1.000 (1.000,1.000)
0.085 Yes 1.000 (1.000,1.000) 1.000 (1.000,1.000)
0.090 Yes 1.000 (1.000,1.000) 1.000 (1.000,1.000)
0.095 Yes 1.000 (0.999,1.000) 1.000 (1.000,1.000)
0.100 Yes 0.999 (0.998,1.000) 1.000 (1.000,1.000)
0.105 Yes 0.995 (0.992,0.998) 1.000 (0.999,1.000)
0.110 Yes 0.984 (0.978,0.989) 0.995 (0.991,0.998)
0.115 Yes 0.932 (0.921,0.943) 0.978 (0.971,0.984)
0.120 Yes 0.795 (0.777,0.813) 0.918 (0.905,0.930)
0.125 Yes 0.567 (0.545,0.589) 0.759 (0.740,0.778)
0.130 No 0.521 (0.499,0.543) 0.729 (0.710,0.748)
0.135 No 0.837 (0.821,0.853) 0.929 (0.917,0.940)
0.140 No 0.977 (0.970,0.984) 0.995 (0.991,0.998)
0.145 No 1.000 (0.999,1.000) 1.000 (1.000,1.000)
0.150 No 1.000 (1.000,1.000) 1.000 (1.000,1.000)
0.155 No 1.000 (1.000,1.000) 1.000 (1.000,1.000)
0.160 No 1.000 (1.000,1.000) 1.000 (1.000,1.000)

Table 7: Upper and lower RPs for different values of `.

rejection of the null-hypothesis. For example, for the one-sided tests considered in this
paper, using the sample mean in the test criterion, samples with all future observations
guaranteed to be less than the test threshold value, necessarily lead to the future sample
mean being less than that threshold, hence such samples could be excluded from the
sampling. Similarly, future samples with all observations necessarily greater than the
test threshold can be excluded. This would, however, only affect the total number of
orderings to be considered for sampling quite marginally, and as we have seen that the
sampling of orderings functions very well we consider such possible refinements of the
procedure as being only of little practical interest. Of course, it may well be that for
more complicated test scenarios one could benefit more from exploring the space of all
possible future orderings in more detail, to simplify overall computational burden, this
could be a topic of future research interest if such more complicated test scenarios are
being investigated.
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