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Abstract

Rivers are  among  the  world’s  most  threatened  ecosystems.  Enabled  by  the  rapid

development  of  drone  technology,  hyperspatial  resolution  (<10  cm)  images  of  fluvial

environments are now a common data source used to better understand these sensitive

habitats.  However, the task of image classification remains challenging for this type of

imagery  and  the  application  of  traditional  classification  algorithms  such  as maximum

likelihood,  still  in  common  use  among  the  river  remote  sensing  community,  yields

unsatisfactory results. We explore the possibility that a classifier of river imagery based on

deep learning methods  can provide a significant  improvement in  our  ability  to  classify

fluvial  scenes.   We assemble  a  dataset  composed  of  RGB images  from 11  rivers  in

Canada, Italy, Japan, the United Kingdom, and Costa Rica.  The images were labelled into

5  land-cover  classes:  water,  dry  exposed  sediment,  green  vegetation,  senescent

vegetation and roads.  In total, >5 billion pixels were labelled and partitioned for the tasks

of training (1 billion pixels) and validation (4 billion pixels). We develop a novel supervised

learning workflow based on the NASNet convolutional neural network (CNN) called ‘CNN-

Supervised Classification’ (CSC).   First,  we compare  the  classification  performance of

maximum likelihood, a multilayer perceptron, a random forest, and CSC.  Results show

median  F1 scores  (a  commonly used quality metric in machine learning) of 71%, 78%,

72% and 95%, respectively.   Second, we train our classifier using data for 5 of 11 rivers.

We then predict the validation data for all 11 rivers.  For the 5 rivers that were used in

model training, median F1 scores reach 98%. For the 6 rivers not used in model training,

median F1 scores are 90%.  We reach two conclusions.  First, in the traditional workflow

where images are classified one at a time, CSC delivers an unprecedented mix of labour

savings and classification F1 scores above 95%.  Second, deep learning can predict land-

cover classifications (F1 = 90%) for rivers not used in training.  This demonstrates the
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potential to train a generalised open-source deep learning model for airborne river surveys

suitable for most rivers ‘out of the box’.  Research efforts should now focus on further

development of  a new generation of deep learning classification tools that  will  encode

human image interpretation abilities and allow for fully automated, potentially real-time,

interpretation of riverine landscape images.  
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Graphical Abstract
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Highlights

 Deep Learning can classify RGB river imagery to 90%-99% F1.

 This result exceeds the state-of-the-art in fluvial scene classification. 

 Deep Learning models can encode river features that transfer to new rivers.

 Hyper- and multispectral data are not required.

 We provide open source GIS integration via PyQGIS.

70



6

Introduction

Freshwater  environments  and  the  flora  and  fauna  they  contain  are  among  the  most

threatened ecosystems on the planet  (Carrizo et al., 2017; Strayer and Dudgeon, 2010;

WWF,  2018).  Of  these  habitats,  rivers  in  particular  have  been  the  focus  of  intensive

research and conservation initiatives  (e.g. Linke et al., 2007; Nel et al., 2009; Ormerod,

2009) due to the combined threats of impoundments and flow alteration (Rosenberg et al.,

2000; Vörösmarty et al.,  2010), land-use modification  (Rogger et al.,  2017; Zhang and

Schilling, 2006), and climate change (Arnell and Gosling, 2016; van Vliet et al., 2013). In

tandem with this increasingly intensive ‘applied’ research focus, recognition has grown that

the  improved  conservation  of  river  environments  will  naturally  stem  from  a  deeper

understanding of  patterns and processes in  physical  river  habitats  (e.g.  Palmer et  al.,

2010;  Ward  et  al.,  2001;  Wohl  et  al.,  2005) and  their  linkages  to  aquatic  organisms.

Indeed, this concept is central to the  riverscapes paradigm (Fausch et al., 2002), which

dictates that a spatially continuous view of the river is key to understanding and conserving

stream  biota.  The  collection  and  assembly  of  high-resolution  data  pertaining  to  river

environments is therefore a fundamental first step in protecting these critically endangered

global ecosystems (Vannote et al., 1980).

The sinuous, dendritic nature of rivers, coupled with the difficulty of conducting spatially-

intensive sampling in aquatic environments, has led researchers to increasingly turn to

remote  sensing  to  provide  the  spatially  continuous  data  necessary  to  yield  improved

fundamental and applied understanding of river environments.  The sub-discipline of fluvial

remote  sensing  tends to  be divided in  2  principal  areas depending on the acquisition

platform: spaceborne and airborne. Spaceborne river remote sensing tends to address

continental and global scale issues  (e.g. Allen and Pavelsky, 2018; Durand et al., 2016;
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Gleason  and  Smith,  2014;  Smith,  1997).  Airborne  fluvial  remote  sensing  (hereafter

abbreviated as airborne FRS) focusses on local, sub-meter scale features and parameters

that can be algorithmically  retrieved and generally depend on the much higher  spatial

resolutions, typically cm-scale, made possible by airborne acquisitions (Carbonneau and

Piégay,  2012a).  Earlier  airborne  FRS work  (e.g.  Seto  et  al.,  2002;  Winterbottom and

Gilvear, 1997; Yang et al., 1999)(eg. Seto et al. 2002; Winterbottom & Gilvear, 1997; Yang

et al. 1999)(eg. Seto et al. 2002; Winterbottom & Gilvear, 1997; Yang et al. 1999)(eg. Seto

et  al.  2002;  Winterbottom & Gilvear,  1997;  Yang et  al.  1999) highlighted the  utility  of

multi/hyperspectral satellite and airborne platforms for mapping fluvial environments. While

these coarser spatial resolution data continue to be useful for monitoring rivers, particularly

planform change, hydrometry or water quality; (e.g. Bjerklie et al., 2003; Kuhn et al., 2019;

Langat  et  al.,  2020)(eg  Bjerklie  et  al.,  2003;  Kuhn  et  al.,  2019;  Langat  et  al.,  2020) ,

algorithms for quantifying in-stream metrics such as grain size, water depth, or sub-meter

scale temperature topography (e.g. Black et al., 2014; Dietrich, 2016; Willis and Holmes,

2019) require the acquisition of very high resolution (usually <10 cm) RGB images which

are  not  available  from any  satellite  platform.  Carbonneau  and  Piégay  (2012a) define

‘hyperspatial’ resolution threshold as <10 cm and state that such images have increasing

value in the analysis of river systems.  Downing et al.  (2012)  also estimate that 97% of

the world’s rivers by length have a width below 30m.  Similarly,  Allen and Pavelsky (2018)

estimate that 369 000 km2 of the earth’s surface are occupied by rivers smaller than 90m.

The prevalence of small streams therefore creates a niche for hyperspatial data capable of

resolving even narrow channels with hundreds to thousands of pixels per average river

width.  Indeed, supported by the explosion of drone-based remote sensing techniques

over the last  10 years  (e.g.  Woodget et  al.,  2017; Woodget and Austrums, 2017),  the

extraction of river habitat data from hyperspatial RGB imagery is fast becoming a mature
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and accepted technique in the river sciences  (Bagheri  et al.,  2015; Black et al.,  2014;

Carbonneau et al., 2012; Carbonneau and Piégay, 2012; Dugdale et al., 2019; Hamshaw

et al., 2017; Kalacska et al., 2019; Michez et al., 2016; Tamminga et al., 2015; Woodget et

al., 2016, 2015). A similar body of work also describes the use of RGB images acquired

from terrestrial platforms for extracting a range of fluvial characteristics 

(e.g. Ashmore and Sauks, 2006; Butler et al., 2001; Chandler et al., 2002; Ghaffarian et

al., 2020; B. MacVicar and Piégay, 2012; MacVicar et al., 2012; B. J. MacVicar and Piégay,

2012;  Purinton  and Bookhagen,  2019).  Additionally,  the  increasingly  ubiquitous use of

structure from motion (SfM) photogrammetry in river remote sensing  (e.g. Carrivick and

Smith, 2019; Hemmelder et al.,  2018; Seitz et al.,  2018) - a technique reliant on sub-

decimeter (RGB) imagery – means that hyperspatial RGB imagery acquired from airborne

platforms is a widely exploited river remote sensing data type and allows for small scale

investigations that are not possible with orbital sensors.

In  studies  involving  the  quantification  of  river  habitat  from remote  sensing,  it  is  often

necessary to first distinguish the wetted channel from other land cover types prior to the

application of algorithms to extract hydromorphic metrics (e.g. Carbonneau et al., 2012,

2006).  However,  this  basic  task  of  image  classification  remains  challenging  for  RGB

hyperspatial imagery where the extremely fine spatial detail and relatively low number of

spectral  bands  means  that  traditional  statistical  learning  classification  algorithms  (e.g.

maximum likelihood or k-means clustering) that are still widely-used among river remote

sensing practitioners  (Brigante et al., 2017; Spada et al., 2018; Wang et al., 2016) have

difficulty  correctly  allocating  image  pixels  to  semantic  classes  that  are  radiometrically

similar to one another.  For example, riparian vegetation and river water often share dark

green colours that make them very difficult to distinguish on a purely spectral basis in the
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visible RGB range of the spectrum. Shadows, both in amongst the vegetation and cast by

vegetation, compound the problem and make classification even more difficult. In certain

cases, deeply shaded sediment can even be spectrally similar to shallow water.  The end

result is that classification of river imagery is a very challenging problem and progress in

the  field  has  been  somewhat  limited.   Indeed,  despite  rapid  advances  in  image

classification within other fields (e.g. computer vision), river remote sensing studies do not

achieve classification accuracies above 90%,  (e.g.  Boruah et al.,  2008; Casado et al.,

2015; Demarchi et al., 2020; Gilvear et al., 2008; Legleiter and Goodchild, 2005; Marcus et

al., 2012; Rusnák et al., 2018; Smikrud et al., 2008; Wang et al., 2016). This is largely

because at  meter-scale and centimeter-scale resolution, the assumption that a semantic

class  can be described by  a  set  of  unimodal  distributions  of  brightness values is  not

necessarily  valid.   Furthermore,  the  incredible  global  variety  of  rivers  means  that

classification  techniques  solely  based  on  radiometric properties  are  unlikely  to  be

successful  when  applied  to  other,  less  radiometrically  variable  land-use  types.  This

reliance on the use of outdated algorithms and the resulting difficulty in classifying riverine

imagery is a pressing problem in the  airborne FRS community.  A prime example is the

lack of an automated workflow that can approach human performance when identifying the

wetted perimeter.  Indeed, not only does this classification difficulty currently prohibit the

easy application of advanced image processing algorithms for the extraction of physical

habitat  data  (Carbonneau  et  al.,  2012),  but  also  severely  limits  our  ability  to  explore

patterns and processes in channel morphology at riverscape scales.

In  the  area  of  airborne  FRS,  previous  efforts  to  solve  the  challenges  of  sub-meter

resolution image classification have been dominated by hardware approaches involving

the use of multi- or hyperspectral sensors  (Demarchi et al., 2017, 2016; Laliberte et al.,
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2011; Legleiter et al., 2004, 2002; Marcus et al., 2003; Olmanson et al., 2013; Tian et al.,

2010;  Zhong and Zhang,  2012).  The main finding of  this body of literature is that  the

addition of  spectral  detail,  including information from non-visible,  infrared wavelengths,

greatly  enhances  classification  performance.  This  improvement  occurs because  the

inability of near-infrared wavelengths to penetrate water render the wetted channel easy to

segment  from  terrestrial  features  which  otherwise  have  similar  spectral  signatures  in

visible wavelengths. Indeed, using such multispectral data,  Marcus et al.  (2003)  report

accuracies as high as 86% for the classification of a fluvial landscape.  Demarchi et al.

(2020) use the infrared band and a DEM layer in an object-based approach to reach an

overall performance of 89%. However, validation of these studies is typically carried out by

visual labelling, often using RGB images.  Given that a trained human observer is readily

capable of delimiting land-cover classes in RGB imagery,  so-called ‘Artificial Intelligence’

methods  potentially  could  solve  this  classification  problem without  the  need  for  costly

multi-  and  hyperspectral  sensors.  Such  methods  hold  great  promise  for  raising  the

classification  accuracy  of  river  remote  sensing  data  to  the >90%  levels  currently

considered the state-of-the-art in computer vision and related fields (e.g. Barré et al., 2017;

Debats et al., 2016; Hernández-Serna and Jiménez-Segura, 2014) 

Chollet (2017) defines artificial intelligence (AI) as ‘the effort to automate intellectual tasks

normally performed by humans’. The author then introduces the terms: Machine Learning

(ML) and Deep Learning (DL) with mutually inclusive sets:

(1)

Machine  learning  is  therefore  a  subset  of  artificial  intelligence  methods  where  any

algorithm is capable of learning and encoding prediction rules from data (Chollet, 2017;
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Goodfellow et al., 2016).  Deep learning methods, a subset of machine learning methods,

distinguish themselves by their ability to encode multiple layers of features learned from

large datasets  (LeCun et al.,  2015).   In practice, deep learning relies on convolutional

neural network (CNN) (Goodfellow et al., 2016; Lecun et al., 1998) architectures, whereby

a locally-weighted operator performs a variety of de-noising, feature extraction, and data

reduction  operations  by  varying  only  the  weights  of  the  convolution  operator  itself

(Solomon and Breckon, 2011). Such deep learning architectures essentially offer a huge

parametrisation  space  which  is  then  tuned  to  recover  an  optimal  set  of  feature

extraction/classification parameters as a set of neural network operations (i.e. image in;

classification out). 

Advances in deep learning (e.g. Zhang et al., 2016) have started to show great potential

for the classification and segmentation of diverse landscape features from remote sensing

data. Convolutional neural networks are being used increasingly for large-scale satellite

image classification  (e.g.  Chen et al.,  2019;  Kussul  et  al.,  2017;  Romero et  al.,  2016;

Zhong et al., 2017), enabling the segmentation of imagery into broad classes (e.g. trees,

grassland,  soil,  roads,  water)  with  accuracy  substantially  greater  than  conventional

classification techniques. . However, in the specific context of rivers, applications of deep

learning are sparse. Casado et al. (2015) used a non-convolutional artificial neural network

(often called a multilayer perceptron) to identify hydromorphic units in a river reach. Daigle

et al.  (2013) demonstrated a similar perceptron-based approach to detect river ice from

fixed RGB imagery. More recently, Isikdogan et al (2018) and Ling et al. (2019) highlighted

the utility of deep learning for extracting channel characteristics from satellite imagery, and

Buscombe and Ritchie (2018) have applied DEEPLAB (Chen et al., 2018) to landscapes

(including rivers), demonstrating that river corridor classification in high resolution imagery
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with deep learning is possible. However, while successful in isolation, the uptake of these

methods has been slow, and the lack of a deployable, repeatable and accurate classifier

for river corridors remains a crucial issue in river remote sensing.

The complexity of implementing deep learning approaches partially accounts for the lack

of uptake among river scientists and managers who are not trained in computer vision.

However,  the specificity  of  deep learning methods has potentially  also prohibited their

wider application in the  airborne FRS domain. While previous research using CNNs has

demonstrated an ability to achieve extremely high classification accuracy when deployed

in a target recognition sense (e.g. Foody et al., 2019; Guo et al., 2018; Li et al., 2017), the

transferability of these approaches across diverse riverine landscapes and remote sensing

systems/platforms remains untested. Unlike relatively homogeneous landscape types (e.g.

urban environments or forest canopies; Khan et al., 2017; Mahdianpari et al., 2018; Pouliot

et  al.,  2019) where  deep  learning  has  previously  seen  success,  rivers  are  extremely

heterogeneous. This diversity implies that the development of a fully transferable classifier

for river corridors from environments as disparate as the tropics or alpine regions is an

extremely  complex  problem.  Furthermore,  despite  the  number  of  CNN-based

landscape/land-use  classification  approaches  documented  in  the  literature,  there  is  a

relative  absence  of  examples  that  are  ready  for  deployment  in  an  environmental

management context. Given that one of the key factors precluding the use of advanced

image processing techniques in the applied river sciences is the lack of coding or scientific

computing expertise among environmental management communities, these issues create

a compelling need for the development of a high quality, transferable and easy to use

image classifier for use in the river sciences. 
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Current options for deep leaning approaches in commercial and/or open-source remote

sensing packages are limited (Table 1).  Indeed,  with  the exception of  the  Orfeo  open

source toolbox,   only  high-end,  high-cost,  commercial  products currently   have  built-in

implementations of deep learning. Not only are these packages rarely available to river

management organisations, they also offer very limited flexibility to adapt algorithms to

specific  cases such as  hyperspatial  imagery.  Another  common issue  with  all  machine

learning algorithms deployed in software is that the requirement for training and validation.

In the case of deep learning, the  need for large labelled sets of data makes software

implementation even more problematic. Indeed, the dominant paradigm in classification of

Earth Observation (EO) data is that the user manually draws polygons on-screen in order

to form labelled pixels for supervised classification training.  In the case of deep learning

this is very problematic since the human effort required to generate a sufficient sample

size is very considerable. We argue that implementation of deep learning in research fields

with lower levels of computer vision expertise would be greatly facilitated if pre-trained,

freely available, deep convolutional networks could be called upon to classify new image

data without  the need for  the labour  intensive and time-consuming generation of  new

training labels.  Such a facility would not only be a substantial boon for the classification

and interpretation of new airborne FRS data, but would also greatly enhance the extraction

of river habitat  data from archival  aerial  photography acquired over the past  20 years

during  the  emergence  of  the  airborne  FRS sub-discipline.  This  would  aid  the  rapid

detection  and analysis  of  river  habitat  change  in  the  context  of  land-use  and  climate

modification, and allow for improved testing of prevailing theories regarding hydromorphic

processes and the linkages between river habitats and ecosystems.
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Table  1.  Supervised  classification  workflows  currently  available  within  remote

sensing software packages. 

Software 
Package

Machine Learning Deep Learning
Access 
Type

eCognition  Yes
(e.g. decision trees, 

random forests, 
support vector 
machines)

 Yes
(uses Google TensorFlow 

library, including trainable 
convolutional neural 
network models)

Commercial

ERDAS 
Imagine 
Professional

 Yes 
(e.g. random forests, 

support vector 
machines, CART)

 Yes
(e.g. Faster regional-based 

convolutional neural 
networks)

Commercial

ENVI  Yes 
(Interactive data 

language framework: 
e.g. support vector 
machines, SoftMax, 
Feed Forward Neural 
Network-based 
classifications)

 Yes 
(Deep learning module built 

on Google TensorFlow)

Commercial

ESRI ArcPro  Yes
(e.g. Random trees, 

support vector 
machines)

Support for export to third 
party deep learning tools

Commercial

QGIS + 
GRASS

 Yes
(e.g. Gaussian mixture 

models, random 
forests, support vector 
machines)

 No Open 
Source

SAGA  Yes
(e.g. support vector 

machines)

 No Open 
Source

Orfeo Toolbox  Yes
(e.g. Support vector 

machines, Bayes, 
Random forests)

 Yes
(e.g. otbtf module built on 

Google’s TensorFlow)

Open 
Source
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The overarching aim of this work is therefore to examine the potential of machine learning

and deep learning in the specific context of hyperspatial airborne FRS. We do not claim to

advance the field of deep learning, and we recognize that  ‘cutting edge’ computer vision

approaches involve  even more  advanced algorithms than those  considered here  (e.g.

Long et al., 2015). Rather, our intention is to advance the state-of-the-art in fluvial scene

classification  by  quantifying  accuracy  improvements  possible  with  deep  learning

approaches that are sufficiently mature and established to be accessed and manipulated

by non-specialists and, ultimately, integrated into a GIS workflow. Furthermore, we wish to

understand if deep learning classifiers can mimic a human expert and consistently classify

riverine land-cover types in hyperspatial (<10cm) resolution colour imagery to higher levels

of accuracy (>90% F1 and above) than those common to past and present river remote

sensing  studies  typically  performing  in  the  70%-90% range  (e.g.  Boruah et  al.,  2008;

Casado et al., 2015; Feng et al., 2018; Gilvear et al., 2008; Legleiter and Goodchild, 2005;

Marcus et al., 2012; Rusnák et al., 2018; Smikrud et al., 2008; Wang et al., 2016) .  Indeed,

given that river habitats are highly complex environments characterised by gradients and

discontinuities (Fausch et al., 2002), the ability to improve classification accuracy above

current norms is crucial for accurately identifying small discontinuous habitat features that

may  have  a  disproportionate  role  in  key  ecosystem processes.  In  this  manner,  even

relatively incremental increases in classification accuracy (e.g. from ~80% to >90%) have

the potential to yield major advances in our understanding of fluvial forms and dynamics by

yielding a fuller picture of spatial patterns in key habitat features that might have been

misclassified  by less  advanced  techniques.  Our  study  therefore  has  three  specific

objectives:   First,  we  compare  the  performance  of  a  range  of  land-cover  classifier

algorithms (maximum likelihood,  Random Forests,  depth-limited  Neural  Networks,  and

Convolutional  Neural  Networks)  in  order to  demonstrate the potential  of  deep learning
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methods to fluvial scientists and river managers.  Second, we evaluate the potential of a

deep learning workflow called CNN-Supervised Classification to transform current practice

in  river  land-cover  classification  where  classifiers  are  trained  to  predict  land-cover  for

single  rivers,  one  at  a  time.   Third,  we  critically  assess  the  future  potential  of  CNN-

Supervised Classification as a transferable classifier eventually capable of river corridor

segmentation without the need for further model training.  Finally, we demonstrate GIS

integration and direct readers to an open-source code repository ready for deployment.

Methods

Hardware and software

We  use  capable  but  modest  resources  accessible  to  most researchers.   The  data

presented here were processed with two laptops.  The main unit had a 4-core Intel i7-6820

CPU clocked at 3.4 Ghz with 32 Gb RAM and an NVIDIA GTX 1070 GPU with 8Gb of

memory and 1920 CUDA cores available for parallel processing.  The secondary unit had

a 4-core Intel i7-4700MQ CPU clocked at 3.4 Ghz but with 24 Gb RAM and an NVIDIA

Quadro K1100M GPU with 2 Gb of memory and 384 CUDA cores.  With these laptops and

using the data volumes descried below, training times for the deep networks ranged from 1

to  5  hours.   Classification  of  a  single  image  required  2-5  minutes.   Whilst  these  are

moderately high specifications for laptops, equivalent desktops are readily available.  

All software used in this work is open-source.   Core deep learning work was undertaken in

Python  3.6  using  the  Anaconda  distribution.   We  use  the  scikit-learn library  for

classification metrics and for the random forest machine learning algorithm (Pedregosa et

al.,  2011).   We  use  scikit-image for  basic  image  import/export  and  more  advanced

processing and filtering (Walt et al., 2014).    For dense and convolutional neural networks,

we use the  Keras API (Chollet,  2017) running the GPU-enabled version of TensorFlow
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v1.14  (Abadi et al.,  2016). The  Pandas library is used for basic tabular data storage,

manipulation  and  management  (McKinney,  2010).  Visualisation  is  delivered  with  the

Seaborn library.  Spyder (Scientific PYthon Development EnviRonment) was used as the

main  integrated  development  environment  (IDE)  for  coding  and  debugging.  We

deliberately avoided CNN architectures that are closer to the research frontier and instead

sought a deep learning architecture that is established and ready for deployment.  Within

the Keras API, we selected the pre-existing NASNet Large CNN model (Zoph et al., 2017)

because it  has the highest prediction accuracy according to the  Keras documentation.

Furthermore, we also decided to test the NASNet Mobile architecture to explore whether a

smaller  version  of  the  NASNet  architecture  could  deliver  good  results  with  less

computational  overhead.  For  digitising  and  GIS  tasks,  we  use  QGIS  3.4  Long  Term

Release  distributed with an integrated version of GRASS GIS 7.6. GRASS GIS is used to

perform maximum likelihood classification.  GIS integration is achieved by installing all the

libraries listed above in the QGIS python environment.   PyQGIS can then be used to

geocode  the  classification  outputs  and  run  the  entire  process  from the  QGIS  Python

console.

Data preparation

We use existing data and have compiled a database of hyperspatial resolution imagery.

Our objective was to compile a database with several billion labelled pixels that included a

wide range of rivers from diverse morpho-sedimentary settings.  Another essential criteria

was that imagery be available under an open source license and made freely available as

part  of  this  paper.  We  found  that  availability  and  absence  of  intellectual  property  or

licensing restriction was the major limiting factor.   Ultimately, we assembled a database
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with imagery  from 11 rivers in Canada (Quebec and Alberta), Italy, Japan, the UK and

Costa Rica (Figure 1). 

Figure 1. Location map for the11 study rivers.

We  argue  that  this  is  a  state-of-the-art  dataset  which  is  more  varied  than  anything

previously presented in the high resolution airborne FRS literature.  Within this subset of

the remote sensing literature, we recognize that there are a small number of publications

with datasets that exceed our own in terms of sheer number of pixels  (e.g. Black et al.,

2014; Carbonneau et al., 2004). However, such studies are usually focussed on a single

river and we find no other report in the peer-reviewed literature with in excess of 5 billion

labelled pixels distributed among 11 rivers spanning the Americas, Europe, and Asia.   Our

images were acquired between 2002 and 2017 from both piloted aircraft and unpiloted
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aircraft systems (UAS).  The images are composed of what might be termed a standard

view  in  airborne  FRS,  with  the  channel  roughly  in  the  centre  of  the  scene  and  with

vegetated areas and frequent  occurrences of exposed sediment  on either side.   Most

images are dominated by green vegetation but some sets have a frequent occurrence of

different types of senescent vegetation that ranges from the  dry grasses of the Scottish

Highlands to bright autumn foliage  in eastern Canada. Water colour varies substantially

and also contains instances of sun glint, white water and shadows.  Man-made features

are rare but sometimes present, mostly in the form of (paved) roads.   Sediment type also

varies.  The Dartmouth, Ste-Marguerite, Kananaskis, Ouelle and Pacuare rivers are single

thread channels with sediment bars.   The reach of the Eamont used here is a typical

English lowlands river with dark peaty waters, pasture banks and relatively few sediment

bars.  The Kingie river is a Highland river with very dark peaty water, banks dominated by

senescent grasses but punctuated by fir trees and very coarse and angular sediment.  The

Dora di Veny river in our only Alpine river.  The Sesia river is an anastomosing channel

with a relatively high and coarse sediment load and, finally, the Kurobe and Kinu rivers are

braining  channels  in  a  densely  populated  area  with  significant  occurrences  of  roads.

Figures  2 and  3 give  names  and  thumbnail  examples  of  each  river  with  basic

characteristics  and  a  sample  of  final  classification  outputs  from the  results  discussed

below.  Most of the imagery was available as original single frames.  However, the Kurobe

and Kinu rivers were only available as large image mosaics.  These were separated into

tiles of 2250X2250 pixels in order to match the format of the other images and allow for a

common data management and processing scheme.  

Some of the imagery has an existing classification available for usage, from a variety of

sources such as manual classification and both semi- and fully-automated classification
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methods.   Specifically,  the  images  of  the  Dartmouth  river  in  Canada  had  an  existing

classification derived from eCognition software (then known as Definiens) in 2008.  Pre-

existing classifications of the Ste-Marguerite and Ouelle rivers were achieved using the

approach of Carbonneau et al.  (2004), whereby a semi-automated classification method

using a combination of thresholding and extensive manual editing was applied. We began

by a manual inspection of each of these pre-classified images in order to insure that the

labels were accurate.  For the other rivers, no existing classification data was available.

We therefore use QGIS 3.4 to  manually  label  portions of  each available  image.   The

objective of this classification was not to derive detailed classification labels for each pixel

in each image.  Rather, our objective was to rapidly develop an overall dataset with a large

number  of  labelled  pixels  suitable  for  training  and  validation  of  machine  learning

classifiers.  Prior  to  classification,  we  examined  the  imagery  to  derive  a  parsimonious

classification system that would encompass the main elements present in the dataset.  We

decided  to  establish  five  training  classes:  water  (class  1),  sediment  (class  2),  green

vegetation (class 3), senescent vegetation (class 4) and paved roads (class 5).  We also

observed that shadows appeared in many images but decided to classify shadow patches

as per the underlying land-cover type; i.e. shaded water was classified as water, shaded

sediment was classified as sediment, etc...The QGIS digitising tools were used to classify

portions  of  each  image  according  to  this  scheme,  and  the  resulting  vector  polygons

rasterised  to  derive  class  rasters  of  the  same  spatial  resolution  and  extent  as  the

associated  image.    The  QGIS  graphical  modeller  was  used  to  batch  process  this

rasterisation operation.  For the Ste-Marguerite, Dartmouth, and Ouelle rivers where class

label data already exists, we recoded the data to conform to our classification scheme. All

classification  was  conducted  in  such  a  way  that  classes  contained  a  representative

coverage  of  all  pixels  within  a  semantic  class;  for  example,  ‘water’  contained  pixels
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including shadows, sun glint and white water, so as not to present a biased ’best case’

classification scenario.

As stated above, this work aims to build on the resources developed in computer vision in

order to develop a state-of-the-art method for fluvial scene classification.  One of the key

datasets that has driven progress in image recognition tasks is the ImageNet database of

millions of images (Deng et al., 2009).   The images tend to be of common categories such

as ‘cat’ or ‘dog’. However, the database is also organised in a hierarchical manner with

each  class  having  subdivisions  such  as  ‘persian’  and  ‘maincoon’  as  cat  breeds  and

‘poodle’ and ‘labrador’ as dog breed. In total there are over 1000 classes in the ImageNet

databases.   We  have  therefore  constructed  a  classification  scheme  which  is  also

hierarchical and borrows ideas from the field of hierarchical segmentation  (e.g. Li et al.,

2011; Poggi et al.,  2005).  We do not assume that a given semantic class has similar

radiometric properties in different image sets.  For example, we do not assume that the

vegetation in the Ste-Marguerite river data generates pixels of similar radiometric response

to that of the Pacuare or Kurobe rivers, owing to both a) real differences in the vegetation’s

spectral signature and b) variations in recorded pixel values owing to the use of different

cameras  which are not radiometrically calibrated.  Furthermore, differences in vegetation

species and structure, in water colour due to local conditions and in sediment texture due

to local geology mean that the image properties of a given class can diverge significantly

for different study sites.  Therefore, in order to work with multiple classes across multiple

rivers,  we  developed  a  micro-class  labelling  procedure  for  training  machine  learning

algorithms.  In cases where we train a classifier with data from multiple rivers, semantically

identical classes from multiple rivers are transformed to unique micro-classes after manual

labelling.  For example, when working with a single river, we use 5 classes labelled 1 to 5
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as defined above.  If we work with 2 rivers, the classes of the second river are shifted to

values of 6 to 10, thus resulting in 5 semantic classes (or macro-classes) and 10 micro-

classes.  A classification key then records that classes 1 and 6 are water; 2 and 7 are

sediment; 3 and 8 are green vegetation, etc.  This process can be extended to as many

rivers / micro-classes as required.  At the end of the classification process, the information

in the classification key is used to collapse the classes back to the 5 unique semantic

classes.  

Following image labelling, we divided our data into training and validation data sets based

on the actual number of labelled pixels.  Result validation in deep machine learning follows

the principle of  reporting statistical  performance on a randomly selected subset  of  the

available  data  set  used for  the  study.  It  is  established practice,  to  randomly  split  the

dataset  into  either 70%/30% or 80%/20% subsets with the smaller set  being used for

testing  (evaluation)  and  hence  statistical  reporting  of  results  in  the  literature  (Bishop,

2006).  Normally, algorithm (DL CNN / deep net) training is performed using the larger of

the two subsets (70% or 80%).  This is established practice defined by the leaders of the

deep learning field (LeCun et al., 2015b). Given the size of our database, we decided to

use a  20%/80%  split  in  order  to  reserve more  pixels  for validation   and  reduce

computational loads to manageable levels during the training phase.   Smaller volumes of

data at the training stage also allows for simpler deep learning code that loads the training

data into available RAM memory.  

As a basic design criterion, we aim to classify image patches composed of mostly pure

classes. In order to classify patches, it then becomes necessary to tile the input image.

Preliminary-experiments indicated that a 50 x 50-pixel tile size in the NASNet convolutional

neural network architectures represented an optimal balance in terms of processing time
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and classification quality.  We only used image tiles that were 90% occupied by a pure

class.   We also decided to retain the same number of training tiles for each river rather

than having  a  variable  number  of  tiles/pixels  available  for  validation.   This  approach

resulted in approximately 38 000 training tiles for each river. Table 2 gives full details of the

volumes of available data. In total,  our training data is composed of 405 768 labelled,

single-class tiles of 50x50 pixels that could be used to train predictor models that could in

turn be validated with up to 861 images having 4.36 billion labelled pixels. Table 3 details

the population of classes in training and validation sets.
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Figure 2. Image and Classification samples for 5 of 11 rivers in the image dataset.

The classification sample is taken from results of the third experiment described in

this paper.  In the classification rasters, blue denotes water, green denotes fresh

vegetation,  yellow  denotes  senescent  vegetation,  orange  denotes  exposed

sediment and red denotes paved roads.
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Figure 3. Image and Classification samples for the remaining 6 rivers with the same

classification key as in figure 2.
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Table 2. Data Availability. Readers should note the loose correlation between the

number  of  images  and  training  tiles.   In  cases  where  the  image  scenes  were

composed of large uniform areas, it was easier to rapidly classify large areas.  In

such cases, like the Dora di Veny river, fewer images are required to assemble the

ca. 37K tiles.  Conversely, in complex landscapes such as the Kinu river, a larger

number of images was required to reach the required volume of training data.  We

also  include  two  large  orthomosaics  of  1  km reaches  of  the  St-Marguerite  and

Kurobe rivers with a spatial resolution of 7.5cm that will be used to demonstrate GIS

integration. * denotes rivers used in the training data for the second experiment.

Training Data Validation Data
River # of Images # labelled tiles # labelled pixels # of Images # labelled pixels
St-Marguerite, Canada* 44 38,041 109,993,375 224 955,482,438 
St-Marguerite, orthomos. 0 0 0 1 29,687,610 
Ouelle, Canada 29 37,396 94,797,100 117 424,805,106 
Dartmouth, Canada 17 36,443 100,823,415 243 1,671,866,288 
Kananaskis, Canada* 16 37,010 104,521,527 34 419,790,696 
Pacuare, Costa Rica 25 37,271 100,746,483 38 150,388,739 
Sesia, Italy* 26 37,337 101,222,965 21 80,943,299 
Dora di Veny, Italy 10 36,696 98,080,466 28 249,874,235 
Kingie, UK* 24 35,315 95,272,952 15 50,634,616 
Eamont, UK 23 36,991 100,538,759 9 42,543,651 
Kinu, Japan* 53 37,057 102,751,306 54 107,686,602 
Kurobe, Japan 38 36,211 98,641,597 78 206,807,563 

Kurobe, orthomos. 0 0 0 1 88,471,766 
TOTAL 305 405,768 1,107,389,945 863 4,390,510,843 

490

495

500

505



27

Table 3. Class representation across training and validation datasets.

Training Data Validation Data

Class # labelled pixels % Total # labelled pixels % Total

Water 419,580,438 38 2,007,533,862 39 

Sediment 269,759,643 24 575,600,093 11 

Green Vegetation 343,385,982 31 2,408,766,446 47 

Senescent Vegetation 72,698,683 7 96,807,737 2 

Paved Roads 8,173,202 1 11,237,600 0 

CNN-Supervised classification approach

CNN-Supervised classification (CSC) is a novel two-phase workflow that chains a deep

convolutional  neural  network with a multilayer perceptron in order to deliver pixel-level

classification in a deep learning workflow based on convolutional architectures. In phase 1,

the input image is tiled with multiple tiles stored as a single 4D tensor with dimensions of

(Tiles, X, Y, RGB Bands) and fed into a pre-trained CNN.  This is analogous to having a

single video file  which is a 4D temporal sequence of RGB images.  The use of a pre-

trained CNN as the first phase is crucial because it allows for a local association between

a class and predictive  features such as local  brightness,  local  texture and even local

geometric structures (eg branches, boulders).  In phase 2, the resulting CNN predictions in

the form of labelled tiles are rasterised and re-assembled into the shape of the original

image. For example, if the CNN has predicted the class of each tile of 50x50 pixels, then
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each class prediction is converted into a small raster of 50x50 pixels with a uniform value

corresponding to the class.   These small 50x50 rasters are reassembled into the shape of

the original image with zeros used to pad edges.  This CNN-derived class prediction raster

is  used as labelled pixels  and,  along with  RGB features,  is  then fed into  a multilayer

perceptron (MLP) in order to train a model specific to the input image. Finally, this MLP

(detailed in Table 4), is used to predict the class of each pixel in the original image. Our

intent is to mimic the traditional supervised land-cover classification workflow in which a

human operator  outlines  training  areas  of  desired  classes,  which  are  then  fed  into  a

machine learning algorithm.  In CSC, the CNN replaces the human operator, with a MLP

used as the specific machine learning algorithm. We demonstrate the benefit gained from

the MLP’s characteristic robustness to noise in the training data (in this case, the CNN

predictions).   

CSC requires a pre-trained CNN.  In the work presented here, the CNN is trained with our

own data, presented below. Goodfellow et al. (2016) suggest that ca. 10 million samples

are  required  to  train  a  deep  learning  algorithm  to  the  point  of  matching  human

performance.  Therefore, as in Buscombe and Ritchie (2018), we decided to use a transfer

learning procedure whereby initial model weights are imported from an existing dataset in

order to allow  the CNN to train with a smaller dataset.   We use the initial  weights as

derived from the ImageNet database.  This database is an archive composed of in excess

of 1 million tiles and serves as a benchmark for AI performance.  For the NASNet CNN

architectures, we freeze all  the weights except those of the top 4 convolutional layers.

This results in 11,515,046 trainable parameters out of a total of 89,079,512 parameters for

NASNet Large.  For NASNet Mobile, we have 1,484,986 trainable parameters out of a total
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of  3,902,580.   Figure  4 shows the  generic  workflow of  CNN-supervised  classification

inclusive of the pre-training of the CNN and the two-phase classification workflow.

In addition to the CNN base architecture, a CNN classifier requires a ‘top’ neural network

to convert the features detected by the CNN into classes represented as integer numbers.

In this case the densely connected top is composed of 3 additional layers: a dense layer of

256 nodes,  a drop out layer  (Szegedy et al., 2015),  a dense layer with 128 nodes, and,

finally, the usual softmax layer with the same number of nodes as classes.   This layer

functions by returning the final probability that an image tile is a member of each class.  By

convention, the final attributed class is the one with the highest probability of membership.

For both dense layers,  we use kernel L2 regularization in order to inhibit  over-training

(Goodfellow et al., 2016).   The overall CNN-supervised classification process can be seen

in  Figure  4.   Once CNN model  training  is  complete  (the  upper  part  of  Figure  4),  the

resulting CNN can be re-used for multiple images. In the experiments described below, we

examined  increasingly  ambitious  scenarios  up  to  the  point  where  the  process  was

expected to classify entirely new rivers never seen by the classifier.
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Figure 4.  Workflow chart for the generic process of CNN-Supervised Classification.
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CNN training is known to be sensitive to the number of training epochs (i.e. the number of

training iterations).  Here we tune our model training with a train-test-split procedure from

Chollet (2017).  The initial training data is split with 20% of the data set aside for internal

validation (note that this procedure does not use the data we have set aside for additional

validation as detailed in Table 2).  The model is then trained for a full 50 epochs.  At each

epoch, we save the training loss, the validation loss, the training accuracy (% correct tiles)

and the validation accuracy. These can then be plotted as a function of the training epochs

(Figure 5).  When the validation and the training results diverge, optimal training has been

reached.  This final  stage is key in avoiding network over-fitting which occurs when a

model learns the noise in the data and loses the ability to generalise to new out-of-sample

data (i.e. data not in the training set).  In Figure 5, for example, we can see that the trends

for training and validation diverge at 6 epochs, thus indicating the optimal training length

specific to this example.
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Figure  5.  Example  of  the  tuning  procedure  used  to  determine  the  appropriate

number of training epochs for CNN architectures from Chollet (2017).  Here we see

the divergence between training data (lines) and validation data (dashed) after 6

epochs as visible in both accuracy (right) and loss (right) data. 
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Table  4.  Multilayer  Perceptron  (MLP)  used  in  phase  2  of  CNN-supervised

classification and as a pixel-based classifier in experiment 1.

Layer Description

1 Dense layer, 256 nodes with L2 regularisation

2 Dropout layer, drop 50% of nodes

3 Dense layer, 128 nodes with L2 regularisation

4 Dense layer, same number of nodes as micro-classes, softmax activation to

get class.

Experimental Design.

We conducted  three experiments to address our research objectives.  We first compare

our  approach  to  accepted  statistical  and  machine  learning  classifiers:  the  maximum

likelihood algorithm, the random forest algorithm, and a pixel-based multilayer perceptron.

Second,  we  assess  if  a  CNN-based  approach  such  as  CSC  is  capable  of  1)

simultaneously learning features for several rivers and 2) if such learned   features  can

transfer to new rivers.  We proceed by training a single CNN with data from only 5 of our

11 rivers and  subsequently  testing its performance on all 11 rivers.  Third, we assess if

training a CNN on relatively few samples (<40,000) from a single river can classify the

remaining images for that same river.   After experimentation, we demonstrate the GIS

integration of the method by processing and displaying class maps for the orthomosaics of
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the Ste-Marguerite river (part of the CNN training) and the Kurobe river (not part of the

CNN training).

  

We  begin  the  first  experiment  by  creating  a  spatial  composite  image  from thumbnail

samples extracted from the Ste-Marguerite and Dartmouth data.  The general appearance

of these rivers is similar and thus allows us to assume that we do not need to use micro-

classes  and  we  therefore  consider,  for  this  experiment  only,  that  a  semantic  class  is

identical across the whole patchwork image composed of data from 2 rivers. This image is

6000 x 9000 pixels in the usual RGB bands.  The image is composed of 24 thumbnails of

1500 x 1500 pixels, 12 each from the St-Marguerite and Dartmouth arranged in a 4x6 grid.

The associated training data for each thumbnail was carried over in order to construct a

training raster, also of 6000 x 9000 pixels. In total,  this raster had 33,752,194 labelled

pixels and an associated 12,149 labelled tiles of 50x50 pixels. This data can now be used

as a testing ground for established statistical and machine learning algorithms.  Maximum

likelihood is arguably the most deployed classification algorithm,  has served the Earth

Observation community for decades (e.g. Erbek et al., 2004; Otukei and Blaschke, 2010;

Strahler, 1980) , and is the most commonly available technique in classification software.

Random Forest classification is a powerful ensemble method that uses random sampling

to produce a large number of classification trees (Belgiu and Drăguţ, 2016; Pal, 2005). It is

frequently deployed in remote sensing and GIS software (Table 1) and has been noted for

strong performance in the remote sensing literature  (e.g. Chen et al., 2017; Feng et al.,

2015; Stumpf and Kerle, 2011). A multilayer perceptron (MLP), alternatively referred to as

a Densely Connected Neural Network or an Artificial Neural Network, is a classic network

of  weighted  and  connected  nodes  that  can  be  used  for  regression  and  classification

problems (Foody, 1995; Jain et al., 1996). These three established methods will therefore
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be  compared  to  our  proposed deep-learning  methods  based  on  convolutional  neural

networks.  For maximum likelihood, we used the GRASS r.maxlik routine as implemented

in QGIS 3.4.  Other algorithms were coded in Python with the libraries described above.

After training the algorithms, we use two validation cases.  First, we validate the results by

using the full validation datasets for the Ste-Marguerite and Dartmouth rivers as described

in  Table  2.  Second,  we  apply  the  trained  models  to  all  the  validation  images  of  the

remaining nine rivers: Kurobe, Kinu, Sesia, Dora di Veny, Eamont, Kingie, Pacuare, Ouelle

and Kananaskis.  Given that many of these rivers have patches of senescent vegetation

which are not present in the Ste-Marguerite and Dartmouth rivers, we have excluded the

senescent vegetation class from this experiment. 

In our second experiment, we aim to produce a single classifier that can transfer to all of

our rivers.  We therefore train the NASNet CNNs with the 184 760 labelled tiles from the

Ste-Marguerite, Kananaskis, Kingie, Sesia and Kinu rivers (Figure  2). After training, we

conduct  two separate validation tests.   First,  we validate  the CSC outcomes with  the

validation images from rivers shown in Figure  2 (i.e.  rivers used in training but where

specific training images are not used in validation). Second, we validate the outcomes with

the images from rivers shown in Figure  3 (i.e. rivers not used in training).  For NASNet

Large, there is a clear divergence after 7 epochs of training.  The case of NASNet Mobile

was  more  ambiguous  and  it  was  determined  to  train  up  to  25  epochs  where  the

performance seems to stop improving.  

In our third experiment, we aim to test our new CSC approach in the context of current

practice where data is most  often acquired for  a  single (or  few) rivers or catchments.

Within  this  workflow,  data  acquisition  will  typically  result  in  hundreds  of  thousands  of

images.  Normally, the task of classifying this data to within a reasonable accuracy can
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takes months  and our  collective experience shows that  more time is  spent  in  manual

editing of errors after a first-pass classifications are produced.  For example, in Carboneau

et al (2004) the first author used a set of ~2500 hyperspatial images of the Ste-Marguerite

river, some of which are used here.  After a first classification based on basic thresholding

with  Otsu’s  method,  a  month’s  full-time  work  was  required  to  manually  edit  the

classification mistakes and get a high quality dataset.  This experiment therefore aims to

assess  if  a  deep  learning  approach  could  deliver  a  classification  that is  immediately

useable and obviates the need for manual editing of classification errors.  We focus on the

NASNet large architecture and we will use the data for each single river to train a bespoke

model specific to this river, we then validate this model against the validation images for

the specific river.  We repeat this for all 11 rivers.

Validation

 We  primarily  use the F1 score as a validation metric  (Burkov,  2019;  Chinchor,  1992;

Goodfellow et al., 2016).    The F1 score, sometimes called the F-measure (Hripcsak and

Rothschild, 2005), is defined as the harmonic mean of precision (P) and recall (R):

 F 1= 2 x PR
(P+R)

(1)

where:

(2)

(3)

In (1), (2) and (3), P and R, the precision and recall, respectively, are defined with the

concepts of true positives (Tp), false positives (Fp) and false negatives (Colquhoun, 2017).

True positives are correct observations, in this case a correctly classified pixel.   False

P= Tp
Tp+Fp

R= Tp
Tp+Fn
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positives  are  observations  of  a  factor  which  are  incorrect,  in  this  case  a  mistakenly

classified  pixel.    Conversely,  false  negatives  are  incorrect  failures  to  detect an

observation.   For  example,  all  actual  water  pixels  classified  as  vegetation  are  false

negatives.  With these quantities, precision is defined as the ratio of true positives to the

sum of true positives and false positives as in equation (2).  Recall is the ratio of true

positives to the sum of false negatives and true positives as in euqation (3) (Buckland and

Gey, 1994; Burkov, 2019). The precision metric is internal to each class, it only considers

correct (true positives) and incorrect (false positives) for each class.  However, recall gives

a measure of  class confusion.   The inclusion of  recall  therefore makes the F1 metric

sensitive to  class imbalance and therefore a better  metric  in  our  case than traditional

accuracy  (Labatut  and Cherifi,  2012).   In the case of very high classification qualities,

accuracy and F1 are nearly identical.  A perfect classification will have a F1 and accuracy

scores of 100%.  However for lower quality classifications, the recall parameter in the F1

score will mitigate the importance of class imbalance and values of F1 can be either higher

or lower than corresponding accuracy.   We strongly encourage readers to adopt this new

quality metric which is in fact standard in the wider field of machine learning.  In order to

facilitate this transition, we provide additional information in the supporting information data

where readers will find a scatter plot of F1 vs the traditional accuracy metric as well as

some key results expressed as accuracy instead of F1.  Additionally,  we use Cohen’s

Kappa statistic to account for random true positives in the results (Cohen, 1960; Smeeton,

1985).   The  Kappa  statistic  ranges  from -1  to  1  and  should  not  be  interpreted  as  a

percentage of ‘correct’ outcomes or as a correlation.  Rather, it compares the agreement

between two operators, in this case the human-based validation and the machine learning

classifier.   The  resulting  measurement  of  agreement  needs  to  be  interpreted  within

established boundaries.  Landis and Koch (1977) propose that Kappa values < 0 indicate
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no agreement; Kappa values from 0 to 0.2 indicate slight agreement; values from 0.2 to

0.4 indicate fair agreement; values from 0.4 to 0.6 indicate moderate agreement; values

from 0.6  to  0.8  indicate  substantial  agreement  and  values  above  0.8  indicate  almost

perfect agreement.  Similarly, Fleiss et al  (2013) suggest that a kappa value below 0.4

indicate a poor agreement, from 0.4 to 0.75 a good agreement and above 0.75 indicate

excellent agreement.

For each experiment, we calculate F1 and Kappa for each resulting classification and we

compile  the  results  to  create  distributions.  The  individual  observations  in  these

distributions are the classification metric (F1 or Kappa) for single images.  In the case of

the F1 score evaluation for the second experiment, we disaggregate the score for each

class and can therefore produce additional distributions of F1 for each class where each

observation is the classification metric for a single class in a single image.  We present the

results by using violin plots (Hintze and Nelson, 1998) to visualise the distributions and use

the median and mean values of the distributions as summary statistics. Additionally, the

supporting information document presents a large-scale validation where single values of

F1  and  kappa  are  calculated  based  on  the  aggregation  of  the  entire  set  of  relevant

validation pixels in each experiment.  

We make a careful distinction when categorising the data as in-sample or out-of-sample.

Strictly speaking, machine learning practitioners define in-sample data as data that was

used in  training  and out-of-sample  data  as  not  used in  training  (Chollet,  2017).   It  is

therefore expected that in-sample data always gives strong results at the validation stage

since the classifier has been trained specifically to this data.  Conversely, out-of-sample

data is expected to have a lower quality in validation because it has never been seen by
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the classifier.  We argue that this distinction is not as clear-cut in the case of our data. For

the type of airborne data used here where all images from any given river were collected

on  the  same  day  and  with  the  same  sensor,  the  resulting  imagery  has  very  similar

properties across the entire image set.  We therefore expect that a classifier trained on a

portion of this data will perform well on the rest of the data even if it has never seen this

data in training.  We therefore adopt a slightly more stringent definition of in-sample and

out-of-sample data.  In this work, we never validate a classifier with the same data that has

been used for training. Rather, we define in-sample data as image data from a river that

the classifier has seen in training, but where the specific validation images have not been

used in training.  Out-of-sample data is therefore defined simply as data from a river never

seen by the classifier in the training stage.  This notion of in- and out-of-sample is crucial

because the most important goal of this study is to explore the transferability potential of

deep learning classifiers across multiple rivers.  
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Results

First Experiment: Classifier comparison

Figure 6 shows the outcome of the first experiment.  Overall, we see that the pixel-based

approaches,  i.e.  those  that  predict  classification  of  a  given  pixel  solely  based  on  the

radiance values of that single pixel (Maximum Likelihood, Random Forests, MLP), reach

similar performances on the order of ~70%-80% F1. We also show the outcomes of both

phases  of  the  CSC  process  (CNN  and  CNN+MLP).   In  Figure  6,  the  CNN  results

correspond to the tiled predictions of the pre-trained CNN when re-formed as an image

and  validated  against  labelled  pixels.  The  CNN+MLP  results  are  therefore  the  final

outcome of the CSC workflow where the CNN predictions become the training labels for

the MLP phase.  Figure  6a shows that CNN and final CNN+MLP (the final CSC result)

results  are  markedly  better  than  the  Maximum  Likelyhood,  Random Forest  and  MLP

classifiers, with the CNN and CNN+MLP approaches yielding F1 scores of 92% and 95%,

respectively.  Overall, maximum likelihood exhibits a stronger difference in performance

between the Dartmouth vs the Ste-Marguerite datasets than do the other methods. The

violin plot distributions also show that the maximum likelihood classifier is generally much

less reliable than other approaches, with many occurrences of classifications below 60%

and some even as low as 40%.  MLP and Random Forest algorithms have a low incidence

of classifications below 60% and almost no instances of results below 40%.  However, we

note that for the Ste-Marguerite River, maximum likelihood actually outperformed the MLP

and the random forest.  However, the key result is the good performance of the CNN-

based CSC method, with a particularly encouraging  F1 score of 95%.  

In figure  6b, we see the outcomes of the application of the trained classifiers obtained

above  to  the  remaining  nine  rivers  (i.e.  those  not  used  in  training).   Outcomes have
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degraded markedly.   Maximum likelihood is  strongly bimodal   indicating that  for  some

rivers, performance was good but for others, poor.  Median F1 score is 52%. The pixel-

based MLP and random forest algorithms had extremely variable performances with many

instances of very poor performance with median F1 scores of 62% and 55%, respectively.

The CNN performs somewhat better than the pixel-based approaches, but not markedly so

with  a  median  F1  score  of  72%.   This  indicates  that  even  the  CNN tiled  predictions

suffered from significant error.  Contrary to these results, the outcome of our novel CSC

workflow  (CNN+MLP)  is  generally  encouraging;  despite  none  of  these  rivers  being

included in the training data, the median F1 score was 89%. The senescent vegetation

class was removed from this analysis because no senescent vegetation was present in the

training data.  We also note that the lower quartile was only 54% F1 which indicates a

marked tail of poor results within this distribution.  
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Figure  6. Results of the first experiment displayed as violin plots.  Each plot is a

distribution of weighted F1 scores for individual images, smoothed with a kernel

density  estimate.  A)  Results  for  the  2  in-sample  rivers  (Ste-Marguerite  and

Dartmouth) with vertical partition in each violin distinguishing data from each river

used in the experiment.  The CNN result corresponds to the first phase of the CSS

process.  For each violin, the number of images/samples (n) is 467.  B) Results for

the remaining nine out-of-sample rivers (Kurobe, Kinu, Sesia, Dore di Veny, Kingie,

Eamont, Pacuare, Ouelle and Kananaskis).  For each violin in B), n=394. In both A)

and B), dotted lines give the upper and lower quartiles and the dashed line gives the

median.  Note  that  the  horizontal  width  of  these  plots  is  scaled  for  maximum

visibility and is not proportional to the number of samples in the data.
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Second Experiment: CSC Model Transferability

The second experimented used a pre-trained CNN based on the 184,760 labelled tiles

extracted from the five rivers shown in Figure  2. Table 5 and Figures  7 and  8 show the

results of the second experiment.  In the case of in-sample data (five rivers used in CNN

training; Figure  2) and for NASNet Large (both CNN and CNN+MLP phases), we obtain

extremely high median (pixel weighted mean) classification accuracies of 98% (96%) and

99% (97%).  In  the  case of  NASNet  Mobile  (CNN and CNN+MLP phases),  we obtain

slightly lower but nonetheless impressive median (pixel weighted mean) values of 97%

(96%)  and  98%  (95%)  respectively.  When  compared  to  Figure  6,  the  larger  training

dataset (12K vs 184K tiles) used in the second experiment has reduced error at the CNN

phase thus allowing the second MLP phase to attain exceptional performance levels.  The

per-class  disaggregation  (Figures  7b  and  8b)  shows  a  similar  pattern  with  green

vegetation and water performing well  but with the other classes having lower quartiles

below  80% F1  (Table  5).  We  note  that  classes  with  poor  performance  are  less  well

represented in the validation data (e.g. sediment/senescent veg/paved roads: Table 3) and

that this is accompanied by a degradation in performance as we move from phase 1 to

phase 2 of the CSC process.  However, overall, we note that once again the second phase

MLP delivers an improvement on the first stage CNN (Figure 7a).

825

830

835

840

845



44

Table  5. Disaggregated results for the second experiment and for both in-sample

and  out-of-sample  validation  data.   Values  correspond  to  Median  (Mean)  %  F1

scores. The median and mean are calculated based on each instance of a class in

each image. 

In-Sample Data
NASNet Large NASNet Mobile

Class CNN CNN+MLP CNN CNN+MLP
Water 97 (93) 98 (93) 96 (93) 98 (94)
Sediment 79 (69) 83 (67) 77 (68) 84 (66)
Green Vegetation 99 (98) 99 (96) 99 (96) 99 (96)
Senescent Vegetation 96 (84) 96 (79) 92 (82) 97 (80)
Paved Roads 94 (80) 93 (66) 92 (75) 93 (64)
ALL F1 98 (96) 99 (97) 97 (96) 99 (96) 
ALL Kappa 0.94(0.90) 0.96(0.92) 0.93(0.89) 0.96(0.92)

Out-of-Sample Data
Water 79 (72) 89 (76) 74 (68) 86 (72)
Sediment 68 (62) 85 (73) 67 (62) 81 (67)
Green Vegetation 84 (78) 90 (83) 83 (76) 89 (82)
Senescent Vegetation 75 (68) 80 (70) 57 (52) 77 (66)
Paved Roads 75 (64) 73 (62) 67 (63) 64 (56)
ALL F1 82 (79) 90 (83) 80 (76) 88 (80)
ALL Kappa 0.57(0.54) 0.74(0.66) 0.49(0.49) 0.71(0.62)
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Figure 7. CSC performance for the second experiment validated with in-sample data

only. A) Overall performance for each CNN model.  The violins are split according to

phase 1 (CNN) and phase 2 (MLP) of the CSC process. B) Final CSC performance

(MLP phase 2) for the second experiment disaggregated over individual classes.

For both A) and B), n=348. Violin plots are split according to the CNN model used. .

Note that the x-axis in both plots is non-linear.   The width of each violin plot is

scaled for  maximum visibility  with each violin  having the same width.   Relative

number of samples in each violin cannot be inferred from this figure.
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In  the  case  of  the  out-of-sample  rivers  in  Figures 3  8,  we  see  a  degradation  of

performance at the initial CNN stage followed by a marked improvement at the CNN+MLP

stage with respect to the in-sample data in Figure 7.  In the case of NASNet Large and for

the CNN and CNN+MLP phases, we obtain median (pixel weighted mean) values of 82%

(79%) and 90% (83%), respectively (Figure 8A). In the case of NASNet Mobile and for the

CNN and CNN+MLP phases,  we obtain median (pixel  weighted mean) values of 80%

(76%) and 88% (80%), respectively.  In Table 5, we see that all  classes except Paved

Road have significantly improved after running an MLP on CNN outputs.  Figure 8b shows

an improvement in the classification of several classes with green vegetation, water and

sediment achieving F1 scores above 80% in the CNN+MLP column.  Furthermore, we

note that the lower quartile for the final MLP classification using the NASNet Large model

is  81% showing that  the expanded training of the CNN model  has stabilised the final

outcome when compared to Figure 6b where the lower quartile F1 score was 54%. 
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Figure 8. CSC performance for the second experiment validated with out-of-sample

data  only.  A)  Overall  performance  for  each  CNN  model.   The  violins  are  split

according to phase 1 (CNN) and phase 2 (MLP) of the CSC process.. B) Final CSC

performance (MLP phase 2) for the third experiment disaggregated over individual

classes.  For both A) and B) n=513.  Violin plots are split  according to the CNN

model used. Dotted lines give the quartiles.  Note that the x-axis in both plots is

non-linear.  The width of each violin plot is scaled for maximum visibility with each

violin having the same width.  Relative number of samples in each violin cannot be

inferred from this plot
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Third Experiment: Multiriver deployment

In the third experiment we examine the results when CSC is deployed to multiple rivers in

a conventional workflow with training data provided for each river. Note that we do not

consider the large orthomosaics used to demonstrate GIS integration.  Table 6 and figure 9

show the outcomes.  Since not all classes are present in all rivers, some rivers, (eg the

Eamont) have 3 classes.  Given that it is easier to classify an image with fewer classes, we

report Cohen’s kappa statistic for each river which is given as the mean kappa obtained

from  the  kappa score  for  each  image  of  every  given  river.   Confusion  matrices  are

available in the supporting information document (figures S2 to S21). In table 6 we see

very strong performance with the weakest performance being a median classification F1

score of 95% and  93% for the rivers Dartmouth and Kananaskis, respectively.  Kappa

scores are generally above 0.8 with the exception of the Kanaskis river results with 0.75

for the phase 1 CNN and 0.72 phase 2 CNN+MLP.  These results would only be qualified

as ‘good’ in the interpretation of the Kappa score (Cohen, 1960; Smeeton, 1985).   Across

all the images, the median F1 score was 98% with a mean of 95%.   In figure 9, the

poorest performance for lower quartiles is 90%.   When we examine specific error sources,

they can be traced to specific problems.  First, there is still a tendency to classify very

deeply shaded sediment as water (e.g. figure 2, Kinu river).  Second, very bright white

water  and strong sun glint  can be classified  as sediment  (e.g.  figure 3,  Pacuare  and

Eamont river. Third, shallow water with a deep green hue and sometimes having algae can

sometimes be classified as green vegetation (e.g. figure 3, kurobe river).  Nevertheless, as

per table 6, all mean and median values of F1 are above 90%.   We note that 633 images

of 861 (73.5%) were classified with an F1 score above 95%.  Of these, 330 returned an F1

score of 99% (38.3%). However, figure 9 does show tails to the distributions and we note

910

915

920

925

930



49

instances of poor performance.  In total, we find 10 of 861 images (1.2%) with 50% < F1<

80% and 7 images of 861 images (0.8%) with 0%<F1<50%.  Examination of the data

shows that this is caused by the misclassification of sun glint over water.  Nevertheless,

overall these results exceed any classification performance reported in the airborne FRS

literature.  Within the wider perspective of the whole Earth Observation literature, it is only

deep learning methods that have reported this level of performance over a similarly wide

number of samples.

Table 6. Results of CNN-supervised classification for experiment 3.  Outcomes are

given as median F1 [%] / mean F1 [%] / mean Kappa [-1 to 1].  The last 2 lines report

median/mean for F1 and kappa. The number of validation images per river (n) is

reproduced  from  table  2.  ANOVA testing  indicates  that  there  is  no  correlation

between F1 scores and sample size (p=0.05).

NASNet Large
River CNN CNN+MLP n
Dartmouth 93/92/0.83 95/93/0.85 243
Kananaskis 95/94/0.75 95/93/0.72 34
Ouelle 97/96/0.87 98/97/0.89 117
Ste-Marguerite 97/96/0.90 99/97/0.94 224
Pacuare 99/97/0.92 98/96/0.91 38
Dora diVeny 98/97/0.93 97/96/0.90 28
Sesia 98/98/0.85 99/99/0.93 21
Kinu 97/93/0.85 99/93/0.89 54
Kurobe 99/95/0.89 99/93/0.89 78
Eamont 98/96/0.88 98/96/0.91 9
Kingie 98/97/0.94 98/95/0.93 15
ALL F1 97/94 98/95 861
ALL Kappa 0.91/0.85 0.93/0.87 861
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Figure 9. CSC performance for the third experiment. The violins are split according

to phase 1 (CNN) and phase 2 (CNN+MLP) of the CSC process.  Note that the x-axis

in both plots is non-linear.  The width of each violin plot is scaled for maximum

visibility with each violin having the same width.  Relative number of samples in

each violin cannot be inferred from this figure but are given in table 6.

GIS integration

Figures  10 and  11 demonstrate GIS integration and show larger examples of mapped

classification outputs.  We show the original orthomosaic, the phase 1 CNN output, re-

formed as an image, and the final CSC classification with the phase 2 MLP.  In figure 10,

we show a classification for an orthomosaic of a 1km stretch of the Ste-Marguerite River

that  was  included  in  CNN  training  (in-sample).   Notably,  the  first  phase  (CNN)  of

classification  has  a  significant  number  of  errors  where  several  patches  of  senescent

vegetation, absent from this river reach, were falsely identified.  The second stage MLP

classification, using the CNN data as a training input, delivered a significant improvement,
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with a final F1 sore of 97%.  Figure 11 follows the same pattern but we use a 1km stretch

of the Kurobe river.  This river was never seen by the pre-trained CNN and the F1 score is

87%. This case is a good example of the use of a pre-trained CNN in a CSC workflow to

train a newly acquired orthomosaic in a fully automated fashion.   The resulting accuracy is

unprecedented in fluvial scene classification with the major advance being the complete

absence  of  user  intervention  to  provide  further  training  data.   Furthermore,  this  was

achieved  with  standard  RGB imagery,  without  the  need for  near-infrared multispectral

data.
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Figure  10.  Mapping outputs for  an orthoimage showing a 1km reach of  the Ste-

Marguerite at a spatial resolution of 7.5 cm.  Geocoded outputs for both the CNN

and MLP phases of the CSC workflow are shown.  The final pixel-weighted accuracy

of the MLP classification is 97% F1.
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Figure 11. Mapping outputs for an orthoimage showing a 1km reach of the Kurobe

river at a spatial resolution of 7.5 cm.  Geocoded outputs for both the CNN and MLP

phases of the CSC workflow are shown.  Data from this river was not included in the

CNN training sample.   This classification output  is  fully  automated and has not

required additional training data or human-operator intervention.  The final pixel-

weighted accuracy of the MLP classification is 87% F1. 
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Discussion

Classification quality

The  quality results  presented here  substantially  exceed  the  current  state-of-the-art for

fluvial scene classification.  We have demonstrated that a trained deep learning classifier

using  our  CNN-supervised classification  (CSC) workflow can reach extremely  high  F1

scores of 99%,  Our first experiment clearly shows that traditional methods do not match

the performance of our deep learning approach. It also shows that with a relatively small

label dataset of 12,000 tiles, our CSC approach can classify new images for the Dartmouth

and Ste-Marguerite rivers to a median F1 of 95%.   When applied to the remaining 9 rivers,

most methods deteriorate markedly, but the final CSC result gives a median F1 of 89%.

This  is  the  first  explicit  demonstration  within  the  context  of  airborne  FRS whereby  a

classifier can deliver a good performance on rivers not included in the training set.  The

failure of the maximum likelihood, random forest and pixel-based multilayer perceptron

(Figure 6b) also demonstrates that older methods cannot transfer  to new rivers which

illustrates  how deep learning methods can reset the accepted state-of-the-art in image

classification.  Here we note that some of the rivers in the validation set were markedly

different to those in the training set.   The Kurobe and Kinu rivers in Japan share few

similarities  with  the  Ste-Marguerite  and  Dartmouth  rivers  in  Quebec,  Canada.   The

success of this experiment is entirely due to the phase 1 pre-trained CNN.  The older

methods are all reliant on pixel-level data only.  But the CNN, trained on patches of 50x50

pixels,  has  learned  other  associated  features  such  as  texture  and  geometry.   These

learned contextual features mean that it is able to predict the class of a patch even when

image brightness values are slightly different.  It is therefore able to transfer well to other

images (much more strongly in in-sample images).   The second stage MLP fit then uses

these purely image-specific brightness values to derive a classifier bespoke to a single
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image, without the need for a human user to supervise the process and provide labels for

each  single  image.   The  second  experiment  demonstrates  the  performance  increase

associated with a larger training dataset  Here we show that when 5 rivers are included in

the training with a total number of tiles of 190,000, the resulting classifications are even

more robust within the remaining in-sample images.  Here we reach median performances

of  96%-99%  F1.  This  sets  a  new  state-of-the-art  for classification  performance  for

hyperspatial  river  imagery  acquired  from  airborne  platforms.  In  the  second  part  of

experiment  2,  we  find  that  even  when  challenged  with  our  most  difficult  task,  the

classification of six rivers never seen by the pre-trained CNN model, our best results still

achieve a median F1 score of 90% (Table 5) with a lower quartile performance of 81%

(figure 8a).  In a specific case (Figure 11), we show that CSC can classify an orthoimage

never seen by the pre-trained CNN to an F1 score of 87%.  At first glance, this result might

be considered equivalent  to  the  previous  state-of-the-art.  However,  our  approach also

represents a major improvement in terms of time and labour efficiency because it does not

require any user intervention, user label production, or deep network training.  The value of

this  finding  is  further  evidenced  by  Figure  6b,  which  shows  that  transferring  trained

models, even a CNN, to river imagery not seen in training does not necessarily deliver

good results. In our third experiment, our method, tested over 11 rivers, delivers an overall

average of 93% F1 with 73.5% of the tested images achieving F1 sores above 95% and

only 0.8% of images failing to exceed a 50% F1 score. We even note numerous instances

(38.3%) of near perfect outcomes with F1 scores of 99%.  We argue that this is the most

readily applicable finding of our work.  With the rise of drones as an affordable and easy to

use airborne platform for hyperspatial image acquisitions, our method offers a step-change

in the potential quality for the classification of such data at minimal time and effort.   Given

a  day’s  data  labelling  work  by  a  moderately  skilled  GIS  user  (~a  number  of  pixels
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equivalent to 40k training samples),  our CSC method will  be able to classify an entire

dataset consisting of several thousands of images to extremely high (≥90% F1) accuracy.

Indeed, we find that 73.5% of our tested imagery has a classification outcome above 95%

F1 and argue that at this level of quality, no manual editing is required.   For the 2% of

images  that  yield  an  F1  score  below  50%,  the  manual  editing/classification  work

necessitated  by  these  is  a  fraction  of  that  previously  necessitated  by  ‘conventional’

classification algorithms.    Overall, the performance levels we report here are not matched

in  the  airborne  FRS literature.   Even  for recent  methods  using  Object  Based  Image

Analysis,  Demarchi et al. (2020) report their best accuracies as 89% for the classification

of meter-scale RGB imagery with the addition of a DEM layer as a 4 th predictive feature

and using what we define here as in-sample data for validation. However our results show

that the level of detail present in hyperspatial imagery can be leveraged by deep learning

and produce un-equalled classification performance. 

We  have  also  demonstrated  the  value  and  novelty  of  our  CNN-supervised  workflow.

Examination  of  Figures  10 and  11 shows  that  significant  errors  occur  when  a  CNN

classifier is used in isolation.  In contrast, the second phase (CNN+MLP) classification

recovers many of these errors leading to a pixel-level classification that is more accurate

than the phase 1 CNN-only classification.  This effect can also be seen in Figures 6b and

8a, where the CNN+MLP violins  plots show improved performance with respect to the

CNN  alone.   Overall,  our  results  show  that  deep  learning  methods  have  greatly

outperformed statistical  and machine learning methods and should now be adopted in

airborne FRS as a standard  classification  tool.  In  order  to  facilitate  adoption  by  other

users,  all  the methods here are based on open source code available on GitHub and

implemented using PyQGIS scripts to deliver mapping capabilities via QGIS. 
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Comparison to fluvial image classification ‘state-of-the-art’

We find  that  our  results  compare  favourably  to  similar  recent  works  leveraging  deep

learning techniques. Casado et al. (2015) use a pixel-based MLP classifier on a short river

reach with an accuracy of 81%.  This is comparable to results in Figure  6a.  However,

pixel-based  classifiers  have  limited  potential  and  our  results,  along  with  those  of

Buscombe  and  Ritchie  (2018),  show  that  convolutional  neural  networks  are  the  way

forward. Buscombe and Ritchie (2018) apply the DeepLab method (Chen et al., 2018) and

present a similar two-stage workflow to CSC where the first phase of CNN classification is

followed by a pixel-based classification based on conditional random fields.  They report

results  similar  to  ours  with  mean  F1  scores  ranging  from  88%  to  98%.   Detailed

examination shows a pattern similar to our results where the quality statistics increase with

greater data aggregation.  When disaggregated, Buscombe and Ritchie (2018) find some

poor results as low as 30% mean F1.  Interestingly, their data do not show that the second

stage of pixel-level classification, performed with conditional random fields, can improve on

the performance of the phase 1 CNN.  However, this might be because the authors have

not  attempted  to  highlight  this  behaviour  and/or  that  they  have  more  severe  class

imbalance problems. We argue that our approach goes beyond that of Buscombe and

Ritchie (2018), by achieving both a) higher classification accuracies across datasets of

substantially increased size; and b) demonstrating the viability and transferability of our

approach across several hundreds of rivers from a range of geographically-diverse river

locations.  In another example of a ‘chained’ classification approach, Zhang et al. (2018)

also combine CNNs and MLPs to perform pixel-level classification, albeit with a different

workflow,  in  an  urban/semi-urban  context  and  with  a  considerably  smaller  dataset  of
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approximately 11 million pixels.  Similar to our results, these authors report accuracies of

74% to 95%.  W 

We further note that the 90%-99% F1 scores reported here are slightly better than the

hyperspectral  fluvial  scene  classification  results  reported  by  Marcus et  al.  (2003).  We

therefore argue that our results, supported by those of Buscombe and Ritchie (2018) and

Zhang et al. (2018) indicate that available deep learning workflows are now capable of

obviating the use of multi- and hyperspectral sensors for image classification.  While these

sensors  retain  a  crucial  function  in  advanced  applications  requiring  airborne  imaging

spectroscopy capabilities (e.g. Candiago et al., 2015; Pölönen et al., 2013; Vanegas et al.,

2018), their extra cost is no longer justified in any application where the final objective of

image acquisition is land-cover classification of the scale described within this work.  Our

findings could have a significant impact  on the drone industry,  where we note intense

commercial  pressure to  expand the  market  for  multi-  and hyperspectral  sensors.   We

argue that the scientific rationale for this expansion needs re-examination.

Implications of findings for airborne fluvial remote sensing science and practise

Our  results  suggest  an  avenue  for  future  research  allowing for  the  inclusion  of  deep

learning in  GIS software.   In  Table 1,  we show that  at  present,  the inclusion of  deep

learning tools within GIS packages is embryonic, and indeed largely absent from open

source  software  options.  We  argue  that  training  data  availability,  and  associated

processing power requirements, pose a significant access barrier that may explain this

situation.  For most users, the task of image classification remains focused on a relatively

small volume of data (e.g. images from a specific river reach).  Therefore, in most cases,

the required volume of data needed to train a deep network from scratch is not available.
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We have demonstrated that the features developed by a pre-trained CNN can transfer to

rivers not seen at the training stage.  The accuracy of CNN predictions does decrease on

transfer to unseen rivers, but in this case we have shown that the use of a chained MLP

pixel-level  classifier  can  recover  some  of  these  errors  and  deliver  state-of-the-art

classification performance (Figures  6b,  8a and  11).  We therefore envisage a workflow

where a classification routine embedded in a GIS could use orthoimage metadata to select

and load a pre-trained CNN according to a proximity criteria ( e.g. space and season).

The  software  could  then  execute  CNN-supervised  classification  and  deliver  a  truly

automated semantic classification with identified land-cover types.   Optionally, users that

require performance at the 95% level could add a limited selection of training areas and

use transfer learning to retrain a river-specific CNN and adapt it to their specific imagery

with relatively little expenditure in personnel time.  Both these scenarios could function with

modest processing power; throughout this work we used laptops with single processors

and single, mid-range, GPUs.  However, the main challenge to this vision would be the

assembly of the required banks of pre-trained CNNs.  Despite the fact that hyperspatial

resolution aerial imagery is now available from most environments on the Earth, thanks to

an explosion in the use of drones, there is still no global database of such imagery.  

In addition to these highly encouraging results regarding the classification of  airborne FRS data,

CNNs also hold a great deal of promise for addressing fundamental questions in the river sciences.

For example, one interesting perspective is the possibility of using a deep CNN as an objective tool

for  investigating ontological  issues in river morphology cataloguing.   Considerable efforts have

been deployed to categorise fluvial forms in a way that is both scientifically accurate and useable in

a management context (Brierley et al., 2013; Brierley and Fryirs, 2000; Fryirs and Brierley, 2018;

Gurnell et al., 2016).  Most of these efforts rely on a mix of knowledge from fluvial geomorphology

and other related sciences and they often rely on visual image interpretation, with a very high level
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of expert knowledge, in order to assign their respective categories and nomenclatures to fluvial

form (e.g. Fryirs and Brierley, 2018). However, in the case of surface flow features, Woodget et al.

(2016) have shown that physical characteristics attributed via visual identification can suffer from

ontology  issues  which  lead  to  a  questioning  of  the  intrinsic  existence  of  certain  natural  river

features (when categorised through a conceptual process). We therefore argue that CNN-based

feature classification approaches could be used to clarify the ontology of fluvial forms and serve as

a  testable  benchmark,  a  ‘reality  check’ of  sorts,  applied  to  the  ontology  of  human-conceived

features. The approach in this case would be to re-orient the classification system towards an

explicit labelling of fluvial forms (point bars, braided channels, etc).  If, after training, CNN-predicted

labelling  of  these forms in  validation  imagery  agrees with  human expert  knowledge,  then this

confirms the ontology of the given fluvial structure and the CNN can then be further used as an

objective method for wider scale deployment of a given fluvial classification scheme.  Such an

approach  would  be  required  to  robustly  make  the  subtle  transition  from  fluvial  land-cover

classification, as done in this work, to fluvial habitats (i.e. land-use by flora and fauna).  Such work

could make fundamental contributions to our understanding of fluvial forms that go beyond the

functional  requirement to classify  imagery  and make objective cataloguing of  fluvial  habitats a

practical reality.  However, this idea does have important technical implications. For example, if the

training data labels fluvial forms, then the tiling procedure must move away having tiles 100%

occupied by a single, pure, class label (as seen in this paper).  For example, if we seek to train a

CNN to identify point bars, then suitable labelled tiles must have the entire bar AND a portion of

surrounding  water.  This  is  therefore  somewhat  similar  to  the  classic  case  of  CNN  image

identification where a photograph of a subject must be identified and thus the image tile contains

pixels that are not semantically part of the subject to be identified. However, in the case of natural

forms, issues of scalar and rotational invariance must also be considered.  Fluvial forms can occur

in any orientation and can vary in size by orders of magnitude.   Whilst there is a body of work

reporting approaches to transform invariance in the context of deep learning (Cabrera-Vives et al.,

2017; Cheng et al.,  2019; Dieleman et al.,  2015; Srivastava and Grill-Spector, 2018), this work

remains closer to the research frontier and more challenging to apply.
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Method Limitations:  Class imbalance and hyperparameter tuning

Class imbalance is  a  problem arising  when training  data  has a  large  disparity  in  the

number of samples in each class.  It  is  the focus of significant research both in pure

machine learning (e.g. Buda et al., 2018; Krawczyk, 2016; Lemaitre et al., 2016) and, to a

lesser extent, Earth observation (Kampffmeyer et al., 2016; Stumpf and Kerle, 2011). This

effect has an impact on our results.  As visible in Table 3, one of the near-impossibilities of

data  preparation  was  to  ensure  equal  class  representation  in  both  the  training  and

validation  data  across  all  classes.   Typical  airborne  remote  sensing  images  of  fluvial

scenes are dominated by vegetated areas and the water.  Sediment might be prominent in

certain rivers but less so in others.  Some images might have large sediment bars, while

others only have small patches of exposed sediment.  There  also might be man-made

features  in  the  imagery.   Ultimately,  having  an  engineered  balance,  in  terms  of  pixel

numbers, for  all  classes is not possible unless we greatly under-sample all  the better-

represented classes to unacceptable levels.    At a smaller scale, we observe that in cases

where the phase 1 CNN predictions have a small minority in a single class, this class can

be eliminated by the MLP if the training achieves minimal loss simply by predicting that a

class is absent in an image.  A good example is Figure 11, where we see that the paved

roads class, occupying a very small percentage of pixels, has been eliminated and classed

as sediment in the final MLP classification.  Similarly, vegetation patches in this image,

again with a small surface coverage in the image, have often been confused with water.

In  an  attempt  to  address  this  problem,  we  investigated  mitigation  methods  for  class

imbalance (Batista et al., 2004; Chawla et al., 2002; Lemaitre et al., 2016).   We tested the

Synthetic Minority Oversampling TEchnique (SMOTE). The SMOTE technique works by

creating new samples of synthetic data to strengthen the minority sets in training data.
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Specifically,  it  interpolates between inliers and outliers.   This strengthens the signal  of

smaller samples and prevents the classifier from reaching a minimal loss solution by totally

ignoring the minority class. However, in our case, we found that the application of SMOTE

severely degraded performance.  By interpolating between inliers and outliers, the SMOTE

method  amplified  the  erroneous  CNN  predictions  beyond  the  point  where  the  MLP

predictions could mitigate against them.   Consequently, we find that our workflow of CNN-

supervised classification is most suited to applications where the major land-cover types

need to be accurately classified and quantified.  For applications where smaller features in

the landscape need to be identified, we would recommend alternative approaches geared

towards feature recognition as opposed to semantic classification and using a CNN to

identify these small-scale local features.  

One of the most problematic aspects of work such as that presented here is the very high

number  of  CNN  parameters  and  design  decisions  that  we  did  not  investigate  but

undoubtedly influenced our results.  While we have made efforts to provide some basis for

parameter selection (e.g. the tuning procedure for the NASNet architectures), it was not

computationally possible to conduct a deep parameter space investigation through brute-

force modelling; even Monte-Carlo approaches of random sampling within the parameter

space  carried  an  overly  large  computational  overhead.  We  made  efforts  to  justify

parameter  choices,  but  clear  advice  regarding  hyperparameter  tuning  for  deep  neural

networks is not always readily available and new users are often left with a bewildering

number of choices to test.  In this case, we faced several choices.  At the outset, the use of

a transfer learning approach requires the user to fix the weights on certain deeper layers in

the CNN architecture.  With a network architecture as large as NASNet,  the choice of

layers to  fix  was based on limited trial  and error.  Our  results  are satisfactory,  but  we

1215

1220

1225

1230

1235



63

recognise  that  an  alternative  structure  of  fixed/trainable  parameters  might  deliver

improvements.  Another issue is the size of tile to use.  The selection of tile size must allow

the training design to deliver a large number of  labelled images.   There is a trade-off

between  the  smaller  sizes/larger  numbers  and  the  information  content  of  each  tile.

Buscombe and Ritchie (2018) use a tiles size of 75x75, but here we found that 50x50 gave

better results. Overall, we made an effort to minimise tunable parameters in this work but

we recognize that the work had  a significant number of parameters chosen and tuned

solely  based  on  experience  and/or  minimal  preliminary  experiments.   Exploring  these

parameters  quantitatively  might  clarify  small  details  about  the  overall  process  but  at

significant cost in terms of computation. We therefore advocate the use of optimisation

approaches  (e.g. Zheng and Wang, 1996) to identify parameter combinations that yield

further improvements on our results. However, crucially, we argue that while our results

might be improved upon, this does not change or invalidate our findings, namely, that the

application of deep learning methods such as those outlined in this paper have delivered

state-of-the-art results in hyperspatial fluvial scene classification.
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Conclusion

This paper uses a state-of-the-art dataset to demonstrate that deep learning methods are

now  ready  for  a  wider  uptake  by  the  airborne  fluvial  remote  sensing community,

transforming  the  fundamental  task  of  supervised  classification.   We  have  shown  that

replacing the conventional  classifiers (eg.  maximum likelihood) with deep convolutional

neural  networks  can  substantially  increase  classification  performance  and  set  a  new

benchmark  for  expected  performance  in  RGB  fluvial  scene  classification  using  a

supervised workflow.  With CNN-Supervised Classification, users proficient in GIS now

only need to  manually  label  4-8 RGB images of  12-20 Mpix in order  to  generate  the

training  data  (~  37k  tiles)  required  to  classify  an  entire  river  with  hundreds  or  even

thousands  of  images to  a  very  high  standard  (F1>95%)  with  training  data  that  can

manually be generated in less than 1 person/day and without the need for costly multi- or

hyperspectral sensors. Finally, our results show that an advanced convolutional network

architecture such as NASNet can effectively learn a visual classification scheme for fluvial

scenes that can transfer to other rivers never seen in training. This shows a way forward

where large pre-trained CNN might be capable of classifying rivers on regional/national

scales thus truly minimising the need for human supervision.  However, such work will

require  a  coordinated  effort  in  order  to  pool,  organise  and  label  the  large  volume of

hyperspatial river imagery that already exists but is scattered in the community. Indeed,the

wider uptake of deep learning by the  airborne fluvial remote sensing community is now

somewhat  dependent  on  improving  the  level  of  cooperation  and  coordination  among

scientists working with hyperspatial resolution airborne imagery in order to compile and

generate the so-called Big Data that drives the training of deep neural networks.  
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Code and data access

Core Python scripts and usage instructions for CNN-supervised classification are available

from  the  following  GitHub  repository:  https://github.com/geojames/  CNN  -Supervised-  

Classification and can be cited as Carbonneau and Dietrich  (2020).  All the image and

label data used in this work is also available for download from this institutional repository

and can be cited as Carbonneau et al. (2019).

Acknowledgements

The  authors  would  like  to  thank  several  funding  bodies  who  have  supported  image

acquisition.   Images  of  the  Ste-Marguerite  and  Dartmouth  rivers  were  funded  by  the

GEOSALAR project, part of the GEOIDE network of centres of excellence.  The authors

thank Professor Normand Bergeron for use of the Ouelle and Kananaskis river imagery;

these data were collected as part  of  the NSERC/CRSNG Collaborative Research and

Development  Grant  CRDJ  379745 08  in  partnership  with  the  Ouranos  consortium on‐

regional  climatology  and  adaptation  to  climate  change  and  also  as  part  of  the

NSERC/CRSNG HydroNet Strategic Network Grant.  Images of the Eamont, Sesia and

Kingie rivers were funded by the AMBER project, grant number 689682, part of the EU

Horizon 2020 program.    The images of the Dora di Veny river were acquired thanks to

support from Dr Catriona Fyffe,  the University or Worcester and the British Society for

Geomorphology.  The images of the Kinu and Kurobe rivers were funded by the KAKENHI

program  of  the  Japanese  Society  for  the  Promotion  of  Science,  grant  number

JP16H04422. The authors would like to thank Dr Pollyanna Lind for the images of the

Pacuare river, funded by the National Science Foundation, the Tokyo foundation and the

University  of  Oregon.  Finally,  we  would  like  to  thank  three anonymous  reviewers  for

1285

1290

1295

1300

1305

https://collections.durham.ac.uk/files/r2j67313813
https://github.com/geojames/CNN-Supervised-Classification
https://github.com/geojames/CNN-Supervised-Classification
https://github.com/geojames/CNN-Supervised-Classification
https://github.com/geojames/CNN-Supervised-Classification


67

thorough and constructive comments that have greatly improved the clarity and impact of

this work.1310



68

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis,
A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M.,
Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R.,
Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I.,
Talwar,  K.,  Tucker,  P.,  Vanhoucke,  V.,  Vasudevan,  V.,  Viegas,  F.,  Vinyals,  O.,
Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2016. TensorFlow: Large-
Scale  Machine  Learning  on  Heterogeneous  Distributed  Systems.
arXiv:1603.04467v2.

Allen, G.H., Pavelsky, T.M., 2018. Global extent of rivers and streams. Science 361, 585–
588. https://doi.org/10.1126/science.aat0636

Arnell, N.W., Gosling, S.N., 2016. The impacts of climate change on river flood risk at the
global  scale.  Climatic Change 134, 387–401. https://doi.org/10.1007/s10584-014-
1084-5

Ashmore,  P.,  Sauks,  E.,  2006.  Prediction  of  discharge  from water  surface  width  in  a
braided river with implications for at-a-station hydraulic geometry. Water Resources
Research 42. https://doi.org/10.1029/2005WR003993

Bagheri,  O.,  Ghodsian,  M.,  Saadatseresht,  M.,  2015.  Reach  scale  application  of
UAV+SFM  method  in  shallow  rivers  hyperspatial  bathymetry,  in:  ISPRS  -
International  Archives  of  the  Photogrammetry,  Remote  Sensing  and  Spatial
Information Sciences. Presented at the WG I/4 <br> International Conference on
Sensors & Models in Remote Sensing & Photogrammetry - 23&ndash;25 November
2015,  Kish  Island,  Iran,  Copernicus  GmbH,  pp.  77–81.
https://doi.org/10.5194/isprsarchives-XL-1-W5-77-2015

Barré,  P.,  Stöver,  B.C.,  Müller,  K.F.,  Steinhage,  V.,  2017.  LeafNet:  A computer  vision
system for automatic plant species identification. Ecological Informatics 40, 50–56.
https://doi.org/10.1016/j.ecoinf.2017.05.005

Batista, G.E.A.P.A., Prati, R.C., Monard, M.C., 2004. A Study of the Behavior of Several
Methods for Balancing Machine Learning Training Data. SIGKDD Explor. Newsl. 6,
20–29. https://doi.org/10.1145/1007730.1007735

Belgiu, M., Drăguţ, L., 2016. Random forest in remote sensing: A review of applications
and future directions. ISPRS Journal of Photogrammetry and Remote Sensing 114,
24–31. https://doi.org/10.1016/j.isprsjprs.2016.01.011

Bishop, C., 2006. Pattern Recognition and Machine Learning, Information Science and
Statistics. Springer-Verlag, New York.

Bjerklie, D.M., Lawrence Dingman, S., Vorosmarty, C.J., Bolster, C.H., Congalton, R.G.,
2003. Evaluating the potential for measuring river discharge from space. Journal of
Hydrology 278, 17–38. https://doi.org/10.1016/S0022-1694(03)00129-X

Black,  M.,  Carbonneau, P.,  Church,  M.,  Warburton,  J.,  2014.  Mapping sub-pixel  fluvial
grain  sizes  with  hyperspatial  imagery.  Sedimentology  61,  691–711.
https://doi.org/10.1111/sed.12072

Boruah, S., Gilvear, D., Hunter, P., Sharma, N., 2008. Quantifying channel planform and
physical  habitat  dynamics  on  a  large  braided  river  using  satellite  data  -  The
Brahmaputra, India. River Research and Applications 24, 650–660. http://dx.doi.org/
10.1002/rra.1132

Brierley, G., Fryirs, K., Cullum, C., Tadaki, M., Huang, H.Q., Blue, B., 2013. Reading the
landscape: Integrating the theory and practice of geomorphology to develop place-
based understandings of river systems. Progress in Physical Geography: Earth and
Environment 37, 601–621. https://doi.org/10.1177/0309133313490007



69

Brierley,  G.J.,  Fryirs,  K.,  2000.  River  Styles,  a  Geomorphic  Approach  to  Catchment
Characterization:  Implications  for  River  Rehabilitation  in  Bega  Catchment,  New
South  Wales,  Australia.  Environmental  Management  25,  661–679.
https://doi.org/10.1007/s002670010052

Brigante, R., Cencetti, C., Rosa, P.D., Fredduzzi, A., Radicioni, F., Stoppini, A., 2017. Use
of aerial multispectral images for spatial analysis of flooded riverbed-alluvial plain
systems:  the  case  study  of  the  Paglia  River  (central  Italy).  Geomatics,  Natural
Hazards and Risk 8, 1126–1143. https://doi.org/10.1080/19475705.2017.1300607

Buda, M., Maki, A., Mazurowski, M.A., 2018. A systematic study of the class imbalance
problem  in  convolutional  neural  networks.  Neural  Networks  106,  249–259.
https://doi.org/10.1016/j.neunet.2018.07.011

Burkov,  A.,  2019.  The  Hundred-Page  Machine  Learning  Book  by  Andriy  Burkov.  Self-
Published.

Buscombe, D., Ritchie, A., 2018. Landscape Classification with Deep Neural Networks.
Geosciences 8, 244. https://doi.org/10.3390/geosciences8070244

Butler, J.B., Lane, S.N., Chandler, J.H., 2001. Automated extraction of grain-size data from
gravel surfaces using digital image processing. Journal of Hydraulic Research 39,
519–529. https://doi.org/10.1080/00221686.2001.9628276

Cabrera-Vives, G., Reyes, I., Förster, F., Estévez, P.A., Maureira, J.-C., 2017. Deep-HiTS:
Rotation Invariant Convolutional Neural Network for Transient Detection. ApJ 836,
97. https://doi.org/10.3847/1538-4357/836/1/97

Candiago, S., Remondino, F., De Giglio, M., Dubbini, M., Gattelli, M., 2015. Evaluating
Multispectral  Images  and  Vegetation  Indices  for  Precision  Farming  Applications
from  UAV  Images.  Remote  Sensing  7,  4026–4047.
https://doi.org/10.3390/rs70404026

Carbonneau, P., Fonstad, M.A., Marcus, W.A., Dugdale, S.J., 2012. Making riverscapes
real. Geomorphology 137, 74–86.

Carbonneau,  P.E.,  Dietrich,  J.T.,  2020.  CNN-Supervised-Classification.  Zenodo.
https://doi.org/10.5281/zenodo.3928808

Carbonneau, P.E., Dugdale, S.J., Miyamoto, H., Woodget, A.S., Fonstad, M.A., Dietrich,
J.T., Breckon, T.P., 2019. Self-Supervised Image Classification [dataset].

Carbonneau,  P.E.,  Lane,  S.N.,  Bergeron,  N.,  2006.  Feature  based  image  processing
methods applied to  bathymetric  measurements  from airborne remote sensing in
fluvial  environments.  Earth  Surf.  Process.  Landforms  31,  1413–1423.
https://doi.org/10.1002/esp.1341

Carbonneau, P.E., Lane, S.N., Bergeron, N.E., 2004. Catchment-scale mapping of surface
grain size in gravel bed rivers using airborne digital imagery. Water Resour. Res.
40, W07202. https://doi.org/10.1029/2003WR002759

Carbonneau,  P.E.,  Piégay,  H.,  2012a.  Fluvial  Remote  Sensing  for  Science  and
Management. John Wiley & Sons.

Carbonneau,  P.E.,  Piégay,  H.,  2012b.  Introduction:  The  Growing  Use  of  Imagery  in
Fundamental and Applied River Sciences, in: Fluvial Remote Sensing for Science
and  Management.  John  Wiley  &  Sons,  Ltd,  pp.  1–18.
https://doi.org/10.1002/9781119940791.ch1

Carrivick,  J.L.,  Smith,  M.W.,  2019.  Fluvial  and  aquatic  applications  of  Structure  from
Motion  photogrammetry  and  unmanned  aerial  vehicle/drone  technology.  WIREs
Water 6, e1328. https://doi.org/10.1002/wat2.1328

Carrizo, S.F., Jähnig, S.C., Bremerich, V., Freyhof, J., Harrison, I., He, F., Langhans, S.D.,
Tockner,  K.,  Zarfl,  C.,  Darwall,  W.,  2017.  Freshwater  Megafauna:  Flagships  for



70

Freshwater  Biodiversity  under  Threat.  BioScience  67,  919–927.
https://doi.org/10.1093/biosci/bix099

Casado, M.R., Gonzalez, R.B., Kriechbaumer, T., Veal, A., 2015. Automated Identification
of River Hydromorphological Features Using UAV High Resolution Aerial Imagery.
Sensors 15, 27969–27989. https://doi.org/10.3390/s151127969

Chandler,  J.,  Ashmore,  P.,  Paola,  C.,  Gooch,  M.,  Varkaris,  F.,  2002.  Monitoring River-
Channel Change Using Terrestrial Oblique Digital Imagery and Automated Digital
Photogrammetry. Annals of the Association of American Geographers 92, 631–644.
https://doi.org/10.1111/1467-8306.00308

Chawla,  N.V.,  Bowyer,  K.W.,  Hall,  L.O.,  Kegelmeyer,  W.P.,  2002.  SMOTE:  Synthetic
Minority  Over-sampling Technique.  Journal  of  Artificial  Intelligence Research 16,
321–357. https://doi.org/10.1613/jair.953

Chen,  L.-C.,  Papandreou,  G.,  Kokkinos,  I.,  Murphy,  K.,  Yuille,  A.L.,  2018.  DeepLab:
Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution,
and Fully Connected CRFs. IEEE Transactions on Pattern Analysis and Machine
Intelligence 40, 834–848. https://doi.org/10.1109/TPAMI.2017.2699184

Chen, W., Xie, X., Wang, J., Pradhan, B., Hong, H., Bui, D.T., Duan, Z., Ma, J., 2017. A
comparative  study  of  logistic  model  tree,  random  forest,  and  classification  and
regression tree models for  spatial  prediction of  landslide susceptibility.  CATENA
151, 147–160. https://doi.org/10.1016/j.catena.2016.11.032

Chen, Y., Ming, D., Lv, X., 2019. Superpixel based land cover classification of VHR satellite
image combining multi-scale CNN and scale parameter estimation. Earth Science
Informatics. https://doi.org/10.1007/s12145-019-00383-2

Cheng,  G.,  Han,  J.,  Zhou,  P.,  Xu,  D.,  2019.  Learning  Rotation-Invariant  and  Fisher
Discriminative  Convolutional  Neural  Networks  for  Object  Detection.  IEEE
Transactions  on  Image  Processing  28,  265–278.
https://doi.org/10.1109/TIP.2018.2867198

Chinchor, N., 1992. Muc-4 evaluation metrics, in: In Proceedings of the Fourth Message
Understanding Conference. pp. 22–29.

Cohen,  J.,  1960.  A  Coefficient  of  Agreement  for  Nominal  Scales.  Educational  and
Psychological  Measurement  20,  37–46.
https://doi.org/10.1177/001316446002000104

Colquhoun, D., 2017. The reproducibility of research and the misinterpretation of p-values.
R Soc Open Sci 4. https://doi.org/10.1098/rsos.171085

Daigle, A., Bérubé, F., Bergeron, N., Matte, P., 2013. A methodology based on Particle
image velocimetry for river ice velocity measurement. Cold Regions Science and
Technology 89, 36–47. https://doi.org/10.1016/j.coldregions.2013.01.006

Debats, S.R., Luo, D., Estes, L.D., Fuchs, T.J., Caylor, K.K., 2016. A generalized computer
vision approach to mapping crop fields in heterogeneous agricultural landscapes.
Remote  Sensing  of  Environment  179,  210–221.
https://doi.org/10.1016/j.rse.2016.03.010

Demarchi, L.,  Bizzi,  S., Piégay, H., 2017. Regional hydromorphological characterization
with continuous and automated remote sensing analysis based on VHR imagery
and low-resolution LiDAR data. Earth Surface Processes and Landforms 42, 531–
551. https://doi.org/10.1002/esp.4092

Demarchi,  L.,  Bizzi,  S.,  Piégay,  H.,  2016.  Hierarchical  Object-Based  Mapping  of
Riverscape  Units  and  in-Stream Mesohabitats  Using  LiDAR and  VHR Imagery.
Remote Sensing 8, 97. https://doi.org/10.3390/rs8020097



71

Demarchi, L., van de Bund, W., Pistocchi, A., 2020. Object-Based Ensemble Learning for
Pan-European Riverscape Units Mapping Based on Copernicus VHR and EU-DEM
Data Fusion. Remote Sensing 12, 1222. https://doi.org/10.3390/rs12071222

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L., 2009. ImageNet: A large-scale
hierarchical  image  database.  2009  IEEE  Conference  on  Computer  Vision  and
Pattern Recognition. https://doi.org/10.1109/CVPRW.2009.5206848

Dieleman,  S.,  Willett,  K.W.,  Dambre,  J.,  2015.  Rotation-invariant  convolutional  neural
networks for galaxy morphology prediction. Mon Not R Astron Soc 450, 1441–1459.
https://doi.org/10.1093/mnras/stv632

Dietrich,  J.T.,  2016.  Riverscape  mapping  with  helicopter-based  Structure-from-Motion
photogrammetry.  Geomorphology,  The Natural  and Human Structuring of  Rivers
and other Geomorphic Systems: A Special Issue in Honor of William L. Graf 252,
144–157. https://doi.org/10.1016/j.geomorph.2015.05.008

Downing,  J.A.,  Cole,  J.J.,  Duarte,  C.M.,  Middelburg,  J.J.,  Melack,  J.M.,  Prairie,  Y.T.,
Kortelainen,  P.,  Striegl,  R.G.,  McDowell,  W.H.,  Tranvik,  L.J.,  2012.  Global
abundance and size distribution of streams and rivers. Inland Waters 2, 229–236.
https://doi.org/10.5268/IW-2.4.502

Dugdale,  S.J.,  Malcolm,  I.A.,  Hannah,  D.M.,  2019.  Drone-based  Structure-from-Motion
provides accurate forest canopy data to assess shading effects in river temperature
models.  Science  of  The  Total  Environment  678,  326–340.
https://doi.org/10.1016/j.scitotenv.2019.04.229

Durand, M., Gleason, C.J., Garambois, P.A., Bjerklie, D., Smith, L.C., Roux, H., Rodriguez,
E., Bates, P.D., Pavelsky, T.M., Monnier, J., Chen, X., Di Baldassarre, G., Fiset, J.-
M., Flipo, N., Frasson, R.P. d. M., Fulton, J., Goutal, N., Hossain, F., Humphries, E.,
Minear, J.T., Mukolwe, M.M., Neal, J.C., Ricci, S., Sanders, B.F., Schumann, G.,
Schubert,  J.E.,  Vilmin,  L.,  2016.  An  intercomparison  of  remote  sensing  river
discharge  estimation  algorithms  from measurements  of  river  height,  width,  and
slope.  Water  Resources  Research  52,  4527–4549.
https://doi.org/10.1002/2015WR018434

Erbek,  F.S.,  Özkan,  C.,  Taberner,  M.,  2004.  Comparison  of  maximum  likelihood
classification method with supervised artificial  neural network algorithms for land
use  activities.  International  Journal  of  Remote  Sensing  25,  1733–1748.
https://doi.org/10.1080/0143116031000150077

Fausch, K.D., Torgersen, C.E., Baxter, C.V., Li, H.W., 2002. Landscapes to Riverscapes:
Bridging  the  Gap  between  Research  and  Conservation  of  Stream  FishesA
Continuous View of the River is Needed to Understand How Processes Interacting
among Scales Set the Context for Stream Fishes and Their Habitat. BioScience 52,
483–498. https://doi.org/10.1641/0006-3568(2002)052[0483:LTRBTG]2.0.CO;2

Feng, Q., Liu, J., Gong, J., 2015. UAV Remote Sensing for Urban Vegetation Mapping
Using Random Forest and Texture Analysis. Remote Sensing 7, 1074–1094. https://
doi.org/10.3390/rs70101074

Feng, R., Wang, L., Zhong, Y., 2018. Least Angle Regression-Based Constrained Sparse
Unmixing of Hyperspectral Remote Sensing Imagery. Remote Sensing 10, 1546.
https://doi.org/10.3390/rs10101546

Fleiss, J.L., Levin, B., Paik, M.C., 2013. Statistical Methods for Rates and Proportions.
John Wiley & Sons.

Foody, G.M., 1995. Land cover classification by an artificial neural network with ancillary
information. International Journal of Geographical Information Systems 9, 527–542.
https://doi.org/10.1080/02693799508902054



72

Foody,  G.M.,  Ling,  F.,  Boyd,  D.S.,  Li,  X.,  Wardlaw,  J.,  2019.  Earth  Observation  and
Machine  Learning  to  Meet  Sustainable  Development  Goal  8.7:  Mapping  Sites
Associated with Slavery from Space. Remote Sensing 11, 266.

Fryirs, K.A., Brierley, G.J., 2018. What’s in a name? A naming convention for geomorphic
river  types  using  the  River  Styles  Framework.  PLOS  ONE  13,  e0201909.
https://doi.org/10.1371/journal.pone.0201909

Ghaffarian, H., Piégay, H., Lopez, D., Mignot, E., MacVicar, B.J., Antonio, A., Riviere, N.,
2020.  Video-monitoring  of  wood  discharge:  first  inter-basin  comparison  and
recommendations to install cameras. Earth Surface Processes and Landforms.

Gilvear,  D.J.,  Sutherland,  P.,  Higgins,  T.,  2008.  An  assessment  of  the  use  of  remote
sensing  to  map  habitat  features  important  to  sustaining  lamprey  populations.
Aquatic  Conservation:  Marine  and  Freshwater  Ecosystems  18,  807–818.
https://doi.org/10.1002/aqc.876

Gleason, C.J., Smith, L.C., 2014. Toward global mapping of river discharge using satellite
images  and  at-many-stations  hydraulic  geometry.  PNAS  111,  4788–4791.
https://doi.org/10.1073/pnas.1317606111

Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep Learning. MIT Press.
Guo,  W.,  Yang,  W.,  Zhang,  H.,  Hua,  G.,  2018.  Geospatial  Object  Detection  in  High

Resolution Satellite Images Based on Multi-Scale Convolutional Neural Network.
Remote Sensing 10. https://doi.org/10.3390/rs10010131

Gurnell,  A.M.,  Rinaldi,  M.,  Belletti,  B.,  Bizzi,  S.,  Blamauer,  B.,  Braca,  G.,  Buijse,  A.D.,
Bussettini,  M.,  Camenen,  B.,  Comiti,  F.,  Demarchi,  L.,  García  de  Jalón,  D.,
González del Tánago, M., Grabowski, R.C., Gunn, I.D.M., Habersack, H., Hendriks,
D., Henshaw, A.J., Klösch, M., Lastoria, B., Latapie, A., Marcinkowski, P., Martínez-
Fernández, V.,  Mosselman, E.,  Mountford, J.O.,  Nardi,  L.,  Okruszko, T.,  O’Hare,
M.T., Palma, M., Percopo, C., Surian, N., van de Bund, W., Weissteiner, C., Ziliani,
L., 2016. A multi-scale hierarchical framework for developing understanding of river
behaviour  to  support  river  management.  Aquat  Sci  78,  1–16.
https://doi.org/10.1007/s00027-015-0424-5

Hamshaw,  S.D.,  Bryce,  T.,  Rizzo,  D.M.,  O’Neil Dunne,  J.,  Frolik,  J.,  Dewoolkar,  M.M.,‐
2017. Quantifying streambank movement and topography using unmanned aircraft
system  photogrammetry  with  comparison  to  terrestrial  laser  scanning.  River
Research and Applications 33, 1354–1367. https://doi.org/10.1002/rra.3183

Hemmelder, S., Marra, W., Markies, H., De Jong, S.M., 2018. Monitoring river morphology
& bank erosion using UAV imagery – A case study of the river Buëch, Hautes-Alpes,
France. International Journal of Applied Earth Observation and Geoinformation 73,
428–437. https://doi.org/10.1016/j.jag.2018.07.016

Hernández-Serna, A., Jiménez-Segura, L.F., 2014. Automatic identification of species with
neural networks. PeerJ 2, e563. https://doi.org/10.7717/peerj.563

Hintze, J.L., Nelson, R.D., 1998. Violin Plots: A Box Plot-Density Trace Synergism. The
American  Statistician  52,  181–184.
https://doi.org/10.1080/00031305.1998.10480559

Hripcsak,  G.,  Rothschild,  A.S.,  2005.  Agreement,  the  F-Measure,  and  Reliability  in
Information  Retrieval.  J  Am  Med  Inform  Assoc  12,  296–298.
https://doi.org/10.1197/jamia.M1733

Isikdogan, F., Bovik, A., Passalacqua, P., 2018. Learning a River Network Extractor Using
an  Adaptive  Loss Function.  IEEE Geoscience and  Remote  Sensing Letters  15,
813–817. https://doi.org/10.1109/LGRS.2018.2811754

Jain, A.K., Jianchang Mao, Mohiuddin, K.M.,  1996. Artificial  neural networks: a tutorial.
Computer 29, 31–44. https://doi.org/10.1109/2.485891



73

Kalacska, M., Lucanus, O., Sousa, L., Vieira, T., Arroyo-Mora, J.P., 2019. UAV-Based 3D
Point  Clouds of Freshwater  Fish Habitats,  Xingu River Basin,  Brazil.  Data 4, 9.
https://doi.org/10.3390/data4010009

Kampffmeyer,  M.,  Salberg,  A.-B.,  Jenssen,  R.,  2016.  Semantic  Segmentation of  Small
Objects and Modeling of Uncertainty in Urban Remote Sensing Images Using Deep
Convolutional  Neural  Networks.  Presented  at  the  Proceedings  of  the  IEEE
Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–9.

Khan,  S.H.,  He,  X.,  Porikli,  F.,  Bennamoun,  M.,  2017.  Forest  Change  Detection  in
Incomplete Satellite  Images With Deep Neural  Networks.  IEEE Transactions on
Geoscience  and  Remote  Sensing  55,  5407–5423.
https://doi.org/10.1109/TGRS.2017.2707528

Krawczyk,  B.,  2016.  Learning  from  imbalanced  data:  open  challenges  and  future
directions. Prog Artif Intell 5, 221–232. https://doi.org/10.1007/s13748-016-0094-0

Kuhn, C., de Matos Valerio, A., Ward, N., Loken, L., Sawakuchi, H.O., Kampel, M., Richey,
J.,  Stadler,  P.,  Crawford,  J.,  Striegl,  R.,  Vermote,  E.,  Pahlevan,  N.,  Butman, D.,
2019. Performance of Landsat-8 and Sentinel-2 surface reflectance products for
river remote sensing retrievals of chlorophyll-a and turbidity.  Remote Sensing of
Environment 224, 104–118. https://doi.org/10.1016/j.rse.2019.01.023

Kussul, N., Lavreniuk, M., Skakun, S., Shelestov, A., 2017. Deep Learning Classification of
Land Cover and Crop Types Using Remote Sensing Data. IEEE Geoscience and
Remote Sensing Letters 14, 778–782. https://doi.org/10.1109/LGRS.2017.2681128

Labatut,  V.,  Cherifi,  H.,  2012.  Accuracy  Measures  for  the  Comparison  of  Classifiers.
arXiv:1207.3790.

Laliberte,  A.S.,  Goforth,  M.A.,  Steele,  C.M.,  Rango,  A.,  2011.  Multispectral  Remote
Sensing from Unmanned Aircraft: Image Processing Workflows and Applications for
Rangeland  Environments.  Remote  Sensing  3,  2529–2551.
https://doi.org/10.3390/rs3112529

Landis, J.R., Koch, G.G., 1977. The Measurement of Observer Agreement for Categorical
Data. Biometrics 33, 159–174. https://doi.org/10.2307/2529310

Langat,  P.K.,  Kumar,  L.,  Koech,  R.,  Ghosh,  M.K.,  2020.  Characterisation  of  channel
morphological  pattern changes and flood corridor  dynamics of  the tropical  Tana
River  fluvial  systems,  Kenya.  Journal  of  African  Earth  Sciences  163,  103748.
https://doi.org/10.1016/j.jafrearsci.2019.103748

LeCun,  Y.,  Bengio,  Y.,  Hinton,  G.,  2015a.  Deep  learning.  Nature  521,  436–444.
https://doi.org/10.1038/nature14539

LeCun,  Y.,  Bengio,  Y.,  Hinton,  G.,  2015b.  Deep  learning.  Nature  521,  436–444.
https://doi.org/10.1038/nature14539

Lecun, Y.,  Bottou, L.,  Bengio, Y.,  Haffner,  P.,  1998. Gradient-based learning applied to
document  recognition.  Proceedings  of  the  IEEE  86,  2278–2324.
https://doi.org/10.1109/5.726791

Legleiter,  C.J.,  Goodchild,  M.F.,  2005.  Alternative  representations  of  in stream habitat:‐
classification  using  remote  sensing,  hydraulic  modeling,  and  fuzzy  logic.
International Journal of Geographical Information Science 19, 29–50. https://doi.org/
10.1080/13658810412331280220

Legleiter,  C.J.,  Marcus,  W.A.,  Lawrence,  R.L.,  2002.  Effects  of  Sensor  Resolution  on
Mapping InStream Habitats.  Photogrammetric  Engineering  and Remote  Sensing
68, 801–807.

Legleiter, C.J., Roberts, D.A., Marcus, W.A., Fonstad, M.A., 2004. Passive optical remote
sensing  of  river  channel  morphology  and  in-stream habitat:  Physical  basis  and



74

feasibility.  Remote  Sensing  of  Environment  93,  493–510.
https://doi.org/10.1016/j.rse.2004.07.019

Lemaitre,  G.,  Nogueira,  F.,  Aridas,  C.K.,  2016.  Imbalanced-learn:  A Python Toolbox to
Tackle the Curse of Imbalanced Datasets in Machine Learning. arXiv:1609.06570.

Li,  P.,  Guo, J.,  Song, B., Xiao, X.,  2011. A Multilevel Hierarchical Image Segmentation
Method  for  Urban  Impervious  Surface  Mapping  Using  Very  High  Resolution
Imagery.  IEEE  Journal  of  Selected  Topics  in  Applied  Earth  Observations  and
Remote Sensing 4, 103–116. https://doi.org/10.1109/JSTARS.2010.2074186

Li, W., Fu, H., Yu, L., Cracknell, A., 2017. Deep Learning Based Oil Palm Tree Detection
and Counting for High-Resolution Remote Sensing Images. Remote Sensing 9, 22.

Ling, F., Boyd, D., Ge, Y., Foody, G.M., Li, X., Wang, L., Zhang, Y., Shi, L., Shang, C., Li,
X., Du, Y., 2019. Measuring River Wetted Width from Remotely Sensed Imagery at
the Sub-pixel Scale with a Deep Convolutional Neural Network. Water Resources
Research in press. https://doi.org/10.1029/2018WR024136

Linke, S., Pressey, R.L., Bailey, R.C., Norris, R.H., 2007. Management options for river
conservation planning:  condition and conservation re-visited.  Freshwater  Biology
52, 918–938. https://doi.org/10.1111/j.1365-2427.2006.01690.x

Long,  J.,  Shelhamer,  E.,  Darrell,  T.,  2015.  Fully  convolutional  networks  for  semantic
segmentation,  in:  2015  IEEE  Conference  on  Computer  Vision  and  Pattern
Recognition (CVPR). Presented at the 2015 IEEE Conference on Computer Vision
and  Pattern  Recognition  (CVPR),  pp.  3431–3440.
https://doi.org/10.1109/CVPR.2015.7298965

MacVicar, B., Piégay, H., 2012. Implementation and validation of video monitoring for wood
budgeting in  a  wandering piedmont river,  the Ain River  (France).  Earth  Surface
Processes and Landforms 37, 1272–1289. https://doi.org/10.1002/esp.3240

MacVicar, B.J., Hauet, A., Bergeron, N., Tougne, L., Ali,  I.,  2012. River Monitoring with
Ground-Based  Videography,  in:  Fluvial  Remote  Sensing  for  Science  and
Management.  John  Wiley  &  Sons,  Ltd,  pp.  367–383.
https://doi.org/10.1002/9781119940791.ch16

MacVicar,  B.J.,  Piégay,  H.,  2012.  Validation of  video monitoring technique to  measure
wood transport in a river, in: River Flow 2012 - Proceedings of the International
Conference on Fluvial Hydraulics. pp. 735–740.

Mahdianpari, M., Salehi, B., Rezaee, M., Mohammadimanesh, F., Zhang, Y., 2018. Very
Deep  Convolutional  Neural  Networks  for  Complex  Land  Cover  Mapping  Using
Multispectral Remote Sensing Imagery. Remote Sensing 10, 1119.

Marcus, W.A., Fonstad, M.A., Legleiter, C.J., 2012. Management Applications of Optical
Remote  Sensing  in  the  Active  River  Channel,  in:  Fluvial  Remote  Sensing  for
Science  and  Management.  John  Wiley  &  Sons,  Ltd,  pp.  19–41.
https://doi.org/10.1002/9781119940791.ch2

Marcus, W.A., Legleiter, C.J., Aspinall, R.J., Boardman, J.W., Crabtree, R.L., 2003. High
spatial resolution hyperspectral mapping of in-stream habitats, depths, and woody
debris  in  mountain  streams.  Geomorphology,  Mountain  Geomorphology  -
Integrating  Earth  Systems,  Proceedings  of  the  32nd  Annual  Binghamton
Geomorphology  Symposium  55,  363–380.  https://doi.org/10.1016/S0169-
555X(03)00150-8

McKinney, W., 2010. Data Structures for Statistical Computing in Python. Presented at the
Proceedings of the 9th Python in Science Conference, pp. 51–56.

Michez,  A.,  Piégay,  H.,  Lisein,  J.,  Claessens,  H.,  Lejeune,  P.,  2016.  Classification  of
riparian forest species and health condition using multi-temporal and hyperspatial



75

imagery  from  unmanned  aerial  system.  Environ  Monit  Assess  188,  146.
https://doi.org/10.1007/s10661-015-4996-2

Nel, J.L., Reyers, B., Roux, D.J., Cowling, R.M., 2009. Expanding protected areas beyond
their  terrestrial  comfort  zone:  Identifying  spatial  options  for  river  conservation.
Biological  Conservation  142,  1605–1616.
https://doi.org/10.1016/j.biocon.2009.02.031

Olmanson, L.G., Brezonik, P.L., Bauer, M.E., 2013. Airborne hyperspectral remote sensing
to assess spatial  distribution of  water  quality  characteristics in  large rivers:  The
Mississippi River and its tributaries in Minnesota. Remote Sensing of Environment
130, 254–265. https://doi.org/10.1016/j.rse.2012.11.023

Ormerod, S.J., 2009. Climate change, river conservation and the adaptation challenge.
Aquatic  Conservation:  Marine  and  Freshwater  Ecosystems  19,  609–613.
https://doi.org/10.1002/aqc.1062

Otukei, J.R.,  Blaschke, T.,  2010. Land cover change assessment using decision trees,
support  vector  machines  and  maximum  likelihood  classification  algorithms.
International Journal of Applied Earth Observation and Geoinformation, Supplement
Issue  on  “Remote  Sensing  for  Africa  –  A Special  Collection  from  the  African
Association  for  Remote  Sensing  of  the  Environment  (AARSE)”  12,  S27–S31.
https://doi.org/10.1016/j.jag.2009.11.002

Pal,  M.,  2005.  Random forest  classifier  for  remote  sensing  classification.  International
Journal  of  Remote  Sensing  26,  217–222.
https://doi.org/10.1080/01431160412331269698

Palmer,  M.A.,  Menninger,  H.L.,  Bernhardt,  E.,  2010.  River  restoration,  habitat
heterogeneity and biodiversity: a failure of theory or practice? Freshwater Biology
55, 205–222. https://doi.org/10.1111/j.1365-2427.2009.02372.x

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., Duchesnay, É., 2011. Scikit-learn: Machine Learning in
Python. Journal of Machine Learning Research 12, 2825−2830.

Poggi, G., Scarpa, G., Zerubia, J.B., 2005. Supervised segmentation of remote sensing
images based on a tree-structured MRF model. IEEE Transactions on Geoscience
and Remote Sensing 43, 1901–1911. https://doi.org/10.1109/TGRS.2005.852163

Pölönen, I.,  Saari,  H., Kaivosoja, J., Honkavaara, E., Pesonen, L., 2013. Hyperspectral
imaging based biomass and nitrogen content estimations from light-weight UAV, in:
Remote Sensing for Agriculture, Ecosystems, and Hydrology XV. Presented at the
Remote  Sensing  for  Agriculture,  Ecosystems,  and  Hydrology  XV,  International
Society for Optics and Photonics, p. 88870J. https://doi.org/10.1117/12.2028624

Pouliot, D., Latifovic, R., Pasher, J., Duffe, J., 2019. Assessment of Convolution Neural
Networks for Wetland Mapping with Landsat in the Central Canadian Boreal Forest
Region. Remote Sensing 11, 772.

Purinton, B., Bookhagen, B., 2019. Introducing PebbleCounts: a grain-sizing tool for photo
surveys  of  dynamic  gravel-bed  rivers.  Earth  Surface  Dynamics  7,  859–877.
https://doi.org/10.5194/esurf-7-859-2019

Rogger, M., Agnoletti, M., Alaoui, A., Bathurst, J.C., Bodner, G., Borga, M., Chaplot, V.,
Gallart, F., Glatzel, G., Hall, J., Holden, J., Holko, L., Horn, R., Kiss, A., Kohnová,
S.,  Leitinger,  G.,  Lennartz,  B.,  Parajka,  J.,  Perdigão,  R.,  Peth,  S.,  Plavcová,  L.,
Quinton, J.N., Robinson, M., Salinas, J.L., Santoro, A., Szolgay, J., Tron, S., van
den Akker,  J.J.H.,  Viglione,  A.,  Blöschl,  G.,  2017.  Land use change impacts on
floods at the catchment scale:  Challenges and opportunities for future research.
Water Resources Research 53, 5209–5219. https://doi.org/10.1002/2017wr020723



76

Romero, A., Gatta, C., Camps-Valls, G., 2016. Unsupervised Deep Feature Extraction for
Remote  Sensing  Image  Classification.  IEEE  Transactions  on  Geoscience  and
Remote Sensing 54, 1349–1362. https://doi.org/10.1109/TGRS.2015.2478379

Rosenberg, D.M., McCully, P., Pringle, C.M., 2000. Global-Scale Environmental Effects of
Hydrological  Alterations:  Introduction.  BioScience  50,  746–751.
https://doi.org/10.1641/0006-3568(2000)050[0746:GSEEOH]2.0.CO;2

Rusnák, M., Sládek, J., Kidová, A., Lehotský, M., 2018. Template for high-resolution river
landscape  mapping  using  UAV  technology.  Measurement  115,  139–151.
https://doi.org/10.1016/j.measurement.2017.10.023

Seitz, L., Haas, C., Noack, M., Wieprecht, S., 2018. From picture to porosity of river bed
material using Structure-from-Motion with Multi-View-Stereo. Geomorphology 306,
80–89. https://doi.org/10.1016/j.geomorph.2018.01.014

Seto,  K.C.,  Woodcock,  C.E.,  Song,  C.,  Huang,  X.,  Lu,  J.,  Kaufmann,  R.K.,  2002.
Monitoring  land-use  change  in  the  Pearl  River  Delta  using  Landsat  TM.
International  Journal  of  Remote  Sensing  23,  1985–2004.
https://doi.org/10.1080/01431160110075532

Smeeton, N.C., 1985. Early History of the Kappa Statistic. Biometrics 41, 795–795.
Smikrud,  K.M.,  Prakash,  A.,  Nichols,  J.V.,  2008.  Decision-Based  Fusion  for  Improved

Fluvial  Landscape  Classification  Using  Digital  Aerial  Photographs  and  Forward
Looking  Infrared  Images.  Photogrammetric  Engineering  &  Remote  Sensing  74,
903–911. https://doi.org/doi:10.14358/PERS.74.7.903

Smith, L.C., 1997. Satellite remote sensing of river inundation area, stage, and discharge:
a  review.  Hydrological  Processes  11,  1427–1439.
https://doi.org/10.1002/(SICI)1099-1085(199708)11:10<1427::AID-
HYP473>3.0.CO;2-S

Solomon, C., Breckon, T., 2011. Fundamentals of Digital Image Processing: A Practical
Approach with Examples in Matlab, 1st ed. Wiley Publishing.

Spada,  D.,  Molinari,  P.,  Bertoldi,  W.,  Vitti,  A.,  Zolezzi,  G.,  2018.  Multi-Temporal  Image
Analysis  for  Fluvial  Morphological  Characterization  with  Application  to  Albanian
Rivers.  ISPRS  International  Journal  of  Geo-Information  7,  314.
https://doi.org/10.3390/ijgi7080314

Srivastava, M., Grill-Spector, K., 2018. The Effect of Learning Strategy versus Inherent
Architecture Properties on the Ability of Convolutional Neural Networks to Develop
Transformation Invariance. arXiv:1810.13128.

Strahler, A.H., 1980. The use of prior probabilities in maximum likelihood classification of
remotely  sensed  data.  Remote  Sensing  of  Environment  10,  135–163.
https://doi.org/10.1016/0034-4257(80)90011-5

Strayer, D.L., Dudgeon, D., 2010. Freshwater biodiversity conservation: recent progress
and future challenges.  Journal  of  the North  American Benthological  Society  29,
344–358. https://doi.org/10.1899/08-171.1

Stumpf, A., Kerle, N., 2011. Object-oriented mapping of landslides using Random Forests.
Remote  Sensing  of  Environment  115,  2564–2577.
https://doi.org/10.1016/j.rse.2011.05.013

Szegedy,  C.,  Wei Liu,  Yangqing Jia,  Sermanet,  P.,  Reed,  S.,  Anguelov,  D.,  Erhan,  D.,
Vanhoucke,  V.,  Rabinovich,  A.,  2015.  Going  deeper  with  convolutions,  in:  2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Presented
at the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 1–9. https://doi.org/10.1109/CVPR.2015.7298594

Tamminga,  A.,  Hugenholtz,  C.,  Eaton,  B.,  Lapointe,  M.,  2015.  Hyperspatial  Remote
Sensing  of  Channel  Reach  Morphology  and  Hydraulic  Fish  Habitat  Using  an



77

Unmanned  Aerial  Vehicle  (UAV):  A  First  Assessment  in  the  Context  of  River
Research  and  Management.  River  Res.  Applic.  31,  379–391.
https://doi.org/10.1002/rra.2743

Tian, Y.Q., Yu, Q., Zimmerman, M.J., Flint, S., Waldron, M.C., 2010. Differentiating aquatic
plant communities in a eutrophic river using hyperspectral and multispectral remote
sensing.  Freshwater  Biology  55,  1658–1673.  https://doi.org/10.1111/j.1365-
2427.2010.02400.x

van Vliet, M.T.H., Franssen, W.H.P., Yearsley, J.R., Ludwig, F., Haddeland, I., Lettenmaier,
D.P., Kabat, P., 2013. Global river discharge and water temperature under climate
change.  Global  Environmental  Change  23,  450–464.
https://doi.org/10.1016/j.gloenvcha.2012.11.002

Vanegas, F., Bratanov, D., Powell, K., Weiss, J., Gonzalez, F., 2018. A Novel Methodology
for Improving Plant Pest Surveillance in Vineyards and Crops Using UAV-Based
Hyperspectral  and  Spatial  Data.  Sensors  18,  260.
https://doi.org/10.3390/s18010260

Vannote, R.L.,  Minshall,  G.W., Cummins, K.W.,  Sedell,  J.R.,  Cushing, C.E.,  1980.  The
River  Continuum  Concept.  Can.  J.  Fish.  Aquat.  Sci.  37,  130–137.
https://doi.org/10.1139/f80-017

Vörösmarty, C.J., McIntyre, P.B., Gessner, M.O., Dudgeon, D., Prusevich, A., Green, P.,
Glidden, S., Bunn, S.E., Sullivan, C.A., Liermann, C.R., Davies, P.M., 2010. Global
threats to human water security and river biodiversity. Nature 467, 555–561. https://
doi.org/10.1038/nature09440

Walt, S. van der, Schönberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D., Yager,
N., Gouillart, E., Yu, T., 2014. scikit-image: image processing in Python. PeerJ 2,
e453. https://doi.org/10.7717/peerj.453

Wang, C., Pavlowsky, R.T., Huang, Q., Chang, C., 2016. Channel bar feature extraction for
a  mining-contaminated  river  using  high-spatial  multispectral  remote-sensing
imagery.  GIScience  &  Remote  Sensing  53,  283–302.
https://doi.org/10.1080/15481603.2016.1148229

Ward, J.V., Tockner, K., Uehlinger, U., Malard, F., 2001. Understanding natural patterns
and  processes  in  river  corridors  as  the  basis  for  effective  river  restoration.
Regulated  Rivers:  Research  &  Management  17,  311–323.
https://doi.org/10.1002/rrr.646

Willis, A., Holmes, E., 2019. Eye in the Sky: Using UAV Imagery of Seasonal Riverine
Canopy  Growth  to  Model  Water  Temperature.  Hydrology  6,  6.
https://doi.org/10.3390/hydrology6010006

Winterbottom,  S.J.,  Gilvear,  D.J.,  1997.  Quantification  of  channel  bed  morphology  in
gravel-bed  rivers  using  airborne  multispectral  imagery  and  aerial  photography.
Regul.  Rivers:  Res.  Mgmt.  13,  489–499.  https://doi.org/10.1002/(SICI)1099-
1646(199711/12)13:6<489::AID-RRR471>3.0.CO;2-X

Wohl,  E.,  Angermeier,  P.L.,  Bledsoe,  B.,  Kondolf,  G.M.,  MacDonnell,  L.,  Merritt,  D.M.,
Palmer, M.A., Poff,  N.L., Tarboton, D., 2005. River restoration. Water Resources
Research 41. https://doi.org/10.1029/2005wr003985

Woodget, A.S., Austrums, R., 2017. Subaerial gravel size measurement using topographic
data derived from a UAV-SfM approach. Earth Surf. Process. Landforms 42, 1434–
1443. https://doi.org/10.1002/esp.4139

Woodget,  A.S.,  Austrums,  R.,  Maddock,  I.P.,  Habit,  E.,  2017.  Drones  and  digital
photogrammetry: from classifications to continuums for monitoring river habitat and
hydromorphology.  Wiley  Interdisciplinary  Reviews:  Water  4,  e1222-n/a.
https://doi.org/10.1002/wat2.1222



78

Woodget, A.S., Carbonneau, P.E., Visser, F., Maddock, I.P., 2015. Quantifying submerged
fluvial  topography using hyperspatial  resolution UAS imagery and structure from
motion photogrammetry. Earth Surf. Process. Landforms 40, 47–64. https://doi.org/
10.1002/esp.3613

Woodget,  A.S.,  Visser,  F.,  Maddock,  I.P.,  Carbonneau,  P.E.,  2016.  The  Accuracy  and
Reliability of Traditional Surface Flow Type Mapping: Is it Time for a New Method of
Characterizing Physical River Habitat? River Research and Applications 32, 1902–
1914. https://doi.org/10.1002/rra.3047

WWF,  2018.  Living  Planet  Report  2018:  Aiming  higher.  World  Wildlife  Fund,  Gland,
Switzerland.

Yang, X., Damen, M.C.J., van Zuidam, R.A., 1999. Satellite remote sensing and GIS for
the analysis of channel migration changes in the active Yellow River Delta, China.
International Journal of Applied Earth Observation and Geoinformation 1, 146–157.
https://doi.org/10.1016/S0303-2434(99)85007-7

Zhang, L., Zhang, L., Du, B., 2016. Deep Learning for Remote Sensing Data: A Technical
Tutorial on the State of the Art. IEEE Geoscience and Remote Sensing Magazine 4,
22–40. https://doi.org/10.1109/MGRS.2016.2540798

Zhang, Y.K., Schilling, K.E., 2006. Increasing streamflow and baseflow in Mississippi River
since the 1940s: Effect of land use change. Journal of Hydrology 324, 412–422.
https://doi.org/10.1016/j.jhydrol.2005.09.033

Zheng,  C.,  Wang,  P.,  1996.  Parameter  structure  identification  using  tabu  search  and
simulated  annealing.  Advances  in  Water  Resources  19,  215–224.
https://doi.org/10.1016/0309-1708(96)00047-4

Zhong, Y., Fei, F., Liu, Y., Zhao, B., Jiao, H., Zhang, L., 2017. SatCNN: satellite image
dataset classification using agile convolutional neural networks. Remote Sensing
Letters 8, 136–145. https://doi.org/10.1080/2150704X.2016.1235299

Zhong,  Y.,  Zhang,  L.,  2012.  An  Adaptive  Artificial  Immune  Network  for  Supervised
Classification of Multi-/Hyperspectral Remote Sensing Imagery. IEEE Transactions
on  Geoscience  and  Remote  Sensing  50,  894–909.
https://doi.org/10.1109/TGRS.2011.2162589

Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V., 2017. Learning Transferable Architectures
for Scalable Image Recognition. arXiv:1707.07012.



79

Supporting Information

1- Accuracy and F1.

In the figure and tables below, we give the readers unfamiliar with the F1 score some

reference points to translate and interpret our reported F1 scores in terms of traditional

accuracy values.  Distributions of accuracy were compiled in the same manner as for the

F1 scores reported in the main paper on a per-image basis. For experiments 1 and 2, we

present tables of summary statistics of median(median) accuracy (tables S1 and S2). For

experiment 3, we produce a scatter plot of F1 vs. Accuracy. 

The results show that for our data accuracy and F1 are very closely correlated.  Figure S1

gives a regression line of Accuracy = 1.03F1 +4.1% with an R2 of 0.96.  Importantly, an

Accuracy of 100% is the same as an F1 of 100% with no bias present at high values of F1/

Accuracy. Figure S1 shows that for very high values F1 and accuracy converge to 100%.

Table  S1.  Accuracy  summary  statistics  for  experiment  1.  Results  are  shown as

median(mean) accuracy values. Here N=394 for in-sample results and N=467 for out-

of-sample results.

Table  S2.  Accuracy  summary  statistics  for  experiment  2.  Results  are  shown as

median(mean) accuracy values. Here N=348 for in-sample results and N=513 for out-

of-sample results.

In-Sample Data
MLIK RF DNN CNN CNN+MLP

Accuracy [%] 83(79) 67(62) 66(63) 92(91) 96(94)
Out-of-Sample Data

Accuracy [%] 46(46) 58(55) 55(55) 63(58) 78(63)

In-Sample Data
NASNet Large NASNet Mobile

Class CNN CNN+MLP CNN CNN+MLP
Accuracy [%] 98 (96) 99 (97) 97 (95) 98 (96) 

Out-of-Sample Data
Accuracy [%] 81(78) 90(84) 80(76) 88 (82)
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Figure S1 Accuracy (ACC) vs. F1 scatter plot.   Here we use all  the results from

experiment 3 with the 2 phases of the CSC process (CNN and CNN+MLP) combined

(n=1724). The regression line gives Accuracy = 1.03F1 + 4.1%, R2 = 0.96.

2-Large scale summary of CSC results
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Table S3 presents  F1 and kappa values estimated for  the  aggregate  of  all  pixel-level

predictions in all experiments.  Here we concatenate the class predictions and truth labels

for each pixel in each image for the listed experiment.  This results in large arrays with

n_tot size as indicated in the table (in excess of 2 billion). For computing reasons, we

estimate a single F1 and Kappa value for these arrays by taking a random sample of 100

million predictions.  Table 7 shows a slightly lower outcomes than tables 5 and 6.  This is

the most stringent test of our data, nevertheless, the observations of performance above

the 90% level are not documented elsewhere in the literature.  Interestingly, we note a

sensitivity to the volume of training data.  If we consider the outcomes for figure 1 rivers

(in-sample data) we can see that quality improves as a function of training data volume:

experiment 1 (12k tiles, 93%), experiment 3 (38k, tiles 96%) and experiment 2 (190k tiles,

97%).  In the case of out-of-sample results from experiment 1 and 2 (the figure 2 rivers),

the number of sample tiles has improved the performance from 65% F1 and a kappa of

47% (considered as a ‘fair’ result)  in the case of experiment 1 to 84% F1 and a kappa of

74% (considered a ‘good’ result).
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Table  S3.  large  scale  summary  statistic  estimates.  The  results  for  each  listed

experiment are agregate for a total of n_tot pixel class predictions. F1 and kappa are

estimated from a 100 million pixel sub-sample of this aggregate.  Resuts are given

as F1[%] with kappa as a 0-1 fraction.  Data is only shown for the CSC method for

both NASNet large and NASNet mobile when available. Figure 1 rivers are the in-

sample data  for  experiment  2 and figure 2 rivers  are  the out-of-sample data  for

experiment 2. Experiment 3 was similarly dis-aggregated to allow for comparison,

but all results from experiment 3 are from in-sample data.

NASNet Mobile NASNet Large n_tot

CNN CNN+MLP CNN CNN+MLP

Experiment 1, Dartmouth, Ste-Marguerite NA NA 90(0.82) 93(0.88) 2.627E+09

Experiment 1, other 9 rivers NA NA 62(0.42) 71(0.53) 1.733E+09

Experiment 2, Fig. 1 rivers 95(0.91) 96(0.94) 96(0.92) 97(0.94) 1.615E+09

Experiment 2, Fig. 2 rivers 74(0.60) 81(0.70) 77(0.63) 84(0.74) 2.776E+09

Experiment 3, Fig. 1 rivers NA NA 95(0.91) 96(0.93) 1.615E+09

Experiment 3, Fig. 2 rivers NA NA 92(0.88) 93(0.89) 2.776E+09

Experiment 3, all 11 rivers NA NA 93(0.89) 94(0.91) 4.391E+09
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3- Confusion Matrices.

Next, we present the confusion matrices associated with our results.  In total, the results

presented in the paper are based on 8620 evaluations of classification quality.  Each of the

862  images  was  used  10  times  throughout  our  various  experiments;  five  times  in

experiment  1  (Maximum  Likelihood,  Random  Forests,  pixel-level  MLP,  CNN,  and

CNN+MLP),  four  times  in  the  second  experiment  (NASnet  Large  (both  CNN  and

CNN+MLP)  and  NASNet  mobile  (both  CNN  and  CNN+MLP))  and  twice  in  the  third

experiment.   For a more synthetic view of confidence matrices, we have produced 30

confidence  matrices  in  15  figures.   For  each  of  the  experiments,  we  cumulate  and

concatenate the entire set of pixel-level predictions and ground truth.  This resulted in truth

vs. predicted arrays with several billion rows.  Then, to reduce the computational load to

within our  available resources,  we randomly sample 100 million rows from these lists.

Finally, we produce a total  of 30 confidence matrices for each of the methods in each

experiment.  In the case of experiments 1 and 2, the figures are separated for in-sample

and  out-of-sample  validation.   In  the  case  of  experiment  3,  we  separate  the  figures

according to the phase of the CSC process (CNN or CNN+MLP).
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Figure S2. Confusion matrices for Maximum Likelihood outcomes in the first experiment.
Left) In-sample data here from the rivers Dartmouth and Ste-Marguerite. Right) Out-of-
sample data here from the rivers Ouelle, Kananaskis, Pacuare, Kingie, Eamont, Sesia,
Dora di Veny, Kurobe, and Kinu. For each location in the matrix, we give the number of
samples and the percentage of the class.  The color bars also indicate the percentage of
each class in a given cell.

Figure S3. Confusion matrices for Random Forest outcomes in the first experiment. Left)
In-sample data here from the rivers Dartmouth and Ste-Marguerite.  Right) Out-of-sample
data here from the rivers Ouelle, Kananaskis, Pacuare, Kingie, Eamont, Sesia, Dora di
Veny, Kurobe, and Kinu.
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Figure S4. Confusion matrices for pixel-based Multilayer Perceptron (MLP) outcomes in
the  first  experiment.  Left)  In-sample  data  here  from  the  rivers  Dartmouth  and  Ste-
Marguerite.  Right) Out-of -sample data here from the rivers Ouelle, Kananaskis, Pacuare,
Kingie, Eamont, Sesia, Dora di Veny, Kurobe, and Kinu.  

Figure S5. Confusion matrices for CNN outcomes in the first experiment. Left) In-sample
data here from the rivers Dartmouth and Ste-Marguerite.  Right) Out-of-sample data here
from  the  rivers  Ouelle,  Kananaskis,  Pacuare,  Kingie,  Eamont,  Sesia,  Dora  di  Veny,
Kurobe, and Kinu.
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Figure S6. Confusion matrices for CNN+MLP (2 phase CSC process) outcomes in the first
experiment.  Left)  In-sample  data  here  from the  rivers  Dartmouth  and  Ste-Marguerite.
Right)  Out-of-sample  data  here  from  the  rivers  Ouelle,  Kananaskis,  Pacuare,  Kingie,
Eamont, Sesia, Dora di Veny, Kurobe, and Kinu.

Figure S7. Confusion matrix for the second experiment, NASNet Mobile CNN, results. Left)
In-sample data drawn from the rivers Ste-Marguerite, Kananaskis, Kingie, Sesia, and Kinu.
Right)  Out-of-sample  data drawn from the rivers  Dartmouth,  Ouelle,  Pacuare,  Dora di
Veny, Eamont, and Kurobe.
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Figure  S8.  Confusion  matrix  for  the  second  experiment,  NASNet  Mobile  CNN+MLP,
results.  Left) In-sample data drawn from the rivers Ste-Marguerite, Kananaskis,  Kingie,
Sesia, and Kinu.   Right)  Out-of-sample data drawn from the rivers Dartmouth, Ouelle,
Pacuare, Dora di Veny, Eamont, and Kurobe.

Figure S9. Confusion matrix for the second experiment, NASNet Large CNN, results. Left)
In-sample data drawn from the rivers Ste-Marguerite, Kananaskis, Kingie, Sesia, and Kinu.
Right)  Out-of-sample  data drawn from the rivers  Dartmouth,  Ouelle,  Pacuare,  Dora di
Veny, Eamont, and Kurobe.
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Figure  S10.  Confusion  matrix  for  the  second  experiment,  NASNet  Large  CNN+MLP,
results.  Left) In-sample data drawn from the rivers Ste-Marguerite, Kananaskis,  Kingie,
Sesia, and Kinu.   Right)  Out-of-sample data drawn from the rivers Dartmouth, Ouelle,
Pacuare, Dora di Veny, Eamont, and Kurobe.

Figure S11. Confusion for the third experiment, Dartmouth river. Left) Outcome of the CNN
classification  of  the  first  CSC  phase.  Right)  Outcome  of  the  second  CSC  phase
CNN+MLP.
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Figure S12. Confusion for the third experiment, Kananaskis river. Left) Outcome of the
CNN classification of the first  CSC phase.  Right)  Outcome of  the second CSC phase
CNN+MLP.

Figure S13. Confusion for the third experiment, Ouelle river. Left) Outcome of the CNN
classification  of  the  first  CSC  phase.  Right)  Outcome  of  the  second  CSC  phase
CNN+MLP.
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Figure S14. Confusion for the third experiment, Ste-Marguerite river. Left) Outcome of the
CNN classification of the first  CSC phase.  Right)  Outcome of  the second CSC phase
CNN+MLP.

Figure S15. Confusion for the third experiment, Pacuare river. Left) Outcome of the CNN
classification  of  the  first  CSC  phase.  Right)  Outcome  of  the  second  CSC  phase
CNN+MLP.
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Figure S16. Confusion for the third experiment,Dora di Veny river. Left) Outcome of the
CNN classification of the first  CSC phase.  Right)  Outcome of  the second CSC phase
CNN+MLP.

Figure S17. Confusion for the third experiment, Sesia river. Left) Outcome of the CNN
classification  of  the  first  CSC  phase.  Right)  Outcome  of  the  second  CSC  phase
CNN+MLP.

1520



92

Figure S18.  Confusion for the third experiment,  Kinu river.  Left)  Outcome of  the CNN
classification  of  the  first  CSC  phase.  Right)  Outcome  of  the  second  CSC  phase
CNN+MLP.

Figure S19. Confusion for the third experiment,Kurobe river. Left) Outcome of the CNN
classification  of  the  first  CSC  phase.  Right)  Outcome  of  the  second  CSC  phase
CNN+MLP.
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Figure S20. Confusion for the third experiment, Eamont river. Left) Outcome of the CNN
classification  of  the  first  CSC  phase.  Right)  Outcome  of  the  second  CSC  phase
CNN+MLP.

Figure S21. Confusion for the third experiment, Kingie river. Left) Outcome of the CNN
classification  of  the  first  CSC  phase.  Right)  Outcome  of  the  second  CSC  phase
CNN+MLP.
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