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DECIDING THE EXISTENCE OF MINORITY TERMS

ALEXANDR KAZDA, JAKUB OPRŠAL, MATT VALERIOTE,
AND DMITRIY ZHUK

Abstract. This paper investigates the computational complexity of
deciding if a given finite idempotent algebra has a ternary term oper-
ation m that satisfies the minority equations m(y, x, x) ≈ m(x, y, x) ≈
m(x, x, y) ≈ y. We show that a common polynomial-time approach to
testing for this type of condition will not work in this case and that this
decision problem lies in the class NP.

1. Introduction

It is not difficult to see that for the 2-element group Z2 = 〈{0, 1},+〉, the
term operation m(x, y, z) = x+ y + z satisfies the equations

(1) m(y, x, x) ≈ m(x, y, x) ≈ m(x, x, y) ≈ y.

A slightly more challenging exercise is to show that a finite Abelian group
will have such a term operation if and only if it is isomorphic to a Cartesian
power of Z2.

A ternary operation m(x, y, z) on a set A is called a minority operation on
A if it satisfies the identities (1). A ternary term t(x, y, z) of an algebra A is
a minority term of A if its interpretation as an operation on A, tA(x, y, z),
is a minority operation on A. Given a finite algebra A, one can decide if it
has a minority term by constructing all of its ternary term operations and
checking to see if any of them satisfy the equations (1). Since the set of

ternary term operations of A can be as big as |A||A|3 , this procedure will
have a runtime that in the worst case will be exponential in the size of A.

In this paper we consider the computational complexity of testing for
the existence of a minority term for finite algebras that are idempotent.
An n-ary operation f on a set A is idempotent if it satisfies the equation
f(x, x, . . . , x) ≈ x and an algebra is idempotent if all of its basic operations
are. We observe that every minority operation is idempotent. While idem-
potent algebras are rather special, one can always form one by taking the
idempotent reduct of a given algebra A. This is the algebra with universe A
whose basic operations are all of the idempotent term operations of A. It
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turns out that many important properties of an algebra and the variety that
it generates are governed by its idempotent reduct [9].

The condition of an algebra having a minority term is an example of a more
general existential condition on the set of term operations of an algebra
called a strong Maltsev condition. Such a condition consists of a finite set of
operation symbols along with a finite set of equations involving them. An
algebra is said to satisfy the condition if for each k-ary operation symbol from
the condition, there is a corresponding k-ary term operation of the algebra
so that under this correspondence, the equations of the condition hold. For
a more careful and complete presentation of this notion and related ones, we
refer the reader to [6].

Given a strong Maltsev condition Σ, the problem of determining if a finite
algebra satisfies Σ is decidable and lies in the complexity class EXPTIME.
As in the minority term case, one can construct all term operations of an
algebra up to the largest arity of an operation symbol in Σ and then check
to see if any of them can be used to witness the satisfaction of the equations
of Σ. In general, we cannot do any better than this, since for some strong
Maltsev conditions, it is known that the corresponding decision problem is
EXPTIME-complete [5].

The situation for finite idempotent algebras appears to be better than in
the general case since there are a number of strong Maltsev conditions for
which there are polynomial-time procedures to decide if a finite idempotent
algebra satisfies them [5, 7, 8]. At present there is no known characterization
of these strong Maltsev conditions and we hope that the results of this paper
may help to lead to a better understanding of them. We refer the reader
to [3] or to [1] for background on the basic algebraic notions and results used
in this work.

2. Formulation of the problem

In this section, we formally introduce the considered problem. In all the
problems mentioned in the introduction, we assume that the input algebra
is given as a list of tables of its basic operations. In particular, this implies
that the input algebra has finitely many operations. We also assume that
the input algebra has at least one operation (i.e., the input is non-empty)
and we forbid nullary operations on the input. The main concern of this
paper is the following decision problem.

Definition 1. Define MinorityId to be the following decision problem:

• INPUT: A list of tables of basic operations of an idempotent alge-
bra A.

• QUESTION: Does A have a minority term?
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The size of an input is measured by the following formula. For a finite
algebra A, let

‖A‖ =
∞
∑

i=1

ki|A|
i,

where ki is the number of i-ary basic operations of A. Since we assume
that A has only finitely many operations, the sum is finite. Also note that
‖A‖ ≥ |A| since we assumed that A has a non-nullary operation.

3. Minority is a join of two weaker conditions

One approach to understanding the minority term condition is to see if
maybe there exist two weaker Maltsev conditions Σ1 and Σ2 such that a
finite algebra A has a minority term if and only if A satisfies both Σ1 and
Σ2. In this situation, we would say that the minority term condition is the
join of Σ1 and Σ2. Were this the case, we could decide if A has a minority
term by deciding Σ1 and Σ2.

On the surface, the minority term condition is already quite concise and
natural; it is not clear if having a minority term can be expressed as a join
of weaker conditions. In this section, we show that it is a join of having a
Maltsev term with a condition which we call having a minority-majority term
(not to be confused with the ‘generalized minority-majority’ terms from [4]).
Maltsev terms are a classical object of study in universal algebra – deciding
if an algebra has them is in P for finite idempotent algebras. The minority-
majority terms are much less understood.

Definition 2. A ternary term p(x, y, z) of an algebra A is a Maltsev term
for A if it satisfies the equations

p(x, x, y) ≈ p(y, x, x) ≈ y

and a 6-ary term t(x1, . . . , x6) is a minority-majority term of A if it satisfies
the equations

t(y, x, x, z, y, y) ≈ y

t(x, y, x, y, z, y) ≈ y

t(x, x, y, y, y, z) ≈ y.

We point out that if an algebra has a minority term then it also, trivially,
has a Maltsev term, but that the converse does not hold (as witnessed by the
cyclic group Z4). Our definition of a minority-majority term is a strengthen-
ing of the term condition found by Olšák in [12]. Olšák has shown that his
terms are a weakest non-trivial strong Maltsev condition whose terms are all
idempotent.

We observe that by padding variables, any algebra that has a minority
term or a majority term (just replace the final occurrence of the variable
y in the equations (1) by the variable x to define such a term) also has
a minority-majority term. Since the 2-element lattice has a majority term
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but no minority term, it follows that having a minority-majority term is
strictly weaker than having a minority term.

Theorem 3. An algebra has a minority term if and only if it has a Maltsev
term and a minority-majority term.

Proof. The discussion preceding this theorem establishes one direction of
this theorem. For the other we need to show that if an algebra A has
a Maltsev term p(x, y, z), and a minority-majority term t(x1, . . . , x6) then
A has a minority term. Given such an algebra A, define

m(x, y, z) = t(x, y, z, p(z, x, y), p(x, y, z), p(y, z, x)).

Verifying that m(x, y, z) is a minority term for A is straightforward; we show
one of the three required equalities here as an example:

m(x, x, y) ≈ t(x, x, y, p(y, x, x), p(x, x, y), p(x, y, x))

≈ t(x, x, y, y, y, p(x, y, x)) ≈ y.

�

Corollary 4. The problem of deciding if a finite algebra has a minority term
can be reduced to the problems of deciding if it has a Maltsev term and if it
has a minority-majority term.

As was demonstrated in [5, 7], there is a polynomial-time algorithm to
decide if a finite idempotent algebra has a Maltsev term. Therefore, should
testing for a minority-majority term for finite idempotent algebras prove to
be tractable, then this would lead to a fast algorithm for testing for a minority
term, at least for finite idempotent algebras. From the hardness results found
in [5] it follows that in general, the problem of deciding if a finite algebra
has a minority-majority term is EXPTIME-complete; the complexity of this
problem restricted to idempotent algebras is unknown.

4. Local Maltsev terms

In [5, 7, 8, 13] polynomial-time algorithms are presented for deciding if
certain Maltsev conditions hold in the variety generated by a given finite
idempotent algebra. One particular Maltsev condition that is addressed by
all of these papers is that of having a Maltsev term. In all but [5], the
polynomial-time algorithm produced is based on testing for the presence of
enough ‘local’ Maltsev terms in the given algebra.

Definition 5. Let A be an algebra and S ⊆ A2 × {0, 1}. A term operation
t(x, y, z) of A is a local Maltsev term operation for S if:

• whenever ((a, b), 0) ∈ S, t(a, b, b) = a, and
• whenever ((a, b), 1) ∈ S, t(a, a, b) = b.

Clearly, if A has a Maltsev term then it has a local Maltsev term operation
for every subset S of A2×{0, 1} and conversely, if A has a local Maltsev term
operation for S = A2 × {0, 1} then it has a Maltsev term. In [7, 8, 13] it is
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shown that if a finite idempotent algebra A has local Maltsev term operations
for all two element subsets of A2 × {0, 1} then A will have a Maltsev term.
This fact is then used as the basis for a polynomial-time test to decide if
a given finite idempotent algebra has a Maltsev term.

In this section we extract an additional piece of information from this
approach to testing for a Maltsev term, namely that if a finite idempotent
algebra has a Maltsev term, then we can produce an operation table or
a circuit for a Maltsev term operation in time polynomial in the size of
the algebra. We will first prove that there is an algorithm for producing
circuits for a Maltsev function; the algorithm for producing the operation
table will then be given as a corollary. However, for the reduction presented
in Section 6 we need only the algorithm for producing a function table.

Let us first briefly describe how to get a global Maltsev operation from
local ones. Assume we know (circuits of) a local Maltsev term operation
ta,b,c,d(x, y, z) for each two element subset

{((a, b), 0), ((c, d), 1)}

of A2 × {0, 1}. These are required for A to have a Maltsev term. A global
Maltsev term can be constructed from them in two stages: First, we con-
struct, for each a, b ∈ A, an operation ta,b such that ta,b(a, b, b) = a and
ta,b(x, x, y) = y for all x, y ∈ A. This is done by fixing an enumeration
(a1, b1), (a2, b2), . . . , (an2 , bn2) of A2, and then defining, for 1 ≤ j ≤ n2, the

operation tja,b(x, y, z) on A inductively as follows:

• t1a,b(x, y, z) = ta,b,a1,b1(x, y, z), and

• for 1 ≤ j < n2, tj+1

a,b (x, y, z) = ta,b,u,v(t
j
a,b(x, y, z), t

j
a,b(y, y, z), z),

where u = tja,b(aj+1, aj+1, bj+1) and v = bj+1.

An easy inductive argument shows that tja,b(a, b, b) = a and tja,b(ai, ai, bi) = bi

for all i ≤ j ≤ n2, and so setting ta,b(x, y, z) = tn
2

a,b(x, y, z) works.

In the second stage, we construct a term tj(x, y, z) such that tj(a, a, b) = b
for all a, b ∈ A and tj(ai, bi, bi) = ai for all i ≤ j. We define this sequence of
operations inductively again:

• t1(x, y, z) = ta1,b1(x, y, z), and
• for 1 ≤ j < n2, tj+1(x, y, z) = tu,v(x, tj(x, y, y), tj(x, y, z)), where
u = aj+1 and v = tj(aj+1, bj+1, bj+1).

Again, it can be shown that for 1 ≤ j ≤ n2, the operation tj(x, y, z) satisfies
the claimed properties and so tn2(x, y, z) will be a Maltsev term operation
for A.

From the above construction, one can obtain a term that represents a
Maltsev term operation of the algebra A, starting with terms representing
the operations ta,b,c,d. But there is an efficiency problem with this approach:
the term is extended by one layer in each step, which results in a term of
exponential size. Therefore, the bookkeeping of this term would increase
the running time of the algorithm beyond polynomial. Nevertheless, this
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y

z

f(g(x, y, y), g(x, y, y), z)

Figure 1. A succinct circuit representation of the term
f(g(x, y, y), g(x, y, y), z).

can be circumvented by constructing a succint representation of the term
operations, namely by considering circuits instead of terms.

Informally, a circuit over an algebraic language (as a generalization of
logical circuits) is a collection of gates labeled by operation symbols, where
the number of inputs of each gate corresponds to the arity of the operation
symbol. The inputs are either connected to outputs of some other gate, or
designated as inputs of the circuit; an output of one of the gates is desig-
nated as an output of the circuit. Furthermore, these connections allow for
straightforward evaluation, i.e., there are no oriented cycles.

Formally, we define an n-ary circuit in the language of an algebra A as
a directed acyclic graph with possibly multiple edges that has two kinds of
vertices: inputs and gates. There are exactly n inputs, labeled by variables
x1, . . . , xn, and each of them is a source, and a finite number of gates. Each
gate is labeled by an operation symbol of A, the in-degree corresponds to
the arity of the operation, and the in-edges are ordered. One of the vertices
is designated as the output of the circuit. We define the size of the circuit
to be the number of its vertices.

The value of a circuit given an input tuple a1, . . . , an is defined by the
following recursive computation: The value on an input vertex labeled by
xi is ai, the value on a gate labeled by g is the value of the operation gA

applied to the values of its in-neighbours in the specified order. Finally, the
output value of the circuit is the value of the output vertex. It is easy to see
that the value of a circuit on a given tuple can be computed in linear time
(in the size of the circuit) in a straightforward way. For a fixed circuit the
function that maps the input tuple to the output is a term function of A.
Indeed, to find such a term it is enough to evaluate the circuit in the free
(term) algebra on the tuple x1, . . . , xn. The converse is also true since any
term can be represented as a ‘tree’ circuit (it is an oriented tree if we omit
all input vertices). Many terms can be expressed by considerably smaller
circuits. We give one such example in Figure 1.

In the proof of the theorem below, we will also use circuits with multiple
outputs. The only difference in the definition is that several vertices are
designated as outputs. Any such circuit then computes a tuple of term
functions.

Theorem 6. Let A be a finite idempotent algebra. There is an algorithm
whose runtime can be bounded by a polynomial in the size of A that will
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ta,b,u,v

ta,b,u,v

tj+1

a,b (x, y, z)

tj+1

a,b (y, y, z)

tja,b(x, y, z)

tja,b(y, y, z)

x

y

z

z

Cj
a,b

Figure 2. Recursive definition of circuit Cj+1

a,b .

either (correctly) output that A has no Maltsev term operation, or output
a circuit for some Maltsev term operation of A.

Proof. Let n = |A|. Recall that A has at least one basic operation of positive
arity and hence ‖A‖ ≥ n. Let m ≥ 1 be the maximal arity of an operation
of A.

We construct a circuit representing a Maltsev operation in three steps:
The first step produces, for each a, b, c, d from A, a circuit that computes
a local Maltsev term operation ta,b,c,d as defined near the beginning of this
section, the second step produces circuits that compute ta,b, and the final
step produces a circuit for a Maltsev operation t. We note that the algorithm
can fail only in the first step.

Step 1: Circuits for ta,b,c,d. For each a, b, c, d, we aim to produce a circuit
that computes a local Maltsev term operation ta,b,c,d. To do this, we consider
the subuniverse R of A

2 generated by {(a, c), (b, c), (b, d)}. According to
Proposition 6.1 from [5] R can be generated in time O(||A||2m). It is clear
that A has a local Maltsev term operation ta,b,c,d if and only if (a, d) ∈ R.
Our algorithm produces a circuit for ta,b,c,d by generating elements of R one
at a time and keeping track of circuits that witness the membership of these
elements.

More precisely, we employ a subuniverse generating algorithm to produce
a sequence r1 = (a, c), r2 = (b, c), r3 = (b, d), r4, . . . of elements of R (in time
O(||A||2m)) such that each rk+1, for k ≥ 3, is obtained from r1, . . . , rk by
a single application of an operation f of A2. Our algorithm will also produce
a sequence of ternary circuits C3

a,b,c,d ⊆ C4
a,b,c,d ⊆ . . . such that each Ck

a,b,c,d

has k outputs, and the values of Ck
a,b,c,d on r1, r2, r3 give r1, . . . , rk. We define

C3
a,b,c,d to be the circuit with no gates, and outputs x1, x2, x3. The circuit

Ck+1

a,b,c,d is defined inductively from Ck
a,b,c,d: Consider an operation f and

ri1 , . . . , rip with ij ≤ k such that rk+1 = f(ri1 , . . . , rip); add a gate labeled

f to Ck
a,b,c,d connecting its inputs with the outputs of Ck

a,b,c,d numbered by
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ij for j = 1, . . . , p. We designate the output of this gate as the (k + 1)-st

output of Ck+1

a,b,c,d.

It is straightforward to check that the circuits Ck
a,b,c,d satisfy the require-

ments. We also note that the size of Ck
a,b,c,d is exactly k. We stop this

inductive construction at some step k if rk = (a, d), in which case we pro-
duce the circuit Ca,b,c,d from Ck

a,b,c,d by indicating a single output to be the

k-th output of Ck
a,b,c,d. If, on the other hand, we have generated all of R with-

out producing (a, d) at any step then the algorithm halts and outputs that
A does not have a Maltsev term operation. The soundness of our algorithm
follows from the fact that A has a local Maltsev term ta,b,c,d if and only if
(a, d) ∈ R and that A has a Maltsev term if and only if it has local Maltsev
terms ta,b,c,d for all a, b, c, d ∈ A. The algorithm produces circuits of size
O(n2) and spends most of its time generating new elements of R; generating
each Ca,b,c,d takes time O(‖A‖2m), making the total time complexity of Step
1 to be O(‖A‖2mn4).

Step 2: Circuits for ta,b. At this point we assume that the functions ta,b,c,d
are part of the signature. It is clear that the full circuit can be obtained by
substituting the circuits Ca,b,c,d for gates labeled by ta,b,c,d, and this can be
still done in polynomial time.

Our task is to obtain a circuit for ta,b. We do this by inductively con-

structing circuits Cj
a,b that compute two values of the terms tja,b, namely

tja,b(x, y, z) and tja,b(y, y, z). Starting with j = 0 and t0(x, y, z) = x, we de-

fine C0
a,b to be the circuit with no gates and outputs x, y. Further, we define

circuit Cj+1

a,b inductively from Cj
a,b by adding two gates labeled by ta,b,u,v,

where u = tja,b(aj+1, aj+1, bj+1) and v = bj+1: the first gate has as inputs

the two outputs of Cj
a,b and z, the second gate has as inputs two copies of

the second output of Cj
a,b and z. See Figure 2 for a graphical representation.

Again, it is straightforward to check that these circuits have the required

properties. Also note that the size of Cj
a,b is bounded by 2j + 3 which is

a polynomial. The final circuit Ca,b computing ta,b is obtained from Cn2

a,b by

designating the first output of Cn2

a,b to be the only output of Ca,b. Once we

have ta,b,c,d in the signature, this process will run in time O(n2).
Step 3: Circuit for a Maltsev term. Again, we assume that ta,b are basic

operations, and construct circuits Cj computing two values tj(x, y, y) and
tj(x, y, z) of tj inductively. The proof is analogous to Step 2, with the only
difference that we use Figure 3 for the inductive definition. Again the time
complexity is O(n2).

Each step runs in time polynomial in ‖A‖ (the time complexity is domi-
nated by Step 1) and outputs a polynomial size circuit. This also implies that
expanding the gates according to their definitions in Steps 2 and 3 can be
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tu,v

tu,v

tj+1(x, y, y)

tj+1(x, y, z)

tj(x, y, y)

tj(x, y, z)

x

x

y

z

Cj

Figure 3. Recursive definition of circuit Cj+1.

done in polynomial time; the final size of the output circuit will be bounded
by O(n6). �

Corollary 7. Let A be a finite idempotent algebra. There is an algorithm
whose runtime can be bounded by a polynomial in the size of A that will
produce the table of some Maltsev term operation of A, should one exist.

Proof. The polynomial-time algorithm is as follows. First, generate a poly-
nomial size circuit for some Maltsev term operation of A. This can be done
in polynomial time by the above theorem. Second, evaluate this circuit at
all |A|3 possible inputs. The second step runs in polynomial time since eval-
uation of a circuit is linear in the size of the circuit. �

We note that there is also a more straightforward algorithm for producing
the operation table of a Maltsev term which follows the circuit construction
but instead of circuits, it remembers the tables for each of the relevant term
operations.

5. Local minority terms

In contrast to the situation for Maltsev terms highlighted in the previous
section, we will show that having plenty of ‘local’ minority terms does not
guarantee that a finite idempotent algebra will have a minority term. One
consequence of this is that an approach along the lines in [7, 8, 13] to finding
an efficient algorithm to decide if a finite idempotent algebra has a minority
term will not work.

In this section, we will construct for each odd natural number n > 2
a finite idempotent algebra An with the following properties: The universe
of An has size 4n and An does not have a minority term, but for every subset
E of An of size n− 1 there is a term of An that acts as a minority term on
the elements of E.



10 ALEXANDR KAZDA, JAKUB OPRŠAL, MATT VALERIOTE, AND DMITRIY ZHUK

We start our construction by fixing some odd n > 2 and some minority
operation m on the set [n] = {1, 2, . . . , n}. To make things concrete we set

m(x, y, z) =











x y = z

y x = z

z else,

but note that any minority operation on [n] will do.
Since there are two nonisomorphic groups of order 4, we have two differ-

ent natural group operations on {0, 1, 2, 3}: addition modulo 4, which we
will denote by ‘+’ (its inverse is ‘−’), and bitwise XOR, which we denote
by ‘⊕’ (this operation takes bitwise XOR of the binary representations of
input numbers, so for example 1⊕ 3 = 2). Throughout this section, we will
use arithmetic modulo 4, e.g., 6x = x + x, for all expressions except those
involving indices.

The construction relies on similarities and subtle differences of the two
group structures, and the derived Maltsev operations, x−y+z and x⊕y⊕z.
Both these operations share a congruence ≡2 that is given by taking the
remainder modulo 2. We note that x ≡2 y if and only if 2x = 2y.

Observation 8. Let x, y, z ∈ {0, 1, 2, 3}. Then

(x⊕ y ⊕ z)− (x− y + z) ∈ {0, 2},

and moreover the result depends only on the classes of x, y, and z in the
congruence ≡2 (i.e., the least significant binary bits of x, y, and z).

Proof. Both Maltsev operations agree modulo ≡2, hence the difference lies
in the ≡2-class of 0.

To see the second part, it is enough to observe that x⊕ 2 = x+2 = x− 2
for all x. Hence changing, say x to x′ = x⊕2 simply flips the most significant
binary bit of both x⊕y⊕z and x−y+z, keeping the difference the same. �

Definition 9. Let An = [n]× [4]. For i ∈ [n], we define ti(x, y, z) to be the
following operation on An:

ti((a1, b1), (a2, b2), (a3, b3)) =

{

(i, b1 − b2 + b3) if a1 = a2 = a3 = i, and

(m(a1, a2, a3), b1 ⊕ b2 ⊕ b3), otherwise.

The algebra An is defined to be the algebra with universe An and basic
operations t1, . . . , tn.

By construction, the following is true.

Claim 10. For every (n − 1)-element subset E of An, there is a term op-
eration of An that satisfies the minority term equations when restricted to
elements from E.

Proof. Pick i ∈ [n] such that no element of E has its first coordinate equal
to i; the operation ti is a local minority for this E. �
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Proposition 11. For n > 1 and odd, the algebra An does not have a mi-
nority term.

Proof. Given some (i, a) ∈ An, we will refer to a as the arithmetic part of
(i, a). This is to avoid talking about ‘second coordinates’ in the confusing
situation when (i, a) itself is a part of a tuple of elements of An.

To prove the proposition, we will define a certain subuniverse R of (An)
3n

and then show that R is not closed under any minority operation on An

(applied coordinate-wise). We will write 3n-tuples of elements of An as
3n × 2 matrices where the arithmetic parts of the elements make up the
second column.

Let R ⊆ (An)
3n be the set of all 3n-tuples of the form













































1 x1
2 x2
...
n xn
1 xn+1

2 xn+2

...
n x2n
1 x2n+1

2 x2n+2

...
n x3n













































such that

xkn+1 ≡2 xkn+2 ≡2 · · · ≡2 xkn+n, for k = 0, 1, 2, and(2)

3n
∑

i=1

xi = 2.(3)

The three equations from (2) mean that the least significant bits of the
arithmetic parts of the first n entries agree and similarly for the second and
the last n entries; equation (3) can be viewed as a combined parity check on
all involved bits.

Claim 12. The relation R is a subuniverse of (An)
3n.
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Proof. By the symmetry of the ti’s and R, it is enough to show that t1
preserves R. Let us take three arbitrary members of R:













































1 x1,1
2 x1,2
...
n x1,n
1 x1,n+1

2 x1,n+2

...
n x1,2n
1 x1,2n+1

2 x1,2n+2

...
n x1,3n













































,













































1 x2,1
2 x2,2
...
n x2,n
1 x2,n+1

2 x2,n+2

...
n x2,2n
1 x2,2n+1

2 x2,2n+2

...
n x2,3n













































,













































1 x3,1
2 x3,2
...
n x3,n
1 x3,n+1

2 x3,n+2

...
n x3,2n
1 x3,2n+1

2 x3,2n+2

...
n x3,3n













































and apply t1 to them to get:

(4) ~r =













































1 x1,1 − x2,1 + x3,1
2 x1,2 ⊕ x2,2 ⊕ x3,2

...
n x1,n ⊕ x2,n ⊕ x3,n
1 x1,n+1 − x2,n+1 + x3,n+1

2 x1,n+2 ⊕ x2,n+2 ⊕ x3,n+2

...
n x1,2n ⊕ x2,2n ⊕ x3,2n
1 x1,2n+1 − x2,2n+1 + x3,2n+1

2 x1,2n+2 ⊕ x2,2n+2 ⊕ x3,2n+2

...
n x1,3n ⊕ x2,3n ⊕ x3,3n













































We want to verify that ~r ∈ R. First note that (2) is satisfied: This follows
from the fact that x − y + z and x ⊕ y ⊕ z give the same result modulo 2,
and the assumption that the original three tuples satisfied (2).

What remains is to verify the property (3). If in the equality (4) above
we replace the operations ⊕ by − and +, verifying (3) is easy: The sum of
the arithmetic parts of such a modified tuple is

(5)

3n
∑

j=1

(x1,j − x2,j + x3,j) =

3n
∑

j=1

x1,j −

3n
∑

j=1

x2,j +

3n
∑

j=1

x3,j = 2− 2 + 2 = 2.

This is why we need to examine the difference between the ⊕-based and
+-based Maltsev operations. For k ∈ {0, 1, 2} and i ∈ {1, . . . , n} we let

ck,i = (x1,kn+i ⊕ x2,kn+i ⊕ x3,kn+i)− (x1,kn+i − x2,kn+i + x3,kn+i)
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By the second part of Observation 8, ck,i does not depend on i (changing i
does not change the xj,kn+i’s modulo ≡2 by condition (2) in the definition
of R). Hence we can write just ck instead of ck,i.

Using c0, c1, and c2 to adjust for the differences between the two Maltsev
operations, we can express the sum of the arithmetic parts of the tuple ~r as

3n
∑

j=1

(x1,j − x2,j + x3,j) +

n
∑

i=2

c0 +

n
∑

i=2

c1 +

n
∑

i=2

c2 = 2 + (n− 1)(c0 + c1 + c2)

where we used (5) to get the right hand side. We chose n odd, hence n− 1
is even and each ck is even by Observation 8, so (n − 1)ck = 0 for any
k = 0, 1, 2. We see that the sum of the arithmetic parts of ~r is equal to 2
which concludes the proof of (3) for the tuple ~r and we are done. �

It is easy to see that












































1 0
2 0
...
n 0
1 1
2 1
...
n 1
1 1
2 1
...
n 1













































,













































1 1
2 1
...
n 1
1 0
2 0
...
n 0
1 1
2 1
...
n 1













































,













































1 1
2 1
...
n 1
1 1
2 1
...
n 1
1 0
2 0
...
n 0













































∈ R, and













































1 0
2 0
...
n 0
1 0
2 0
...
n 0
1 0
2 0
...
n 0













































/∈ R.

However, the last tuple can be obtained from the first three by applying any
minority operation on the set An coordinate-wise. From this we conclude
that An does not have a minority term. �

We note that the above construction of An makes sense for n even as well
and claim that these algebras also have the same key features, namely, by
construction, they have plenty of ‘local’ minority term operations but they
do not have minority terms. The verification of this last fact for n even is
similar, but slightly more technical than for n odd, and we omit the proof
here.

The algebras An can also be used to witness that having a lot of lo-
cal minority-majority terms does not guarantee the presence of an actual
minority-majority term. By padding with dummy variables, any local mi-
nority term of an algebra An is also a term that locally satisfies the minority-
majority term equations. But since each An has a Maltsev term but not a mi-
nority term, then by Theorem 3 it follows that An cannot have a minority-
majority term.
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6. Deciding minority in idempotent algebras is in NP

The results from the previous section imply that one cannot base an effi-
cient test for the presence of a minority term in a finite idempotent algebra
on checking if it has enough local minority terms. This does not rule out
that the problem is in the class P, but to date no other approach to show-
ing this has worked. As an intermediate result, we show, at least, that
this decision problem is in NP and so cannot be EXPTIME-complete (unless
NP = EXPTIME).

We first show that an instance A of the decision problem MinorityId can
be expressed as a particular instance of the subpower membership problem
for A.

Definition 13. Given a finite algebra A, the subpower membership problem
for A, denoted by SMP(A), is the following decision problem:

• INPUT: ~a1, . . . ,~ak,~b ∈ An

• QUESTION: Is ~b in the subalgebra of An generated by {~a1, . . . ,~ak}?

To build an instance of SMP(A) expressing that A has a minority term,
let I = {(a, b, c) | a, b, c ∈ A and |{a, b, c}| ≤ 2}. So |I| = 3|A|2 − 2|A|. For
(a, b, c) ∈ I, let min(a, b, c) be the minority element of this triple. So

min(a, b, b) = min(b, a, b) = min(b, b, a) = min(a, a, a) = a.

For 1 ≤ i ≤ 3, let ~πi ∈ AI be defined by ~πi(a1, a2, a3) = ai and define
~µA ∈ AI by ~µA(a1, a2, a3) = min(a1, a2, a3), for all (a1, a2, a3) ∈ I. Denote
the instance ~π1, ~π2, ~π3, and ~µA of SMP(A) by min(A).

Proposition 14. An algebra A has a minority term if and only if ~µA is
a member of the subpower of AI generated by {~π1, ~π2, ~π3}, i.e., if and only
if min(A) is a ‘yes’ instance of SMP(A) when A is finite.

Proof. If m(x, y, z) is a minority term for A, then applying m coordinatewise
to the generators ~π1, ~π2, ~π3 will produce the element ~µA. Conversely, any
term that produces ~µA from these generators will be a minority term for
A. �

Examining the definition of min(A), we see that the parameters from
Definition 13 are k = 3 and n = 3|A|2 − 2|A|, which is (for algebras with
at least one at least unary basic operation) polynomial in ‖A‖. For A

idempotent, we can in fact improve n to 3|A|2 − 3|A|, since then we do not
need to include in I entries of the form (a, a, a).

In general, it is known that for some finite algebras the subpower mem-
bership problem can be EXPTIME-complete [10] and that for some others,
e.g., for any algebra that has only trivial or constant basic operations, it
lies in the class P. In [11], P. Mayr shows that when A has a Maltsev term,
then SMP(A) is in NP. We claim that a careful reading of Mayr’s proof re-
veals that in fact the following uniform version of the subpower membership
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problem, where the algebra A is considered as part of the input, is also in
NP.

Definition 15. Define SMPUn to be the following decision problem:

• INPUT: A list of tables of basic operations of an algebra A that

includes a Maltsev operation, and ~a1, . . . ,~ak,~b ∈ An.

• QUESTION: Is ~b in the subalgebra of An generated by {~a1, . . . ,~ak}?

We base the main result of this section on the following.

Theorem 16 (see [11]). The decision problem SMPUn is in the class NP.

While this theorem is not explicitly stated in [11], it can be seen that
the runtime of the verifier that Mayr constructs for the problem SMP(A),
when A has a Maltsev term, has polynomial dependence on the size of A
in addition to the size of the input to SMP(A). We stress that Mayr’s
verifier requires that the table for a Maltsev term of A is given as part of
the description of A.

Theorem 17. The decision problem MinorityId is in the class NP.

Proof. To prove this theorem, we provide a polynomial reduction f of MinorityId

to SMPUn. By Theorem 16, this will suffice. Let A be an instance of
MinorityId, i.e., a finite idempotent algebra that has at least one operation.

We first check, using the polynomial-time algorithm from Corollary 7, to
see if A has a Maltsev term. If it does not, then A will not have a mi-
nority term, and in this case we set f(A) to be some fixed ‘no’ instance of

SMPUn. Otherwise, we augment the list of basic operations of A by adding
the Maltsev operation on A that the algorithm produced. Denote the result-
ing (idempotent) algebra by A

′ and note that A
′ can be constructed from

A by a polynomial-time algorithm. Also, note that A
′ is term equivalent to

A and so the subpower membership problem is the same for both algebras.
If we set f(A) to be the instance of SMPUn that consists of the list of tables

of basic operations of A′ along with min(A) then we have, by Proposition 14,
that f(A) is a ‘yes’ instance of SMPUn if and only if A has a minority
term. Since the construction of f(A) can be carried out by a procedure
whose runtime can be bounded by a polynomial in ‖A‖, we have produced

a polynomial reduction of MinorityId to SMPUn, as required. �

7. Conclusion

While Theorem 17 establishes that testing for a minority term for finite
idempotent algebras is not as hard as it could be, the true complexity of
this decision problem is still open. Our proof of this theorem closely ties
the complexity of MinorityId to the complexity of the subpower membership
problem for finite Maltsev algebras and specifically to the problem SMPUn.
Thus any progress on determining the complexity of SMP(A) for finite Malt-

sev algebras may have a bearing on the complexity of MinorityId. There has
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certainly been progress on the algorithmic side of SMP; a major recent pa-
per has shown in particular that SMP(A) is tractable for A with cube term
operations (of which a Maltsev term operation is a special case) as long as
A generates a residually small variety [2] (the statement from the paper is
actually stronger than this, allowing multiple algebras in place of A).

In Section 3 we introduced the notion of a minority-majority term and
showed that if testing for such a term for finite idempotent algebras could
be done by a polynomial-time algorithm, then MinorityId would lie in the
complexity class P. This is why we conclude our paper with a question about
deciding minority-majority terms.

Open problem. What is the complexity of deciding if a finite idempotent
algebra has a minority-majority term?
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