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Summary Linear GMM estimators for dynamic panel models with predetermined
or endogenous regressors suffer from a weak instruments problem when the data are
highly persistent. In this paper we propose new random and fixed effects Limited Infor-
mation Quasi ML estimators (LIQMLEs) for such models. We also discuss LIQMLEs
for models that contain time-varying individual effects. Unlike System GMM estima-
tors, the LIQMLEs do not require mean stationarity conditions for consistency. Such
conditions often do not hold for the models we consider. Our LIQMLEs are based on
a two-step control function approach that includes the first stage model residuals for
a predetermined or endogenous regressor in the outcome equation. The LIMLEs are
more precise than non-linear GMM estimators that are based on the original outcome
equation. The LIQMLEs also compare favourably to various alternative (Q)MLEs in
terms of precision, robustness and/or ease of computation.

Keywords: control function, endogeneity, Generalized Method of Moments (GMM),
Limited Information, predetermined regressors, Quasi Maximum Likelihood (QML),
time-varying individual effects, weak identification.

1. INTRODUCTION

In this paper we propose Random Effects (RE) and Fixed Effects (FE) Limited Infor-
mation Quasi ML estimators for versions of the following panel AR(1) model with one
additional regressor that is not strictly exogenous: 2

yi,t = ρyi,t−1 + βxi,t + µi + εi,t, (1.1)

for i = 1, ..., N and t = 2, ..., T. 3 Specifically, we distinguish between the case where the
regressor xi,t is predetermined with respect to the idiosyncratic error εi,t, i.e.,
E(εi,t|yt−1i , xti, µi) = 0, t = 2, ..., T, where yt−1i = (yi,1 ... yi,t−1)′ and xti = (xi,1 ... xi,t)

′;
and the case where xi,t is contemporaneously correlated with εi,t, i.e., endogenous. 4 In
addition, we allow xi,t to be correlated with the individual effect µi. We also discuss Quasi
MLEs for models that include time-varying individual effects (also known as interactive

1I thank Anurag Banerjee, Jeff Wooldridge and Hong Il Yoo and especially Tom Wansbeek, Petra Todd
(the co-editor) and two referees for helpful suggestions.
2Extensions to models with multiple lags and additional regressors are straightforward.
3A constant, additive time dummies and time trend can easily be included but have been omitted to

keep the exposition simple.
4The former case includes the case where xi,t is not just predetermined w.r.t. εi,t but also weakly

exogenous w.r.t. ρ and β.



2 Hugo Kruiniger

effects or a factor structure), e.g.:

yi,t = ρyi,t−1 + βxi,t + δtµi + εi,t, (1.2)

for i = 1, ..., N and t = 2, ..., T . We assume that xi,1, i = 1, ..., N are observed. The models
considered allow for arbitrary initial conditions and heteroskedasticity. The asymptotic
properties of the estimators are derived assuming N →∞ with T fixed. The FE estima-
tors only exploit differenced data variation and hence can rely on minimal assumptions
for their consistency whereas the RE estimators exploit data in levels.

Following Anderson and Hsiao (1982) and Arellano and Bond (1991), many researchers
estimate a transformed version of a dynamic linear panel model using an instrumen-
tal variables (IV) approach or, more generally, the Generalized Method of Moments
(GMM). 5 GMM estimators are appealing because they are semiparametric, do not in-
voke distributional assumptions and are easy to compute. However, these estimators
suffer from a weak instruments problem when the data are persistent, that is, when
the autoregressive parameter is close or equal to unity, cf. Bond and Blundell (1998).
To alleviate this problem, the latter and Arellano and Bover (1995) proposed the so-
called System GMM estimator which exploits additional moment conditions that rely
on a mean stationarity assumption. However, in many applications this assumption does
not hold.

Chamberlain (1980), Anderson and Hsiao (1981, 1982) and Bhargava and Sargan
(1983) introduced several Random Effects maximum likelihood estimators (MLEs) for
homoskedastic dynamic panel models with strictly exogenous regressors. Hsiao et al.
(2002; henceforth HPT) proposed so-called Transformed MLEs for such models. They
can be regarded as Fixed Effects MLEs. Alvarez and Arellano (2004) stressed that if
there is time-series heteroskedasticity, then the MLEs need to allow for it to be consis-
tent, while Kruiniger (2013) showed that MLEs for the panel AR(1) model that allows
for heteroskedasticity over time remain consistent under arbitrary heteroskedasticity and
non-normality, and, importantly, also when the autoregressive parameter is close or equal
to unity. These MLEs do not require mean stationarity.

If the data distribution is correctly specified, then these MLEs have better finite sample
properties than their GMM counterparts that exploit overidentifying moment conditions,
including non-linear GMM estimators in the spirit of Ahn and Schmidt (1995), especially
when the instruments are weak and/or many, cf. Anderson et al. (1982), Alvarez and
Arellano (2003), Kruiniger (2013) and Hsiao and Zhang (2015). Of course, when the
data distribution is incorrectly specified, then under first-order asymptotics the Quasi
MLEs will be less precise than some of their optimal GMM counterparts. 6

Motivated by these advantages of QML over GMM estimators, we first propose in
section 2 RE LIQMLEs for dynamic panel models with predetermined regressors that can
be correlated with the individual effect(s). Moral-Benito (2013) discusses what he calls
subsystem LIMLEs (ssLIMLEs) for such models, which estimate them jointly with a set
of reduced form equations for the predetermined regressors and the initial observations. 7

Bai (2013b) discusses Full Information (FI) QMLEs for such models; he considers LIQ-

5Holtz-Eakin et al. (1988) and Ahn et al. (2001, 2013) proposed GMM estimators for models with time-
varying individual effects.
6Note, however, that the first-order asymptotic standard errors of such GMM estimators ignore the

variation due to the presence of estimated parameters in the weight matrix and can be severely downward
biased in finite samples, cf. Windmeijer (2005).
7However, Moral-Benito (2013) does not allow for interactive effects in the outcome equation.
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MLEs for models with predetermined regressors that are weakly exogenous w.r.t. ρ and
β. Our LIQMLEs are akin to a two-step control function approach, where residuals from
first stage regressions for endogenous explanatory variables are included in the second
stage model, cf. Wooldridge (2010, chap. 6). Unlike Moral-Benito (2013) and Bai (2013b),
we also discuss FE QMLEs for the models considered in this paper. The FE LIQMLE
is sometimes more efficient than the RE LIQMLE, e.g. in the case of an equation of a
panel VAR model, when the individual time series are mean stationary and persistent
and the variances of the initial conditions are small as compared to their values in case
of a covariance stationary VAR process.

Our RE LIQMLE is more robust than Bai’s RE FIQMLE: it remains consistent when
the model of a predetermined regressor that is weakly exogenous w.r.t. ρ and β is mis-
specified, whereas the FIQMLE can become inconsistent in this case. Furthermore, we
will argue in this paper that the global maxima of the likelihood functions associated
with our LIQMLEs are more likely to be found than the global maxima of the likelihood
functions associated with the FIQMLEs when the number of predetermined regressors
(K) and the number of factors in the system of equations (R) are not small. Never-
theless, like the LIQMLEs, the FIQMLEs can be computed for long panels, i.e., panels
with large T , whereas computation of the ssLIMLE requires that (T − 1) < N/K, which
suggests that the ssLIMLE is not suitable for panels with relatively large T . 8 Further-
more, as the ssLIMLE is partly based on reduced form equations for the predetermined
regressors, consistency of the ssLIMLE requires that the lag length of these equations
is not chosen to be too low. Finally, the Transformed MLE that HPT (2002) pro-
posed for models with weakly exogenous regressors and time-invariant individual effects
is also valid when the regressors are predetermined but not weakly exogenous. It can also
be generalized to allow for heteroskedasticity. We will argue that it is less efficient but
more robust than alternative MLEs, including ours, as no correctly specified model for
xi,t is required.

In section 2 we also propose LIQMLEs for dynamic panel models with endogenous
regressors. 9 10 Because they include the first stage model residuals for an endogenous or
a predetermined regressor in the outcome equation, our LIMLEs are more precise under
normally distributed data than non-linear GMM estimators in the spirit of Ahn-Schmidt
(1995). Table 1 below compares some of the aforementioned estimators for models with
constant individual effects with our RE LIMLE in terms of their applicability and ease
of use. When mean stationarity is likely to hold or the data are not close to normally
distributed, a System GMM estimator or an Ahn-Schmidt type GMM estimator may be
preferable to the RE LIQMLE.

In section 3 we examine the finite sample properties of several RE LIQML and GMM
estimators, the ssLIMLE, the RE FIQMLE and some related Wald tests for fixed T dy-
namic panel models with predetermined regressors and time-invariant individual effects
in a Monte Carlo study. We find that the RE LIMLEs for ρ (and β) usually have better
finite sample properties than the ssLIMLE for ρ and β and the RE FIMLE for ρ. Using
simulation experiments Moral-Benito (2013) has also compared the finite sample prop-

8Williams et al. (2017) note that their algorithm for computing the ssLIMLE works best when T < 10.
9The RE FIQMLE discussed in Bai (2013b) for models with predetermined regressors that are not

weakly exogenous w.r.t. ρ and β can also be used for models with endogenous regressors.
10One can construct consistent LIQMLEs for static panel models with predetermined or endogenous
regressors analogously to the LIQMLEs discussed in this paper.
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erties of various ML and GMM estimators for such models, while Juodis and Sarafidis
(2018) have compared the finite sample properties of two RE LIQMLEs of Bai (2013b)
and various IV and GMM estimators for similar models with strictly or weakly exogenous
regressors and interactive effects. Section 4 applies various estimators to a panel VAR
model for employment and wage, and section 5 concludes.

Table 1. Comparison of various estimators for dynamic panel models.
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Data are persistent &
mean stationary X X X X X X

Data are not persistent &
not mean stationary X X X X X X

Covariate(s) predetermined
but not weakly exogenous X X X X X X

Model includes endo-
genous covariate(s) X X X X X

Large N and T X X X X X X

FE version available X X X X

Easy to compute X X X X X

Robust X X X X

X: the estimator is (more) “suitable” in this case/regard (than (an) alternative estimator(s));
HPT MLE: version for predetermined regressors; LIMLE we: assumes weak-exogeneity.

2. THE ASSUMPTIONS AND THE ESTIMATORS

Throughout the paper we rely on the following Basic Assumptions: (i) T is fixed (ii)
T ≥ 3 (iii) The observations are independently distributed across the individuals condi-
tional on the initial observations and, if present, factor(s). (iv) E(εi,t|yt−1i , xt−1i , µi) = 0
for i = 1, ..., N and t = 2, ..., T. (v) Relevant moments of the data exist as required for
establishing the asymptotic properties of the estimators.

Because we assume that T is fixed, we do not need to restrict the parameter space for
ρ and can allow ρ > 1. We could allow T to grow large if ρ is restricted to lie in (−1, 1].
When ρ ≥ 1, the individual effect µi may not be part of the DGP, but we do not impose
such a restriction on the models. Furthermore, although the MLEs that we discuss below
are based on Gaussian likelihood functions, the true distributions of the data can be
non-Gaussian and heterogeneous. In particular, the idiosyncratic errors are allowed to
exhibit arbitrary heteroskedasticity across both dimensions of the panel even though the
MLEs that we propose use the same variance parameters for all individuals, cf. Kruiniger
(2013). The errors can also be conditionally heteroskedastic over time.
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In this section we will first discuss QMLEs that are based on a single augmented
equation, i.e., LIQMLEs for dynamic panel models with predetermined regressors and
subsequently we will discuss FI- and LIQMLEs for models with endogenous regressors.
The consistency proofs for the LIQMLEs are straightforward generalizations of those
given in the working paper (wp) version of Kruiniger (2013) for QMLEs for similar
panel AR(1) models with time-invariant individual effects but without covariates. These
proofs are reproduced in Online Appendix S.1 below. 11 12 When ρ = 1, consistency of
the QMLEs requires that T ≥ 4 rather than T ≥ 3, cf. Kruiniger (2013).

2.1. Limited information QML estimators for dynamic panel models with
predetermined regressors

We first consider single equation based LIQML estimators for ρ and β in (1.1) or (1.2)
when the xi,t are predetermined with respect to the εi,t, i.e., E(εi,t|yt−1i , xti, µi) = 0,
t = 2, ..., T, but the xi,t may still be directly affected by (some of) the same individual
effect(s) as the yi,t. Initially we will assume that the xi,t obey the following specification:

xi,t = αxxi,t−1 + βxyi,t−1 + γxµi + λi + ξi,t, (2.3)

where αx, βx and γx are parameters, µi and λi are independent and ξi,s and εi,t are
independent for all s, t. As xi,t depends on yi,t−1, xi,t is correlated with lags of εi,t and
hence predetermined with respect to εi,t. Furthermore, xi,t is correlated with µi even if
γx = 0. However, if γx = 0, then xi,t is weakly exogenous with respect to ρ and β in
both (1.1) and (1.2). A consistent RE LIQMLE for ρ and β when βx 6= 0 but γx = 0 is
given in Bai (2013b). If βx = 0, then xi,t is strictly exogenous with respect to the εi,s.

We will now describe a single equation RE LIQML approach to estimating ρ and β in
(1.1) when both βx 6= 0 and γx 6= 0 in (2.3) but the ξi,t are homoskedastic over time.
Following the logic of the RE FIQML approach (cf. Bai, 2013b, and section 2.2 below)
we first consider replacing µi in (1.1) by its projection on 1, yi,1 and xi,1, i.e., by

µi = µ
y

+ πyyi,1 + ϕ
y
xi,1 + ṽy,i,

where ṽy,i is the projection residual. Applying the ML method to

yi = ρyi,−1 + βxi + µ
y
ι+ πyyi,1ι+ ϕ

y
xi,1ι+ ũy,i,

where yi = (yi,2 ... yi,T )′, yi,−1 = (yi,1 ... yi,T−1)′, xi = (xi,2...xi,T )′, ι = (1 1 ... 1)′,

ũy,i = ṽy,iι+ εi, εi = (εi,2 ... εi,T )′ and Φ̃yy = E(ũy,iũ
′
y,i), will result in an inconsistent

estimator for ρ and β unless γx = 0 because E(x′iΦ̃
−1
yy ũy,i) 6= 0 due to E(µiṽy,i) 6= 0.

11These proofs assume −1 < ρ ≤ 1 and that µi drops out of the model when ρ = 1. Fixed T, large N
consistency of the QMLEs can still easily be shown when these restrictions are relaxed.
12Consistency of the QMLEs can be proved by using Theorem 2.1 in Newey and McFad-
den (1994, henceforth NMcF). The QMLEs are only functions of the first two moments of the
data. Assuming existence of (2 + ε)th moments of the data if the data are heterogeneously
distributed, where ε > 0, one can show that the quasi likelihood functions converge uniformly in prob-
ability to the same non-random functions as they would converge to if the data were i.i.d. and normal.
Therefore to verify the other conditions of Theorem 2.1 of NMcF we can use Theorem 2.5 in NMcF.
As we allow for heteroskedasticity of the errors, we can prove that the parameters are identified along
the lines of Kruiniger (2013wp), see Online Appendix S.1 below. The other conditions of Theorem 2.5
of NMcF, including the dominance condition, are easily verified, again see Online Appendix S.1.
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However, one can obtain a consistent RE LIQML estimator for ρ and β in (1.1) by
replacing µi in (1.1) by

µy + πyyi,1 + ϕyxi,1 + ψyι
′(xi − α̂xxi,−1 − β̂xyi,−1) + vy,i, (2.4)

where α̂x and β̂x are preliminary consistent estimators of αx and βx. To see this, let
uy,i,t = vy,i + εi,t and Φyy = E(uy,iu

′
y,i). Project γxµi + λi on 1, yi,1 and xi,1 so that

γxµi + λi = µ
x

+ πxyi,1 + ϕ
x
xi,1 + ṽx,i and let ũx,i,t = ṽx,i + ξi,t, Φ̃yx = E(ũy,iũ

′
x,i) and

Φ̃xx = E(ũx,iũ
′
x,i). Noting that Φ̃yxΦ̃−1xx ∝ ιι′, 13 one can interpret the augmented version

of (1.1) in which µi is replaced by (2.4) as an approximation of a conditional model for
yi,t given yi,t−1, xi,t, yi,1, xi,1 and ũx,i with an error term that is an approximation

of ũy,i − Φ̃yxΦ̃−1xx ũx,i so that plimN→∞N−1
∑
i(ũx,iu

′
y,i) = 0. Consistency of the RE

LIQMLE based on (1.1) with µi replaced by (2.4) follows from the fact that the likelihood
of uy,i = plimN→∞ uy,i is the same as the likelihood of yi given yi,1, xi,1 and ũx,i which is

equal to
∏T
t=2 f(yi,t|yi,t−1, xi,t, yi,1, xi,1, ũx,i). 14 15 The consistency proof is similar to

that given in Online Appendix S.1 for the RE QMLE for the panel AR(1) model without

covariates. Finally, note that plimN→∞N−1
∑
i((xi− α̂xxi,−1− β̂xyi,−1)′ιι′Φ−1yy uy,i) = 0,

plimN→∞N−1
∑
i(y
′
i,−1Φ−1yy uy,i) = 0 and plimN→∞N−1

∑
i(x
′
iΦ
−1
yy uy,i) = 0, which is in

line with consistency of the RE QMLE.
Our RE LIQMLE can be viewed as a two-step control function approach to estimation,

where residuals from a first stage are inserted in the second stage estimation problem,
cf. Wooldridge (2010, chapter 6). It is important to have α̂x and β̂x in (2.4) rather than
the unknown parameters αx and βx, because estimating ρ and β jointly with αx and βx
by a single equation LIQML approach would result in an inconsistent estimator.

One can apply GMM to (2.3) to obtain the estimators α̂x and β̂x. Such GMM esti-
mators can exploit the Arellano-Bond (1991) type moment conditions
E(xi,s(∆xi,t−αx∆xi,t−1−βx∆yi,t−1)) = 0, E(yi,s(∆xi,t−αx∆xi,t−1−βx∆yi,t−1)) = 0,
s = 1, ..., t − 2, t = 3, ..., T, and the Ahn-Schmidt (1995) type nonlinear moment condi-
tions E((xi,t − αxxi,t−1 − βxyi,t−1)(∆xi,t−1 − αx∆xi,t−2 − βx∆yi,t−2)) = 0, t = 4, ..., T.
Alternatively, one could combine

yi,t = ρyi,t−1 + βxi,t +µy + πyyi,1 +ϕyxi,1 +ψyι
′(xi− α̂xxi,−1− β̂xyi,−1) + uy,i,t, (2.5)

with a similar approximate conditional model for xi,t, i.e.,

xi,t = αxxi,t−1+βxyi,t−1+µx+πxyi,1+ϕxxi,1+ψxι
′(yi− ρ̂yi,−1− β̂xi,−1)+ux,i,t, (2.6)

and estimate these equations simultaneously by using the QML method while treating
ρ̂, β̂, α̂x and β̂x as QML estimates. Although the latter approach would involve more
than one equation, it can still be regarded as a LI approach as it does not fully impose
the structure of the covariance matrix of the composite error vectors ũy,i and ũx,i on the
system of equations (i.e., on the ψ-parameters and the parameters appearing in the co-
variance matrices of uy,i and ux,i) unlike the FIQML approach. However, simultaneously
estimating (2.5) and (2.6) may not be entirely straightforward due to non-linearities. To

13Under homoskedasticity of the ξi,t over time, Φ̃−1
xx = σ−2

ξ (IT−1 − ιι′/ι′ι) + cxιι′ for some constants

σ2
ξ and cx and hence Φ̃yxΦ̃−1

xx is proportional to ιι′.
14Note that uy,i depends on α̂x and β̂x, whereas uy,i = plimN→∞ uy,i depends on αx and βx.
15Note that given yi,1, xi,1 and ũx,i, the elements of xi can be recovered by using (2.3) and yi.
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simplify the computations, one could instead use an iterative QML estimation procedure
that alternates between the two equations and starts with consistent GMM estimates for
αx and βx (or for ρ and β). However, this procedure is not guaranteed to converge.

When the ξi,t are heteroskedastic over time, a consistent RE LIQMLE can be based
on (1.1) with µi replaced by (2.9) below. A FE LIQMLE for ρ and β in (1.1) when xi,t
obeys (2.3) with βx 6= 0 and γx 6= 0 and the ξi,t are homoskedastic over time can be
obtained by applying the ML method to

∆̃yi,t = ρ∆̃yi,t−1 + β∆̃xi,t + µy + ψyι
′(∆̃xi − α̂x∆̃xi,−1 − β̂x∆̃yi,−1) + uy,i,t, (2.7)

where the operator ∆̃ creates deviations from an initial observation, e.g. ∆̃xi,−1 = xi,−1−
xi,1ι, and uy,i,t = vy,i + εi,t. The FE model (2.7) is derived from the RE model (2.5) by

applying ∆̃ to the observables in (2.5) and redefining vy,i. One could estimate (2.3) by a
suitable Transformed MLE of Hsiao et al. (2002) to obtain FE estimates of αx and βx

Next we discuss limited information RE QML estimation of ρ and β in the more general
model (1.2) when, instead of (2.3), xi,t, for its part, obeys the more general equation

xi,t = αxxi,t−1 + βxyi,t−1 + γtµi + ϑtλi + ξi,t, (2.8)

where αx, βx, γt and ϑt are parameters, µi and λi are independent and ξi,s and εi,t are
independent for all s, t. A consistent RE LIQMLE for ρ and β in (1.2) when βx 6= 0
but γt = 0 for all t is given in Bai (2013b). Regardless of whether the ξi,t are homo- or
heteroskedastic, when βx 6= 0 and γt 6= 0 for some or all t, a consistent RE LIQMLE for
ρ and β can be obtained by applying the ML method to (1.2) with µi replaced by

µy + πyyi,1 + ϕyxi,1 +
T∑
t=2

ψy,t(xi,t − α̂xxi,t−1 − β̂xyi,t−1) + vy,i, (2.9)

where α̂x and β̂x are preliminary consistent estimators of αx and βx such as e.g. GMM
estimators due of Ahn, Lee and Schmidt (2013). The terms added to (1.2) ensure that
plimN→∞N−1

∑
i((γsµi + ϑsλi + ξi,s)uy,i,t) = 0, plimN→∞N−1

∑
i(yi,1uy,i,t) = 0 and

plimN→∞N−1
∑
i(xi,1uy,i,t) = 0 for all s, t, where uy,i,t = δtvy,i + εi,t, and effectively

consistency of the RE LIQMLE for the parameters in (1.2), cf. the discussion in p. 6.
Finally, we discuss RE LIQML estimation of ρ and β in the model with multiple

covariates and multiple time-varying individual effects, i.e.,

yi,t = ρyi,t−1 +
K∑
k=1

βkxk,i,t +
R∑
r=1

δr,tµr,i + εi,t, (2.10)

where δr,t will be treated as parameters, and the xk,i,t obey

xk,i,t = αx,kxk,i,t−1 + βx,kyi,t−1 +
R∑
r=1

γk,r,tµr,i + ϑk,tλk,i + ξk,i,t, (2.11)

where αx,k, βx,k, γk,r,t and ϑk,t are parameters, µr,i, λk,i and λl,i are independent for
all k, l and r and ξk,i,s and εi,t are independent for all k, s, t. To achieve identification
of (2.10) one could impose R2 restrictions on δr,t, r = 1, . . . , R and t = 2, . . . , T . A
well-known identification strategy imposes δr,r+1 = 1 and δr,s+1 = 0 for r 6= s and
1 ≤ r, s ≤ R, see e.g. Bai and Li (2012). A similar comment applies to (2.11). A consistent
RE LIQMLE for (2.10) can be obtained by applying the ML method to it with µr,i



8 Hugo Kruiniger

replaced by

µy,r+πy,ryi,1 +ϕy,rxi,1 +
K∑
k=1

T∑
t=2

ψy,k,r,t(xk,i,t− α̂x,kxk,i,t−1− β̂x,kyi,t−1)+vy,r,i, (2.12)

where α̂x,k and β̂x,k are preliminary consistent estimators of αx,k and βx,k, k = 1, 2, ...,K.
A related FEQMLE can be obtained by replacing yi,t and xk,i,t by yi,t− yi,1 and xk,i,t−
xk,i,1 for t = 1, ..., T and k = 1, 2, ...,K in the augmented model for y.

Remark 1: To decide whether to treat x(k,)i,t as strictly exogenous or predetermined
w.r.t. εi,t one needs to estimate (2.3), (2.8) or (2.11) first and then test whether βx(,k) = 0.

Remark 2: If γx = 0, γt = 0 or γk,r,t = 0, t = 2, ..., T, then the term(s) involving
ψy, ψy,t or ψy,k,r,t, t = 2, ..., T, can be dropped from (2.4), (i.e., from (2.5)), (2.9)
or (2.12) without causing inconsistency of the RE QMLE, cf. Bai (2013b). Thus one
can test weak exogeneity of a predetermined regressor by testing ψy = 0, ψy,t = 0 or
ψy,k,r,t = 0, t = 2, ..., T, in the relevant RE model. However, even if γx = 0, γt = 0 or
γk,r,t = 0, t = 2, ..., T, omitting the term(s) involving ψy, ψy,t or ψy,k,r,t, t = 2, ..., T, from
(2.7) or one of its generalizations would cause inconsistency of the FE QMLE because

∆̃xk,i,t − αx,k∗ ∆̃xk,i,t−1 − βx,k∆̃yi,t−1 would still contain an individual effect that is
correlated with µi.
Remark 3: Unless x is weakly exogenous, consistency of the LIMLE for ρ and β

requires that not only the model for y but also the model for x is correct. One can use
the Sargan test to test for misspecification of these models.
Remark 4: The Transformed MLE of Hsiao et al. (2002) for models with predeter-

mined regressors is less efficient than our FE MLEs, e.g. the FE MLE based on (2.7).
This can be seen as follows. The Transformed MLE is based on the following system of
equations:

∆yi,2 = δ∗0 + δ∗1∆xi,2 + ξ∗i + εi,2, (2.13)

∆yi,t = ρ∆yi,t−1 + β∆xi,t + ∆εi,t, t = 2, ..., T,

where E(ξ∗i ) = 0 and E(ξ∗i εi,t) = 0, t = 2, ..., T, and Gaussianity of the error compo-
nents. The system of equations in (2.7) can be rewritten as the system in (2.13) with

δ∗1∆xi,2 in the equation for ∆yi,2 replaced by β∆xi,2+ψyι
′(∆̃xi− α̂x∆̃xi,−1− β̂x∆̃yi,−1).

Thus in the case of our FE MLE, the equation for ∆yi,2 also provides information on β
and hence, when T is fixed, our FE MLE for β and ρ is more precise than the Trans-
formed MLE. On the other hand, consistency of the Transformed MLE does not depend
on a correctly specified model for ∆̃x and hence this estimator is more robust in this
respect than our FE MLE. Both estimators are restricted versions of an estimator that
is based on

∆yi,2 = δ∗0 + δ∗1∆xi,2 + ψyι
′(∆̃xi − α̂x∆̃xi,−1 − β̂x∆̃yi,−1) + ξ∗i + εi,2, (2.14)

∆yi,t = ρ∆yi,t−1 + β∆xi,t + ∆εi,t, t = 2, ..., T.

If the hypothesis δ∗1 = β is rejected, one should not use the FE MLE based on (2.7). Simi-
lar comments apply to versions of these estimators that are valid under heteroskedasticy.
Remark 5: Our LIQMLEs are (much) easier to compute than the ssLIMLE of Moral-

Benito (2013). Furthermore, although the latter uses reduced form models for the re-
gressors, the lag length of x and y in these models is restricted by the availability of
data.
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Remark 6: the LIQMLEs discussed in this section are based on augmented models for
y that include generated regressors, namely the residuals of the models for the regressors.
To compute standard errors for the LI (Quasi) MLEs for ρ and βk, k = 1, ...,K, one can
make use of (a sandwich version of) the formula for the limiting variance of two-step
MLEs that is given in equation (34) in Murphy and Topel (1985) with R4 = 0. One can
also use the bootstrap to compute standard errors for the LIQMLEs. The latter approach
is particularly attractive when there are several predetermined regressors.

2.2. QML estimators for dynamic panel models with endogenous
regressors

The preceding limited information RE and FE QML estimators will no longer be con-
sistent for ρ and β in (1.1) or (1.2) when ξi,t and εi,s are correlated for (some) s < t,
in which case xi,t is still predetermined with respect to εi,t, or when ξi,t and εi,s are
contemporaneously correlated, in which case xi,t is endogenous even if γx = 0 in (2.3)
or γt = 0, t = 2, ..., T in (2.8). Note that in both cases, xi,t is also still affected by lags
of εi,t through yi,t−1. In these cases, we can adopt a Full Information QML approach to
estimation that is based on a VAR model, cf. Bai (2013b). Upon substituting the RHS
of (2.8) for xi,t in (1.2) and letting ξi,t absorb ϑtλi, we obtain the following VAR model:[

yi,t
xi,t

]
=

[
ρ+ βxβ αxβ
βx αx

] [
yi,t−1
xi,t−1

]
+

[
(δt + γtβ)

γt

]
µi +

[
εi,t + βξi,t

ξi,t

]
. (2.15)

This model can be written more succinctly as

zi,t = Azi,t−1 + ζtµi + ωi,t, (2.16)

where zi,t = (yi,t, xi,t)
′ and the other symbols are defined implicitly. From this point

onwards we will focus the discussion on the case where ξi,t and εi,s are only contempo-
raneously correlated (i.e., when s = t). To obtain the RE FIQMLE for ρ and β in (2.16),
apply the ML method to the model with µi replaced by

µ+ φzi,1 + vi = µ+ πyi,1 + ϕxi,1 + vi,

that is, to

zi,t = Azi,t−1 + ζt(µ+ πyi,1 + ϕxi,1) + ui,t, (2.17)

where ui,t = ζtvi +ωi,t.
16 To achieve identification we can impose σ2

v = 1. Note that not
only the ζt but also β appears in both the mean equation and the covariance matrix of the
ui,t. However, if Cov(ξi,t, εi,t) 6= 0 for all t, then β is only identified by the mean equations
and the FIQMLE for ρ and β can be computed more easily by leaving the covariance
matrices for the ωi,t unrestricted without affecting its efficiency. On the other hand, if
Cov(ξi,t, εi,t) = 0 for at least some t, then it is more practical to apply the FIQMLE
to the system that consists of (1.2) and (2.8) with µi replaced by µ+ πyi,1 + ϕxi,1 + vi
rather than to (2.17).

16When ξi,t and εi,s are correlated for (some) s < t, then the ωi,t will be correlated with some lag(s)
of yi,t and possibly xi,t. In this case we can still obtain a consistent FIQMLE by including additional
terms in the model, cf. the approach in Blundell and Smith (1991). For instance, if ξi,t is correlated with
εi,t−1 and εi,t−2, then add the term βτ3yi,1 to the equation for yi,3, the term τ3yi,1 to the equation for
xi,3, the term β(τ2yi,1 + ϑ2xi,1) to the equation for yi,2 and the term τ2yi,1 + ϑ2xi,1 to the equation
for xi,2.
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The model in (2.16) can also be estimated by a FE FIQMLE. In this case we estimate
the system

∆̃zi,t = A∆̃zi,t−1 + λ+ λi + ζtµi + ωi,t, (2.18)

where ∆̃zi,t = zi,t− zi,1, λ = (λ1 λ2)′ and λi = (λ1,i λ2,i)
′. To identify the model we can

impose σ2
µ = 1.

If Cov(ξi,t, εi,t) = 0 for some or all t, then it is again more practical to apply the
FIQMLE to a transformed version of the original system, which consists of

∆̃yi,t = ρ∆̃yi,t−1 + β∆̃xi,t + λ3 + λ3,i + δtµi + εi,t and (2.19)

∆̃xi,t = αx∆̃xi,t−1 + βx∆̃yi,t−1 + λ2 + λ2,i + γtµi + ξi,t.

Consistency of the FIQMLE for ρ and β (and αx and βx) in (2.17) (or (2.18)) can be
shown similarly to the RE LIQMLE for the panel AR(1) model with a time-varying
individual effect, cf. Bai (2013b). Note that the equation for xi,t is included in system
(2.17) to achieve consistency rather than efficiency; estimating the equations in (2.17)
separately by ML would result in an inconsistent estimator of the parameters unless
γt = 0, t = 2, ..., T .

Bai (2013b) describes the ECM algorithm of Meng and Rubin (1993) for computing
QMLEs based on likelihood functions very similar to (2.17). The algorithm can be applied
directly to (2.17) when Cov(ξi,t, εi,t) 6= 0 for all t or to (1.2) and (2.8) with µi replaced
by µ+ πyi,1 +ϕxi,1 + vi when Cov(ξi,t, εi,t) = 0 for at least some t, see remark 10 below
for further discussion.

As an alternative to the above estimators, we can generalize the two-step LIQMLEs
of section 2.1 to control for endogeneity of a regressor, i.e., correlation between, say,
xk,i,t or ∆̃xk,i,t and the idiosyncratic error term, by adding the composite residual of

the equation for xk,i,t or ∆̃xk,i,t as a regressor to the equation for yi,t or ∆̃yi,t for each
t ∈ {2, . . . , T}.
Remark 7: The standard errors for the FIQMLEs can be computed by using a sand-

wich formula. The standard errors for the LIQMLEs can be computed by using equation
(34) in Murphy and Topel (1985) with R4 6= 0 or the bootstrap, cf. remark 6.
Remark 8: The FIQML approach can, of course, also be used for models with prede-

termined regressors where Cov(ξk,i,t, εi,s) = 0 for all k ∈ {1, ...,K} and s, t ∈ {2, ..., T}
and offers an alternative to the LIQMLEs that have been discussed in section 2.1. When
the models are correctly specified and the data are i.i.d. across the individuals and Gaus-
sian, both the FIMLEs and the LIMLEs for ρ and β are consistent and asymptotically
efficient. However, the LIQMLE and FIQMLE have different finite sample properties.
Furthermore, the LI approach may be more attractive than the FI approach from a com-
putational point of view especially when the number of regressors and the total number
of factors are not small, see remark 10 below.
Remark 9: The RE LIQMLEs for ρ and β in models that contain predetermined

regressors with Cov(ξk,i,t, εi,s) = 0 for all s, t ∈ {2, ..., T} and possibly some endogenous
regressors are more robust than the RE FIQMLEs for ρ and β because they remain
consistent when the model for a regressor that is weakly exogenous w.r.t. ρ and β is
misspecified, whereas the FIQMLEs will become inconsistent in that case if this regressor
is not weakly exogenous w.r.t. the slope parameters in the model for another regressor of
the model for y that is not weakly exogenous w.r.t. ρ and β. The reason for the robustness
of the RE LIQMLE is that, unlike the RE FIQMLE, the LI method estimates all the
equations in the system separately and thereby prevents misspecification of a model for
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a regressor that is weakly exogenous w.r.t. ρ and β from causing inconsistency of the
estimator for these parameters through spillover effects.
Remark 10: The likelihood functions associated with the FI- and LIQMLEs for mod-

els with interactive effects are nonlinear in the parameters and have multiple maxima.
In particular, note that the mean equations are bilinear in the parameters. Note also
that the factors appear both in the mean equation(s) and in the covariance matrix of the
composite errors and that consistent QML estimation of the slope parameters depends
on consistent estimation of the covariance matrix of the composite errors. The ECM
algorithm is only guaranteed to converge to a local maximum of the likelihood function.
To ensure consistency of the QMLE that is computed by using the ECM algorithm, one
could use consistent starting values. As part of a method to obtain the latter, one can
use a consistent version of the GMM estimator of Ahn, Lee and Schmidt (2013) that
relies on a generalization of the CCE approach introduced by Pesaran (2006) and grid
search over the autoregressive parameter(s) to estimate the factors and the slope para-
meters, see Kruiniger (2019) for details. Next one can use OLS to estimate the projection
parameters. The composite residuals and estimates of the factors can then be used to
obtain starting values for the elements of the covariance matrix of the projection errors
(‘loadings’) and the idiosyncratic variances. However, the higher the number of equations
and the total number of factors in the system, the higher the number of local maxima
of the likelihood function for the full system 17 and the higher the probability of not
converging to its global maximum even if one uses consistent starting values. In such
a situation using the LIQMLE is appealing. When computing the LIQMLE, the ECM
algorithm is applied to a smaller estimation problem, one avoids having to estimate the
covariance matrix of the ‘loadings’ of all the factors in the system and one also avoids
estimating the projection parameters in the equations for the regressors. Note also that
the GMM estimates that are used by the ECM algorithm as starting values to compute
the FIQMLE are also used by the the LIQMLEs either as starting values or to construct
the controls for endogeneity. This suggests that the cost of computing the LIQMLEs is
lower than that of the FIQMLE, especially when the system is not small.
Remark 11: The number of initial observations of y and x that should be included

in the augmented equation(s) depends on the lag structures, that is, on the lag lengths
of the original equations for yi,t and xi,t.
Remark 12: To test whether yi,t is affected by xi,t−1 rather than by xi,t one can

follow a two-step testing procedure. In the first step one estimates the parameters of the
two competing models. In the second step one first estimates an equation for yi,t that
includes a convex combination of the two estimated equations for yi,t from step 1, e.g.

yi,t = λ(ρ̂yi,t−1+β̂xi,t)+(1−λ)(ρ̂(t−1)yi,t−1+β̂(t−1)xi,t−1)+δt(µ+πyi,1+ϕxi,1+ψyι
′(xi−

α̂xxi,−1 − β̂xyi,−1)) + ui,t if one assumes that Cov(ξi,t, εi,s) = 0 for all s, t ∈ {2, ..., T},
where ρ̂(t−1) and β̂(t−1) are estimators for ρ and β in the model in which yi,t is affected
by xi,t−1 rather than by xi,t and ui,t = δtvi + ηi,t with vi and ηi,t error terms, and then
tests whether yi,t is affected by xi,t−1 rather than by xi,t by testing λ = 0.

Remark 13: Once the correct lag structures of x and y in the equation for yi,t have
been determined, one can proceed to test for endogeneity of the regressor(s).

17This is suggested by a version of Bézout’s theorem.
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3. THE FINITE SAMPLE PERFORMANCE OF THE ESTIMATORS

In this section we compare through Monte Carlo simulations the finite sample properties
of several RE LI- and FIMLEs and GMM estimators for the slope coefficients in the first
equation of various bivariate panel VAR(1) models with time-invariant individual effects
and some related t-tests. In all our simulation experiments the regressors are correlated
with the time-invariant error components of the equations while the idiosyncratic errors
are contemporaneously uncorrelated. We study how the properties of the estimators
are affected if we change (1) the joint distributions of the initial conditions or (2) the
correlation between the time-invariant error components of the equations or (3) the
coefficients of the regressors. The time series for {(yi,t xi,t)} were generated according to(

yi,t − µy,i
xi,t − µx,i

)
=

(
ρ β
βx αx

)(
yi,t−1 − µy,i
xi,t−1 − µx,i

)
+

(
εi,t
ξi,t

)
We conducted the simulation experiments for (T,N) = (5, 100), (10, 100), (5, 500) and
(10, 500) and five combinations of slope coefficients: A) ρ = αx = 0.2 and β = βx = 0.6;
B) ρ = αx = 0.6 and β = βx = 0.2; C) ρ = αx = 0.75 and β = βx = 0.2; D)
ρ = αx = 0.9 and β = βx = 0.1; and E) ρ = 0.75, αx = 0.4 and β = βx = 0.2. In all
simulation experiments (ε′i ξ

′
i)
′ ∼ i.i.d. N(0, diag(σ2

ε, σ
2
ξ)⊗ IT−1) with ξi = (ξi,2 ... ξi,T )′

and σ2
ε = σ2

ξ = 1, and the vectors of the error components (µy,i µx,i)
′ and (ε′j ξ

′
j)
′ are

mutually independent for all i, j ∈ {1, ..., N}. Given the values of N and T and ρ, αx, β
and βx we considered four designs of the experiments:

I) {(yi,t, xi,t)} is covariance stationary and µy,i = µx,i ∼ i.i.d. N(0, σ2
µ) with σ2

µ = 1.
This means that there exists a matrix R such that (yi,1−µy,i xi,1−µx,i)′ = R(εi,1 ξi,1)′,

where (εi,1 ξi,1)′ ∼ i.i.d. N(0, diag(σ2
ε, σ

2
ξ)).

II) yi,1 = µy,i + εi,1, xi,1 = µx,i + ξ
i,1

and µy,i = µx,i ∼ i.i.d.N(0, σ2
µ) with σ2

µ = 1 and

(εi,1 ξi,1)′ ∼ i.i.d.N(0, ς ∗ diag(σ2
ε, σ

2
ξ)), where ς = 1.

III) yi,1 = µy,i + εi,1, xi,1 = µx,i + ξ
i,1

, µy,i = 0.8 ∗ µz,i + 0.6 ∗ λy,i and µx,i =

0.8 ∗ µz,i + 0.6 ∗ λx,i with (µz,i λy,i λx,i)
′ ∼ i.i.d. N(0, diag(1, 1, 1)) and (εi,1 ξi,1)′ ∼

i.i.d.N(0, ς ∗ diag(σ2
ε, σ

2
ξ)), where ς = 1.

IV) (yi,1 − µy,i xi,1 − µx,i)′ = R(µy,i + εi,1 µx,i + ξ
i,1

)′/
√

2, where R, µy,i, εi,1, µx,i
and ξ

i,1
are the same as under design I).

Note that in designs II and III {(yi,t xi,t)} is mean stationary but not covariance
stationary. In design IV {(yi,t xi,t)} is no longer mean stationary.

We also considered variations of designs II and III, viz. II′ and III′ where ς = 1/9, a
variation of design IV, viz. IV′ where (yi,1−µy,i xi,1−µx,i)′ = R(µy,i+εi,1 µx,i+ξi,1)′∗

√
2

and µy,i = µx,i ∼ i.i.d. N(0, 5), and another variation of design IV, viz. IV′′ where
µy,i ∼ i.i.d. N(0, 9) and µx,i = 0.5µy,i.

We considered the following estimators for ρ and β: a single equation two-step optimal
Arellano-Bond (AB) type GMM estimator based on the linear moment conditions given
in section 2.1; two versions of a single equation multi-step optimal Ahn-Schmidt (AS)
type GMM estimator as described in section 2.1, i.e., the original non-linear three-step
version based on numerical optimization, OPAS, and a linearized four-step version using
preliminary two-step optimal AB estimates in the differenced part of the non-linear
moment conditions, ABAS; two estimators, OPASH and ABASH, that are very similar
to OPAS and ABAS but also exploit moment conditions implied by homoskedasticity;
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four versions of the RE LIMLE, i.e., an infeasible version that replaces α̂x and β̂x by the

true values of αx and βx, INFLIML, a version that replaces α̂x and β̂x by AB estimates,

ABLIML, and two versions that replace α̂x and β̂x by one of the aforementioned AS
GMM estimates for αx and βx, OPASLIML and ABASLIML; a general version of the
ssLIMLE and, for T = 5 only, a version with homoskedasticity imposed, viz. ssLIMLh;
a FE (a Transformed) MLE of HPT (2002) for models with predetermined regressors; a

FE LIMLE that replaces α̂x and β̂x by HPT ML estimates; and finally the RE FIMLE.
A list of these estimators is given in table 2 together with a brief description of each
estimator. The aforementioned AS type GMM estimators use AB residuals in the third
step to estimate the optimal weight matrix. Note that these AS type GMM estimators
are less precise than the MLEs because they ignore some moment conditions that are
(partly) based on the model for the regressor.

In the experiments we allowed for time effects by subtracting cross-sectional averages
from the data. We imposed homoskedasticity on the LI and FI likelihood functions and
to ensure that the estimates of the covariance matrices E(uiu

′
i) were positive definite

(PD), where ui = ṽy,iι + εi or u′i = (ṽy,iι + εi ṽx,iι + ξi)
′ contains the composite errors

of the augmented model equation(s), we also imposed the restrictions σ2
ε > 0 and

V ar(ṽy,i) > 0 in the LI case and σ2
ε > 0, σ2

ξ > 0, σ2
ξ + (T − 1)V ar(ṽx,i) > 0 and

(σ2
ξ + (T − 1)V ar(ṽx,i))(σ

2
ε + (T − 1)V ar(ṽy,i)) − (T − 1)2(Cov(ṽx,i, ṽy,i))

2 > 0 in the
FI case. The restrictions in the LI case are stronger than those in the FI case and could
be relaxed to σ2

ε > 0 and σ2
ε + (T − 1)V ar(ṽy,i) > 0. This would result in LIQMLEs

with different, probably worse finite sample properties, cf. Bun et al. (2017). On the
other hand, we could also strengthen the restrictions on the parameters in the FI case
by adding V ar(ṽy,i) > 0 and V ar(ṽx,i) > 0. However, this would render the inclusion of
a nonlinear inequality restriction unavoidable. 18

As the models used in the experiments only contain time-invariant individual effects,
the mean equations are linear in the parameters and there are no restrictions between the
parameters in the mean equation and the parameters in the covariance matrix. In this
case computation of the MLEs is easy as compared to the case with interactive effects,
cf. remark 10. For instance, using the zig-zag algorithm in Oberhofer and Kmenta (1974)
with consistent starting values for the slope parameters would lead to consistent LI- and
FIMLEs. We used the Constrained Maximum Likelihood module of the GAUSS software
package to compute these MLEs, and the STATA programme xtdpdml of Williams et al.
(2017) to compute the ssLIMLEs.

For the estimators we calculated the bias and the Mean Squared Error (MSE) and in
some cases also the average standard error (s.e.). The s.e. of the AB estimator is based
on Windmeijer’s (2005) formula. The s.e. of the ABLIMLE is based on Murphy and
Topel’s (1985) formula. We also computed the empirical size, i.e., rejection frequency
(rej.f.) of Wald tests based on the AB, the INFLIML, the ABLIML and the FIML

18Note also that in the FI case imposing restrictions on the parameters to ensure that E(uiu
′
i) is

PD leads to an increasingly complicated constrained maximization problem when the dimension of the
system of equations increases and even more so in case one allows for heteroskedasticity over time. One
can avoid imposing restrictions by using Bai’s (2013b) ECM algorithm, which produces estimates that
satisfy them. However, these ECM estimators will have different, probably worse finite sample properties
than the constrained (FI)QMLEs, cf. Bun et al. (2017). Note that the latter may produce estimates that
are on the boundary of the parameter space and correspond to higher likelihood values than the ECM
estimates.
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estimators, respectively. All tests had a nominal size of 5%. Note that in practice it would
be preferable to use robust (i.e. uniform) inference procedures, cf. Kruiniger (2016).

The simulation results for the various experimental designs are reported in seventeen
tables in total: six tables corresponding to slope parameter combinations C and E are
included in the main text, while a further eleven tables containing the results for the
slope parameter combinations A, B and D and some additional results for experiments
II-C and III-C are included in the Online Appendix. The MSE of the estimators has been
multiplied by 100. For the ssLIMLE the results are based on cases where convergence
has been achieved. Inspection of the results leads to the following conclusions:

1 The MSE of the OPASH (ABASH) GMM estimator is similar to or higher than that
of the OPAS (ABAS) GMM estimator (the results for ABASH are not reported).

2 Our RE LIMLEs have much better finite sample properties, i.e., smaller bias and
MSE than the AB, ABAS and OPAS GMM estimators. The properties of the RE
LIMLEs are hardly affected by the choice among the preliminary GMM estimators
that are used to estimate αx and βx.

3 Our RE LIMLEs are often (much) more precise, i.e., have a (much) smaller MSE
than the FIMLEs, with the exception of the RE LIMLEs for β in designs C and D.

4 The SYS estimators have a higher or similar MSE than our RE LIMLEs in design
I-A when T = 5, in some cases in design I-B, in design III-A when T = 10, and,
unsurprisingly perhaps, in designs IV-A, IV-B, IV′-C and IV′′-E, for which the SYS
estimator is inconsistent. In all other designs, including IV-C, the SYS estimators
have a lower MSE than our RE LIMLEs. Although the SYS estimator is inconsistent
in designs IV-C and IV′-C, it is only mildly biased in these designs where the data
are fairly persistent.

Table 2. Description of estimators.
Abbreviation Description
AB 2-step optimal Arellano-Bond GMM estimator
ABAS 4-step optimal linearized Ahn-Schmidt GMM estimator using

AB estimates in optimal weight matrix at step 3 and
in differenced part of nonlinear moment conditions

OPAS 3-step optimal nonlinear Ahn-Schmidt GMM estimator using
AB estimates in optimal weight matrix at step 3

OPASH similar to OPAS estimator but exploiting extra moment conditions
that are implied by assumption of homoskedasticity over time

INFLIML RE LIMLE using true values to compute the residuals (the controls)
ABLIML RE LIMLE using AB estimates to compute the residuals (the controls)
ABASLIML RE LIMLE using ABAS estimates to compute the residuals (the controls)
OPASLIML RE LIMLE using OPAS estimates to compute the residuals (the controls)
ssLIML ssLIMLE of Moral-Benito (without assuming homoskedasticity)
ssLIMLh ssLIMLE of Moral-Benito that imposes homoskedasticity
HPT FE MLE of HPT (2002) for model with predetermined regressors
HPTFLIML FE LIMLE using HPT estimates to compute the residuals (the controls)
FIML a RE FIMLE of Bai (2013b) that imposes homoskedasticity
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5 The ssLIMLh estimators tend to have a slightly higher MSE than the ssLIMLEs
except in design III-B.

6 The ssLIMLEs usually have a larger MSE than our RE LIMLEs except in designs
II-C and II-D when T = 10, and in the case of the ssLIMLE for β, in design III-C
when T = 10.

7 The STATA algorithm used to compute the ssLIMLEs often did not converge.
8 Our HPT MLE based FE LIMLEs have a higher MSE than our RE LIMLEs except

in the following designs: the A versions of designs I, II and III when T = 10 and
N = 100, and in the case of the FE LIMLE for β, design IV-B, the C versions

Table 3. Estimators and t-tests for ρ and β; Design I-C; 2500 replications.
N=100, T=5 N=500, T=5 N=100, T=10 N=500, T=10

estimator param. bias MSE bias MSE bias MSE bias MSE
AB ρ -.094 3.134 -.017 .453 -.085 1.030 -.019 .116

β -.018 .585 -.005 .108 -.022 .229 -.005 .046
ABAS ρ -.072 2.506 -.010 .406 -.079 .997 -.010 .089

β -.020 .693 -.005 .114 -.020 .277 -.003 .049
OPAS ρ -.079 2.499 -.013 .403 -.082 .997 -.013 .092

β -.020 .634 -.005 .112 -.021 .244 -.004 .048
SYS ρ -.009 .626 -.001 .131 -.005 .105 -.002 .032

β .002 .457 .001 .088 .003 .095 .001 .029
INFLIML ρ -.050 .808 -.018 .171 -.021 .145 -.007 .027

β -.004 .327 -.001 .061 -.001 .084 -.001 .016
ABLIML ρ -.058 .900 -.021 .190 -.032 .215 -.010 .040

β -.018 .468 -.005 .094 -.024 .177 -.007 .036
ABASLIML ρ -.059 .899 -.021 .188 -.031 .212 -.009 .037

β -.018 .481 -.004 .095 -.022 .180 -.005 .035
OPASLIML ρ -.059 .900 -.021 .189 -.031 .213 -.010 .038

β -.018 .470 -.005 .094 -.023 .176 -.006 .035
ssLIML ρ -.045 1.564 -.028 .319 -.014 .293 -.004 .045

β -.001 .548 -.003 .115 -.001 .191 -.001 .034
HPTFLIML ρ -.025 1.453 -.011 .514 -.028 .265 -.023 .095

β -.041 .490 -.034 .178 -.034 .207 -.035 .134
HPT ρ .075 4.296 .002 1.257 -.028 .578 -.031 .138

β -.068 .734 -.063 .421 -.059 .485 -.058 .344
FIML ρ .006 1.586 .003 .359 -.003 .252 .000 .049

β -.003 .459 -.001 .088 -.001 .130 -.001 .029
s.e. rej.f. s.e. rej.f. s.e. rej.f. s.e. rej.f.

AB ρ .140 .122 .060 .071 .056 .324 .027 .115
β .073 .064 .032 .048 .041 .090 .019 .072

INFLIML ρ .052 .101 .020 .062 .031 .096 .019 .070
β .055 .062 .024 .062 .029 .052 .013 .060

ABLIML ρ NA .058 .059 .031 .049 .049 .023 .027
β NA .012 .032 .017 .037 .055 .018 .041

FIML ρ .098 .152 .049 .085 .044 .086 .022 .054
β .062 .073 .028 .057 .033 .074 .016 .067

actual MSE = MSE/100; s.e.: median standard error; rej.f.: rejection frequency.



16 Hugo Kruiniger

Table 4. Estimators and t-tests for ρ and β; Design IV-C; 2500 replications.
N=100, T=5 N=500, T=5 N=100, T=10 N=500, T=10

estimator param. bias MSE bias MSE bias MSE bias MSE
AB ρ -.125 4.013 -.025 .517 -.079 .929 -.018 .099

β -.007 .595 -.001 .111 -.014 .187 -.004 .039
ABAS ρ -.088 2.982 -.016 .468 -.075 .917 -.010 .078

β -.009 .713 -.001 .115 -.015 .249 -.004 .043
OPAS ρ -.102 3.008 -.019 .457 -.077 .911 -.013 .080

β -.009 .654 -.001 .112 -.014 .211 -.004 .041
SYS ρ -.007 .566 .000 .131 -.001 .089 .001 .037

β .005 .399 .004 .092 .005 .087 .003 .029
INFLIML ρ -.056 .945 -.023 .193 -.020 .152 -.009 .031

β .002 .325 -.001 .064 .000 .083 .000 .019
ABLIML ρ -.062 1.011 -.024 .204 -.027 .197 -.011 .040

β -.010 .442 -.003 .090 -.019 .151 -.005 .033
ABASLIML ρ -.063 1.024 -.024 .203 -.027 .197 -.011 .039

β -.009 .456 -.003 .090 -.018 .158 -.004 .033
OPASLIML ρ -.062 1.017 -.024 .204 -.027 .197 -.011 .039

β -.010 .448 -.003 .090 -.018 .153 -.004 .033
ssLIML ρ -.076 2.026 -.044 .450 -.032 .324 -.013 .061

β -.003 .603 -.007 .122 -.008 .212 -.005 .037
HPTFLIML ρ -.037 1.404 -.010 .452 -.016 .257 -.015 .070

β -.017 .360 -.018 .096 -.019 .116 -.019 .055
HPT ρ .029 3.223 .001 .912 -.017 .354 -.018 .076

β -.033 .440 -.031 .160 -.030 .186 -.030 .106
FIML ρ .011 1.962 .005 .425 -.001 .251 -.001 .052

β -.002 .427 -.001 .084 .000 .129 .000 .027
s.e. rej.f. s.e. rej.f. s.e. rej.f. s.e. rej.f.

AB ρ .153 .146 .065 .067 .051 .292 .027 .092
β .074 .060 .032 .058 .039 .064 .019 .057

SYS ρ .071 .053 .032 .044 .027 .056 .019 .066
β .061 .060 .028 .057 .026 .057 .017 .048

INFLIML ρ .056 .093 .021 .074 .024 .079 .017 .050
β .056 .061 .024 .063 .028 .057 .013 .045

ABLIML ρ NA .068 .060 .035 .047 .044 .023 .032
β NA .007 .032 .016 .038 .030 .018 .034

FIML ρ .101 .176 .051 .079 .040 .086 .022 .076
β .063 .052 .028 .052 .031 .071 .016 .057

actual MSE = MSE/100; s.e.: median standard error; rej.f.: rejection frequency.
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Table 5. Estimators for ρ and β; Designs II-C and II’-C; 2500 replications.
N=100, T=5 N=500, T=5 N=100, T=10 N=500, T=10

Design II-C
estimator param. bias MSE bias MSE bias MSE bias MSE

OPASLIML ρ -.058 1.087 -.025 .226 -.037 .287 -.012 .051
β -.019 .476 -.004 .096 -.028 .217 -.008 .042

HPTFLIML ρ -.034 1.479 -.017 .507 -.031 .325 -.026 .119
β -.036 .452 -.031 .164 -.034 .214 -.037 .152

Design II′-C
estimator param. bias MSE bias MSE bias MSE bias MSE

OPASLIML ρ -.076 1.400 -.035 .329 -.036 .286 -.013 .051
β -.010 .505 -.002 .104 -.030 .230 -.007 .039

HPTFLIML ρ -.066 1.394 -.030 .352 -.022 .247 -.009 .052
β -.004 .376 -.004 .072 -.011 .111 -.009 .022

actual MSE = MSE/100.

Table 6. Estimators for ρ and β; Designs III-C and III’-C; 2500 replications.
N=100, T=5 N=500, T=5 N=100, T=10 N=500, T=10

Design III-C
estimator param. bias MSE bias MSE bias MSE bias MSE

OPASLIML ρ -.058 1.075 -.022 .267 -.025 .263 -.007 .060
β -.017 .492 -.005 .101 -.032 .222 -.007 .042

HPTFLIML ρ -.045 1.400 -.022 .519 -.026 .304 -.028 .119
β -.033 .464 -.033 .169 -.038 .215 -.036 .151

Design III′-C
estimator param. bias MSE bias MSE bias MSE bias MSE

OPASLIML ρ -.063 1.271 -.027 .324 -.030 .278 -.011 .056
β -.012 .490 -.003 .104 -.032 .249 -.007 .043

HPTFLIML ρ -.057 1.290 -.026 .329 -.018 .237 -.010 .053
β -.005 .342 -.005 .070 -.015 .128 -.008 .022

actual MSE = MSE/100.

Table 7. Estimators for ρ and β; Design IV′-C; 2500 replications.
N=100, T=5 N=500, T=5 N=100, T=10 N=500, T=10

estimator param. bias MSE bias MSE bias MSE bias MSE
AB ρ -.016 .369 -.003 .067 -.018 .120 -.004 .020

β .008 .288 .002 .056 .015 .107 .003 .018
SYS ρ .002 .262 .005 .054 .003 .065 .005 .017

β .007 .265 .005 .053 .007 .069 .006 .018
OPASLIML ρ -.018 .220 -.007 .042 -.009 .061 -.003 .012

β -.010 .203 .004 .042 .006 .062 .002 .011
HPTFLIML ρ -.005 .325 -.006 .066 -.005 .059 -.004 .015

β -.010 .241 .010 .059 .005 .056 .005 .013

actual MSE = MSE/100.



18 Hugo Kruiniger

of designs II, III and IV when N = 100, and design II-D. When the variances of
εi,1 and ξ

i,1
in designs II-C and III-C are reduced to the values in designs II′-C

and III′-C, then the difference between the MSEs of the FE and RE LIMLEs for
ρ decreases or becomes negative and the MSE of the FE LIMLE for β becomes
(much) lower than the MSE of the RE LIMLE for β for all sample sizes considered.
The last result may be partly due to the fact that in II′-C and III′-C the MSEs of
the (preliminary) HPT MLEs for αx and βx are lower than the MSEs of the OPAS
GMM estimators for αx and βx. We also note that if the variances of εi,1 and ξ

i,1

are zero and the RE and FE LIMLE use the same estimator for αx and βx, then
they are asymptotically equivalent. In this case their MSEs were about the same in
unreported MC results.

9 The HPT MLE based FE LIMLEs (often) have a (much) lower MSE than the HPT
MLEs except for the FE LIMLE for β in design IV-B when N = 100.

10 When the data become more persistent, we find that in all four designs, i.e., in I-IV
the MSEs of our RE and FE LIMLEs increase. When N = 100, the MSEs of the
RE LIMLEs increase faster when moving from the B versions to the C versions of
designs I-IV than the MSEs of the FE LIMLE, whereas when N = 500 and T = 10
and for designs I and III also when N = 500 and T = 5, we find the opposite.

11 The ABLIML based Wald test has (much) better size properties than the AB GMM
based Wald test, especially when N is small (e.g., N = 100).

12 When T = 5 and N = 100, computation of the Murphy and Topel standard errors
for the ABLIMLE sometimes failed and therefore we omit results for this case.
If that happened, the corresponding Wald test did not reject the null hypothesis.
Alternatively, one can use a simple nonparametric bootstrap to conduct inference.

Summarizing, the RE LIMLE usually performs (much) better than the RE FIMLE,
the ss-LIMLE and the FE LIMLE, and the latter normally performs (much) better than
the HPT MLE. However, when mean stationarity is likely to hold or the data are not
close to normally distributed, a System GMM or Ahn-Schmidt type GMM estimator may
be preferable to the RE LIQMLE.

Table 8. Estimators for ρ and β; Design IV′′-E; 2500 replications.
N=100, T=5 N=500, T=5 N=100, T=10 N=500, T=10

estimator param. bias MSE bias MSE bias MSE bias MSE
AB ρ -.031 .814 -.006 .129 -.027 .198 -.006 .029

β .007 .534 .001 .097 .005 .181 .001 .034
SYS ρ .063 .514 .067 .475 .071 .532 .074 .558

β .030 .500 .028 .152 .035 .254 .039 .179
OPASLIML ρ -.027 .372 -.010 .074 -.009 .077 -.003 .016

β .004 .378 .001 .080 .000 .135 .000 .026
HPTFLIML ρ .025 1.405 .004 .193 .001 .124 .000 .022

β .012 .422 .010 .088 .008 .134 .008 .030

actual MSE = MSE/100.
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4. EMPIRICAL ILLUSTRATION: EMPLOYMENT AND WAGES

We revisit the application discussed in Alonso-Borrego and Arellano (1999, henceforth
AA) and Arellano (2003). Using a balanced panel of 738 Spanish manufacturing firms
with annual data for the period 1983-1990, they estimated various versions of a bivariate
VAR(2) model for the logarithms of employment and real wages, denoted ni,t and wai,t
respectively. It nests a model that can be regarded as the reduced form of an intertem-
poral model of employment determination under rational expectations. Their estimators
include the two-step optimal AB and System GMM estimators and their Symmetrically
Normalised GMM and LIML (or continuously updated, CUE) analogues. Additive in-
dividual and time effects were allowed for in both equations of the model. Wages were
measured by dividing the total wage bill of the firm by employment. See AA and Arellano
(2003, p. 116ff.) for a detailed description of the data, models and estimators.

The wage equation in AA only includes its own lags whereas Arellano (2003) esti-
mated an unrestricted VAR(2) model. However, the estimates of the coefficients of the
two lags of employment in his wage equation became significant only when he used the
System estimator. At any rate, as wages are measured at the firm level, one cannot rule
out the possibility that lags of employment affect wages. Therefore we too estimated the
unrestricted VAR model. Like Arellano (2003), we did not impose restrictions on the pa-
rameters that rule out explosive behaviour. Furthermore, like Arellano (2003), we treated
wage and employment as predetermined regressors in both equations of the VAR and
allowed the regressors to be correlated with the unobserved individual effects. We esti-
mated the VAR model using the multi-step optimal ABAS and OPAS (GMM) estimators
and the RE LIQMLEs based on them (i.e., the RE LIQMLEs that use them to construct
the residuals that serve as controls for endogeneity), the FE LIQMLE based on a FE
MLE of HPT (2002) as well as two-step optimal AB, System and AS (GMM) estimators.
The first six estimators have been computed using our own GAUSS program. The last
three estimators have been computed using the xtdpdgmm program in STATA.19 The
estimates produced by GAUSS and STATA are reported in tables 9 and 10, respectively.

Our GMM estimators use the full sets of available moment conditions. For instance, the
AB estimators use second and all available higher order lags of employment and wages as
instruments. We note that the STATA results related to the AB and System estimators
are identical to those reported in Arellano (2003). We considered three versions of the
LIQMLEs, which correspond to Models 1-3. The first version imposes homoskedaticity
over time, the second version allows for different variance parameters over time, while the
third version is the fully heteroskedastic version which also replaces the individual effect
by an equation similar to (2.9). For the AB and System estimators we report conventional,
bootstrap and Windmeijer’s (2005) robust standard errors, for the AS-type estimators
we only report the first two kinds of standard errors, while for the LIQMLEs we only
report the (nonparametric) bootstrap standard errors, which are based on resampling
the individual data vectors.20 In the case of the LIQMLEs we also report (the average
of) the estimates of the coefficients of the added residuals (the controls) and (the average
of) their standard errors. Finally, table 10 includes results for Sargan-Hansen (J) tests of

19The AB estimates obtained by using the GAUSS and STATA programs are slightly different. The
OPAS and AS estimates are also slightly different.
20STATA’s xtdpdgmm program also computes Windmeijer’s (2005) robust standard errors for the AS
estimator but in our case we found that they were smaller than conventional first-order asymptotic
standard errors, which should not be the case.
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overidentifying restrictions and in the context of the AS estimates also results for tests
of lack of first- and second-order serial correlation of the errors. Table 10 also reports
J-test results corresponding to GMM estimation with ‘collapsed’ instruments.

Table 9. VAR estimates for Employment and Wage using Spanish panel data and GAUSS.
employment wage

estimator est. r.s.e. b.s.e. est. r.s.e. b.s.e.
AB
ni,t−1 0.86 .128 .144 -0.02 .119 .104
ni,t−2 0.00 .050 .058 0.03 .055 .055
wai,t−1 0.05 .117 .130 0.27 .140 .137
wai,t−2 -0.06 .051 .053 0.02 .038 .043
ABAS
ni,t−1 1.12 NA .116 0.02 NA .109
ni,t−2 -0.09 NA .050 -0.02 NA .040
wai,t−1 0.26 NA .124 0.70 NA .100
wai,t−2 -0.06 NA .028 0.07 NA .037
OPAS
ni,t−1 0.99 NA .113 -0.03 NA .101
ni,t−2 -0.04 NA .047 0.01 NA .041
wai,t−1 0.15 NA .106 0.51 NA .104
wai,t−2 -0.06 NA .028 0.05 NA .035

Model 1 Model 2 Model 3
employment wage employment wage employment wage
est. b.s.e. est. b.s.e. est. b.s.e. est. b.s.e. est. b.s.e. est. b.s.e.

ABASLIML
ni,t−1 1.12 .034 0.18 .043 1.18 .043 0.19 .056 1.18 .053 0.19 .065
ni,t−2 -0.08 .032 -0.07 .042 -0.11 .034 -0.08 .043 -0.11 .040 -0.09 .050
wai,t−1 0.25 .053 0.70 .058 0.26 .054 0.74 .068 0.28 .057 0.74 .070
wai,t−2 -0.04 .038 0.11 .043 -0.05 .035 0.11 .044 -0.05 .038 0.11 .043
Residi(,t) -0.09 .031 -0.15 .040 -0.09 .025 -0.14 .040 -0.10 .036 -0.15 .060

OPASLIML
ni,t−1 1.13 .034 0.20 .041 1.19 .038 0.22 .054 1.20 .048 0.23 .054
ni,t−2 -0.08 .032 -0.06 .042 -0.11 .034 -0.08 .042 -0.12 .040 -0.08 .052
wai,t−1 0.27 .052 0.76 .051 0.29 .051 0.81 .061 0.31 .051 0.81 .066
wai,t−2 -0.02 .037 0.14 .040 -0.04 .036 0.14 .041 -0.03 .038 0.13 .055
Residi(,t) -0.07 .023 -0.12 .031 -0.07 .018 -0.11 .040 -0.08 .030 -0.12 .060

HPTFLIML
ni,t−1 1.11 .028 0.15 .027 1.16 .037 0.16 .033 1.16 .039 0.18 .040
ni,t−2 -0.07 .033 -0.06 .032 -0.10 .035 -0.08 .038 -0.10 .037 -0.09 .042
wai,t−1 0.22 .031 0.77 .031 0.24 .035 0.82 .038 0.25 .041 0.82 .040
wai,t−2 -0.06 .029 0.15 .034 -0.07 .031 0.15 .032 -0.07 .032 0.15 .037
Residi(,t) -0.11 .009 -0.12 .008 -0.11 .008 -0.11 .015 -0.11 .019 -0.11 .032

est.: parameter estimate; r.s.e.: robust Windmeijer (2005) standard error for AB estimator;
b.s.e. bootstrap standard error for all estimators.

None of the J-tests reject the validity of the various sets of moment conditions at
a significance level of 5%, although the J-tests associated with the System estimator
have low p-values. Nonetheless, a Sargan Difference test rejects the validity of the extra
moment conditions that are exploited by the AS estimator for the wage equation but
not by the AB estimator for that equation: JAS,wage − JAB,wage = 16.94 > χ2

0.95(4) = 9.49.
However, the p-value for JAB,wage is very high (0.974), while the p-value for JAS,wage is a very
reasonable 0.545. A very high p-value for a J-test may reflect size-distortions that occur
when the number of overidentifying restrictions is high. If we re-estimate the model using
‘collapsed’ instruments, we obtain ĴAS,wage−ĴAB,wage = 8.61 < χ2

0.95(4) = 9.49 so the extra
moment conditions exploited by the AS estimator for the wage equation are probably
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valid after all. The Sargan Difference tests reject mean stationarity for both equations of
the VAR model: JSYS,emp − JAS,emp = 16.28 > χ2

0.95(8) = 15.507 and JSYS,wage − JAS,wage =
25.87 > 15.507 (but ĴSYS,emp − ĴAS,emp = 13.24 < χ2

0.95(8) = 15.507, while ĴSYS,wage −
ĴAS,wage = 15.514 > 15.507). These results combined with the low p-values associated
with JSYS,emp and JSYS,wage cast serious doubt on the validity of the moment conditions
that rely on mean stationarity and hence the System GMM estimates, at least in the case
of the wage equation. The LIQML estimates are very similar across the three models.
Note also that their standard errors are mostly smaller than those of the ABAS and
OPAS estimates. The OPAS estimates lie in between the AB and ABAS estimates. The

Table 10. VAR estimates for Employment and Wage using Spanish panel data and
STATA.

employment wage
AB est. conv. s.e. robust s.e. est. conv. s.e. robust s.e.
ni,t−1 0.842 0.088 0.128 -0.042 0.100 0.119
ni,t−2 -0.003 0.029 0.050 0.050 0.034 0.055
wai,t−1 0.078 0.084 0.117 0.256 0.109 0.140
wai,t−2 -0.053 0.025 0.051 0.025 0.025 0.038

J (Ĵ − collapsed) J (Ĵ − collapsed)
36.91 5.75 21.40 5.80

(d.f.) 36 8 36 8
p-value 0.427 0.675 0.974 0.669

SYS est. conv. s.e. robust s.e. est. conv. s.e. robust s.e.
ni,t−1 1.170 0.026 0.047 0.079 0.027 0.047
ni,t−2 -0.126 0.019 0.033 -0.063 0.021 0.029
wai,t−1 0.132 0.021 0.027 0.776 0.022 0.034
wai,t−2 -0.110 0.021 0.029 0.084 0.023 0.034

J (Ĵ − collapsed) J (Ĵ − collapsed)
61.21 25.99 64.21 29.92

(d.f.) 48 20 48 20
p-value 0.096 0.166 0.059 0.071

AS est. conv. s.e. robust s.e. est. conv. s.e. robust s.e.
ni,t−1 0.973 0.092 NA -0.061 0.109 NA
ni,t−2 -0.036 0.042 NA 0.018 0.038 NA
wai,t−1 0.147 0.120 NA 0.514 0.085 NA
wai,t−2 -0.056 0.024 NA 0.064 0.033 NA

J (Ĵ − collapsed) J (Ĵ − collapsed)
44.93 12.75 38.34 14.41

(d.f.) 40 12 40 12
p-value 0.273 0.387 0.545 0.275

m1 m2 m1 m2
-9.45 0.75 -9.09 0.16

p-value 0.000 0.456 0.000 0.875

est.: parameter estimates based on full (i.e., non-collapsed) sets of instruments; conv. s.e.:
conventional (i.e., first-order asymptotic) standard error; robust s.e.: Windmeijer (2005) s.e.;

Ĵ − collapsed.: Sargan-Hansen test for model with ‘collapsed’ instruments; AS is a two-step
Ahn-Schmidt type estimator.
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ABAS estimates are similar to the LIQML estimates with the exception of the estimates
of the coefficients of the lags of employment in the wage equation. The ABAS (and OPAS)
estimates of the latter are insignificant, while the LIQML estimates of the coefficient of
the first lag of employment in the wage equation are strongly significant implying that
wage should not be treated as strictly exogenous in the employment equation. Similarly,
employment is not strictly exogenous in the wage equation. Furthermore, both variables
are not weakly exogenous because the added residuals are significant in both equations.
Concluding, our LIQML estimates are not very different from the System estimates in
Arellano (2003), which, however, rely on the assumption of mean stationarity that is
rejected by various tests. In particular, like the System estimation results, our LIQML
estimation results show that the log of wage is affected by lagged levels of the log of
employment.

5. CONCLUDING REMARKS

In this paper we discussed large N , fixed T consistent RE and FE limited and full
information Quasi ML estimators for variations of the conditional panel AR(1) model
with one additional regressor under alternative exogeneity assumptions about the regres-
sor. As mentioned in the introduction, these methods can be extended straightforwardly
to models with multiple lags and additional regressors. We first proposed LIQMLEs
for models with a predetermined regressor that can be correlated with the individual
effect(s). They are based on a two-step control function approach. If there is more than
one additional regressor, the RE LIQMLE is more robust than Bai’s (2013b) RE FIQMLE
because it remains consistent when the model of a regressor that is weakly exogenous
w.r.t. ρ and β is misspecified, whereas the FIQMLE can become inconsistent in that case.
The LIQMLEs are also more easily computed than the FIQMLEs especially when the
system is not small. We then generalized these LIMLEs to allow for endogeneity of the
regressor by adding the composite residual of the equation for xi,t or ∆̃xi,t as a regressor

to the equation for yi,t or ∆̃yi,t for each t ∈ {2, . . . , T}.
Under normally distributed data, GMM estimators for a model for some variable y

that contains a lag of y and a predetermined regressor x that is not weakly exogenous
are less precise but more robust than our two-step LIMLEs when the GMM estimators
do not exploit moment conditions that are (partly) based on a correctly specified model
for x. Nevertheless, if one considers using lags of x as instruments for the model for y,
one still needs to know the order of the lowest lag of y on which x depends.

When ρ in (1.1) or (1.2) equals unity and xi,t and µi drop out of the model, then ρ is
first-order underidentified under time series homoskedasticity, cf. Kruiniger (2013). It
follows that close to this point in the parameter space, the QMLEs for ρ have a slower
rate of convergence and non-standard distributions. Kruiniger (2016) discusses Quasi LM
tests for hypotheses about ρ that have asymptotically correct size in a uniform sense.

In case of cross-sectional heteroskedasticity, one may be able to obtain more precise
QMLEs by modelling the conditional variances of the loadings and the idiosyncratic
errors, e.g. as functions of the initial observations for y and x.

Finally, we expect that the proposed ML estimators for dynamic panel data models
with additional regressor(s) are still consistent in a large N,T setting as they are exten-
sions of estimators for similar models without additional regressors for which large N,T
consistency has been proven in Bai (2013a and 2013b).
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