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Abstract

Nonlinear mixed-effects models are being widely used for the analysis of longitudinal data,

especially from pharmaceutical research. They use random effects which are latent and unob-

servable variables, so the random-effects distribution is subject to misspecification in practice.

In this paper, we first study the consequences of misspecifying the random-effects distribution in

nonlinear mixed-effects models. Our study is focused on Gauss-Hermite quadrature which is now

the routine method for calculation of the marginal likelihood in mixed models. We then present a

formal diagnostic test to check the appropriateness of the assumed random-effects distribution in

nonlinear mixed-effects models, which is very useful for real data analysis. Our findings show that

the estimates of fixed-effects parameters in nonlinear mixed-effects models are generally robust

to deviations from normality of the random-effects distribution, but the estimates of variance

components are very sensitive to the distributional assumption of random effects. Furthermore,

a misspecified random-effects distribution will either overestimate or underestimate the predic-

tions of random effects. We illustrate the results using a real data application from an intensive

pharmacokinetic study.

Keywords: Diagnostic test; Gauss-Hermite quadrature; Longitudinal data; Nonlinear mixed-

effects models; Prediction; Random-effects distribution.

1. Introduction

Nonlinear mixed-effects models are well suited for the analysis of longitudinal data, especially

from pharmaceutical research. For example, in pharmacokinetics, often a nonlinear function

for drug concentration is achieved over time after administration of a drug and the goal is to

characterise drug disposition1,2. The term “mixed-effects” refers to the presence of both fixed

effects and random effects in the model. Fixed effects are regression parameters constant across
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subjects, while random effects are subject-specific random variables incorporated to capture the

inter-subject variability.

To fit a nonlinear mixed-effects model, one often needs to assume a distribution for the

random effects. Inferences are then based on the marginal likelihood function after integrating

out the random effects over their assumed distribution. It is common to assume that the random

effects follow a (multivariate) normal distribution. However, the normality assumption of random

effects may not always be valid in practice3,4. Since the random-effects distribution is crucial in

the calculation of the marginal likelihood, it is important to study the impact of misspecifying

the random-effects distribution on inferences about parameters and random effects. Note that

it is difficult to find out the true distribution of random effects because they are latent and

unobservable variables.

Unlike linear mixed-effects models that enjoy a closed-form marginal likelihood5, the non-

linear mixed-effects models often produce intractable marginal likelihood functions which need

to be calculated using approximation methods. Davidian and Giltinan 6 classify approximation

methods into two main categories: analytical approximation and numerical approximation. Ana-

lytical approximations are based on analytical manipulations to justify approximations to either

the marginal likelihood or to the first two moments of the individual marginal distributions. Two

commonly used analytical approximations are the first-order expansion (linearisation) and the

Laplace’s approximation. Numerical approximations directly approximate the integrals in the

marginal likelihood by some numerical integration technique. Under the normality assumption

of random effects, a routine numerical approximation is Gauss-Hermite quadrature, although it

can also be used with non-normal random effects7.

It has been shown that numerical approximations generally provide more accurate parame-

ter estimates compared to the analytical approximations. In a recent paper Harring and Liu 8

showed, via extensive simulations, that Gauss-Hermite quadrature outperforms both the first-

order expansion and the Laplace’s approximation in terms of estimation accuracy. Furthermore,

in their simulations with two random effects, they observed that Gauss-Hermite quadrature and

the first-order expansion do not suffer from convergence issues, while the Laplace’s approximation

encounters convergence difficulty.

Unlike linear and generalised linear mixed models9–13, very little is known in the litera-

ture about the impact of a misspecified random-effects distribution on inferences in nonlinear

mixed-effects models. To the best of our knowledge, only two papers have studied the effects of

misspecifying the random-effects distribution in nonlinear mixed-effects models. The first work,
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which has been done by Hartford and Davidian 14 , is based on two analytical approximations of

the marginal likelihood: the first order approximation and the Laplace’s approximation. But,

as discussed above, these two analytical approximations do not generally provide accurate pa-

rameter estimates even if the model is fully correctly specified. Clearly, the actual impact of a

misspecified random-effects distribution will be revealed if a more accurate approximation to the

marginal likelihood is employed. The second work, which is a recent paper by Harring and Liu 8 ,

mainly aimed to compare several different methods for estimation of the parameters, rather than

focus on the impact of misspecifying the random-effects distribution.

After its availability in standard software in the last decade, Gauss-Hermite quadrature has

become the routine method for calculation of the marginal likelihood in mixed models especially

the nonlinear mixed-effects models. As already discussed, Gauss-Hermite quadrature generally

provides reliable parameter estimates. In this paper, we first focus on nonlinear mixed-effects

models and study the consequences of misspecifying the random-effects distribution when Gauss-

Hermite quadrature is used. Our investigation not only targets the estimates of model parameters

but also concerns the prediction of random effects which is a kind of ‘individual inference’. The

impact on individual inference has not been studied in the context of nonlinear mixed-effects

models. We then describe a formal diagnostic test to check the adequacy of the assumed random-

effects distribution in nonlinear mixed-effects models, which is very helpful for practical use.

2. Nonlinear mixed-effects models

In this section, we briefly explain the general form of nonlinear mixed-effects models for the

analysis of longitudinal data. For a detailed discussion, see Fitzmaurice et al. 15 . Consider a

longitudinal study in which N subjects are followed over time. Let Yi1, . . . , Yini be ni repeated

measurements on the ith subject, where Yij is the outcome for subject i measured at time tij .

For example, Yij could be the blood pressure measured after administration of a drug. Also,

let Wi denote a vector of within-subject covariates for subject i. Likewise, let Xi be a vector

of between-subject covariates for subject i that do not change during the study. The nonlinear
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mixed-effects model can then be expressed as a two-stage hierarchy as follows:

Stage 1: Individual-Level Model

Yij = m(tij ,Wi, φi) + εij , j = 1, . . . , ni,

Stage 2: Population Model

φi = h(Xi, β, bi), i = 1, . . . , N.

(1)

In stage 1, m is a nonlinear function of time tij , depending on the within-subject covariates

Wi and an r × 1 vector of parameters φi specific to subject i. Also, εij ’s are independent

measurements errors, each of which has a normal distribution with mean 0 and variance σ2. In

stage 2, h is an r-dimensional function that describes the relationship between the elements of φi

and the between-subject covariates Xi in terms of a p× 1 fixed parameter β whose elements are

referred to as fixed effects, and a q × 1 vector bi of random effects representing the inter-subject

variability. Because φi can vary from subject to subject, the random effects bi are incorporated

to capture the inter-subject variability through a hierarchical analysis. The random effects bi,

which are unobservable variables with an unknown distribution, are typically assumed to have

a multivariate normal distribution with mean 0 and a covariance matrix D whose elements are

known as variance components. Note that, unlike the random effects, the random errors are

assumed to be additive.

Let θ =
(
β, σ2, vech(D)

)′
represent all unknown parameters in the nonlinear mixed-effects

model (1). Unless a fully Bayesian approach is followed, the estimates of parameters are usually

obtained using the maximum likelihood estimation method. Denoting Yi = (Yi1, . . . , Yini)
′ and

assuming a multivariate normal distribution for the random effects bi, one can write the marginal

log-likelihood function for model (1) as follows

l(θ) = ln

N∏
i=1

∫
Rq

fi(yi|bi)ϕ(bi)dbi = ln

N∏
i=1

∫
Rq

[ ni∏
j=1

fi(yij |bi)
]
ϕ(bi)dbi, (2)

where fi(yij |bi) denotes the conditional distribution of Yij given the random effects bi, and ϕ(bi)

is the density of the multivariate normal distribution with mean 0 and covariance matrix D.

As discussed in the introduction, Gauss-Hermite quadrature is a numerical approximation that

can provide an accurate approximation to the marginal log-likelihood (2) in order to facilitate

maximisation with respect to θ. Obviously, the random-effects distribution is crucial in the cal-

culation of the marginal log-likelihood function (2) and a misspecified random-effects distribution

could lead to biased parameter estimates.
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3. Gaussian quadrature for calculation of the marginal log-

likelihood

In this section we describe Gauss-Hermite quadrature for approximating the marginal log-likelihood

function (2). To avoid the numerical complexity with multiple integrals, one might change the

variables of integration in (2) to independent standard normally distributed random effects zi, as

suggested by Pinheiro and Bates 16 . This can be done by the Cholesky decomposition Q of the

covariance matrix D so that bi = Qzi. The marginal log-likelihood (2) can then be expressed as

l(θ) = ln

N∏
i=1

∫ ∞
−∞

φ(ziq) . . .

{∫ ∞
−∞

[ ni∏
j=1

fi(yij |zi)
]
φ(zi1)dzi1

}
. . . dziq, (3)

where φ(·) is the univariate standard normal density function. Now, Gaussian quadrature ap-

proximates each unidimensional integral in (3) as follows

∫ ∞
−∞

[ ni∏
j=1

fi(yij |zi)
]
φ(zi1)dzi1 =

K∑
k=1

wk

ni∏
j=1

fi(yij |(ak, zi2, . . . , ziq)), (4)

where wk and ak are, respectively, the weights and abscissas (quadrature points) of the one-

dimensional Gauss-Hermite quadrature rule with K points. The K weights wk and the K ab-

scissas ak can be obtained from the tables of Abramowitz and Stegun 17 , or can be computed

as needed using an algorithm proposed by Golub 18 . Gauss-Hermite quadrature is available in

standard software packages like R and SAS. Note that the more quadrature points K are used,

the more accurate approximation is achieved. However, the use of a large number of quadrature

points can be computationally expensive. Often 10 quadrature points should be adequate to

obtain a reliable approximation19,20.

There are two versions of Gaussian quadrature: adaptive and non-adaptive. The main differ-

ence between them is that adaptive Gaussian quadrature centres the quadrature points around

the empirical Bayes estimates of random effects, while non-adaptive Gaussian quadrature cen-

tres the quadrature points around the expected value of random effects which is 0. Despite

the extra burden for calculation of the empirical Bayes estimates, adaptive Gaussian quadra-

ture generally provides more accurate results at lower numbers of quadrature points than its

non-adaptive counterpart. It is therefore more common to use adaptive Gaussian quadrature for

nonlinear mixed-effects models, though we consider both adaptive and non-adaptive techniques

when studying the impact of misspecification of the random-effects distribution.
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4. The difficulty with theoretical assessment of bias due to

a misspecified random-effects distribution

This section aims to demonstrate that, for nonlinear mixed-effects models, it is difficult to obtain

theoretical results on bias of maximum likelihood estimates with a misspecified random-effects

distribution. Since we are interested in studying the consequences of misspecifying the random-

effects distribution, we assume that the conditional distribution fi(yi|bi) is correctly specified.

White 21 gives general theoretical results for misspecified maximum likelihood estimators, which

can be used in the context of mixed-effects models by investigating the case in which ϕ(bi) is

incorrectly assumed as the random-effects distribution. Let θ0 be the true parameter value,

which is unknown. Whatever the random-effects distribution is correctly specified or not, the

maximum likelihood estimator θ̂ML converges to θ∗ when N → ∞ (i.e., θ̂ML
P→ θ∗), where θ∗ is

the minimiser of the Kullback-Leibler information criterion21. Equivalently, θ∗ satisfies

lim
N
Ef0

{ N∑
i=1

∂

∂θ
lnfi(yi)

∣∣∣
θ∗

}
= 0, (5)

where fi(yi) =
∫
Rq fi(yi|bi)ϕ(bi)dbi, and moreover the expectation is over the true marginal

distribution f0i(yi) =
∫
Rq fi(yi|bi)g0(bi)dbi with g0(bi) as the true random-effects distribution.

Proposition 1. Under the general regularity conditions, if the assumed random-effects distribu-

tion is correctly specified (i.e., g0(bi) = ϕ(bi)), then θ∗ = θ0.

Proof. First note that the expectation in (5) can be written as

Ef0

{ N∑
i=1

∂

∂θ
lnfi(yi)

∣∣∣
θ∗

}
=

N∑
i=1

∫
Rni

[ ∂
∂θ

ln fi(yi)|θ∗
]
f0i(yi)dyi

=

N∑
i=1

∫
Rni

[ ∂
∂θfi(yi)

fi(yi)
|θ∗
]
f0i(yi)dyi.

(6)

Moreover, if g0(bi) = ϕ(bi) then f0i(yi) = fi(yi). Hence, we obtain, from (5) and (6), that

θ∗ = θ0.

Proposition 1 states that when the random-effects distribution is correctly specified, θ̂ML is

consistent for θ0. But, if the random-effects distribution is misspecified then θ∗ − θ0 is the exact

asymptotic bias of θ̂ML for estimating θ. Therefore, for a precise assessment of the bias of θ̂ML

in situations where the random-effects distribution is misspecified, one has to obtain θ∗ from (5).
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However, it is very difficult to obtain the exact value of θ∗ for nonlinear mixed-effects models

for two reasons. First, the true random-effects distribution g0(bi) is unknown, and second the

integral in (6) is analytically intractable for nonlinear mixed-effects models. It is even difficult to

find an approximate value of θ∗ from (5).

Considering the above theoretical challenge, since θ̂ML is consistent for θ∗ (as θ̂ML
P→ θ∗), we

can use θ̂ML − θ0 as an approximation to the actual bias θ∗ − θ0. It is more convenient to use

(θ̂ML−θ0)/θ0 as the approximate relative bias of the maximum likelihood estimator θ̂ML. In the

next section, we conduct simulations to evaluate the approximate relative bias of θ̂ML in both

small and large samples.

5. Simulation study

5.1. Overview

We conducted simulations to assess the impact of misspecifying the random-effects distribution

on estimation of parameters and prediction of random effects in nonlinear mixed-effects models.

Clearly, a simple model with one random effect is not very helpful in understanding the ac-

tual impact of such misspecification. Therefore, for our simulations we considered the following

nonlinear mixed-effects model

Yij =
Dikaikei

Ci(kai − kei)

[
exp(−keitij)− exp(−kaitij)

]
+ εij , (7)

which is in fact a one-compartment pharmacokinetic model, with

Ci = exp(β1 + bi1),

kai = exp(β2 + bi2),

kei = exp(β3 + bi3),

where the response Yij can be regarded as the drug concentration on subject i at time tij , Di is

the dose administered to subject i, kai is the fractional absorption rate constant for subject i, kei

is the fractional elimination rate constant for subject i, and Ci is the clearance for subject i2.

For each sample size N = 20, 50, 100, 200, 500 and with 10 repeated measurements per subject,

we generated 500 data sets from the nonlinear mixed-effects model (7). In the simulations, we

set β1 = −3.2, β2 = 0.5, β3 = −2.4, and σ2 = 0.6. Also, for simplicity in the simulations,

we first assumed that the three random effects bi1, bi2, and bi3 are uncorrelated. The case of
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correlated random effects will be investigated later in this section. We generated each of the

three random effects bi1, bi2, and bi3 from four distinct distributions: N(0, 1), Chi-squared(2),

Log-normal(3, 1), and F(1, 7) where F denotes the Fisher distribution. All the generated random

effects were shifted and rescaled such that bi1, bi2, and bi3 have zero mean, but with variances

equal to d1 = 0.1, d2 = 0.3, and d3 = 0.1 respectively, in accordance with the real data example

in Section 6. The normality assumption on random effects is valid only when the random effects

are generated from N(0, 1), while the three other distributions used for generation of the random

effects represent the cases where the random-effects distribution is misspecified since the model

is fitted under the normality assumption of random effects.

5.2. The impact on estimation

First, using adaptive Gaussian quadrature we fitted the nonlinear mixed-effects model (7) to each

of the generated data sets under the normality assumption of bi1, bi2, and bi3. For each fitted

model, we calculated the maximum likelihood estimator θ̂ML for each of the model parameters

β1, β2, β3, σ
2, d1, d2, d3. Because we had 500 replications for each simulation setting which resulted

in 500 estimates for each parameter, we defined the simulated relative bias of θ̂ML as follows

RBsim =
θ̂∗ML − θ0

θ0
, (8)

in which θ̂∗ML is the mean of maximum likelihood estimates obtained from the 500 replications.

Then, for each simulation setting, we computed the simulated relative bias of θ̂ML according to

(8). The simulations results are presented in Table 1. The results show that the estimates of

fixed-effects parameters and residual variance (reported as CV ) are quite robust to deviations

from normality of the random-effects distribution since the bias is very small, even for the small

sample sizes. This result is in line with the results for generalised linear mixed models10. But,

the estimates of variance components show a relatively large bias which does not tend to improve

with the sample size. This is in agreement with the results found for generalised linear mixed

models12. Also from the results in Table 1 we can see that, when the random-effects distribution

is correctly specified, the estimates of parameters tend to have smaller relative bias as the sample

size N increases, however the sample size does not help a model with misspecified random-effects

distribution. A justification for this could be that the random effects are latent and unobservable

variables and the data itself may not contain much information about their actual distribution.

Next, we used non-adaptive Gaussian quadrature to fit the nonlinear mixed-effects model
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Table 1: The simulated relative bias multiplied by 100 (and associated standard error multiplied by 100) of the

maximum likelihood estimates of parameters in the nonlinear mixed-effects model (7) using adaptive Gaussian

quadrature. The model was fitted under the normality assumption of random effects, whereas the random

effects were generated from four true random-effects distributions: N(0, 1), Chi-squared(2), Log-normal(3, 1),

and F(1, 7).

True distribution Parameter N = 20 N = 50 N = 100 N = 200 N = 500
β1 0.01 (8.1) −0.21 (4.8) −0.07 (3.6) −0.05 (2.5) 0.09 (1.6)
β2 2.36 (12.9) −1.68 (8.1) 0.20 (6.2) 0.83 (4.6) −0.46 (2.5)
β3 0.63 (9.2) −0.03 (5.2) 0.15 (4.4) 0.10 (2.7) 0.03 (1.9)

Normal(0, 1) CV −2.13 (7.2) 1.82 (4.2) −2.10 (3.0) −1.79 (2.3) −1.58 (1.4)
d1 −5.63 (3.6) −4.46 (2.3) −2.10 (1.9) −0.03 (1.4) −1.48 (0.7)
d2 −13.11 (11.3) −3.19 (8.3) 2.77 (5.7) 0.48 (3.9) 0.32 (1.7)
d3 −3.65 (4.6) 3.64 (4.0) 4.76 (3.1) 2.15 (2.5) 3.85 (1.6)
β1 0.85 (6.8) 1.37 (5.3) 1.55 (3.3) 1.63 (2.1) 1.62 (1.4)
β2 −4.88 (13.3) −2.34 (8.5) −1.51 (5.9) −1.46 (3.8) −2.30 (2.4)
β3 0.97 (8.7) 2.61 (6.2) 2.58 (4.6) 2.47 (2.7) 2.47 (1.8)

Chi-squared(2) CV 3.08 (7.2) 2.88 (4.8) 3.13 (3.5) 3.60 (2.3) 2.75 (2.2)
d1 −47.84 (4.0) −55.92 (3.0) −61.19 (1.9) −63.28 (1.1) −63.32 (7.8)
d2 −23.06 (16.2) −18.20 (11.9) −20.64 (5.8) −19.89 (4.9) −19.47 (2.6)
d3 31.50 (12.2) 61.59 (10.2) 81.77 (8.7) 88.98 (5.9) 86.75 (3.8)
β1 0.71 (7.3) 1.12 (4.4) 1.52 (2.9) 1.56 (2.2) 1.53 (1.3)
β2 −3.85 (10.8) −0.99 (7.8) −3.44 (5.6) −3.39 (3.2) −3.13 (2.7)
β3 1.40 (9.1) 1.83 (5.4) 2.32 (4.0) 2.24 (3.3) 2.38 (2.0)

Log-normal(3, 1) CV 3.43 (7.9) 3.05 (5.1) 3.96 (3.1) 3.72 (2.2) 3.09 (2.5)
d1 −56.21 (5.1) −67.68 (2.6) −73.22 (1.3) −74.28 (1.0) −74.14 (0.6)
d2 −37.94 (18.3) −38.05 (7.4) −42.02 (5.8) −42.49 (3.6) −41.45 (2.7)
d3 18.93 (11.6) 43.09 (9.5) 57.36 (8.2) 74.39 (5.5) 61.72 (4.9)
β1 0.94 (6.2) 1.20 (3.6) 1.40 (3.1) 1.48 (2.0) 1.55 (1.1)
β2 −4.52 (9.4) −2.39 (6.8) −3.34 (4.7) −2.55 (3.3) −2.22 (2.0)
β3 1.84 (9.0) 1.77 (6.2) 2.14 (3.9) 2.23 (3.1) 2.43 (1.8)

F(1, 7) CV 4.18 (7.9) 3.51 (4.6) 3.86 (3.5) 3.80 (2.4) 3.77 (2.6)
d1 −69.75 (4.1) −80.45 (1.7) −80.75 (1.4) −82.24 (1.0) −84.18 (0.4)
d2 −54.96 (11.4) −46.03 (9.0) −48.92 (5.7) −48.70 (4.1) −48.64 (2.3)
d3 19.14 (15.0) 49.95 (11.7) 59.56 (9.8) 46.79 (5.3) 60.29 (3.5)

(7) to the generated data sets. For this case, we repeated the above calculations to obtain the

simulated relative bias of θ̂ML using (8). The simulations results, which are reported in Table

2, are very similar to those from the adaptive Gaussian quadrature, and the only difference

is that the estimates of variance components show little bias under the correct random-effects

distribution. This is probably due to the fact that non-adaptive Gaussian quadrature centres

the quadrature points around the expected value of 0 instead of the empirical Bayes estimates of

random effects.

To understand the role of correlated random effects and the number of repeated measurements

on parameter estimation under a misspecified random-effects distribution, we conducted a similar

simulation study for the nonlinear mixed-effects model (7), where we used the number of repeated
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Table 2: The simulated relative bias multiplied by 100 (and associated standard error multiplied by 100) of

the maximum likelihood estimates of parameters in the nonlinear mixed-effects model (7) using non-adaptive

Gaussian quadrature. The model was fitted under the normality assumption of random effects, whereas the

random effects were generated from four true random-effects distributions: N(0, 1), Chi-squared(2), Log-

normal(3, 1), and F(1, 7).

True distribution Parameter N = 20 N = 50 N = 100 N = 200 N = 500
β1 −0.16 (8.2) 0.23 (6.7) 0.08 (5.4) 0.01 (3.7) 0.17 (2.9)
β2 −2.23 (11.7) 0.18 (11.9) 1.85 (7.3) 0.05 (5.5) 0.13 (4.1)
β3 0.23 (8.3) −1.12 (8.2) −1.02 (6.7) −0.55 (3.8) −0.70 (3.0)

Normal(0, 1) CV −5.20 (6.4) 7.11 (4.6) 11.99 (6.1) 5.02 (2.9) 6.45 (3.6)
d1 −0.65 (3.3) −6.06 (2.8) 0.67 (3.3) 0.73 (1.6) 1.07 (1.5)
d2 8.46 (11.3) −6.24 (8.0) −21.05 (4.6) −10.42 (4.1) −11.72 (3.2)
d3 −7.53 (4.1) −31.16 (2.4) −28.21 (2.5) −19.84 (1.7) −21.43 (1.1)
β1 1.13 (8.1) 1.29 (4.9) 1.37 (4.8) 1.65 (3.2) 1.74 (2.8)
β2 1.32 (12.7) −3.28 (9.0) −6.80 (7.5) −3.95 (6.5) −1.28 (4.7)
β3 1.36 (7.9) 0.08 (8.5) 0.77 (6.1) 0.52 (5.7) 0.20 (9.3)

Chi-squared(2) CV −5.21 (6.6) 7.33 (4.5) 10.72 (5.9) 12.14 (6.3) 13.76 (7.4)
d1 −14.81 (5.8) −21.73 (5.3) −31.48 (5.5) −48.14 (3.6) −47.59 (4.1)
d2 −14.70 (10.9) −21.82 (9.6) −25.92 (7.9) −33.78 (5.0) −38.87 (3.7)
d3 −16.13 (4.8) 0.05 (4.9) 8.45 (3.7) 17.23 (5.1) 38.97 (7.6)
β1 −1.59 (5.2) 0.86 (6.5) 1.13 (4.8) 0.97 (4.3) 1.93 (2.9)
β2 4.12 (13.0) −7.46 (8.2) −7.99 (8.9) −7.97 (7.2) 4.10 (7.5)
β3 0.69 (6.9) −0.38 (8.6) −0.05 (11.3) −1.42 (13.2) −2.52 (10.7)

Log-normal(3, 1) CV −4.95 (6.3) 7.21 (6.1) 9.66 (5.9) 10.79 (6.8) 13.81 (7.2)
d1 −37.90 (5.4) −32.74 (6.7) −61.97 (2.9) −68.05 (2.7) −62.75 (0.7)
d2 −15.94 (2.0) −42.36 (8.1) −45.29 (7.0) −46.41 (6.5) −45.61 (4.4)
d3 −24.14 (5.2) 6.72 (8.8) 31.17 (9.7) 72.53 (6.6) 57.66 (11.4)
β1 0.69 (7.5) 1.13 (5.4) 0.86 (4.0) 0.80 (3.8) 1.06 (2.6)
β2 −6.68 (12.3) −3.32 (8.1) −0.24 (7.7) −12.71 (5.9) −4.65 (5.8)
β3 0.36 (10.8) 0.42 (8.7) −0.90 (11.9) −1.22 (9.8) −5.09 (13.8)

F(1, 7) CV −4.09 (5.9) 6.70 (4.7) 9.51 (5.4) 9.94 (6.5) 12.87 (7.1)
d1 −36.07 (9.3) −56.04 (3.8) −60.66 (3.9) −83.04 (10.8) −85.21 (0.6)
d2 −50.74 (10.5) −50.96 (7.1) −44.26 (7.2) −59.14 (3.2) −50.49 (5.9)
d3 −0.15 (8.0) −0.98 (8.2) 53.19 (10.2) 17.45 (5.9) 63.37 (16.8)

measurements ni = 5, 10, 20 and fixed N = 30. Here the random effects were generated from

two multivariate distributions: a multivariate normal distribution and a multivariate log-normal

distribution. The simulation results, presented in Table 3, suggest that increasing the number

of repeated measurements would help the estimates of the fixed-effects parameters, however it

does not improve the estimates of variance components when the random-effects distribution

is misspecified. Furthermore, similar to the previous results in Table 1 and Table 2, when the

random effects are correlated the estimates of variance components show high relative bias under

a misspecified random-effects distribution.
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Table 3: The simulated relative bias multiplied by 100 (and associated standard error multiplied by 100) of

the maximum likelihood estimates of parameters in the nonlinear mixed-effects model (7) with N = 30 and

with the number of repeated measurements ni = 5, 10, 20, using adaptive Gaussian quadrature for the two

multivariate random-effects distributions considered.

True distribution Parameter ni = 5 ni = 10 ni = 20
β1 −0.69 (7.9) −0.11 (6.2) −0.06 (3.2)
β2 −6.60 (10.1) −3.01 (8.7) 0.52 (4.1)
β3 −1.19 (8.2) 0.17 (5.9) −0.17 (3.3)
CV −2.48 (7.6) 2.91 (5.4) 2.95 (3.5)

Multivariate normal d11 −7.31 (6.1) −5.56 (4.6) −3.60 (2.8)
d12 8.08 (5.9) −4.25 (4.3) −2.46 (3.0)
d22 10.10 (6.2) −5.12 (4.8) −3.91 (3.1)
d13 −8.19 (5.3) −5.15 (4.6) 2.52 (2.9)
d23 −9.28 (4.9) −6.24 (3.9) 1.03 (3.1)
d33 −6.23 (5.9) −4.40 (4.3) −2.10 (2.9)
β1 −1.22 (8.3) −1.20 (6.2) 0.73 (4.0)
β2 −12.57 (9.8) −2.36 (8.5) −1.14 (3.7)
β3 −5.09 (10.2) 1.38 (6.3) −1.15 (3.4)
CV 4.16 (8.1) 3.02 (6.2) 2.80 (3.6)

Multivariate log-normal d11 −49.11 (7.9) −46.23 (5.5) −42.11 (4.2)
d12 −21.24 (8.0) −18.16 (5.3) −16.31 (3.7)
d22 −36.77 (7.7) −35.13 (5.3) −34.85 (4.0)
d13 −20.06 (6.1) −16.35 (5.0) −17.11 (3.5)
d23 23.01 (5.8) 24.19 (4.8) 19.85 (2.9)
d33 −31.16 (7.3) −29.98 (5.0) −28.79 (3.3)

5.3. The impact on prediction

We then investigated how misspecification of the random-effects distribution affects the prediction

of random effects in the nonlinear mixed-effects model (7). Our approach to assessing the impact

on predictions is based on the comparison of the predicted values of random effects obtained under

the true distribution with those obtained under a misspecified random-effects distribution. This

approach makes sense because the true model is believed to produce correct predictions, especially

when the sample size is large enough (N ≥ 200), and our simulation results in Table 1 and Table

2 confirm that the model fitting is generally accurate under the true random-effects distribution.

Recall that in our simulations N(0, 1) represents the case where the random-effects distribution

is correctly specified, while Chi-squared(2), Log-normal(3, 1), and F(1, 7) are used for the cases

where the random-effects distribution is misspecified as the model is fitted under the normality

assumption of random effects. Figure 1 shows the predictions of random effects for two sample

sizes of 200 and 500 obtained for these four distributions using adaptive Gaussian quadrature. It

can be seen that the misspecified random-effects distributions tend to overestimate the predictions

(see Figure 1(c,d,e,f)) or underestimate the predictions (see Figure 1(a,b)). In fact, the predictions
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of random effects are influenced with the shape of the random-effects distribution. A similar

behaviour is observed for the predictions obtained using non-adaptive Gaussian quadrature (see

Figure 2).

6. A diagnostic test for checking the random-effects distri-

bution

In the previous sections we studied the impact of misspecifying the random-effects distribution

on estimation and prediction. We now describe a formal diagnostic test to verify whether an

assumed random-effects distribution is correctly specified or not.

Let G be the assumed random-effects distribution, which is typically a multivariate normal

distribution (i.e., G = ϕ). To check the appropriateness of the assumed random-effects distri-

bution G, Verbeke and Molenberghs 22 suggested to use the so-called gradient function given

by

∆ (G, b) =
1

N

N∑
i=1

fi (yi|b)
fi (yi|G)

, b ∈ Rq, (9)

where fi(yi|b) and fi(yi|G) are, respectively, the conditional (given random-effect point b) and

marginal distributions of Yi. They proved that if the random-effects distribution G is correctly

specified, then ∆ (G, b) ≤ 1 for all b ∈ Rq, and furthermore ∆ (G, b) = 1 for all b in the support

of G. Therefore, deviations of the gradient function from 1 in the support points of G indicate

inadequacy of G. As an informal approach, they suggested to plot the gradient function versus

points b in the support of G, and if the gradient plot is close to 1 then the adequacy of G is

confirmed. Note that the gradient can be interpreted as an average of likelihood ratios, each

ratio measuring how much more likely Yi is to be observed for subject i if the corresponding

random effect bi equals b rather than being sampled from the distribution G. It can be seen that

the calculation of the gradient function is easy because it only requires the calculation of the

marginal and conditional distributions for all N subjects.

Based on the gradient function (9), we recently developed a formal diagnostic test for the

random-effects distribution (see Drikvandi et al. 4). Suppose that the null hypothesis H0 says

the random-effects distribution G is correctly specified and the alternative hypothesis H1 says

otherwise. Having considered all deviations of the gradient function from 1, we constructed a
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(a) Prediction of bi1 when N = 200. (b) Prediction of bi1 when N = 500.

(c) Prediction of bi2 when N = 200. (d) Prediction of bi2 when N = 500.

(e) Prediction of bi3 when N = 200. (f) Prediction of bi3 when N = 500.

Figure 1: The prediction of random effects in the nonlinear mixed-effects model (7) using adaptive Gaussian
quadrature. The model was fitted under the normality assumption of random effects, whereas the random
effects were generated from the four true random-effects distributions considered.
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(a) Prediction of bi1 when N = 200. (b) Prediction of bi1 when N = 500.

(c) Prediction of bi2 when N = 200. (d) Prediction of bi2 when N = 500.

(e) Prediction of bi3 when N = 200. (f) Prediction of bi3 when N = 500.

Figure 2: The prediction of random effects in the nonlinear mixed-effects model (7) using non-adaptive
Gaussian quadrature. The model was fitted under the normality assumption of random effects, whereas the
random effects were generated from the four true random-effects distributions considered.
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test statistic for testing H0 versus H1 as follows

T =

∫
Rq

(
∆̂(Ĝ, b)− 1

)2
dĜ(b), (10)

where Ĝ is the estimated random-effects distribution obtained by replacing the covariance matrix

D by its maximum likelihood estimate, and ∆̂ denotes the estimated gradient function based on Ĝ

obtained simply by replacing the unknown parameters in fi (yi|b) and fi(yi|Ĝ) by their maximum

likelihood estimates. If T deviates much from 0, we can reject H0 implying that the assumed

random-effects distribution G is not appropriate for random effects.

The asymptotic distribution of T is given in Theorem 1 of Drikvandi et al. 4 , which is essen-

tially a weighted sum of independent chi-squared distributions each with one degree of freedom.

However, the asymptotic distribution should only be used when the sample size N is sufficiently

large. For small-sample situations, we also proposed a parametric bootstrap procedure to obtain

the finite-sample distribution of the test statistic T in (10). The key step in our bootstrap proce-

dure, in order to obtain a bootstrap sample, is to first generate random effects bsi , i = 1, . . . , N ,

from Ĝ and then generate a bootstrap sample Y si , i = 1, . . . , N , from f̂i(yi|bsi ). We use 200

bootstrap samples to conduct the bootstrap test. Below we illustrate how the bootstrap test

based on (10) can be performed.

Implementation of the bootstrap test

The bootstrap test can be carried out by the following steps:

1. Generate K, say 1000, random-effect points bk from Ĝ.

2. Compute the gradient function (9) and its squared deviation from 1 for each bk.

3. Calculate the test statistic T being the average of the K squared deviations obtained in

step 2 (which is the Monte Carlo approximation of T ), and denote it by Tobs.

4. For each bootstrap step s, s = 1, . . . , 200, repeat the following two steps:

i. First generate random effects bsi , i = 1, . . . , N , from Ĝ and then generate a bootstrap

sample Y si , i = 1, . . . , N , from f̂i(yi|bsi ).

ii. Calculate the test statistic T for the bootstrap sample obtained in step i and denote it

by T s.

5. If the proportion of T s exceeding Tobs is less than 0.05, then reject H0, indicating that the

assumed random-effects distribution G is not appropriate for random effects.
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(a) (b)

(c) (d)

Figure 3: Type I error and power of the bootstrap test at the significance level 0.05 for detecting the mis-
specification of random-effects distribution in the nonlinear mixed-effects model (7) using adaptive Gaussian
quadrature, with the four true random-effects distributions considered: (a) Normal(0, 1), (b) Chi-squared(2),
(c) Log-normal(3, 1), and (d) F(1, 7). Note that the Type I error is for the case of Normal(0, 1) where the
random-effects distribution is correctly specified.

We evaluated the empirical performance of this bootstrap test for a general class of mixed-

effects models in Drikvandi et al. 4 . Here we calculated the power and Type I error of the

permutation test at the 5% significance level for the nonlinear mixed-effects model (7), under the

same simulation setting as in Section 5 and with the additional sample size of N = 1000. The

results, presented in Figure 3, indicate that the bootstrap test has a Type I error close to the

nominal level 0.05 and further it shows a high power for detecting the misspecification of random-

effects distribution, especially when the sample size N is sufficiently large (e.g., N ≥ 100). We

prepared a SAS code for implementation of the above test which is available online on the journal

website. We will apply this diagnostic test to our real data application in the next section.
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Figure 4: Theophylline data: individual profiles for 12 subjects.

7. Real data application

Theophylline is a well-known anti-asthmatic agent, administered orally23,24. In a pharmacoki-

netic study, 12 subjects were given the same oral dose (mg/kg) of theophylline, and blood samples

were taken at several times following administration were assayed for theophylline concentra-

tion24. The main objective was to gain insight into within-subject pharmacokinetic processes of

absorption, distribution, and elimination governing concentrations of drug achieved. The individ-

ual profiles, presented in Figure 4, show that the theophylline concentrations have a similar shape

for all subjects, but peak concentration achieved, rise, and decay vary significantly across the sub-

jects. These differences are due to the inter-subject variability in the underlying pharmacokinetic

processes, understanding of which is critical for developing dosing guidelines.

To characterise these processes formally, we consider the one-compartment model (7) with

first-order absorption and elimination, as also suggested by Davidian and Giltinan 24 . The inter-

subject variability in the pharmacokinetic processes is accounted for by the subject-specific ran-

dom effects (bi1, bi2, bi3), which are assumed to have mean 0 and covariance matrix given by

D =

[
d11 d12 d13

d12 d22 d23

d13 d23 d33

]
. We fit the one-compartment model (7) to the theophylline data, by as-

suming two different multivariate distributions for the random effects (bi1, bi2, bi3): a multivariate

normal distribution and a multivariate log-normal distribution. The maximum likelihood esti-

mates of parameters along with their associated standard errors obtained under each distribution

are reported in Table 4. It can be seen that the estimates of fixed-effects parameters are similar
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Table 4: Theophylline data: the maximum likelihood estimates of parameters and associated standard errors

obtained from fitting the one-compartment model (7), once assuming a multivariate normal distribution for

the random effects, once assuming a multivariate log-normal distribution for the random effects. Note that

the test statistics and p-values are reported only for the multivariate normal distribution.

Multivariate normal Multivariate log-normal

Parameter Estimate (s.e.) t-value p-value Estimate (s.e.)
Fixed effects:
β1 −3.277 (0.046) −70.64 < 0.0001 −3.053 (0.188)
β2 0.537 (0.063) 8.52 < 0.0001 0.701 (0.380)
β3 −2.454 (0.064) −38.38 < 0.0001 −2.395 (0.079)
Residual variance:
σ2 0.624 (0.083) 7.55 < 0.0001 0.542 (0.080)
Variance components:
d11 0.057 (0.022) 2.56 0.0308 0.631 (0.461)
d12 −0.012 (0.018) −0.67 .5188 −0.018 (0.027)
d22 0.264 (0.054) 4.92 0.0008 2.215 (1.852)
d13 0.030 (0.020) 1.52 0.1636 0.039 (0.025)
d23 −0.025 (0.017) −1.47 0.1743 −0.043 (0.034)
d33 0.035 (0.017) 2.05 0.0702 0.090 (0.056)
−2 log-likelihood 341.7 358.6

under the two assumed random-effects distributions, but the estimates of variance components

are quite different. These results are consistent with our simulation findings in Section 5. Note

that the test statistics and p-values are reported only for the multivariate normal distribution,

and one should be cautious about the p-values for variance components because their associated

tests require testing on the boundary of the parameter space25.

Since the true random-effects distribution is unknown, it is not clear which parameter es-

timates in Table 4 are correct, though the multivariate normal distribution provides a larger

marginal likelihood. To check this formally, we apply the diagnostic bootstrap test in Section

6 to see whether a multivariate normal distribution is appropriate for the random effects. The

bootstrap test with 200 bootstrap samples and with 1000 Monte Carlo integration nodes pro-

duces a test statistic of 3.91, giving a p-value of 0.15. This suggests that a multivariate normal

distribution is appropriate for the random effects bi1, bi2 and bi3.

Pharmacokineticists are more interested in the estimates of pharmacokinetic parameters Ci,

kai, and kai. Figure 5 shows that the estimates of pharmacokinetic parameters for the theophylline

data are roughly similar between the two different random-effects distributions. It is because the

estimates of pharmacokinetic parameters here are more affected by the estimates of fixed-effects

parameters rather than the predictions of random effects.
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(a) (b)

(c)

Figure 5: Theophylline data: the estimates of pharmacokinetic parameters for the 12 subjects. In
each plot, the filled dot symbol is used to show the estimates obtained under the multivariate normal
distribution for random effects, while the triangle symbol is used to show the estimates obtained the
multivariate log-normal distribution for random effects.

8. Conclusions and discussion

Since random effects are latent and unobservable variables, it is difficult to find out their true

underlying distribution. Consequently, in practice, the random-effects distribution can be subject

to misspecification. We presented a formal diagnostic test to check the appropriateness of the

assumed random-effects distribution in nonlinear mixed-effects models. Such a diagnostic tool is

very useful for practical use.

In the paper, we focused on Gauss-Hermite quadrature which is now the default method in

standard software (nlmer function in R and PROC NLMIXED in SAS), and generally provides
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reliable approximation to the marginal likelihood in nonlinear mixed-effects models. This enabled

us to obtain fair results on consequences of misspecifying the random-effects distribution. The

theory suggests that the maximum likelihood estimates of parameters in nonlinear mixed-effects

models with a misspecified random-effects distribution are not asymptotically unbiased. The

asymptotic bias is equal to θ∗− θ0 where θ∗ is the minimiser of the Kullback-Leibler information

criterion and θ0 is the true parameter value. Because calculation of θ∗ is difficult, we used the

maximum likelihood estimator θ̂ML as a consistent estimator of θ∗ for evaluating the bias in our

simulations.

The main findings/conclusions of our simulation studies and real data analysis are summarised

below. We should emphasise that these results essentially apply to the model and range of

scenarios considered in the simulations and real data application.

• The maximum likelihood estimates of fixed-effects parameters are robust to the normality

assumption of random effects.

• The maximum likelihood estimate of residual variance is also robust to the normality as-

sumption of random effects.

• The maximum likelihood estimates of variance components show substantial bias when the

random-effects distribution is misspecified.

• Predictions of random effects are highly affected with a misspecified random-effects distri-

bution and, in fact, they are either overestimated or underestimated.

• The sample size N and the number of repeated measurements ni do not help much with

the relative bias of the maximum likelihood estimates of variance components when the

random-effects distribution is misspecified. A possible reason is that the random-effects

distribution is a mixing distribution, and mainly the marginal distribution will benefit from

increasing the sample size.

• All the above conclusions hold for both adaptive and non-adaptive Gaussian quadrature.

The only difference between the results from these two methods was that the estimates

of variance components obtained using non-adaptive Gaussian quadrature show little bias

under the correct random-effects distribution. This is due to the fact that non-adaptive

Gaussian quadrature centres the quadrature points around the expected value of 0 instead

of the empirical Bayes estimates of random effects.

In our simulations, the variances of the random effects (d1 = 0.1, d2 = 0.3, and d3 = 0.1) were

very small and we chose them based on the case study. In another simulation study (not reported
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in the paper) with the same settings but with larger variance components, we found similar

results for the fixed-effects parameters, but the impact of the mispecification on the estimates of

variance components and predictions of random effects was more substantial when the variance

components are larger, that is, the relative bias of the estimates of variance components tends to

be higher and the predictions of random effects tend to get farther from the true predictions.

The fact that the estimates of fixed-effects parameters (often the main parameters of inter-

est) are robust to departures from normality of the random-effects distribution should not be a

reason to depreciate the distributional assumptions on random effects because, as our simula-

tions revealed, the estimates of variance components and predictions of random effects are highly

affected with such misspecification. Clearly, variance components are crucial in calculation of

the standard errors of the fixed-effects parameters estimates, hence wrong estimates of them

could affect the confidence intervals and hypothesis tests regarding the fixed-effects parameters

(see26,27). Moreover, individual-specific inferences could be misleading when the predictions of

random effects are inaccurate.

Last but not least, the more random effects, the more challenging their distribution would be.

Therefore, it is important to avoid any unnecessary random effects in the model. This can be

done, for example, via a test for zero random effects. Classical tests such as the likelihood ratio

and score tests cannot be easily applied to this testing problem because it requires testing on the

boundary of parameter space. Bootstrap and permutation tests have been suggested for testing

random effects in linear and generalised linear mixed models25,28,29, however little is known on

testing random effects in nonlinear mixed-effects models. Developing such tests for random effects

in nonlinear mixed-effects models will be very helpful.

9. Data availability statement

The data that support the findings of this paper are available from the author upon request.
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