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Abstract
We have developed abstraction/representation (AR) theory to answer the question ‘‘When does a physical system com-

pute?’’ AR theory requires the existence of a representational entity (RE), but the vanilla theory does not explicitly include

the RE in its definition of physical computing.Here we extend the theory by showing how the RE forms a linked

complementary model to the physical computing model. We show that the RE does not need to be a human brain, by

demonstrating its use in the case of intrinsic computing in a non-human RE: a bacterium.
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1 Introduction

Many and diverse physical substrates are proposed for

unconventional computing, from relativistic and quantum

systems to chemical reactions and slime moulds, from

carbon nanotubes to non-linear optical reservoir systems,

from amorphous substrates to highly engineered devices,

from general purpose analogue computers to one-shot

devices.In another domain, biological systems are often

said to perform information processing. In all these cases it

is crucial to be able to determine when such substrates and

systems are specifically computing, as opposed to merely

undergoing the physical processes of that substrate.

In order to address this question, we have been devel-

oping abstraction/representation theory (AR theory). This

is a framework in which science, engineering/technology,

computing, and communication/signalling are all defined

as a form of representational activity, requiring the fun-

damental use of the representation relation linking physical

system and abstract model in order to define their operation

(Horsman et al. 2014; Horsman 2015). Within this frame-

work, it is possible to distinguish scientific experimentation

on a novel substrate (an activity necessary to characterise

the computational capabilities of a substrate) from the

performance of computation by that substrate. This is

needed to distinguish cases where a substrate superficially

appears to be computing, because it sometimes produces a

state that resembles a computational result (which can be

determined only by comparison with a separately com-

puted result), from cases where a substrate is reliably and

consistently producing desired computational results.

In work following on from the original definitions,

Horsman et al. (2017b) provide a high level overview,

Horsman et al. (2018) delve into more philosophical

aspects, and Horsman et al. (2017a) present an example of

intrinsic computation: signalling in bacteria. Also see

Horsman et al. (2014, 2018) for references to the wider

unconventional computing and philosophical literature.

AR theory requires the existence of a representational

entity (RE) to support the representation relation. One issue

glossed over in our previous descriptions of AR theory that

becomes crucial when analysing computation in systems

where the RE is not a human or conscious user, is the

relationship between the physical RE and the physical

computer. Here we enrich AR theory by incorporating the

RE explicitly, and showing how it relates to the physical

computing process.

The structure of the paper is as follows. In Sect. 2 we

summarise the current formulation of AR theory. In Sect. 3

we extend the theory to include the RE explicitly. In Sect. 4
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we demonstrate how the extended theory allows us to

capture and model intrinsic computing, including an

example in a bacterium.

2 AR theory in a nutshell

2.1 Our view of physical computing

AR theory has been developed to answer the specific

question of when a physical system is computing (Horsman

et al. 2014). The answer hinges on the relationship between

an abstract object (a computation) and a physical object (a

computer). It employs a language of relations, not from

mathematical objects to mathematical objects (as is usual

in mathematics and theoretical computer science), but

between physical objects and those in the abstract domain.

The core of AR theory is the representation relation,

mapping from physical objects to abstract objects. Exper-

imental science, engineering, and computing all require the

interplay of abstract and physical objects via representation

in such a way that their descriptive diagrams commute such

that the same result can be gained through either physical

or abstract evolutions (see Sect. 2.3). From this, Horsman

et al. (2014) define computing as the use of a physical

system to predict the outcome of an abstract evolution.

2.2 Representation

AR theory has physical objects in the domain of material

systems, abstract objects (including mathematical and

logical entities), and the representation relation that medi-

ates between the two. The distinction between the two

spaces, abstract and physical, is fundamental in the theory,

as is their connection only by the (directed) representation

relation. An intuitive example is given in Fig. 1: a physical

switch is represented by an abstract bit, which in this case

takes the value 0 for switch state up, and 1 for switch state

down. Note, however, that AR theory is not a dualist theory

in the sense of Descartes. Everything in the theory is

physical in some form. The symbols in the Abstract domain

in Fig. 1 are instantiated as ink on paper or pixels on the

screen as you read this. What makes them abstract in AR

theory is that this physical form is to some degree arbitrary,

and can change, while still corresponding to the same

abstract object.

An example of a physical object in the domain of

material entities is a computer. It has, usually, internal

degrees of freedom, and a physical time evolution that

transforms initial input to final output states. An example

of an abstract object is a computation, which is a set of

objects and relations as described in one of the logical

formalisms of theoretical computer science. Likewise, an

object such as a bacterium is a physical entity, and its

theoretical representation within biology is an object in the

domain of abstract entities.

The central role of representation leads to the require-

ment for a representational entity (RE). The RE supports

the representation relation between physical and abstract.

AR theory does not require the RE to be human, or con-

scious; see Horsman et al. (2017a) for an example of a

bacterial RE, which is expanded on in Sect. 4.2 here.

The elementary representation relation is the directed

map from physical objects to abstract objects,

RT : P ! M, where P is the set of physical objects, and M

is the set of abstract objects. We subscript the relation R
with a theory T to indicate that the relation is theory-

dependent. When a physical object p and an abstract object

mp are connected by RT we write them as p7!mp. The

abstract object is then said to be the abstract representation

(under the given theory) of the physical object. This basic

representation is shown in Fig. 2a.

Abstract evolution takes abstract objects to abstract

objects, which we write as CT : M ! M. Again, we sub-

script with theory T to indicate that C is theory-dependent.

An individual example is shown in Fig. 2b, for the map-

ping CT ðmpÞ taking mp 7!m0
p. The corresponding physical

evolution map is given by H : P ! P. For individual ele-

ments in figure 2c this is HðpÞ which takes p7!p0.

2.3 e-commuting diagrams

In order to link the final abstract and physical objects, we

apply the representation relation to the outcome state of the

physical evolution, to give its abstract representation mp0 ,

Fig. 2d. We now have two abstract objects: m0
p, the result of

the abstract evolution, and mp0 , the representation of the

result of the physical evolution. For some (problem-de-

pendent) error quantity e and distance function d(), if

dðmp0 ;m
0
pÞ� e (or, more briefly, mp0 ¼e m

0
p), then we say

that the diagram 2(d) e-commutes.
Commuting diagrams are fundamental to the use of AR

theory. If the relevant abstract and physical objects form an

e-commuting diagram under representation, then mp is a

Abstract

Physical

(0, 1)

R

Fig. 1 Basic representation has three components: the space of

physical objects (here, a switch with two settings); the space of

abstract objects (here, a binary digit); the directed representation

relation R mediating between the spaces
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faithful abstract representation (up to e) of physical system

p for the evolutions CT ðmpÞ and HðpÞ.
The existence of such e-commuting diagrams define

what is meant by a faithful abstract representation of a

physical system. The final state of a physical object

undergoing time evolution can be known either by tracking

the physical evolution and then representing the output

abstractly, or by evolving the abstract representation of the

system; and the two results differ by less than the problem-

dependent e. In the first case, the ‘lower path’ of the dia-

gram is followed; in the latter, the ‘upper path’.

Finding out which diagrams e-commute is the business

of basic experimental science; once commuting diagrams

have been established they can be exploited through

engineering and technology.

2.4 Compute cycle

Figure 2d shows the basic ‘science cycle’, of representing a

physical system, and determining whether CT is a suffi-

ciently good abstract model of its behaviour, by requiring

that mp ¼e mp0 for sufficiently many different initial states

p to have confidence in CT and RT . There are derived

variants of this diagram that capture the ‘engineering

cycle’, and the related ‘compute’ cycle. See the original

references cited in Sect. 1 for details; here we focus on the

compute cycle.

An e-commuting diagram in the context of computation

also connects the physical computing device, p, and its

abstract representation mp. But to do so it makes use of the

instantiation relation eRT : M ! P. Here, instead of saying

abstract object mp represents physical system p, we say that

physical system p instantiates abstract object mp. Whereas

the representation relation is primitive, the instantiation

relation is a derived relation, based on multiple science

cycles, abbreviated as eRT ; see original references for full

details.

The use of eRT acknowledges that a computer is phys-

ical system engineered (or possibly evolved) to have a

particular behaviour, rather than a natural physical system

being scientifically modelled. The full compute cycle is

shown in Fig. 3, starting from initial abstract problem,

through instantiation into a physical computer, physical

evolution of the device, followed by representation of the

final physical state as the abstract answer the the problem.

Abstract

Physical

p

mp

RT Abstract

Physical

p

mp

RT

mp

CT (mp)

(a) (b)

Abstract

Physical

p

mp

RT

mp

CT (mp)

p
H(p)

Abstract

Physical

p

mp

RT

mp

CT (mp)

p
H(p)

mp

ε

RT

(c) (d)

Fig. 2 Parallel evolution of an abstract object and the physical system

it represents. a The basic representation: physical system p is

represented abstractly by mp using the modelling representation

relation RT of theory T . b Abstract dynamics CT ðmpÞ give the

evolved abstract state m0
p. c Physical dynamics HðpÞ give the final

physical state p0. d RT is used again to represent p0 as the abstract

output mp0 . If mp ¼e mp0 , the diagram e-commutes. (Adapted from

Horsman et al. (2014).)
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Ensuring that the diagram e-commutes is a process of

debugging the physical system, including how it is

instantiated (engineered, programmed and provided with

input data), and how its output is represented. This shows

another key difference from the science cycle: there the

diagram is made to e-commute by instead debugging the

abstract model.

The most important use of a computing system is when

the abstract outcome m0
p is unknown: when computers are

used to solve problems. Consider as an example the use of

a computer to perform the abstract arithmetical calculation

2 þ 3. The desired final abstract state, m0
p ¼ 5, is not cal-

culated directly. Instead, the user infers that final state by

using the physical evolution of the computing device and

the representation of its final physical state, which yields

mp0 ; confidence in the technological capabilities of the

computer and the correctness of the instantiation allows the

user to exploit m0
p ¼� mp0 to infer that the observed result is

the desired result.

This use of a physical computer is the compute cycle,

Fig. 3: the use of a physical system (the computer) to

predict the outcome of an abstract evolution (the

computation).

2.5 Generality of AR theory

Nothing in the above definition requires the physical

computer to be digital, or electronic, or universal, or pre-

existing. The computer could be a continuous analogue

device; it could be a mechanical or organic device; it could

be a hard-wired device with limited capabilities; it could be

a ‘one-shot’ device constructed for a particular

computation. It simply needs to be sufficiently powerful,

sufficiently accurate, and instantiatable, to perform the

RE’s desired computations: the relevant squares must exist,

and must be known to e-commute for the desired

computations.

And, of most relevance here, nothing in the above def-

inition requires the RE to be a human, or conscious, user.

We now show how to model the RE in the same context as

the computing system.

3 Including the RE in the model

3.1 Overview

As mentioned above, the representational entity (RE)

supports the representation relation R. Although it does not

appear explicitly in the compute cycle of Fig. 3, it is the

physical entity that ‘owns’ the abstract problem A and

‘desires’ the abstract solution A0.
To help clarify the issues, consider a (human) RE who

has the problem ‘‘I have two apples in my left hand, and

three in my right hand; how many apples do I have in

total?’’ We model this physical RE’s problem, how they

encode it as a computational problem, how this is instan-

tiated in a physical computer, how the computer finds the

answer, how the answer is represented back as an abstract

computational result, and how that result is decoded as an

answer to the RE’s problem.

In this section, we add the RE to the overall model of

physical computing as defined in AR theory. As before, we

have objects in two domains: the physical RE, and our

abstract model of the RE. (We refer to ‘our’ model, to

indicate that the abstract model of the RE is not a model

that the RE has constructed about itself, but a model that

we have constructed to explain the RE’s representational

and computational behaviours. There are several levels of

indirection at play here, explained in more detail in Sect.

5.2.) First we show how we model the RE in a manner

analogous to how we model a physical computation (Sect.

3.2). Then we show how to integrate the RE and full

physical compute cycle models, and how to interpret var-

ious parts of the resulting model (Sect. 3.3).

3.2 The physical RE

The RE is a physical system pRE (Fig. 4). The relevant part

of the RE here is the physical states that it uses to represent

its abstract problem A. Our abstract model of these relevant

parts in this and following AR theory diagrams is mpRE .

We model the computational system as before. There is

our abstract model mpc that forms the ‘specification’ of the

p

mp

RT

mp =ε mp

CT (mp)

A

encode

A

decode

p
program runs

H(p)

RT

Fig. 3 Physical computing in AR theory. An abstract problem A is

encoded into the model mp; the model is instantiated into the physical

computer state p; the computer calculates via HðpÞ, evolving into

physical state p0; the final state is represented as the final abstract

model mp0 ¼e m
0
p; this is decoded as the solution to the problem, A0.

The instantiation, physical evolution, and representation together

implement the desired abstract computation CT ðmpÞ. (From now on

we omit the dashed line separating the physical and abstract world,

and rely on the different shaped boxes to indicate what components

lie in which domain.)
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RE’s problem mpRE encoded as a computational problem.

(This is the model mp in Fig. 3.)

The computer’s physical state may incorrectly imple-

ment the RE’s encoded problem, in which case the physical

state needs to be modified; the RE is using an engineering

model to specify pc (see Sect. 5.1 for the distinction

between an engineering and a scientific model). However,

our model mpc of the RE’s encoded problem may incor-

rectly represent the RE’s problem: we are using a scientific

model to capture the existing RE and its computer. We

model ‘the RE’s problem being physically encoded into the

computer’ (bottom line of Fig. 4) as ‘mpRE being encoded

into the computational model mpc ’ (top line). There is no

guarantee that such an encoding is possible: not all prob-

lems are computable.

The two representation/instantiation relation arrows in

Fig. 4 are with respect to two different theories. The rep-

resentation RTRE : pRE ! mpRE is based on the theory of

how the physical RE forms abstract problem specifications;

the instantiation eRTc : mpc ! pc is based on the theory of

how the physical computer implements abstract

computations.

In a correctly implemented computer, the diagram in

Fig. 4 should e-commute: the instantiated state of the

physical computer should correctly mirror the desired state

of the physical RE: it should physically encode the desired

state. The establishment of this physical encoding link is

part of the engineering process of instantiating the physical

computer.

During the execution, this physical encoding link is not

necessarily established immediately. There may be some

delay, for example in updating a record to reflect reality, or

in opening or closing a valve to reflect changed demand. In,

for example, a mechanical control system, with feedback,

there can be an immediate coupling: the behaviour of the

physical controlled system (a proxy for the RE, see Sect. 6)

changes its state, which is directly communicated to the

physical controller though their physical mechanical cou-

pling. We do not consider this aspect further here, although

it is a key feature of correctly-engineered computational

‘mirror worlds’ and of feedback control systems.

3.3 The physical RE in the compute cycle

We can now add this physical RE layer to the previous

compute cycle. See Fig. 5 for the full compute cycle

including the representational entity. Notice how the RE

adds another dimension (cube instead of square) to the

diagrams. Each dimension is a level of indirection or

representation.

The full compute cycle involves traversal of many faces

and edges of the displayed cube. Each face has its own

place in the model.

Consider again a (human) RE who has the problem ‘‘I

have two apples in my left hand, and three in my right

hand; how many apples do I have in total?’’

Back face; RE’s view of the computation (Fig. 6): the

RE’s desired states, starting from a problem state (physical

brain state with a problem, pRE; abstract initial state rep-

resenting the brain-state’s problem, mpRE , ‘‘how many

apples?’’) and resulting in a solution state (abstract final

state, m0
pRE

, ‘‘five apples!’’; physical state, p0RE, a brain state

that captures that abstract solution). There is no direct path

from initial to final state, either abstractly or physically, as

pRE

mpRE

RTRE

mpc

encode

pc
physically encode

RTc

Fig. 4 The relationship between the physical representational entity

pRE and the physical computer pC via abstract models of each. There

is an encoding of the abstract model mpRE into mpC . In a correctly

working system, this encoding is appropriately implemented by the

respective physical systems: the square should e-commute. Note that

the models of the RE and the computer are potentially with respect to

different theories

pc

mpc

Rc

mpc

Cc

pc
Hc

Rc

pRE

mpRE

RRE

mpRE

CRE

pRE
HRE

RRE

physically
encode

encode

physically
decode

decode

Fig. 5 The full compute cycle including the representational entity

and the physical computer. The desired change in the RE’s state, from

posed problem to perceived solution, is pRE ! p0RE. The physical

computer performs pc ! p0c. The full compute cycle from AR theory

is: represent RE’s physical state pRE (desired computation) as abstract

model mpRE ; encode to computational model mpc ; instantiate into

physical computer state pc; physical computer evolves to final state

p0c; represent physical solution as abstract computational solution m0
pc

;

decode to final abstract problem solution m0
pRE

; which models the

instantiation of the final state of the RE. Each set of squares (between

representational entity and physical computer, and across the compute

cycle) should e-commute
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a separate computer is used to achieve the desired state

changes.

Left face; encoding the problem (Fig. 4): the RE’s initial

physical and abstract state encoded into the computer’s

initial physical and abstract states. The RE’s abstract

problem mpRE of ‘‘how many apples?’’ can be encoded as

the computer’s initial abstract state mpc ‘‘2 þ 3’’. This is

instantiated as the computer’s initial physical state pc,

2þ 3 . The RE pRE physically encodes the problem in the

computer’s initial state pc by, for example, pressing the

keys labelled 2 then þ then 3 . (How this human RE

manages to press the keys, given the apples they are cur-

rently holding, is an exercise left to the reader.)

Front face; compute cycle (Fig. 3, which also includes

the back face RE abstract models as its ‘abstract problem’

components): the original simple AR theory compute

cycle, ignoring the role of the RE. The abstract computa-

tional problem mpc is instantiated in the computer’s initial

physical state pc,
2þ 3 . Physical evolution is initiated by

pressing ¼ , and the physical computer evolves as given

by its physical structure, Hc, which results in the final

physical state p0c of 5 . This is represented as the final

abstract state m0
pc

of ‘‘5’’. These three steps (instantiation,

physical evolution, representation) implement the desired

abstract computation Cc: ‘‘2 þ 3 ¼ 5’’.

Right face; decoding the solution (Fig. 7): the RE’s final

physical and abstract state decoded from the computer’s

final physical and abstract state. The computer’s final

physical state p0c (some kind of pattern of lights in the

shape of a figure 5) is represented as the final abstract state

m0
pc

of ‘‘5’’. This is decoded to the RE’s final abstract state

m0
pRE

of ‘‘five apples!’’. The RE’s final physical brain state

p0RE is an instantiation of this, physically achieved by the

RE looking at and physically decoding the output from the

computer.

Top face; abstract use of a computer (Fig. 8): the purely

abstract view of the (modelled) RE encoding its problem

into a (modelled) computation, and decoding the desired

solution. There is no direct path from initial to final abstract

states as the physical computer is used to achieve the

desired abstract state changes. In terms of classical

refinement theory (Clark et al. 2005; He et al. 1986), CRE

can be thought of as the ‘global-to-global’ requirement

(although here this need not be captured in a formal

manner), with ‘‘encode, computation Cc, decode’’ corre-

sponding to the ‘‘initialisation, operation, finalisation’’

steps.

Bottom face; physical use of a computer (Fig. 9): the

purely physical view of the RE encoding its problem in a

physical computer, and decoding the desired solution. That

this is a computation, rather than some other activity, is

established by the abstract models and the various e-com-

muting squares.

The full compute cycle for the apples example is shown

in Fig. 10. All of these relationships must be correctly

implemented and modelled (the relevant squares contain-

ing encoding, decoding, instantiation, and representation

must e-commute) for the actual physical RE final state p0RE
to be the desired physical RE final state, that is, for the

physical computer to have been used correctly, and for it to

have performed correctly, to solve the RE’s problem.

pRE

mpRE

RRE

mpRE

CRE

pRE
HRE

RRE

Fig. 6 The RE’s view of the problem solution (back face of Fig. 5).

The RE has an initial physical state pRE , modelled as mpRE . It has a

desired final state p0RE, modelled as m0
pRE

. Both the horizontal arrows

are dashed, as they are implemented in a different medium: the

computer

mpc

pc

Rc

mpRE

pRE

RRE

physically
decode

decode

Fig. 7 Decoding the solution

from the computer to the RE

(right face of Fig. 5). The final

state of the computer, p0c, is

represented as the final abstract

state m0
pc

; this is decoded to the

final abstract state of the RE,

m0
pRE

; and instantiated as the

RE’s final physical state. This

is the model of the physical

decoding lower arrow, achieved

by the RE physically interrogat-

ing the computer

mpc mpc

Cc

mpRE
mpRE

CRE

encode
decode

Fig. 8 The abstract model of the RE’s use of the computer to solve its

problem (top face of Fig. 5). The RE has an initial abstract state mpRE ;

this is encoded into the initial abstract state of the computer mpc . The

computer performs its calculations to produce its final state m0
pc

,

which is decoded to produce the desired final state of the RE, m0
pRE

.

Both the horizontal arrows are dashed, as they are implemented in a

different medium: the physical computer
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4 Examples

4.1 Intrinsic computing: ‘mental arithmetic’

The person with the apples does not need to use an external

calculator; they can add up in their head, they can compute

intrinsically. (This also solves their problem of pressing

keys with their hands full of apples.) Figure 11 illustrates

this. Here, the RE (back face) and the abstract model (top

face) are as in Fig. 10, but the physical calculator is dif-

ferent. Instead of pressing keys on an external calculator,

the RE ‘sets’ their own brain into the appropriate state,

executes the calculation internally, and then ‘reads’ the

resulting state. This uses an evolved, rather than engineered

mechanism: the brain. It has been engineered (trained) to

some degree through schooling, and there have been suf-

ficient ‘experiments’ (exams) in the past to have confidence

that the error e is sufficiently small (zero) for simple

calculations.

4.2 Intrinsic computing in bacteria

Humans are not the only organisms who can compute

intrinsically. Figure 12 shows the RE and the compute

cycle in the case of the problem of bacterial computing.

This example was originally studied in Horsman et al.

(2017a) to demonstrate that it is possible to have compu-

tation with a non-human RE. However, without the explicit

modelling of the bacterial RE, it resulted in a somewhat

circuitous description. With the RE here explicitly present,

the model is much clearer.

The physical RE, pRE, is a bacterium, with a receptor at

the front, and a flagellar motor at the back. In the absence

of input at the receptor, the motor is off; input causes the

motor to switch on, propelling the bacterium towards food.

(As ever, the biology is more complicated than this;

Horsman et al. (2017a) should be consulted for further

biological details.) The abstract problem, CRE, that the RE

wants to solve is ‘‘if there is food, move towards it’’. This is

encoded as the abstract computational problem Cc: ‘‘if

there is a signal, switch the motor on’’. The abstract signal

is instantiated as a particular chemical; the physical RE

physically encodes the reception of exterior food as the

presence of an internal chemical, chem X.

This chemical physically propagates through the bac-

terium, undergoing transformation via a biochemical

pathway, such that another chemical becomes present at

the rear. The presence of this other chemical, chem Y, is

represented as switching on the (abstract) motor, which is

decoded as the answer to the bacterium’s problem: to

pc pc
Hc

pRE pRE
HRE

physically
encode

physically
decode

Fig. 9 The physical system of the RE’s use of the computer to solve

its problem (bottom face of Fig. 5). The physical RE has an initial

physical state pRE; this is physically encoded into the initial physical

state of the computer pc. The computer evolves over time to produce

its final state p0c, which is decoded to produce the desired final state of

the physical RE, p0RE

2 + 3 =

“2 + 3”?

Rc

“5”!
Cc

5
calculate

Rc

person

how many?

RRE

5 apples!
CRE

personHRE

RRE

press
keys

encode

read
display

decode

Fig. 10 The full compute cycle for the RE using a calculator to

determine their apple total

brain state

“2 + 3”?

Rc

“5”!
Cc

brain state
calculate

Rc

person

how many?

RRE

5 apples!
CRE

personHRE

RRE

set brain
state

encode

read brain
state

decode

Fig. 11 The full compute cycle

for the RE using their intrinsic

calculational ability to

determine their apple total
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move. It is physically decoded as activating the flagellar

motor.

The bottom face of this bacterial-compute cube shows

the purely physical computing: The bacterial RE physically

encodes the detection of food by its receptor as a chemical

chem X; the biochemical pathway moves and transforms

this chemical signal to the rear where it appears as chem Y.

The resulting chemical is physically decoded: it attaches to

and activates the flagellar motor. The physical problem, of

detecting food and moving towards it, has been solved.

That this is indeed a computation, rather than a purely

physical process, is argued in Horsman et al. (2017a):

chem X, chem Y, and the pathway are in some sense ‘ar-

bitrary’ (they comprise different molecules in different

bacterial species), and so it is not their specific physical

properties, but their representational, informational prop-

erties, that are being exploited. We are able to model the

part of the bacterium that represents the problem as mpRE ,

and the part that encodes into the computer mpc in a way

that convincingly contains the right sorts of representation.

With representation (and hence a representational entity)

identified, we can conclude that there is abstract data being

processed, not mere physical material being exploited.

With e-commuting diagrams present, we can conclude that

computation is present.

There are similarities with the argument here and the

field of biosemiotics, which talks of representations and

signs, and postulates that ‘‘The semiosic–non-semiosic

distinction is coextensive with the life–nonlife distinction’’

(Kull et al. 2009). For the presence of computation, we

require representation, that the chemical be a ‘signal’ or

‘sign’ beyond its mere physical properties; we determine

that it is so by showing a different chemical can provide the

same signal.

Horsman et al. (2017a) also discuss the energy transport

process in photosynthesis, as an example of a process that

is not computation under our definition. There is no

abstract information processing occurring, no intrinsic

representational activity, no signal, simply physical energy

transport.

4.3 Extrinsic computing with bacteria

Not all computing done by bacteria is intrinsic: other REs

can exploit bacterial functions to perform extrinsic com-

putation for their own ends. Various gene-engineered

bacteria and cells have been proposed as computational

devices, see, for example, Amos et al. (2015); Gardner

et al. (2000). Consider a simple bacterium gene-engineered

to perform some computational task, and its used by a

human RE, Fig. 13.

The person has a question that they can encode into an

input to their bacterial computer; it computes to produce a

final state that is represented by an output; that output is

decoded into the answer, and the person’s brain state

updates to include the answer to their question.

That this is a computation that involves representation

can be determined by interrogating the user as RE. So,

unlike the intrinsic bacterial computation of the previous

section, the bacterium is the computer and not the RE, and

there is no need to demonstrate the existence of represen-

tation independently.

5 Modelling issues

There are multiple models used in our description of

computation, which have some subtle differences, descri-

bed here.

5.1 Scientific v engineering models

There are two kinds of model at play in these diagrams and

our analysis.

chem X

signal?

Rc

motor !
Cc

chem Y
signal pathway

Rc

bacterium

food?

RRE

move!
CRE

bacteriumHRE

RRE

physically
encode

encode

physically
decode

decode

Fig. 12 The full compute cycle for the bacterial intrinsic computing

system. See text for details

bacterium

input?

Rc

output !
Cc

bacterium
bio-processing

Rc

person

question?

RRE

answer !
CRE

personHRE

RRE

physically
encode

encode

physically
decode

decode

Fig. 13 The full compute cycle for the bacterial extrinsic computing

system. See text for details
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Firstly, there are scientific models, descriptive repre-

sentations of physical reality. In the diagrams, the model

and physical system are linked with an upward pointing

representation arrow. If there is a discrepancy between

such a model and reality, the model needs to be adjusted to

be a better fit.

Secondly, there are engineering models, prescriptive

specifications to be instantiated in physical reality. In the

diagrams, the model and physical system are linked with a

downward pointing instantiation arrow. If there is a dis-

crepancy between such model and reality, reality needs to

be re-engineered to be a better fit.

The presence of engineering models in the compute-

cycle gives us another criterion for deciding on the pres-

ence of computation, rather than mere physical action. If e
is too large, if the diagram does not sufficiently commute,

what is changed, the model or the instantiation? In an

engineered (or evolved) computational system, it will be

the instantiation.

– Using a calculator: if the user enters 2þ 3 ¼ and the

display says 11 , the calculator has to be fixed (or

maybe the user has to realise the display is in base 4).

– Mental arithmetic: if the person gets an answer other

than ‘‘5’’, they need to go on a remedial arithmetic

course.

– Intrinsic bacterial computing: if chem Y fails to bind to

the flagellar motor, the bacterial line needs to evolve

another chemical.

– Extrinsic bacterial computing: if the final bacterial state

is not the desired one, the bacterium needs to be re-

engineered.

There are additional places where errors may occur: the RE

may conceptualise their problem incorrectly, may instan-

tiate it in the computer incorrectly, or may decode the

result incorrectly. All of these require model or instantia-

tion changes, too.

5.2 Whose model is it anyway?

The models in the AR diagrams are made by us as AR

theorists external to the computational system. These are

our attempt to capture certain models implicitly or

explicitly used by the REs in order for them to exploit the

computational system.

In Fig. 8 the four models are our (AR theorist) models

of the physical layer components of Fig. 9. The RE may

use models in order to compute, but does not in general

itself construct AR diagrams.

So the model mpRE is our model of the RE’s problem,

constructed to help us determine the presence and nature of

the computation. The model mpc is our model of the RE’s

model of the computer and encoding; the RE’s own model

is also part of its physical state pRE. (The RE’s model of

mpc is an engineering model, as indicated by the direction

of the arrow; our model of the RE’s model is a scientific

model.) Similarly for the other models in Fig. 8.

In the case of a human RE, we may be able to interro-

gate them about their own models to help us build our

models; for non-human users, we need to take a more

indirect route. We elide this complexity in the figures, for

clarity. However, we must recognise the possibility that our

models may incorrectly capture the RE’s physical state and

problem, and its model of the computer (we have failed to

correctly model the RE/computer system), in addition to

the possibility that the RE may have incorrect models (the

RE is mistaken about its understanding of the computer).

When a discrepancy is discovered in our formulation of the

situation, we need to modify our descriptive models of the

RE’s descriptive and prescriptive models.

6 Conclusion

We have shown how the RE in AR theory can be incor-

porated into the compute cycle, and how this can illuminate

the physical RE using a physical device as a physical

computer. The RE does not need to be a human brain: an

example here shows intrinsic computing by a bacterial RE;

the case does have to be carefully argued, by demonstrating

the arbitrariness of the representation. This example

demonstrates how computing, whether conventional or

unconventional, can be broader than human use of com-

puters (external or brain-based), but is narrower than pan-

computationalism, in requiring the existence of an RE in

addition to the computer itself.

It may be that the RE does not even need to be organic,

or ‘alive’; it might potentially appear in the loop as an

engineered ‘proxy’ for the ultimate RE, for example, the

plant (proxy RE) in a control system using the controller

(physical computer) to maintain itself in a particular

behaviour. In future work we will investigate how far the

concept of the RE can be removed from a living user.
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