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Abstract

We explore theoretically the interplay between shear banding and edge fracture in complex fluids by performing a detailed simulation study
within two constitutive models: the Johnson–Segalman model and the Giesekus model. We consider separately parameter regimes in which
the underlying constitutive curve is monotonic and nonmonotonic, such that the bulk flow (in the absence of any edge effects) is, respectively,
homogeneous and shear banded. Phase diagrams of the levels of edge disturbance and of bulk (or quasibulk) shear banding are mapped as a
function of the surface tension of the fluid–air interface, the wetting angle where this interface meets the walls of the flow cell, and the
imposed shear rate. In particular, we explore in more detail the basic result recently announced by Hemingway and Fielding [Phys. Rev. Lett.
120, 138002 (2018)]: that precursors to edge fracture can induce quasibulk shear banding. We also appraise analytical predictions that shear
banding can induce edge fracture [S. Skorski and P. D. Olmsted, J. Rheol., 55, 1219 (2011)]. Although a study of remarkable early insight,
Skorski and Olmsted [J. Rheol., 55, 1219 (2011)] made some strong assumptions about the nature of the “base state,” which we examine
using direct numerical simulation. The basic prediction that shear banding can cause edge fracture remains valid but with qualitatively modi-
fied phase boundaries. © 2020 The Society of Rheology. https://doi.org/10.1122/8.0000086

I. INTRODUCTION

In many complex fluids, a state of initially homogeneous
bulk shear flow is unstable to the formation of coexisting
bands of differing shear rate, with layer normals in the flow-
gradient direction. This phenomenon, which is called shear
banding [3–6], has been observed in wormlike micellar sur-
factants [7], lyotropic lamellar phases [8], triblock copoly-
mers [9], telechelic polymers [10], star polymers [11], clays
[12,13], emulsions [13] and (subject to controversy [14,15])
monodisperse linear entangled polymers [16,17]. It is
thought to stem from a nonmonotonicity in the underlying
bulk constitutive relation between shear stress and shear rate
for homogeneous shear, σ( _γ). A state of initially homoge-
neous shear is linearly unstable to the formation of shear
bands in the regime of the negative slope, dσ=d _γ , 0 [18].
The steady state flow curve of shear stress as a function of
gap-averaged shear rate, σ( _γ), then displays a plateau over
the range of shear rates for which the flow is banded.

Many flow instabilities depend not only on bulk rheology
but also on the boundary conditions where the fluid meets
the walls of the flow cell and/or the outside air. In the cone–
plate device sketched in Fig. 1 (top left), for example, the
fluid (shown in blue) has an interface with the air (white).
When a highly viscoelastic fluid is strongly sheared, this free
surface can destabilize to give a more complicated edge
profile, with an indentation that invades the fluid bulk. Some
portion of the sample can even be ejected from the device.
This phenomenon, which is called “edge-fracture,” renders
accurate rheological measurements very difficult. Anecdotal

reports of edge fracture pervade the experimental literature.
Detailed studies can be found in Refs. [19–25].

Pioneering theoretical work by Tanner et al. [26,27] iden-
tified the second normal stress difference in the sheared
fluid, N2( _γ), as a key factor in driving edge fracture, and pro-
posed the criterion for the onset of edge fracture to be
jN2j . 2Γ=3R, where Γ is the surface tension of the fluid–
air interface, and R is the radius of a preassumed indentation
in the interfacial profile. Recently, Hemingway et al. [28,29]
derived an updated criterion,

σ

2
djN2( _γ)j

d _γ

�
dσ
d _γ

.
2πΓ
Ly

, (1)

and showed it to be in full agreement with numerical simula-
tions. (Here, Ly is the size of the gap between the rheometer
plates.) This criterion marks the transition with increasing
flow rate (which determines the LHS of the above inequality)
or decreasing surface tension (on the RHS) from a state in
which the fluid–air interface is undisturbed by flow to one in
which it can become significantly deformed, but remains
intact overall: i.e., a partially edge fractured state. Full edge
fracture, explored by direct numerical simulation [28,29],
follows for even stronger flows or smaller surface tensions,
with the fluid then completely dewetting the walls.

So far, we have discussed shear banding as a purely bulk
instability and edge fracture as an interfacial instability,
implicitly suggesting that the two instabilities act indepen-
dently of each other, and without any interplay between
them. Recent work [1], however, showed that even only
modest deformations of the fluid–air interface can lead to
strong secondary flows in the fluid. For a material with a rel-
atively flat bulk constitutive curve σ( _γ), these can take the
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form of apparent shear bands that invade deep into the bulk,
even for a curve that is monotone increasing, dσ=d _γ . 0. In
this way, precursors of the interfacial instability of edge frac-
ture can precipitate quasibulk shear banding. A simulation
snapshot of this phenomenon is shown in Fig. 1 (top right). To
paraphrase this scenario: “(precursors to) edge fracture can
induce (apparent) shear banding.” Conversely, in many fluids
that show true bulk shear banding (even in the absence of any
edge effects), the fluid–air interface often destabilizes above a
critical shear rate on the stress plateau of the flow curve,
leading to the sample being ejected from the flow device
[30,31]. This phenomenon was studied theoretically by Skorski
and Olmsted [2], who showed that the fluid–air interface of a
shear banded sample must always be at least partially disturbed,
with meniscus curvatures set by the jump in second normal
stress across the interface between the bulk bands. A simulation
snapshot of this phenomenon is shown in Fig. 1 (bottom right).
As the relative fraction of the rheometer gap taken up by each
band changes with the overall imposed shear rate, one of the
bands can develop a width that cannot support the meniscus
curvatures demanded by this second normal stress balance,
leading to full edge fracture. To paraphrase this scenario,
“shear banding can induce edge fracture.”

For many years, an outstanding question has been
whether the underlying constitutive curve of monodisperse
linear entangled polymers is monotonic or nonmonotonic,
and so whether a steady applied shear flow should be homo-
geneous or shear banded. Because the underlying constitutive
curve cannot be accessed experimentally in a shear banding
system, this question must be settled by explicit velocimetry
of the flow field. Tapadia and Wang [32] gave evidence for
steady state banding, suggesting a nonmonotonic constitutive
curve. In contrast, Hu et al. [33] found banding only tran-
siently during shear startup, with homogeneous shear recov-
ered at longer times, suggesting a monotonic constitutive
curve. Work on more highly entangled samples did, however,
report long-lived bands in some runs, but not others [34],
even when repeated for the same imposed flow rates. Edge
fracture was discussed as a possible source of this variability.
Significant possible edge fracture in experiments investigat-
ing shear banding in entangled polymers was likewise dis-
cussed in Refs. [35–37].

We have seen, then, that “(precursors to) edge fracture
can induce (apparent) shear banding,”that “shear banding can
induce edge fracture,” and that the relative roles of shear
banding and edge fracture remain unclear in some experi-
ments, particularly on linear entangled polymers. Theoretical
work is clearly needed, therefore, to disentangle the relative
contributions of shear banding and edge fracture in highly
viscoelastic fluids and to assess any interplay between them.

The aim of the present manuscript is to explore theoretically
this interplay between shear banding and edge fracture, by per-
forming a detailed simulation study within two constitutive
models: the Johnson–Segalman model [38] and the Giesekus
model [39]. Considering separately parameter regimes in which
the underlying constitutive curve is monotonic and nonmono-
tonic, we shall map out phase diagrams of the levels of edge
disturbance and of bulk (or quasibulk) banding as a function of
the surface tension of the fluid–air interface, the wetting angle
where this interface meets the walls of the flow cell, and the
imposed shear rate. In particular, we shall explore in more
detail the basic result recently announced in Ref. [1]: that
“(precursors to) edge fracture can induce (apparent) shear
banding.” We also carefully appraise the analytical predictions
that “shear banding can cause edge fracture”: although a study
of remarkable early insight, Ref. [2] made some strong assump-
tions about the nature of the “base state,” which we will now
examine using direct numerical simulation.

The paper is structured as follows. In Sec. II, we discuss
the theoretical models to be used throughout the paper. In
Sec. III, we introduce the flow geometry that we simulate,
along with the boundary conditions, initial conditions, and
choice of parameter values. We then present our results, start-
ing in Sec. IV with the case of (apparent) shear banding
induced by disturbances at the fluid–air interface, for a fluid
with a monotonic though relatively flat constitutive curve. We
then discuss the case of edge fracture induced by bulk banding,
given a nonmonotonic constitutive curve, in Sec. V. Finally,
Sec. VI gives our conclusions and perspectives for future work.

II. MODELS

We work in the zero Reynolds number limit of inertialess
flow, in which the total stress in any element of fluid or air,

FIG. 1. Top left: schematic of a cone–plate device. Top right: the snapshot of a state in which an edge disturbance induces apparent shear banding that invades
far into the bulk. (Giesekus model with a monotonic constitutive curve, �_γ ¼ 4:7, ηs ¼ 0:006, Γ ¼ 0:24.) Bottom right: the snapshot of a state in which shear
banding induces a significant edge disturbance. (The Johnson–Segalman model with a nonmonotonic constitutive curve, �_γ ¼ 2:5, ηs ¼ 0:1, Γ ¼ 0:11.) Bottom
left: the color scale of invariant shear rate in snapshots.
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T(r, t) (with r position and t time), must obey the condition
of force balance,

∇:T ¼ 0: (2)

In any element inside the fluid, T comprises the sum of an
isotropic contribution characterized by a pressure p(r, t), a
Newtonian contribution with a viscosity ηs, and a viscoelastic
contribution Σ(r, t) arising from the polymer chains, worm-
like micelles, etc. The condition of force balance then reads

ηs∇2vþ ∇:Σ� ∇p ¼ 0, (3)

in which v(r, t) is the fluid velocity.
The condition of force balance in the air demands

ηa∇2v� ∇p ¼ 0: (4)

We assume the flow to be incompressible, such that the
velocity field v(r, t) obeys

∇:v ¼ 0: (5)

Enforcing this condition determines the pressure, p(r, t).
We consider two different constitutive models for the

dynamics of the viscoelastic stress. The first is the Johnson–
Segalman model [38], in which

@tΣþ v:∇Σ ¼ Σ �Ω�Ω � Σð Þ þ a D � Σþ Σ � Dð Þ

þ 2G(f)D� 1
τ(f)

Σþ ‘2

τ(f)
∇2Σ: (6)

Here, D ¼ 1
2 (∇vþ ∇vT ) and Ω ¼ 1

2 (∇v� ∇vT ) are, respec-
tively, the symmetric and antisymmetric parts of the strain rate
tensor, ∇vαβ ¼ @αvβ . The parameter a, which lies in the range
�1 � a � 1, describes a slippage of the viscoelastic compo-
nent relative to the solvent. In stationary homogeneous simple
shear flow, the constitutive curve Txy( _γ) ¼ Σxy( _γ)þ ηs _γ is a
nonmonotonic function of the imposed shear rate for jaj , 1
and ηs , 1=8. In this regime, a state of steady shear flow is
shear banded. For ηs . 1=8, in contrast, a steady state shear
flow must be homogeneous, at least in the absence of any edge
disturbances. The second normal stress, N2( _γ) ¼ Σyy � Σxx, is
negative, and scales as � _γ2 in the limit _γ ! 0.

The second constitutive model that we shall study is the
Giesekus model [39], in which

@tΣþ v:∇Σ ¼ Σ �Ω�Ω � Σð Þ þ D � Σþ Σ � Dð Þ

þ 2G(f)D� 1
τ(f)

Σ� α

τ(f)
Σ � Σ

þ ‘2

τ(f)
∇2Σ: (7)

The parameter α in this equation captures an increase in the
rate of stress relaxation when the polymer chains are more
strongly aligned. In a stationary homogeneous shear flow, the

viscoelastic shear stress Σxy( _γ) is a nonmonotonic function of
_γ for α . 1=2, and monotonic for α , 1=2 [39]. The second
normal stress scales as � _γ2 at low shear rates, as in the
Johnson–Segalman model.

The spatial gradient terms prefactored by ‘ in Eqs. (6)
and (7) ensure that the interface between any shear bands has
a slightly diffuse thickness that scales as ‘ [40].

We model the coexistence of fluid and air using a phase
field f(r, t), which obeys Cahn–Hilliard dynamics [41]

@tfþ v:∇f ¼ M∇2μ: (8)

Here, M is a constant molecular mobility. The chemical
potential

μ ¼ Gμ �fþ f3 � ‘2μ∇
2f

� �
, (9)

in which the constant parameter Gμ determines the free
energy of demixing per unit volume. This captures the
coexistence of a fluid phase, in which f ¼ 1, with an air
phase, in which f ¼ �1. The elastic modulus G and the
relaxation time τ in the constitutive Eqs. (6) and (7) are
functions of f, with G(f ¼ 1) ¼ 1, τ(f ¼ 1) ¼ 1, and
G(f ¼ �1) ¼ 0, with τ(f ¼ �1) ¼ 0:002, such that visco-
elastic stresses arise only in the fluid.

The fluid–air interface has a slightly diffuse thickness that
scales as the parameter ‘μ. This is needed to capture the
motion of the contact line where the fluid–air interface meets
the walls of the flow cell [42]. Gradients in μ across the inter-
face contribute an additional source term �f∇μ to the force
balance condition, capturing the effects of the interfacial
surface tension. The surface tension is

Γ ¼ 2
ffiffiffi
2

p

3
Gμ‘μ: (10)

III. FLOW GEOMETRY, BOUNDARY CONDITIONS,
AND INITIAL CONDITIONS

We ignore any complications of slight streamline curva-
ture and stress heterogeneity that are present in many
common experimental shear cells (cone–plate, plate–plate,
cylindrical Couette, etc.), simulating instead a planar slab of
fluid between flat parallel plates. The fluid is sheared at an
overall imposed rate _γ by moving the top plate at speed _γLy
along x̂. See Fig. 2, in which the flow-gradient direction, ŷ,
and vorticity direction ẑ, are, respectively, vertical and hori-
zontal, with the flow direction, x̂, into the page. We assume
translational invariance along x̂, setting @x of all quantities
equal to zero, performing two-dimensional (2D) simulations
in the y� z plane sketched, with all snapshots below also
shown in this plane. The velocity vector and stress tensor are
nonetheless fully 3D objects.

The simulation box has length Lz in the vorticity direction,
with periodic boundary conditions in that direction. At the
walls of the flow cell in the gradient direction y, we assume
conditions of no slip and no permeation for the fluid velocity
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v. For the viscoelastic stress Σ(r, t), we assume zero gradient,

n � ∇Σ ¼ 0, (11)

in which n is the unit outward wall normal. For the phase
field [43,44], we assume

n � ∇μ ¼ 0, (12)

n � ∇f ¼ �1ffiffiffi
2

p
‘μ
cos θ 1� f2

� �
: (13)

In the absence of flow, the contact angle at which the fluid–air
interface meets the walls of the flow cell is then given by the
angle θ in the second of these equations: θ ¼ 90� gives a ver-
tical interface, θ . 90� gives an interface convex into the air,
and θ , 90� concave. In Ref. [29], we showed that while the
steady state shape of the perturbed meniscus can depend on
wetting angle, other quantitative predictions (e.g., the location
of phase boundaries) are relatively robust to changes in θ.

In performing any simulation, we first take a rectangular
slab of fluid centered horizontally in the simulation box of
Fig. 2 (which, recall, shows only the left half of the area sim-
ulated), with length Λ in the vorticity direction. We then
equilibrate the fluid–air coexistence in the absence of shear,
to the contact angle just described. We then add a small per-
turbation to the interface’s position h(y) along the z direction,
h(y) ! h(y)þ 10�8cos(πy=Ly). This is needed only when the
interface is vertical, θ ¼ 90�, but we add it for all values of θ,
for consistency. The final steady state is independent of the
small amplitude of the initial perturbation. It is also relatively
robust against the shape of the added perturbation. In Sec. IV,
the viscoelastic stress is initialized to lie on the stationary
homogeneous constitutive curve for the shear rate in question,
then we shear the fluid at that rate. In Sec. V, unless otherwise
stated, we initialize with the corresponding 1D flow state
which may be banded or homogeneous depending on the
shear rate. In cases where the homogeneous state is metasta-
ble, we ensure that the initial state is banded by sweeping the
shear rate from an appropriate starting value. We define the
steady state interface displacement

d ¼ max (h(y))�min (h(y)), (14)

with d0 the value of this in a system without shear, noting
that for θ ¼ 90�, d0 ¼ 0.

The parameters pertaining to the model equations, flow
geometry, boundary conditions, and imposed flow are summa-
rized in Table I, along with the values to be used in our simu-
lations. Details of our numerical methods can be found in Ref.
[29]. In order to accurately reproduce the physics of the air–
fluid coexistence, we require the air viscosity to be much
smaller than the zero shear viscosity of the fluid (solvent and
polymer combined), giving the condition ηa � ηs þ Gτ. In
the first part of our study (Sec. IV), we further require each
constitutive model to have a monotonic constitutive curve, to
rule out true bulk shear banding in the absence of any edge
effects. For the Giesekus model, it is possible to obtain mono-
tonic constitutive curves for values of ηs � Gτ. The condition
ηa � ηs þ Gτ can then be met by adopting same air/solvent
viscosity across the whole domain, ηa ; ηs, which is also
numerically convenient. Accordingly, we follow this strategy
in our simulations of the Giesekus model. For the Johnson–
Segalman model, solvent viscosities ηs as large as 0.1 are
needed to study marginally banded flows (Sec. V), and we
can no longer equate ηa and ηs while also satisfying the condi-
tion ηa � ηs þ Gτ. Therefore, in this case, we must simulate
distinct air and solvent viscosities. To do so, we follow the
method as described in detail in Ref. [29].

The numerical mesh size and time step have maximal
values of δy ¼ δz ¼ 0:0052, δt ¼ 0:006. For each figure we
have checked that the data are converged with respect to any
further reduction of these numerical parameters.

In the phase diagrams of Figs. 6–9, 11, and 14 that follow,
we display the numerically obtained threshold for edge insta-
bility as a black dashed line. This is calculated as follows. In
the early time dynamics of the edge instability in any simula-
tion run, the edge perturbation grows as �eωt (or decays, in
the stable regime). By tracking this early time exponential
growth (or decay), for a simulation at any coordinate pair of
parameter values in any phase diagram, we extract the growth
rate, ω, at that location in the phase diagram. By measuring
this for a number of values of Γ=GLy on either side of the
threshold (at any fixed ηs � ηc in Fig. 6, for example), we
then obtain the point where ω ¼ 0 by linear interpolation.
This black dashed line is thus determined independently from
the information shown by the symbols in the phase diagrams,

FIG. 2. Flow geometry to be simulated: a planar slab of fluid sandwiched between hard flat parallel plates at y ¼ +Ly=2. The flow is effected by moving the
top plate into the page at speed _γLy, with the bottom plate stationary. Accordingly, the base state flow (before any secondary flows arise due to the instability of
interest here) is of the general form v ¼ (vx(y, z), 0, 0). The fluid (shown in blue) meets the air (white) at the fluid–air interface. Only the left half of the box is
shown: an equivalent fluid–air interface in the right half is not shown. The symbols are defined in the main text.
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which pertain to the nonlinear states obtained in the limit of
long time t ! 1 in any simulation run.

IV. RESULTS: APPARENT BULK SHEAR BANDING
INDUCED BY PRECURSORS TO EDGE FRACTURE

In this section, we explore in more detail the basic phe-
nomenon announced in a recent Letter [1]: that even rela-
tively modest precursors to an edge fracture instability of the
fluid–air interface can induce apparent shear banding invad-
ing far into the bulk of a strongly shear thinning fluid.
Importantly, this is true even if the underlying constitutive
curve is monotone increasing, dσ=d _γ . 0, precluding true
bulk banding in the absence of edge effects. Accordingly, we
restrict our attention throughout this section to fluids for
which the constitutive curve is indeed monotone increasing.
As we shall discuss, the apparent shear banding invades pro-
gressively further into the fluid bulk for progressively flatter
(but still monotone increasing) constitutive curves.

A set of constitutive curves computed within the Giesekus
model for a fixed value of the anisotropy parameter α is shown
in Fig. 3. (We fix α ¼ 0:8 throughout this section.) Although
each curve is indeed monotone increasing, each has a relatively
flat quasiplateau centered on a strain rate _γ � ffiffiffiffiffi

10
p

. The flat-
ness of this plateau will prove an important quantity in what
follows. We shall quantify it via the plateau width,

n ¼ log10 ( _γh= _γ l), (15)

determined by the shear rates _γh, _γ l at the extrema of the
plateau, corresponding to +5% of the stress at the flattest

point. In what follows, we shall report results both in terms
of the plateau width, n, and the solvent viscosity, ηs � ηc
(where ηc ¼ 0:005 918 is the value of ηs below which the
constitutive curve is nonmonotonic, for α ¼ 0:8). We note
that n is directly set by ηs and is more directly measurable in
any experiment. Stronger shear thinning corresponds to lower
values of ηs and larger values of n.

Having discussed the homogeneous (0D) bulk constitutive
curves, we now present the results of our fully 2D simula-
tions. Throughout this section, we fix the value of the
wetting angle, θ ¼ 90�. Important parameters to be varied
are then the solvent viscosity, ηs, which sets the shape of the
constitutive curve in the way that we have just discussed, the
imposed shear rate, _γ, and the surface tension of the fluid–air
interface, Γ. We focus on values of the surface tension for
which the fluid–air interface is modestly disturbed by flow,
giving partial edge fracture, as in the simulation snapshots of
Fig. 4. In particular, we avoid the regime of full edge fracture
in which the interface loses its integrity altogether and
the fluid completely dewets the wall. (Typical values of
Γ ¼ Γ=GLy are 0:001–0.1 for synthetic polymers and
0.1–10.0 for DNA solutions [2,33,34,45–48].)

Although such modest edge disturbances may in them-
selves go unnoticed experimentally, they are nonetheless
capable of causing a much more dramatic quasibulk shear
banding phenomenon. This is increasingly evident in succes-
sive snapshots downward in Fig. 4, which correspond to sim-
ulations performed for successive constitutive curves
downward in Fig. 3, at a fixed shear rate _γ ¼ 4:7 in the qua-
siplateau regime in each case, for a surface tension Γ ¼ 0:16.
Indeed, an apparent shear banding phenomenon that is

TABLE I. Parameters; their dimensions in modulus [G], length [L], and time [T]; values used in our simulations; and notes. The first three parameters
specify our choice of units. The second five are the key physical parameters to be varied in our study (four within each constitutive model). a and α set the
dependences of σ and N2 on _γ and have been explored in earlier works [29]. The set from ηa to M does not affect the key physics, provided each assumes an
appropriately large or small value; the final set are numerical parameters, which we ensure are converged to the appropriate small limit. Parameter values used
in the simulations are as given in this table unless explicitly described otherwise. Johnson–Segalman (JS) and Giesekus (Gk).

Parameter Description Dimension Value Notes

Ly Channel width [L] 1.0 Unit of length
G Polymer modulus [G] 1.0 Unit of stress
τ Polymer relaxation time [T] 1.0 Unit of time
_γ Applied shear rate [T]−1 10−1→ 102 Important quantity to be varied
θ Equilibrium contact angle [1] 30°→ 150° Important quantity to be varied
Γ Surface tension [G][L] 0.01→ 1.0 Important quantity to be varied
ηs Solvent viscosity (JS) [G][T] 0.025 (strongly), 0.1 (marginally) banded Small viscosity ratio ηs/Gτ
ηs Solvent viscosity (Gk) [G][T] 0.006→ 0.02 Small viscosity ratio ηs/Gτ
a Slip parameter (JS) [1] 0.3 Sets dependencies Σxy( _γ), N2( _γ)
α Anisotropy parameter (Gk) [1] 0.8 Sets dependencies Σxy( _γ), N2( _γ)
ηa Air viscosity (JS) [G][T] 0.01 Small air viscosity ηa/Gτ
ηa Air viscosity (Gk) [G][T] ≡ηs Small air viscosity ηa/Gτ
Lz Channel length [L] 20 Large aspect ratio Lz/Ly
Λ midpoint sample length [L] 16 Large air gap (Lz−Λ)/Ly
ℓ Polymer microscopic length [L] 0.01 Small microscopic length l/Ly
‘μ Air–polymer interface width [L] 0.01 Small microscopic length ‘μ=Ly
M Molecular mobility [L]2[G]−1[T]−1 0.0001 Rapid phase equilibration
δy Numerical mesh size [L] Small Converge δy/Ly until no dependence
δz Numerical mesh size [L] Small Converge δz/Lz until no dependence
δt Numerical time step [T] Small Converge δt/τ until no dependence
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strongly localized near the fluid–air interface for a rela-
tively steep constitutive curve invades progressively further
along the vorticity direction into the bulk, away from the
fluid–air interface, for progressively flatter constitutive
curves. The corresponding velocity profile across the flow-
gradient direction y at the cell center, z ¼ 8 (Fig. 5, right)
accordingly becomes increasingly banded. (We denote by
z ¼ 0 the position of the left hand fluid–air interface at the
start of the simulation run.)

To quantify the degree to which the flow is shear banded
across the flow-gradient direction y at any distance z away
from the fluid–air interface, we define

Δ _γ(z) ¼ _γmax(z)� _γmin(z)½ �=�_γ, (16)

with _γmax(z) the maximum shear rate at any point across y at
fixed z, and _γmin the counterpart minimum value. _γ is the
gap-averaged shear rate. By inspecting many profiles, we
adopt Δc

_γ ¼ 0:15 as the minimum threshold value of this
measure to give visually apparent banding in the velocity
profile. Plots of Δ _γ as a function of distance z into the bulk
are shown in Fig. 5 (left). As can be seen, visually apparent
banding persists right to the center of the flow cell for the
flattest constitutive curves in Fig. 3.

So far, we have shown that the degree to which distur-
bances at the fluid–air interface can induce apparent shear
banding into the fluid bulk increases with increasing shear
thinning in the underlying constitutive curve. In doing so, we
have kept the surface tension Γ of the fluid–air interface
fixed, and considered a single value of the imposed shear
rate, _γ, near the flattest part of the constitutive curve. We
now explore the effects on this phenomenon of also (first)
varying the surface tension, Γ, and then (second) the
imposed shear rate, _γ.

Phase diagrams are shown in Fig. 6 of the degree of dis-
turbance of the fluid–air interface (top) and of apparent shear

banding at the midpoint of the fluid bulk (bottom) in the
plane of surface tension, Γ, and degree of shear thinning in
the constitutive curve, n, again for a fixed value of the
imposed shear rate, _γ, near the flattest part of the constitutive
curve. A horizontal slice across this phase diagram accord-
ingly spans a suite of constitutive curves with varying
degrees of shear thinning, with lower values of n right to left
giving stronger shear thinning. For a fixed value of surface
tension, the degree of edge disturbance and of shear banding
at the cell midpoint both increase with increasing shear thin-
ning from right to left. For a fixed degree of shear thinning,
the same quantities increase with decreasing surface tension,
from top to bottom.

Phase diagrams of the same quantities are again shown in
Fig. 7 but now in the plane of surface tension, Γ, and
imposed shear rate, _γ, for a fixed degree of shear thinning in
the constitutive curve, n. A horizontal slice across this phase
diagram accordingly spans a range of imposed shear rates for
one particular constitutive curve with a fixed degree of shear
thinning. For a fixed value of surface tension less than about
0:8, the degree of edge disturbance and of shear banding at
the cell midpoint are noticeable for values of the shear rate in
the quasiplateau regime of the constitutive curve. For any
fixed value of shear rate on this quasiplateau, the same quan-
tities increase with decreasing surface tension of the fluid–air
interface, top to bottom down the phase diagram.

How can we understand this apparent shear banding phe-
nomenon? As discussed in Ref. [29], the physical mechanism
of the instability that leads to significant disturbances of the
fluid–air interface involves a perturbation δΣxy(y, z) to the
shear stress field across the flow-gradient direction y, which
gradually decays as a function of the distance z away from
fluid–air interface. This leads to a corresponding disturbance
δ _γ(y, z) in the shear rate field, by an amount that scales as
the inverse slope of the constitutive curve. For a strongly
shear thinning fluid, therefore, even a relatively modest dis-
turbance to the shear stress creates a large disturbance of the
shear rate, causing apparent shear banding.

A related question is then how these stress and shear rate
heterogeneities associated with disturbances of the fluid–air
interface compare with those associated with the geometries

FIG. 3. Constitutive curves of shear stress as a function of shear rate for sta-
tionary homogeneous shear flow. All curves are computed in the Giesekus
model for a fixed value of the anisotropy parameter, α ¼ 0:8. All curves are
monotone increasing, but increasingly flatter curves downward pertain to
increasingly more shear thinning fluids, with Newtonian viscosities
ηs ¼ 0:02, 0:01, 0:007, 0:0062, and 0:006. The caption also shows the
equivalent plateau width n [see Eq. (15) for definition].

FIG. 4. Simulation snapshots showing the frame invariant local shear rate,
_γ(r) ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2D(r):D(r)
p

, at an imposed shear rate _γ ¼ 4:7, in the quasiplateau
regime of the constitutive curve, for a fluid–air interfacial tension Γ ¼ 0:16.
Snapshots downward correspond to constitutive curves downward in Fig. 3.
An apparent shear banding phenomenon invades further into the fluid bulk
for progressively flatter constitutive curves. θ ¼ 90�.
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of typical flow cells. This is especially pertinent in light of
the results of Ref. [49] which demonstrated that stress gradi-
ents (originating from geometry) can cause shear banding
phenomena in fluids that are described by a monotonic
underlying constitutive curve.

Figure 8 shows phase diagrams of the degree of stress het-
erogeneity across the flow-gradient direction y caused by dis-
turbances in the fluid–air interface, at distances of z ¼ 4:0
(top) and z ¼ 8:0 (bottom) into the fluid. For reference, the
colorbar additionally shows the level of stress heterogeneity
that would instead arise from device geometry for cone–plate
cells of various cone angles. Given that typical cone angles
are about 0:5�–1�, the stress heterogeneity and corresponding
apparent shear banding that we observe clearly exceed those
arising from typical cell geometries.

V. EDGE FRACTURE INDUCED BY SHEAR
BANDING

A. Marginally nonmonotonic constitutive curve

We consider now a fluid with a nonmonotonic constitutive
curve, giving a bulk flow that is shear banded over some
range of strain rates (even in the absence of any edge
effects). In particular, we seek to appraise using our simula-
tions the analytical predictions of Skorski and Olmsted [2]:
that shear banding in the fluid bulk can induce full edge frac-
ture at the fluid–air interface, for some values of the surface
tension and imposed shear rate. It should be noted that the
work in Ref. [2] did not perform a dynamic calculation, nor
did it consider the effect of secondary flows. We start by
considering a constitutive curve that is only marginally non-
monotonic, giving a relatively small jump in the shear rate
across the interface between the shear bands, before discuss-
ing in Subsection V B below a more highly nonmonotonic
curve, giving a larger jump.

FIG. 5. Left: degree of apparent shear banding across the flow-gradient direction y as a function of distance z along the vorticity direction away from the fluid–air inter-
face, into the bulk. Curves upward correspond to increasingly flatter constitutive curves in Fig. 3. Dashed magenta line indicates the value of the degree of banding above
which banding is indeed obviously apparent in the velocity profiles. Right: normalized velocity profiles v̂x(y) across the cell midpoint z ¼ 8 (black dashed line in Fig. 4).
Increasingly shear banded profiles correspond to increasingly flatter constitutive curves in Fig. 3. Inset: normalized local shear rate _̂γ(y). _γ ¼ 4:7, Γ ¼ 0:16, θ ¼ 90�.

FIG. 6. Top: phase diagram showing the degree of disturbance of the air–fluid
interface, d [as defined in Eq. (14)]. Black dashed line: onset of positive eigen-
value for edge disturbance, as determined numerically. Bottom: phase diagram
of the degree of shear banding [as defined in Eq. (16)] at the cell midpoint,
Δ _γ (z ¼ 8:0). Magenta solid line: contour Δc

_γ ¼ 0:15, which we take as the
threshold for visually apparent banding, as obtained from a linear interpolation
of the data. Both phase diagrams are shown in the plane of surface tension
(ordinate) and an abscissa characterizing the degree of shear thinning in the
constitutive curve. The bottom abscissa shows the value of the Newtonian vis-
cosity, relative to that at which the constitutive curve develops a slope of zero,
ηs � ηc. This decreases with increasing shear thinning right to left. The top
abscissa shows the number of decades spanned by the quasiplateau in the con-
stitutive curve, n. This increases with increasing shear thinning right to left.
Imposed shear rate �_γ ¼ 4:7, θ ¼ 90�.
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A marginally nonmonotonic constitutive curve is accord-
ingly shown in Fig. 9 (top). The corresponding second
normal stress as a function of shear rate is shown on the right
hand axis. These two curves pertain to a state of stationary
homogeneous (0D) shear flow. In the regime of negative con-
stitutive slope, dσ=d _γ , 0, an initially homogeneous flow is
linearly unstable to the formation of shear bands. The shear
rates delineating this regime are shown by vertical dotted
lines in Fig. 9. The steady flow state, computed within a 1D
calculation that now allows shear banding (but still ignores
edge effects), is then shear banded. This leads to a plateau in
the steady state flow curve (red circles). The shear rates delin-
eating this regime are shown by vertical solid lines. Between
the dotted and solid vertical lines, an initially homogeneous
flow is metastable to the formation of shear bands.

Having discussed these 0D and 1D states, we now discuss
our fully 2D simulations, in which a sheared slab of fluid
coexists with the outside air, separated by a fluid–air inter-
face. These simulations allow a study of any edge fracturelike
disturbances at that fluid–air interface, as well as any shear
banding within the fluid bulk.

A colormap showing the degree of disturbance of the
fluid–air interface as a function of the surface tension of that
interface, Γ, and the imposed shear rate, _γ, can be found in
Fig. 9 (bottom). Outside the regime where the bulk flow is
shear banded, the interface remains undisturbed at high

values of the surface tension but is always disturbed at lower
values of the surface tension. The red dashed lines show the
analytical prediction of Hemingway and Fielding [28,29] for
the onset of a linear instability to these disturbances—i.e.,
for the onset of partial edge fracture—for this case of a
homogeneous (unbanded) bulk shear flow. This was derived
in the limit of low strain rates, where it indeed agrees well
with the onset of partial edge fracture in our simulations
(black dashed lines).

Consider now imposed shear rates inside the shear banding
regime, within the vertical solid lines. Here, the fluid–air inter-
face is always disturbed to some extent, although by an
amount that diminishes with increasing surface tension. This
is consistent with the work of Skorski and Olmsted [2], who
noted that an edge disturbance is an inevitable consequence of
force balance for a shear banded flow, due to the jump in
second normal stress across the interface between the bands.

Having explored in Fig. 9 the degree of edge disturbance,
d, as a function of surface tension, Γ, and imposed shear rate,
_γ, we show in Fig. 10 a collection of horizontal slices across
this plane, now plotting d as a function of _γ for several fixed
values of Γ. Consistent with the above discussion, the inter-
face is always disturbed to some degree inside the shear
banding regime. Outside the banding regime, the interface is
undisturbed for large values of surface tension, but disturbed
for smaller values.

A noticeable feature of Fig. 10 is that, for several values
of the surface tension, the degree of edge disturbance varies
smoothly across the critical shear rate that marks the onset of
bulk shear banding. This is a priori surprising: within a 1D

FIG. 7. Top: phase diagram of the degree of disturbance of the air–fluid
interface, d [as defined in Eq. (14)]. Bottom: phase diagram of the degree of
shear banding [as defined in Eq. (16)] at the cell midpoint, Δ _γ (z ¼ 8:0).
Magenta solid line: contour Δc

_γ ¼ 0:15, as obtained from a linear interpola-
tion of the data, which we take as the threshold for visually observable shear
banding. In both diagrams, the numerically determined onset of the positive
eigenvalue for edge disturbance is shown (black dashed line). Both phase
diagrams are shown in the plane of surface tension (ordinate) and imposed
shear rate (abscissa). Both pertain to a constitutive curve with a degree of
shear thinning prescribed by a fixed value of Newtonian viscosity
ηs ¼ 0:006, with a quasiplateau spanning n ¼ 1:06 decades. θ ¼ 90�.

FIG. 8. Phase diagrams showing the degree of shear stress heterogeneity
Δσ ¼ σmax=σmin � 1 that arises due to the disturbance of the fluid–air inter-
face at a distance of z ¼ 4:0 (top) and 8:0 (bottom) into the fluid bulk. For
reference, the colorbars are additionally marked with the degree of stress het-
erogeneity that would arise in a cone and plate device with a cone angle of
1�, 2�, 3�, or 4�. Imposed shear rate �_γ ¼ 4:7, θ ¼ 90�.
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calculation, free of edge effects, the bulk flow undergoes a
qualitative transition from unbanded to banded across that crit-
ical shear rate. One might, therefore, expect very different
levels of edge disturbance once the fluid–air interface is
accounted for in 2D. The resolution to this puzzle lies in rec-
ognizing that the edge disturbances actually in turn modify the
bulk state, at least for some distance away from the fluid–air

interface into the fluid: as seen for a shear rate _γ ¼ 1:0 and
surface tension values Γ ¼ 0:08, 0:16 in Fig. 12, the flow
becomes quasibanded a little way into the bulk, even at a
shear rate a little below that for which a purely 1D calculation
(without a fluid–air interface) would predict banding. This is
simply another (albeit relatively mild) manifestation of the
phenomenon discussed in Sec. IV above. A colormap of the
degree to which the flow is shear banded a little distance
(z ¼ 1) into the fluid away from the fluid–air interface indeed
confirms this (see Fig. 11).

As discussed above, at low values of surface tension the
fluid–air interface always becomes fully fractured. Skorksi
and Olmsted [2] predicted the location of the transition from
partial to full fracture for a shear banded state by arguing
that, as the relative fraction of the rheometer gap taken up by
each band changes with the imposed shear rate, one of the
bands can develop a width that is unable to support the
meniscus curvatures demanded by the second normal stress
balance, leading to full fracture. Their prediction is marked
by a green dashed line in Figs. 9 and 11. The regime in
which our simulations display full fracture is shown by
yellow triangles. The agreement between the analytical pre-
dictions and our simulations is at best fair, possibly because
Skorski and Olmsted assumed an initial “base” state with no
secondary flows. Secondary flows nonetheless inevitably
arise, as seen in Fig. 13.

B. Highly nonmonotonic constitutive curve

We consider finally a fluid with a highly nonmonotonic
constitutive curve, giving a large jump in shear rate across the
interface between the bands. The top two panels of Fig. 14
show results for this case in the same format as the two
panels of Fig. 9 for a marginally nonmonotonic curve. Many
of the same features are apparent. Outside the regime where
the bulk flow is shear banded, the fluid–air interface remains
undisturbed at high values of the surface tension, but is dis-
turbed at lower values. At low shear rates, the numerically

FIG. 9. Top: Homogeneous (0D) constitutive curve (black curve) and
steady state flow curve computed in a 1D simulation (red solid circles). Inset
shows the same data, zoomed to focus on the shear banding regime. Open
red circles denote metastable states of homogeneous shear flow. Dashed blue
line shows (minus) the second normal stress, �N2. Bottom: Colormap of
degree of disturbance to the fluid–air interface, d, in the plane of the surface
tension of that interface, Γ, and the imposed shear rate, �_γ. Black dashed lines
denote the numerically determined onset of edge disturbance, red dashed
line marks the threshold for instability as determined via linear stability
analysis, and green dashed-dotted line shows the analytical prediction of
Ref. [2]. The Johnson–Segalman model, ηs ¼ 0:1, θ ¼ 90�.

FIG. 10. Horizontal slices across the colormap of Fig. 9 (bottom) showing
the degree of disturbance to the fluid–air interface, d, as a function of the
imposed shear rate, _γ, for several values of the surface tension of the fluid–
air interface, Γ.

FIG. 11. Colormap showing the degree of shear banding Δ _γ [as defined in
Eq. (16)], measured at a position z ¼ 1 into the bulk away from the fluid–air
interface, shown in the same plane of surface tension and shear rate as in
Fig. 9. Open triangles denote fully edge fractured states, in which Δ _γ cannot
be reliably measured. Black dashed lines denote the numerically determined
onset of edge disturbance. Red dashed line marks the threshold for instability
as determined via linear stability analysis. Green dashed-dotted line shows
the analytical prediction of Ref. [2]. The Johnson–Segalman model,
ηs ¼ 0:1, θ ¼ 90�.
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observed transition from an undisturbed to a disturbed fluid–
air interface (black dashed line) agrees well with the analyti-
cal prediction of Hemingway and Fielding, given a homoge-
neous (unbanded) bulk flow (red dashed line) [28,29].

In contrast, when the bulk flow is shear banded the fluid–
air interface is always disturbed to some extent, although by
an amount that diminishes with increasing surface tension.
This is again consistent with the argument of Skorski and
Olmsted, that a shear banded state must always have a dis-
turbed interface on account of the second normal stress jump
across the interface between the bands [2]. Snapshots of the
locally invariant shear rate for a fixed shear rate _γ ¼ 6:0
inside the shear banding regime are shown in Fig. 15, with
the surface tension increasing in subpanels upward.

At low values of surface tension, the fluid–air interface
always becomes fully fractured, as shown by the yellow trian-
gles in Fig. 14. The prediction of Skorski and Olmsted [2]
for the onset of full fracture in the shear banding regime is
marked by a green dashed line in Fig. 14. It shows fair agree-
ment with our simulations—which is perhaps mainly fortu-
itous, given the poorer agreement in Fig. 9 and (as we shall
shortly discuss) Fig. 16.

In a narrow window of shear rates at the lower end of the
regime where shear banding is expected, the bulk flow is
unexpectedly homogeneous, and the fluid–air interface is
accordingly unexpectedly undisturbed. See the black crosses
for an imposed shear rate _γ ¼ 0:5 and surface tension
Γ 	 0:08 in Fig. 14 (middle). For such shear rates, the width
of the low shear band itself would be smaller than the finite
thickness of the interface itself. The flow therefore remains
unbanded. Simulations for a much smaller value of the
parameter that sets the thickness of the interface between the
shear bands would be shear banded and would presumably
then also have a disturbed fluid–air interface.

The bottom panel of Fig. 14 shows results exactly as in
the middle panel, but now for an initial condition that, in the
two windows of shear rate between the solid and dotted verti-
cal lines, is one of metastable homogeneous shear. At rela-
tively high values of surface tension in these metastable
regimes, the bulk flow remains unbanded throughout the
entire simulation. The threshold for the onset of a disturbed
fluid–air interface is then that which pertains to an unbanded
bulk, as given by the red dashed line, following the criterion
of Hemingway and Fielding [28,29]. (Recall that this crite-
rion is only valid at low shear rates.) The metastable states of
homogeneous shear accordingly remain unbanded at high
enough surface tension, and with an undisturbed fluid–air
interface, leading to black crosses in Fig. 14 (bottom). For a
shear banded initial condition, in contrast, the fluid–air inter-
face must be disturbed [2], indeed leading to blue or tur-
quoise circles in Fig. 14 (middle) in place of the black
crosses in the bottom panel.

C. Effect of wetting angle

Recall that the angle subtended by the fluid–air interface
where it meets the walls of the flow cell defines the wetting
angle. The equilibrium value of this quantity in the absence
of any imposed shear, θ, is set by the boundary conditions
for the Cahn–Hilliard sector of the dynamics [Eq. (13)]. All
simulations reported so far have taken a value θ ¼ 90�, such
that the interface is vertical and flat in the absence of shear.
We consider finally the effect of varying θ. For values of
θ = 90�, the fluid–air interface is either concave or convex
even in the absence of shear, with a degree of bowing d0.
Accordingly, we subtract this quantity d0, from the degree of
interfacial bowing in the presence of shear, d, to get the
degree of interfacial disturbance caused by shear, d � d0.

FIG. 12. Simulation snapshots showing the locally invariant shear, rate _γ(r) ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D(r):D(r)

p
, for the case of a marginally nonmonotonic constitutive curve.

Applied shear rate �_γ ¼ 1:0, 2:0, 4:0 (left to right) and surface tension Γ ¼ 0:02, 0:04, 0:08, 0:16, 0:32, 1:28 (bottom to top). The Johnson–Segalman model,
ηs ¼ 0:1, θ ¼ 90�.

FIG. 13. Colormap of the frame invariant shear rate, _γ(r) ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D(r):D(r)

p
, showing secondary flows (red arrows) near the fluid–air interface. The Johnson–

Segalman model, �_γ ¼ 2:5, Γ ¼ 0:16, ηs ¼ 0:1, Lz ¼ 10, Λ ¼ 7, θ ¼ 90�.
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Colormaps of this quantity are shown as a function of
wetting angle, θ, and imposed shear rate, _γ, for two different
values of the surface tension of the fluid–air interface, Γ, in
Fig. 16 (middle and bottom). Values of θ, _γ for which the
fluid–air interface is found to be partially edge fractured in
our simulations are shown by circles. Values for which full
edge fracture occurs are shown by triangles. The transition
between partially and fully edge fractured states as predicted
analytically by Skorski and Olmsted [2] is shown by the
green dashed lines.

The arguments of [2] rested on the shape of the fluid–air
interface determined by force balance, taking into account
the jump in N2 across the interface between the shear bands,
the relative widths of the low and high shear bands (which is

FIG. 14. Top: Homogeneous (0D) constitutive curve (black curve) and
steady state flow curve computed in a 1D simulation (red solid circles).
Open red circles denote metastable states of homogeneous shear flow.
Dashed blue line shows (minus) the second normal stress, �N2. Middle:
Colormap of degree of disturbance to the fluid–air interface d [as defined in
Eq. (14)], in the plane of the surface tension of that interface, Γ, and the
imposed shear rate, �_γ. Bottom: Same as in middle figure, but for an initial
condition of metastable homogeneous shear in the window of shear rates
between the solid and dashed vertical lines. Black dashed lines denote the
numerically determined onset of edge disturbance, red dashed line marks the
threshold for instability as determined via linear stability analysis, and green
dashed-dotted line shows the analytical prediction of Ref. [2]. The Johnson–
Segalman model, ηs ¼ 0:025, θ ¼ 90�.

FIG. 15. Simulation snapshots showing the locally invariant shear rate,
_γ(r) ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2D(r):D(r)
p

, for the case of a highly nonmonotonic constitutive
curve. Applied shear rate �_γ ¼ 6:0 with a surface tension
Γ ¼ 0:01, 0:02, 0:04, 0:08, 0:16, 0:32, 0:64 (bottom to top). The Johnson–
Segalman model, ηs ¼ 0:025, θ ¼ 90�.

FIG. 16. Homogeneous (0D) constitutive curve (black curve) and steady
state flow curve computed in a 1D simulation (red solid circles). Middle:
Colormap of degree of disturbance to the fluid–air interface, d � d0, in the
plane of the wetting angle, θ, and the imposed shear rate, �_γ, for a fixed value
of the surface tension Γ ¼ 0:08. Bottom: Corresponding colormap for
Γ ¼ 0:16. Green dashed-dotted line shows the analytical prediction of
Ref. [2]. The Johnson–Segalman model, ηs ¼ 0:025.
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set by _γ), and the wetting angle at the walls. As a direct
result, the transition lines predicted in that work show the
symmetry apparent in Fig. 16 in the plane of θ and _γ. The
results of our numerical simulations do not obey even these
basic symmetries, however. This discrepancy again presum-
ably arises due to the presence of secondary flows near the
fluid–air interface, which lead these basic assumptions of
Skorski and Olmsted to break down.

VI. CONCLUSIONS

In this work, we have studied the interplay between shear
banding and edge fracture in complex fluids, mapping out
phase diagrams of the levels of edge disturbance and bulk (or
quasibulk) shear banding as a function of the surface tension
of the fluid–air interface, the wetting angle at the walls of the
flow cell, and the imposed shear rate. We have explored, in
particular, the basic result announced in Ref. [1]: that precur-
sors to edge fracture can induce quasibulk shear banding,
even in fluids for which the underlying constitutive curve is
monotonic, such that a bulk flow is predicted to be unbanded
in the absence of edge effects. We have also appraised ana-
lytical predictions, made within some assumptions, that shear
banding can induce edge fracture [2]. Our simulations have
shown that this basic prediction remains valid but that the
phase boundaries are qualitatively modified due to a break-
down of those assumptions.

As discussed above, an outstanding question is whether
the underlying constitutive curve of monodisperse linear
entangled polymers is monotonic or nonmonotonic, and so
whether a steady applied shear flow should be homoge-
neous or shear banded. Experimental evidence for shear
banding is mixed and controversial [32–34], with edge
fracture often discussed as a confounding factor
[14,34–37]. It would be interesting to reappraise these
existing experiments data in the light of our new theoreti-
cal findings and to perform new experiments aimed specif-
ically at studying the interplay between shear banding and
edge fracture described here.

We discuss finally some shortcomings of our work that
should be rectified in future studies. We have assumed
throughout a base state corresponding to a state of time-
independent shear flow (whether banded or unbanded). Edge
fracture is also widely seen in transient flows such as shear
startup. Future theoretical work should, therefore, consider
the effects of a time-dependent base state on the phenomena
reported here. We have further considered the limit of planar
Couette flow, arguing that this geometry provides a good
approximation to cylindrical Couette, cone–plate or plate–
plate flow. We have thereby neglected the stress heterogene-
ity, streamline curvature, and secondary bulk flows that can
arise in such devices. Future simulation studies should take
these effects properly into account. We have also ignored
wall slip, which occurs widely in complex fluids. Future the-
oretical studies should consider the relative dominance of
and/or interplay between edge fracture and wall slip. Finally,
we have ignored inertia, which may be relevant to the nonlin-
ear dynamics of edge fracture, and should be considered in
future theoretical work.
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