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1 Introduction

Holography provides a controlled theoretical framework to study strongly coupled quantum

field theories. In seeking possible applications to real systems an important development,

pioneered by Steven Gubser, was the realisation that holographic matter can exist in a

superfluid phase [1]. In the simplest set-up one considers Einstein-Maxwell theory coupled

to a charged scalar field with an AdS vacuum solution that is dual to a conformal field

theory with a global abelian symmetry. When the CFT is held at finite chemical potential,

the unbroken phase at high temperature is described by an electrically charged, planar

AdS-RN black hole solution with vanishing charged scalar field. This black hole is unstable

below some critical temperature and the system condenses into a superfluid phase which is

described by an electrically charged black hole carrying a halo of charged scalar hair [1–3].

In this paper we study superfluid phases of holographic matter held at finite chemical

potential, with the addition of an external magnetic field. Over the past ten years this

topic has been studied from several different points of view. Switching on the magnetic

field suppresses the superfluid phase transition, as one might expect.1 Indeed, and as we

1In this paper we only study s-wave superfluids. For holographic p-wave superfluids, it has been shown

that magnetic fields can induce a superfluid instability at vanishing chemical potential [4]. Furthermore,

holographic vortex lattices for p-wave superfluids, in a probe approximation, have been studied at finite

chemical potential in [5] and for non-zero magnetic fields in [6]. Both of these constructions are perturba-

tively close to the phase transition point.
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will review, the critical temperature at which the superfluid instability sets in decreases as

one increases the magnetic field and for large enough magnetic field the instability is longer

present [3, 5, 6]. Below the critical temperature one expects the existence of vortices. The

defining feature of a vortex is that the phase of the complex field has non-zero winding as

one goes around the vortex and, as a consequence, the complex field vanishes at the core

of the vortex. Using certain probe approximations, where there is no back-reaction on the

metric, constructions of vortex-like solutions were made in [7–9]. A further development,

again in a probe approximation, was the construction of a vortex lattice,2 using vortices

in the lowest Landau level [12]. Going beyond the probe approximation the existence

of a vortex lattice solution was argued for in [13], again in the lowest Landau level, by

considering a perturbative expansion about a purely magnetic AdS2×R2 zero temperature

ground state. An approximate back-reacted vortex lattice solution was recently constructed

in [14] after imposing by hand a certain circular symmetry on each unit cell.

The purpose of this paper is to report on the first numerical construction of fully back-

reacted black hole solutions, without any approximations, that describe a periodic vortex

lattice in a superfluid phase. A priori it is not clear what the thermodynamically preferred

shape of the vortex lattice will be. If one is just below the critical temperature and one is

able to utilise a Landau-Ginzburg description, one finds that a triangular lattice associated

with the lowest Landau level is preferred (for a review see [15]). Thus, one might expect

that in holography the triangular vortex lattice is also the preferred configuration at least

just below the critical temperature, and in the context of the probe approximation some

arguments supporting this conclusion were given in [12]. However, it is worth emphasising

that in certain holographic situations the Landau-Ginzburg does not effectively capture the

properties of the phase transitions near the critical temperature [16] and so this conclusion

may not be valid in general. In any event, as the temperature is lowered the Landau-

Ginzburg description becomes less useful and it is no longer clear what shape the preferred

lattice will take. In fact various different shapes are realised in real superconductors as

well as transitions to other phases such as vortex liquids and glasses [15]. It is therefore

of significant interest to find out what can happen in the context of holography and this

paper is a step in exploring what is possible.

The D = 4 gravitational model that we will consider couples the metric to a Maxwell

field and a complex scalar field. The model has an AdS4 vacuum solution, with vanishing

Maxwell and scalar field, which is dual to the underlying d = 3 CFT that we want to study

both with non-vanishing magnetic field and at finite chemical with respect to the global

U(1) symmetry. It also has another AdS4 solution with non-vanishing scalar field which

describes the IR behaviour of the superfluid phase with vanishing magnetic field, B = 0.

When B 6= 0 the high temperature, unbroken phase is described by the dyonic AdS-RN

black hole solution. We review the linearised instabilities of this black hole and, show that

the critical temperature at which it becomes unstable just depends on the Landau level of

the linearised perturbation, with the lowest Landau level having the highest critical tem-

perature. Within the linearised framework one can then construct vortex lattice solutions,

2Holographic vortices associated with a rotating superfluid on a disc were discussed in a probe approxi-

mation in [10, 11], by imposing non-standard boundary conditions on the disc throughout the bulk.
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parametrised by the Landau level as well as two additional parameters which determine

the shape of the lattice.

For a specific value of the magnetic field, we construct the back-reacted vortex lattice

associated with the lowest Landau level. By minimising the free energy of the black hole

solutions with respect to the remaining two shape parameters, we show that the triangular

lattice is the preferred configuration for the specific temperatures we consider. While a

further refinement of our numerics is required in order to construct black holes at very low

temperatures, at the end of the paper we discuss a plausible zero temperature ground state

solution. We also construct vortex lattice solutions for the second lowest Landau level,

which appear at a critical temperature that is lower than those associated with the lowest

Landau level. Interestingly, the thermodynamically preferred black holes in this class are

associated with infinitely thin and long lattice structures, indicating the existence of an

interesting kind of linear vortex defect3 For temperatures when both black holes exist we

find that the triangular vortex lattice associated with the lowest Landau level is always

thermodynamically preferred. It is worth noting, however, that this conclusion certainly

depends on the bulk gravitational model, a point we return to in the discussion section.

The holographic black hole solutions that we construct consist of a lattice of vortex

tubes that stretch out from the black hole horizon and extend to the asymptotic boundary.

Since the proper radius of the vortex tubes grows as one approaches the boundary they

have a funnel-type structure. We emphasise that in the boundary theory the Maxwell field

is not dynamical and hence the magnetic field is not localised inside the vortices. Instead,

the vortices are associated with circulating currents in the boundary theory. It should be

noted that this set-up is different from the usual superfluid vortices which carry quantised

orbital angular momentum. It would be interesting to know if there are experimental

setups where the configurations we discuss can be realised.

There are various other constructions of fully back-reacted black holes describing spa-

tially modulated phases, in which translations are spontaneously broken including [17–26].

In particular, our construction shares several similarities with the work of [25].

The plan of the rest of this paper is as follows. In section 2 we introduce the bottom-up

holographic model of interest. In section 3 we discuss various details of the gravitational

boundary value problem relevant to the formation of an Abrikosov lattice of vortices. We

then discuss the numerical techniques we use to construct the broken phase black hole

solutions along with their thermodynamics. In section 4 we discuss the main results of the

numerical analysis and we conclude with some discussion in section 5. Appendix A has

some details about the asymptotic expansions and one point functions while appendix B

contains some comments about our numerical scheme and convergence properties.

2 Set-up

We will consider a bulk action in D = 4 spacetime dimensions of the form

S =

∫
d4x
√
−g
(
R− V − 1

2
DµψD

µψ̄ − 1

4
F 2

)
, (2.1)

3Our results near the critical temperature, in particular, strongly indicate that these linear structures

should also appear within the Landau-Ginzburg framework and it would be interesting to directly con-

firm this.
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with F = dA and Dµψ = ∇µψ + i q Aµ ψ. We also take V = V (|ψ|2) so the action is

invariant under the gauge transformation ψ → e−iqΛψ, A → A + dΛ. For simplicity we

have fixed Newton’s constant so that 16πG = 1. The equations of motion associated

with (2.1) are given by

Rµν −
1

2
D(µψDν)ψ̄ −

1

2
V gµν +

1

2

(1

4
gµνFλρF

λρ − FµρFνρ
)

= 0 ,

∇µFµν + i
q

2

(
ψ̄ Dνψ − ψDνψ̄

)
= 0 ,

DµD
µψ − 2V ′ψ = 0 . (2.2)

We focus on the specific choice of potential given by

V = −6 +
m2

2
|ψ|2 +

1

2
|ψ|4 , m2 = −2 . (2.3)

The equations of motion then admit a unit-radius AdS4 vacuum solution with A = ψ = 0,

which is dual to a d = 3 CFT with an abelian global symmetry. We will choose boundary

conditions so that the complex scalar field ψ, of charge q, is dual to an operator Oψ,

with scaling dimension ∆ψ = 2. Our choice of potential is such that there is another AdS4

solution with |ψ| = 1 and radius squared equal to 12/13, which also plays an important role.

We want to analyse the vacuum CFT (with A = ψ = 0) at finite temperature T ,

with constant chemical potential µ, and constant magnetic field B. The high temperature,

spatially homogeneous and isotropic phase is described by the planar, dyonic AdS-Reissner-

Nordström (AdS-RN) black brane solution. For later convenience it will be useful to write

this in the following non-standard form

ds2 = r2
+g
−2(r)

[
−f(r) dt2 + r−2

+ g′2(r) f−1(r) dr2 + dx2 + dy2
]
,

A = at dt−B y dx, ψ = 0 , (2.4)

with

f(r) =
1

4r4
+

(1− r)2
[(
µ2 r2

+ +B2
)

(r − 2)3 r3 + 4r4
+

(
1 + 2 r + 3 r2 − 4 r3 + r4

)]
,

g = (1− (1− r)2) ,

at(r) = µ (1− r)2 . (2.5)

The AdS4 boundary is located at r → 0 with the metric approaching

ds2 → dr2

r2
+
r2

+

4r2
[−dt2 + dx2 + dy2] , (2.6)

and note that to get the standard form we can scale r by r+/2. The black hole horizon is

located at r = 1 in these coordinates and the temperature of the black hole is given by

T =
1

16πr+
(12r2

+ − µ2 −B2/r2
+) . (2.7)
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As T → 0 the black holes approach a dyonic AdS2 × R2 solution in the IR with finite

entropy density.

When B = 0, with ∆ψ = 2 and any value of q [27], it is well known that below some

critical temperature the AdS-RN solution is unstable and the thermodynamically preferred

black hole, describing a superfluid phase, has non-vanishing charged scalar hair. The T = 0

limit of these superfluid black hole solutions are domain walls interpolating between the

AdS4 vacuum in the UV (with A = ψ = 0) and the second AdS4 solution (with |ψ| = 1)

in the IR. The entropy density of these black holes goes to zero as T → 0, with s ∝ T 2.

When B 6= 0, the AdS-RN black hole continues to be unstable below some critical

temperature that depends on |qB|/µ2, up to some critical value of the magnetic field

|qBc|/µ2, as we will review shortly. Below this critical temperature it is known that a vortex

lattice can form. We will numerically construct such vortex lattice black hole solutions in

the sequel.

3 Abrikosov lattice black hole solutions

3.1 General considerations

We will construct static black hole solutions with planar horizons that asymptote to AdS4

in the UV with quasi-periodic boundary conditions for the x and y directions. We will use

coordinates (t, r, x, y) which are globally defined outside the black hole horizon. At fixed

t, r the x, y coordinates parametrise a two-torus associated with a flat metric dx2 + dy2,

with the following identifications

(x, y) ∼ (x+ Lx, y) , (x, y) ∼ (x+ v Ly, y + Ly) . (3.1)

The parameter v ∈ [0,∞), which can be exchanged for an angle β via cos β = v/(1+v2)1/2,

governs the deviation of the shape of the torus from a rectangular torus. Without loss of

generality, we can split the gauge field as

A = a−B ydx , (3.2)

where B is the external magnetic field and a = aµ(r, x, y)dxµ is a one-form that is globally

defined on the spatial torus. Similarly, the metric components gµν are also globally defined

on the torus. We now turn our attention to the complex scalar field ψ. It is clear from the

gauge field decomposition (3.2) that imposing ψ to be well defined on the torus would fail

to satisfy the equations of motion (2.2). Therefore, we take

ψ (r, x+ Lx, y) = eig1(r,x,y) ψ (r, x, y) ,

ψ (r, x+ v Ly, y + Ly) = eig2(r,x,y) ψ (r, x, y) , (3.3)

with g1 and g2 real functions on the torus and demand that

Dµψ (r, x+ Lx, y) = eig1(r,x,y)Dµψ (r, x, y) ,

Dµ ψ (r, x+ v Ly, y + Ly) = eig2(r,x,y)Dµψ (r, x, y) . (3.4)

– 5 –
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By explicit evaluation, after using (3.2) and (3.3), we have

Dµψ (r, x+ Lx, y) = eig1(r,x,y) (Dµψ (r, x, y) + i ψ ∂µg1) ,

Dµψ (r, x+ v Ly, y + Ly) = eig2(r,x,y)
(
Dµψ (r, x, y) + i ψ

(
∂µg2 − δxµ qBLy

))
. (3.5)

The general solution for the compatibility of the conditions (3.4) and (3.5) is

g1 = c1, g2 = qBLy x+ c2 , (3.6)

where c1 and c2 are real constants of integration. Thus, the boundary conditions for the

complex scalar are given by

ψ (r, x+ Lx, y) = eic1 ψ (r, x, y) ,

ψ (r, x+ v Ly, y + Ly) = ei(qBLy x+c2) ψ (r, x, y) . (3.7)

Furthermore, compatibility between these two gives the quantisation condition

qBLxLy = 2πn , (3.8)

where n is an integer. The condition (3.7) implies that the modulus of the complex field

is periodic on the torus, while the phase of the complex field has winding number n as we

go anti-clockwise around the unit cell. Thus, each unit cell contains n vortices.

For a given such solution to the equations of motion, ψ(r, x, y), we can construct an-

other quasi-periodic solution with complex scalar field, ψ̃(r, x, y), parametrised by two con-

stants x0, y0, by using the following combination of a translation and a gauge transformation

ψ̃(r, x, y) = e−iqBy0xψ(r, x+ x0, y + y0) , (3.9)

and noting that A(x, y) = A(x + x0, y + y0) + d(By0x). The boundary conditions for

ψ̃(x, y) are as in (3.7) but with c1 → c1 − qBLxy0 and c2 → c2 − qBLy(vy0 − x0). The

two constants, c1 and c2 can be interpreted as parametrising two Goldstone modes in

the boundary theory. These Goldstone modes are associated with translations that are

intertwined with the internal abelian global symmetry, due the presence of the magnetic

field. An additional Goldstone mode, associated with the abelian global symmetry is

obtained by multiplying the solution by a constant phase. All of these Goldstone modes

need to be fixed in order to find a solution numerically.

3.2 Perturbative zero modes

We now consider zero modes around the dyonic Reissner-Nordström black hole solution

given in (2.4). The linearised complex scalar field equation of motion in this background is

g4

g′
∂r

(
g−2

g′
f ∂rψ

)
+ g2Dψ +

g2

f
q2a2

t ψ −m2 ψ = 0 , (3.10)

where

Dψ =
(
∂2
x + ∂2

y − 2i q B y ∂x − q2B2y2
)
ψ . (3.11)

– 6 –
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Separating variables by writing ψ = Φ(x, y)ρ(r), we deduce that Φ has to satisfy the

eigenvalue equation

DΦ = λΦ , (3.12)

and the radial function will satisfy

g4

g′
∂r

(
g−2

g′
f ∂r

)
+

(
g2 λ +

g2

f
q2a2

t −m2

)
ρ = 0 . (3.13)

The task is to solve the eigenvalue equation (3.12) with the boundary conditions (3.7):

Φ (x+ Lx, y) = eic1Φ (x, y) , Φ (x+ v Ly, y + Ly) = eic2 ei
2πn
Lx

x Φ (x, y) , (3.14)

along with the constraint (3.8). Focussing on the x argument, without loss of generality

and consistent with the first boundary condition, we can write

Φ(λ)(x, y) = ei
c1
Lx
x
∞∑

l=−∞
ei

2lπ
Lx

xW
(λ)
l (y) . (3.15)

Substituting this into (3.12) we discover that W
(λ)
l (y) satisfy[

∂2
y − (qB)2

(
y − 2π l + c1

qBLx

)2

− λ

]
W

(λ)
l (y) = 0 . (3.16)

This is essentially the simple harmonic oscillator; the eigenvalues, λj , are labelled by an

integer j = 0, 1, 2, . . . , the Landau level, with

W
(λj)
l (y) = dl ψj

(
y − 2π l + c1

qBLx

)
, λj = −|qB| (2j + 1) , (3.17)

and ψj are the standard harmonic oscillator wave functions and dl are constants. Thus,

for a given Landau level j, we have

Φ(λj)(x, y) = ei
c1
Lx

x
∞∑

l=−∞
dl e

i 2lπ
Lx

x ψj

(
y − 2π l + c1

qBLx

)
. (3.18)

We also need to impose the second boundary condition in (3.14) which leads to a recursion

relation on the dl which, using the quantisation condition (3.8), we can solve as

dl = c e−i
πl2 vLy
nLx e

il z
n , c2 = (c1 + πn)

v Ly
Lx

+ z , (3.19)

where z is a real constant and c is a complex constant. The constant c is just an overall

free constant associated with the fact that we are solving a linear equation and so we set

c = 1. Now shifting the y coordinate via y → y + c1/(qBLx) combined with the gauge

transformation with parameter Λ = c1/(qLx)x, as in (3.9), allows us to set c1 = 0. Having

set c1 = 0, it will be convenient to shift the x coordinate via x→ x−Lxz/(2πn), again as

in (3.9), in order to set z = 0.

– 7 –
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Figure 1. Instabilities of the dyonic Reissner-Nordström black hole. We have plotted the critical

temperature, Tc, against the magnetic field, B, using dimensionless units, for three different Landau

levels: j = 0 (blue), j = 1 (red) and j = 2 (green). We construct fully back-reacted black hole

solutions for |qB|/µ2 = 0.02 with j = 0 and j = 1 that first appear for values of Tc/µ ∼ 0.088 and

Tc/µ ∼ 0.085, respectively.

Thus, in summary we can write the spatial part of our zero mode as

Φ(λj)(x, y) =

∞∑
l=−∞

e
−i 2πvl

2

L2
xqB ei

2πl
Lx

x ψj

(
y − 2π l

qBLx

)
, (3.20)

which satisfies the boundary conditions given in (3.7) with c1 = 0 and c2 = 1
2vL

2
yqB.

We note that we have fixed all of the Goldstone modes. For a given magnetic field, and

hence fixed qB, the free parameters specifying these zero modes are the torus parame-

ters (Lx, Ly, v), constrained via the quantisation condition qBLxLy = 2πn, as well as the

Landau level j. The eigenvalue λ in (3.12) only depends on j and thus, the radial equa-

tion (3.13), and hence the critical temperature Tc at which the Reissner-Nordström solution

becomes unstable, also only depend on j.

In figure 1 we have plotted Tc as a function of |qB|. When B = 0 we see that

the dyonic Reissner-Nordström black hole becomes unstable to forming a superconducting

state at Tc/µ ∼ 0.090. The instability persists in the range 0 < |qB|/µ2 . 0.846. For small

enough |qB|/µ2 there is a finite sequence of instabilities appearing at lower temperatures

that are associated with higher Landau levels. In the sequel for q = 2 and |qB|/µ2 = 0.02

we will construct fully back-reacted black hole solutions for the lowest Landau level with

j = 0, which first appear at Tc/µ ∼ 0.088, and also the first Landau level with j = 1,

which first appear at Tc/µ ∼ 0.085. In each class of solutions the moduli space of solutions

is parametrised by (Lx, Ly, v), constrained via the quantisation condition qBLxLy = 2πn.

We will determine the thermodynamically preferred configurations both within each class

of solutions and also show, for temperatures when they both exist, that the solutions in

the lowest Landau level are preferred.

– 8 –
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3.3 New coordinates on the torus

For numerical convenience, it is convenient to bring the identifications of the coordinates

on the torus into the following form

(x̃, ỹ) ∼ (x̃+ 1, ỹ) ∼ (x̃, ỹ + 1) . (3.21)

This is achieved by performing the following coordinate transformation

x̃(x, y) = L−1
x (x− v y) , ỹ(x, y) = L−1

y y . (3.22)

In these coordinates the parameters of the torus get encoded in the metric. Indeed, the

full boundary metric and gauge field have the form

ds2
3 = −dt2 + L2

x dx̃
2 + L2

y(1 + v2) dỹ2 + 2 vLxLy dx̃ dỹ ,

A∂ = µdt−BLxLy ỹ dx̃ − dΛ , (3.23)

with Λ(ỹ) = 1
2B v L

2
y ỹ

2. The last term in the gauge field can be removed via a gauge

transformation to give

A∂ → Ã∂ = A∂ + dΛ = µdt−BLxLy ỹ dx̃

ψ(r, x̃, ỹ)→ ψ̃ = e−iqΛ(ỹ) ψ(r, x(x̃, ỹ), y(x̃, ỹ)) . (3.24)

Furthermore, if the complex scalar field ψ satisfies the quasi-periodic boundary condi-

tions (3.8) with c1 = 0 and c2 = 1
2vqBL

2
y/
√

1 + v2, precisely as we chose for the zero

modes given in (3.20), then we have

ψ̃ (r, x̃+ 1, ỹ) = ψ̃ (r, x̃, ỹ) , ψ̃ (r, x̃, ỹ + 1) = eiqBLxLy x̃ ψ̃ (r, x̃, ỹ) . (3.25)

These are the boundary conditions we will use in the ansatz for the numerical integration.

This fixes the two translational Goldstone modes mentioned below (3.9). The Goldstone

mode associated with multiplication by an overall phase is fixed by a boundary condition

for the complex scalar on the horizon as discussed in the next subsection. Somewhat for

historical reasons, in the numerical integration we used the following rescaled quantities

L̃x = (1 + v2)−1/4Lx , L̃y = (1 + v2)1/4Ly , (3.26)

in terms of which the torus part of the boundary metric in (3.23) takes the more symmet-

ric form

ds2
3 = −dt2 + (1 + v2)1/2[L̃2

x dx̃
2 + L̃2

y dỹ
2] + 2 vL̃xL̃y dx̃ dỹ . (3.27)

Note that since LxLy = L̃xL̃y the form of the quantisation condition is unchanged:

qBL̃xL̃y = 2πn . (3.28)

For later convenience we also define a quantity k such that

L̃x =
1

k

√
2π n

qB
, L̃y = k

√
2π n

qB
, (3.29)

which respects the quantisation condition.

– 9 –
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Note that for the perturbative modes the solution (3.20) is independent of n. The only

appearance of n is in the quantisation condition (3.28). Thus, one can obtain different

values of n just by rescaling L̃x and L̃y. Going beyond the probe approximation, as we

discuss in the next section, the solutions to the non-linear equations that we have found,

all have n = 1. We do not know if it possible to construct other solutions with n 6= 1.

3.4 Numerical integration

Motivated by the form of the boundary metric (3.23), we consider the following ansatz for

the vortex lattice black holes

ds2 = r2
+g(r)−2

[
− f(r)Qtt(η

t)2 +
g′(r)2

f(r)

Qrr
r2

+

dr2

+Q
√

1 +R2
(
WL̃2

x(ηx̃)2 +W−1L̃2
y(η

ỹ)2
)

+ 2QR L̃xL̃y η
x̃ ηỹ

]
,

A =
g′(r)2

4
atη

t +
g′(r)

g(r)
ardr + (L̃x ax −BL̃xL̃yỹ)ηx̃ + L̃yayη

ỹ ,

ψ = g(r)(φ1 + iφ2) . (3.30)

In these expressions we have used the one-forms ηt, ηx̃, ηỹ defined by

ηt = dt+Qtrdr +Qtx̃dx̃+Qtỹdỹ , ηx̃ = dx̃+Qrx̃dr , ηỹ = dỹ +Qrỹdr . (3.31)

The functions f(r) and g(r) are precisely the same functions appearing in the Reissner-

Nordström solution (2.5) and are incorporated for convenience. The remaining functions

defined by F ≡ {Qtt, Qrr, Q,R,W,Qtx̃, Qtỹ, Qtr, Qrx̃, Qrỹ, at, ar, ax̃, aỹ, φ1, φ2} are all func-

tions of the radial coordinate r as well as (x̃, ỹ), where the latter parametrise the torus

with the identifications given in (3.21). On this torus, the scalar fields φ1 and φ2 sat-

isfy the quasi-periodic boundary conditions (3.25) while all the remaining functions in F
are periodic. There is significant redundancy in this ansatz and this will be dealt with

momentarily.

We demand that the solutions approach an asymptotic AdS4 boundary, located at

r = 0. The boundary conditions that we want to impose are given by

Qtt(0, x̃, ỹ) = Qrr(0, x̃, ỹ) = Q(0, x̃, ỹ) = W (0, x̃, ỹ) = 1 ,

R(0, x̃, ỹ) = v , at(0, x̃, ỹ) = µ ,

Qtr(0, x̃, ỹ) = Qrx̃(0, x̃, ỹ) = Qrỹ(0, x̃, ỹ) = Qtx̃(0, x̃, ỹ) = Qtỹ(0, x̃, ỹ) = 0 ,

ar(0, x̃, ỹ) = ax̃(0, x̃, ỹ) = aỹ(0, x̃, ỹ) = φ1(0, x̃, ỹ) = φ2(0, x̃, ỹ) = 0 . (3.32)

Notice that these boundary conditions imply that the asymptotic metric approaches (3.27).

Furthermore, the asymptotic form of the gauge field is A → µdt − BL̃xL̃y ỹ dx̃, also as

desired. Due to the presence of g(r) in the ansatz for ψ in (3.30), the boundary conditions

on φ1 and φ2 are associated with a spontaneous breaking of the global U(1) symmetry and

we recall that we have assumed ψ is dual to an operator with ∆ψ = 2. We will discuss the

one point functions of this operator as well as the stress tensor and U(1) current later.

– 10 –
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We also demand that we have a Killing horizon, generated by the Killing vector ∂t,

located at r = 1. This is achieved by demanding that the set of functions F(r, x̃, ỹ),

appearing in (3.30), admit an expansion in powers of (1 − r) of the form

F = F(1, x̃, ỹ)− (1− r)∂rF|r=1 + . . . . (3.33)

The equations of motion impose constraints on the coefficients appearing in (3.33). In

particular, for the components Qrr(r, x̃, ỹ) and Qtt(r, x̃, ỹ) we obtain the condition for con-

stant surface gravity Qrr(1, x̃, ỹ) = Qtt(1, x̃, ỹ), while for all other components we impose

the Neumann boundary condition ∂rF|r=1 = 0. We also impose the following boundary

condition on the complex scalar field at the horizon, φ2(1, 1/2, 1/2) = 0, which fixes the

remaining Goldstone mode, as commented above.

At this point, we need to address the fundamental issue that the PDEs obtained after

substituting the ansatz (3.30) into (2.2) are weakly elliptic, meaning that they are elliptic

only for the physical degrees of freedom, and thus they are unsuitable for numerical solution

without gauge fixing. To deal with this issue we use the DeTurck method, following [28, 29].

We first modify the Einstein equations given in (2.2), to obtain Einstein-DeTurck equations,

by making the replacement

Rµν → Rµν +∇µξν , with ξµ = gνλ(Γµνλ(g)− Γ̄µνλ(ḡ)) . (3.34)

Here ḡ denotes a reference metric and Γ̄ is the Christoffel connection of ḡ. We need to

choose the reference metric to have a Killing horizon and the same asymptotic behaviour

as the solutions we would like to construct; we will take it to be given by the metric in

the dyonic AdS-RN black hole solution (2.4). For this choice, we find that ξµ = 0 on the

boundary. After numerical integration we need to check, a posteriori, that we have ξ = 0

everywhere. The condition ξ = 0 corresponds to fixing a set of coordinates. Similarly, we

also need to fix the gauge freedom for the gauge-field. As in [25] (see also [24]) we modify

the Maxwell equation in (2.2) via

∇µFµν → ∇µFµν +∇νϕ , with ϕ = ∇µAµ + ξµA
µ − gµν∇̄µĀν , (3.35)

where Āν is a reference gauge field. While Āν is not needed in order to obtain an elliptic

system of PDEs, it does allow us to suitably choose Aµ − Āµ for our boundary value

problem. Indeed we take Ā = −BL̃x L̃yỹdx̃ so that A − Ā are periodic functions and, as

one can then explicitly check, ϕ then vanishes on the boundary. As in [25], by taking the

divergence of the modified Maxwell equation and then integrating over the bulk, one can

then deduce that ϕ = 0 everywhere. The vanishing of ϕ fixes the gauge invariance.

To summarise, to obtain our vortex lattice solutions, we will solve the modified equa-

tions of motion, given in (3.34), (3.35), which gives a system of elliptic PDEs with a well

defined boundary value problem. Having solved them we then check that ξµ = 0 and since

ξµ is spacelike, this is achieved by checking ξ2 = 0. Some additional comments on the

numerical approach we take, as well as a discussion of the numerical convergence is given

in appendix B.
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Returning to our ansatz, (3.30), we see that it is left invariant if we make the replace-

ments: L̃x ↔ L̃y, W → W−1, Qrx̃ ↔ Qrỹ, Qtx̃ ↔ Qtỹ, ax̃ → aỹ + BL̃yỹ, aỹ → ax̃ − BL̃xỹ
and interchange x̃ ↔ ỹ. This symmetry is then reflected in our solutions. In particular,

after recalling (3.29), it implies that any physical quantities that are obtained by integrat-

ing over x̃, ỹ, such as the free energy, for example, will be invariant under the interchange

of k → 1/k.

3.5 Thermodynamics and one point functions

The thermodynamic properties of the black holes are obtained by analytically continuing

the time coordinate via t = −iτ . Demanding regularity of the solution at the black hole

horizon we obtain the temperature, T , which has the same form as given in (2.7). We

can also read off the area of the event horizon and, since we are working in units with

16πG = 1, we deduce that the entropy density is given by the horizon integral

s = 4π r2
+

∫
dx̃dỹQ|r=1 . (3.36)

where the integral is over a unit cell.

To calculate the free energy we need to consider the total Euclidean action, ITot =

I + Ibdr, where I = −iS, with S as in (2.1), and Ibdr given by the following integral on the

boundary r → 0:

Ibdy =

∫
dτdx̃dỹ

√
γ(−2K + 4 + . . . ) . (3.37)

Here K is the trace of the extrinsic curvature of the boundary and γµν is the induced

boundary metric given in (3.27) up to a factor of r2
+/(4r

2) and the dots refer to a term

quadratic in the scalar field which does not play a role for the solutions that we consider

in this paper. To obtain the free energy density, w, we write the total free energy as

T [ITot]OS ≡ wvol2.

It is similarly straightforward to obtain the expectation values for the boundary stress

tensor, Tmn, and the abelian current vector, Jm, as well as the condensate 〈Oψ〉 (we have

presented a few details in appendix A). Since the solutions have a timelike Killing vector

∂t, we have

w = T̄ tt − sT − µJ̄ t , (3.38)

where the bar refers to a period average over the spatial coordinates e.g.

J̄ t =

∫
dx̃dỹ

√
γJ t . (3.39)

The free energy density w depends on T, µ,B, the integer n (giving the number of

vortices per unit cell), and also on the shape of the lattice, which can be specified by v, k,

where we recall k was defined in (3.29): w = w(T, µ,B; v, k;n). To see how the free energy

– 12 –
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depends on varying B, v and k we follow [30]. A calculation4 shows that we can write

δw =
δk

k
(T̄ x̃x̃ − T̄ ỹ ỹ) +

δB

2B
(2w + T̄ x̃x̃ + T̄ ỹ ỹ)

+
δv

(1 + v2)

(
v

2
(T̄ x̃x̃ − T̄ ỹ ỹ)−

L̃x

L̃y

√
1 + v2T̄ x̃ỹ

)
. (3.41)

In order to find the thermodynamically preferred black holes for given UV data

(T, µ,B) and given n, we need to minimise w over the lattice parameters (v, k). From (3.41)

the preferred vortex lattice will therefore satisfy T̄ x̃x̃ = T̄ ỹ ỹ, T
x̃
ỹ = 0. Since the symmetry

of the stress tensor implies that
√

1 + v2(
L̃y
L̃x
T̄ ỹ x̃ − L̃x

L̃y
T̄ x̃ỹ) = v(T̄ ỹ ỹ − T̄ x̃x̃), we also have

T x̃ỹ = 0. Thus, we deduce that

T̄ ij = pδij , p = −1

2
T̄ tt , (3.42)

where we also used tracelessness of the stress tensor. As in [30] we can also conclude that

Q̄i ≡ −(T̄ it + J̄ iµ) = 0 ,

J̄ i = 0 (3.43)

These conditions are a result of the fact that in thermal equilibrium the spatial parts of

the heat current, Qi, and the abelian current, J i, are magnetisation currents of the form
√
γJ i = ∂jM

ij and
√
γQi = ∂jM

ij
T where M ij = M [ij] and M ij

T = M
[ij]
T is the local mag-

netisation density and the thermal magnetisation density, respectively. A subtlety is that

in a superfluid state we can have J̄ i 6= 0 but with Q̄i = 0, but for the thermodynamically

preferred configurations we have J̄ i = 0 [31].

Finally, we note that using the above results, the first law for the thermodynamically

preferred vortex lattice black holes can be written as

δw =− sδT − J̄ tδµ−mδB , (3.44)

where

m = −w + p̄

B
. (3.45)

In our numerical results, to be discussed next, we have directly verified that (3.42)–(3.45)

all hold.

4To see this, it is convenient to work in the x̃, ỹ coordinates and consider the free parameters to be L̃x,

L̃y and v. As we vary these parameters we vary the boundary metric (3.23) and we also notice that the

boundary gauge field in (3.24) is given by A∂ = µdt− 2πn
q
ỹ dx̃ and hence is independent of these parameters.

From (2.13) of [30] we deduce

δw = −δL̃x
L̃x

(w + T̄ x̃x̃)− δL̃y

L̃y
(w + T̄ ỹ ỹ) +

δv

(1 + v2)

(
v

2
(T̄ x̃x̃ − T̄ ỹ ỹ)− L̃x

L̃y

√
1 + v2T̄ x̃ỹ

)
, (3.40)

and we then use (3.29).
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4 Numerical results

In the solutions we have numerically constructed which we discuss below, we have fixed5

q = 2, B/µ2 = 0.01 . (4.1)

We express physical quantities in terms of the chemical potential µ; this can be achieved

by setting µ = 1 and then reinstating µ afterwards using dimensional analysis. For this

value of |qB/µ2| the critical temperature at which the dyonic AdS-RN black hole become

unstable to zero modes associated with the lowest Landau level is Tc/µ = 0.088. We

constructed the new branch of vortex lattice black holes that exist below Tc which are

parametrised by three continuous parameters, the temperature, T , and two parameters,

v, k, which determine the shape of the lattice (recall k was defined in (3.29)). We also note

that the plots of the free energy that we present below are invariant under k → 1/k for

reasons discussed at the end of section 3.4. In principle, the solutions are also specified by

a discrete parameter n that appears in the flux quantisation condition (3.28), but all of the

solutions we discuss below6 have n = 1.

We have constructed several black hole solutions, associated with the lowest Landau

level, for various values of the parameters T, v, k, but we studied in more depth three specific

values of the temperature: T/µ = 0.08, T/µ = 0.07 and T/µ = 0.05 with T/Tc ∼ 0.905, 0.79

and 0.565, respectively. For each of these temperatures we determine the shape of the

thermodynamically preferred configuration by calculating the free energy density w/µ3 as

a function of (v, k). For all these temperatures, within numerical precision, we find that

the preferred black holes have k = 1 and v = 1/
√

3, corresponding to a triangular vortex

lattice. This is clearly illustrated in figure 2 for T/Tc ∼ 0.79 and T/Tc ∼ 0.565.

We can also calculate various physical observables in the dual field theory for the

preferred triangular vortex lattice black holes. In figure 3 we present the plots for the

case T/Tc ∼ 0.79. We see that the modulus of the order parameter, 〈|Oψ|〉, has zeroes

at the centre of each vortex, as expected. Furthermore, we have explicitly checked that

the phase of the order parameter winds exactly once around each vortex i.e. n = 1. The

spatial components of the local current density J i are magnetisation currents (i.e. with no

net transport, J̄ i = 0) and circulate around each vortex core. Since we are considering

a superfluid these currents do not diminish the background homogeneous magnetic field,

which is the constant value of B throughout. The charge density J t is non-vanishing at the

core of the vortices and is associated with the non-vanishing charge density of the normal

phase. The plots also show that the energy density T tt and J t are slightly diminished7 at

the cores of the vortices.

It is also interesting to examine the structure of the preferred black hole solutions

themselves. In particular, the black hole horizons have an inhomogeneous geometry, with

5We also carried out a check of (3.44), (3.45) by constructing some black holes with different values of

B.
6We looked for solutions with n 6= 1, but just found rescaled versions of solutions with n = 1.
7From a Landau-Ginzburg description, which should be valid near the critical temperature, one expects

the charge density will be reduced at the cores. This is because the charge density is given by the charge

density of the normal phase plus a contribution from the norm squared of the order parameter.
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10
3δw

-3.942

-3.940

-3.938

-3.936

-3.934

10
2δw

-1.63775

-1.63750

-1.63725

-1.63700

-1.63675

-1.63650

Figure 2. Plots displaying the behaviour of the free energy density for the vortex lattice black

holes (lowest Landau level) as a function of the shape, parametrised by (v, k), for with T/Tc ∼ 0.79

and T/Tc ∼ 0.565. We have plotted δw/µ3, the difference between the free energy of the lattice

and of the normal phase (the AdS-RN solution). The red dot corresponds to the configuration

minimising the free energy and it describes a triangular vortex lattice with v = 1/
√

3 and k = 1

(equivalently L̃x = L̃y).

peaks that are associated with the position of the vortices. A complementary picture can be

illustrated by studying the modulus of the scalar field, |ψh|, on the horizon, as illustrated in

figure 4(a). At the core of the peaks, the value of |ψh| is zero. Furthermore, the maximum

value, |ψh|max, which is reached at the midpoint between two peaks monotonically increases

as the temperature is lowered, as shown in figure 4(b), leading to more pronounced peaks.

Although we are some way from zero temperature, the behaviour in figure 4(b) suggests

that |ψh|max is approaching one. Furthermore, we find that the temperature dependence

of, for example, the maximal value of the norm of the gradient of the scalar field as well

as FµνF
µν at the horizon are consistent with them staying finite as T → 0. This indicates

that at zero temperature there will be a regular,8 extremal horizon with an inhomogneous

peaked structure with |ψ| interpolating between |ψ| = 0 at the core of the vortices to a

maximum value of |ψ| = 1, the value associated with the symmetry breaking AdS4 solution,

between the vortices. It would be very interesting to explicitly construct these putative

T = 0 solutions.

For T/µ ∼ 0.085 the original dyonic AdS-RN black hole solution becomes unstable

to zero modes associated with the first Landau level (i.e. j = 1 in figure 1). Thus below

this temperature, there is an additional family of vortex lattice black hole solutions, again

parametrised by the temperature T and two shape parameters v, k (and B fixed as in (4.1)).

We have constructed some examples of these back-reacted black holes for T/µ = 0.08 and

various values of k and v and we find, surprisingly, that the preferred black holes in this

branch appear to have v = 0 and k → 0 or k →∞, corresponding to the unit cell becoming

infinitely long and thin (see figure 5). This suggests that the vortex lattice might be trying

8This should be contrasted with what seems to be happening with the solutions discussed in [25]. We

also note that constructions of extremal black holes with inhomogeneous horizons, parametrised by spatially

periodic scalar fields, have been discussed in [32–34].

– 15 –



J
H
E
P
0
7
(
2
0
2
0
)
0
9
5

〈|Oψ|〉/µ2 J i/µ2

0.05

0.10

0.15

0.20

0.25

0.30

0

0.005

0.010

0.015

T tt/µ3 J t/µ2

0.4425

0.4450

0.4475

0.4500

0.4525

0.4550

0.4575

0.48

0.49

0.50

0.51

Figure 3. Observables for the preferred triangular vortex lattice black holes (lowest Landau level)

for T/Tc ∼ 0.79. Here 〈|Oψ|〉 is the order parameter, J i is the local current density, T tt is the

energy density and J t is the charge density. Note that these quantities are plotted in the original,

untransformed spatial coordinates (x, y), scaled by Lx and Ly (see (3.1) and (3.22)).

to form a linear defect. However, we also find that the black holes associated with the

first Landau level that we have constructed are never thermodynamically preferred when

compared with any of the black holes that are associated to the lowest Landau level that

we discussed above and, in particular, the preferred triangular vortex lattice.

5 Discussion

For a specific holographic model we have constructed fully back-reacted black holes that

are dual to a lattice of vortices in a superfluid phase in the presence of a homogeneous,

constant magnetic field. We have shown that the thermodynamically preferred black holes

describe a triangular lattice of vortices and associated with the lowest Landau level, at

least for the temperatures we have considered.
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|ψh|

0.1

0.2

0.3

0.4

0.5

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

T/Tc

|ψ
h
m
ax

Figure 4. (a)Plot of the modulus of the scalar field |ψh| at the horizon for T/Tc = 0.79 for the

preferred triangular vortex lattice black holes (lowest Landau level). (b) Plot of maximum value of

the modulus of the scalar field, |ψh|max, against T/Tc for the same black holes.

10
4δw

-1.85

-1.80

-1.75

-1.70

0.8 1.0 1.2 1.4 1.6

-8

-7

-6

-5

-4

-3

-2

k

1
0
4
δ
w

Figure 5. Plots displaying the behaviour of the free energy density for vortex lattice black holes

associated with the first Landau level and temperature T/µ = 0.08. We have plotted δw/µ3, the

difference between the free energy of the lattice and of the normal phase (the AdS-RN solution).

(a) Plot of δw/µ3 as a function of k and v. (b) Plot of δw/µ3 as a function of k for v = 0, with

the red dot indicating the value of the free energy for the thermodynamically preferred triangular

vortex lattice associated with the lowest Landau level. The two plots indicate that the minimum

of the free energy for the first Landau level is when v = 0 and k → 0 or k → ∞, corresponding to

the unit cell becoming infinitely long and thin.

Assuming that this picture persists to lower temperatures, which seems most likely

to us, it appears that at zero temperature there are novel, non-singular extremal black

holes, which are not static, with the core of each vortex on the horizon approaching a

dyonic AdS2 × R2 configuration and these are embedded in an ambient sea of the IR

AdS4 superfluid ground state, in the presence of a uniform magnetic field. It would be

of much interest to construct these extremal black holes directly. As a first step, it could
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be worthwhile to first try and construct a kind of inside-out near horizon solution which

describes a bubble of AdS4 in the superfluid ground state, embedded in an ambient dyonic

AdS2 × R2 solution.9

There are many natural ways to modify the constructions reported in this paper.

While we suspect that we will get similar results by simply varying q and B, this may

not be the case and other shapes of vortex lattices could in fact be preferred. We think

it would be particularly interesting to extend the model to include a neutral scalar a with

an aF ∧ F coupling in the bulk Lagrangian. On the one hand such a term arises in

the top down models considered in [36, 37] which also explored a fascinating competition

between superfluid phases and phases in which the U(1) symmetry is unbroken but spatial

translations are spontaneously broken. In addition given the fact that in field theory a

Chern Simons term gives rise to novel vortices carrying both electric and magnetic charges

(e.g. see [38]), which are models for anyons, we can expect that the associated gravitational

construction10 may well exhibit novel phenomena too.

The thermodynamically preferred black holes that we constructed in this paper are

associated with vortices in the lowest Landau level. However, this is not expected to be

the case for other models such as the ones considered in [40, 41]. These black holes could

have a very interesting structure based on the fact that the preferred black hole vortex

lattice in the first Landau level which we constructed here has an interesting linear defect

structure.
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A Asymptotic expansion

Using the modified equations of motion as described in section 3.4, the asymptotic boundary

expansion for the functions appearing in the ansatz (3.30) take the form

Qtt(r, x̃, ỹ) = 1 + r3ctt(x̃, ỹ) + g1(x̃, ỹ)r(3+
√

33)/2 +O(r4) ,

Qrr(r, x̃, ỹ) = 1 + g2(x̃, ỹ)r(3+
√

33)/2 +O(r4) ,

9This would be analogous to the interesting defect solutions constructed in [35]. There a holographic

setup with vanishing background magnetic field and zero chemical potential was considered, with the

superconducting instability induced via a double trace deformation. The absence of a background magnetic

field meant that it was possible to construct a single vortex solution with a bubble of magnetic AdS2 ×R2

embedded in an AdS4 symmetry breaking vacuum.
10A calculation in the probe approximation for a single vortex was carried out in [39].
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Q(r, x̃, ỹ) = 1− 1

2
r3ctt(x̃, ỹ) + g1(x̃, ỹ)r(3+

√
33)/2 +O(r4) ,

W (r, x̃, ỹ) = 1 + r3cW (x̃, ỹ) +O(r4) , R(r, x̃, ỹ) = v + r3cR(x̃, ỹ) +O(r4) ,

Qtr(r, x̃, ỹ) = r4ctr(x̃, ỹ) +O(r4 ln r) , Qtx̃(r, x̃, ỹ) = r3ctx̃(x̃, ỹ) +O(r4) ,

Qtỹ(r, x̃, ỹ) = r3ctỹ(x̃, ỹ) +O(r4) , Qrx̃(r, x̃, ỹ) = r4crx̃(x̃, ỹ) +O(r4 ln r) ,

Qrỹ(r, x̃, ỹ) = r4crỹ(x̃, ỹ) +O(r4 ln r) ,

at(r, x̃, ỹ) =µ+ rct(x̃, ỹ) +O(r2) , ar(r, x̃, ỹ) = r3cr(x̃, ỹ) +O(r3 ln r) ,

ax̃(r, x̃, ỹ) = rcx̃(x̃, ỹ) +O(r2) , aỹ(r, x̃, ỹ) = rcỹ(x̃, ỹ) +O(r2) ,

φ1(r, x̃, ỹ) = rc1(x̃, ỹ) +O(r2) , φ2(r, x̃, ỹ) = rc2(x̃, ỹ) +O(r2) . (A.1)

The appearance of the function ctt in the expansion for Q is associated with the fact

that the stress tensor is traceless. We have sixteen functions of x̃, ỹ which are fixed in

the numerical integration. The functions g1 and g2 have been seen in similar DeTurck

constructions before [25, 42], and can be removed by a gauge transformation when the

modifications to the equations of motion vanish, ξµ = ϕ = 0. Similarly, ctr, crx̃, crỹ and cr
can be removed by gauge transformations, if desired; they don’t appear in the expressions

for physical quantities in the boundary theory.

In order to calculate the one point functions we need to supplement the bulk ac-

tion (2.1) with the boundary action given in (3.37) (in the Euclidean frame). The expec-

tation value of the stress tensor, Tµν , can be obtained from the expression

Tµν ≡
1

L̃xL̃y
lim
r→0

r
√
−g [−2Kµ

ν + δµν(2K − 4)] , (A.2)

where g refers to the bulk metric, and we find

T tt = − B2

2r+
− µ2r+

2
− 2r3

+ +
3

8
r3

+ctt ,

T x̃x̃ =
B2

4r+
+
µ2r+

4
+ r3

+ −
3

16
r3

+ctt +
3

8
r3

+(1 + v2)cW ,

T ỹ ỹ =
B2

4r+
+
µ2r+

4
+ r3

+ −
3

16
r3

+ctt −
3

8
r3

+(1 + v2)cW ,

T x̃ỹ =
3L̃yr

3
+

8L̃x
√

1 + v2
[v(1 + v2)cW + cR] , T ỹ x̃ = −

3 r3
+L̃x

8L̃y
√

1 + v2
(v(1 + v2)cW − cR) ,

T x̃t = −
3 r3

+

8L̃x
(
√

1 + v2ctx̃)− vctỹ) , T ỹ t =
3 r3

+

8L̃y
(vctx̃ −

√
1 + v2ctỹ) . (A.3)

Notice that these expansions imply the Ward identity T tt + T x̃x̃ + T ỹ ỹ = 0. Furthermore,

the expectation values of the abelian current density are given by

Ja =
1

L̃xL̃y
lim
r→0

√
−g F ar , (A.4)
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and we find

J t = r+

(
µ− 1

2
ct

)
,

Jx =
r+

2Lx
(
√

1 + v2cx̃ − vcỹ) ,

Jy =
r+

2Ly
(
√

1 + v2cỹ − vcx̃) . (A.5)

The expectation value for the operator, Oψ, dual to the complex scalar, ψ = ψ1 + iψ2, can

also be determined.11 Writing 〈|Oψ|〉 for the modulus of 〈Oψ〉 we find

〈|Oψ|〉 =
r2

+

2

√
c2

1 + c2
2 . (A.6)

Similarly the sine of the phase of 〈Oψ〉 is given by c1/
√
c2

1 + c2
2 and we find that the phase

winds once around the core of each vortex in the solutions we have constructed, i.e. n = 1.

At fixed µ,B, T , within numerical precision we find that for all of the black holes we

have constructed we have

c̄tx̃ = c̄tỹ = 0 , c̄x̃ = c̄ỹ = 0 , (A.7)

and this corresponds to the fact that in thermal equilibrium the black holes have vanishing

current fluxes:

T̄ it = J̄ i = 0 (A.8)

Furthermore, for the thermodynamically preferred black holes, identified by varying the

free energy density w with respect to v and k (defined in (3.29)), within numerical precision

we find for all black hole solutions

c̄R = c̄W = 0 . (A.9)

This corresponds to the conditions

T̄ ij = pδij , −1

2
T̄ tt = p . (A.10)

B Numerical convergence

To solve the system of PDEs discussed in section 3.4, with appropriate boundary condi-

tions, we discretised the computational domain [0, 1]× [0, 1]× [0, 1] using Nr, Nx, Ny points,

respectively. We approximated the derivatives of the fields on these points using an inter-

polation method: since the x̃ coordinate is periodic, we used a Fourier spectral method,

while for r and ỹ we used the Chebyshev spectral method (recall that we have to imple-

ment the quasi-periodic boundary conditions under shifts of ỹ → ỹ + 1 as in (3.25)). The

11If the asymptotic metric is ds2 → ε−2(dε2 − dt2 + dx2 + dy2) as ε → 0, then in the expansion ψ =

εψI + ε2ψII + . . . we identify 〈Oψ〉 with ψII .
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Figure 6. Plot of ξ2max, the maximum value of ξ2, as a function of the radial resolution Nr, for the

preferred triangular vortex lattice black holes (lowest Landau level) at T/µ = 0.08, B = 0.01. Here

Nx = 60, Ny = 50.

resulting algebraic system of equations was solved iteratively using the Newton-Raphson

method. For all plots given in the paper we have taken Nr = Ny = 50 and Nx = 46, unless

stated otherwise.

We now discuss the convergence of our code with increasing lattice resolution, especially

with the number of point Nr that we take in the radial direction. One reason this is

important is because we have no analytic proof that the only possible solutions of the

DeTurck system of equations which we solve actually reduce to Einstein’s equations when

we impose our boundary conditions. We therefore need to check that ξµ becomes trivial

everywhere in our domain in the continuum limit. This is unlike the case of the auxiliary

field ϕ which we introduced in (3.35) in order to fix gauge invariance. In fact, we can

show that ϕ must be trivial and it can therefore serve as a check for the convergence of

our code. In figures 6 we have plotted ξ2
max, the maximum value of ξ2 that we find in our

computational domain. Fitting that to a power law we find the behaviour ∼ N−13.7
r . We

found it reassuring that in all our solutions we had |ϕ| < 10−8. However, this error is close

to our numerical precision and so we are not able to check its convergence properties.

A second reason that the details of the convergence of our code is important concerns

the non-analytic terms related to g1 and g2 which appear in the near conformal boundary

expansion (A.1). In general, such terms turn the exponential convergence of spectral meth-

ods to power law with respect12 to the radial direction (as we saw above for the behaviour

of ξ2). For the purposes of our checks, we have found useful to consider the quantities,

c(1) =
2

3

(
Qtt −Q

r

)′′∣∣∣∣
r=0

, (B.1)

c(2) =

(
Qtt − 1

r

)′′∣∣∣∣
r=0

. (B.2)

12On the one hand this means that the spectral methods which we use in the radial direction become

inefficient at high resolutions. On the other hand, however, in terms of memory usage, we have found

them to be very efficient in obtaining sufficiently accurate solutions. Indeed it would be significantly more

demanding in resources in order to achieve similar accuracy using finite difference methods in the radial

direction. It is also worth noting that the precise power law behaviour which we find is for a specific choice

of reference metric in (3.34), namely the AdS-RN black hole solution. It would be interesting to explore

whether other choices leads to improved convergence.
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Figure 7. Plot of the behaviour of c(2) as a function of the radial resolution Nr, for the preferred

triangular vortex lattice black holes (lowest Landau level) at T = 0.08, B = 0.01. Here Nx =

31, Ny = 30.

Using the expansion (A.1), we can easily see that in the continuum we must have ctt =

c(1) = c(2). Notice that this quantity is particularly important since it enters the expression

for the free energy of the system via (A.3) and (3.38). From the expansions (A.1), we see

that the leading non-analytic power will drop out from c(1) and we therefore expect it to

have a better convergence rate than c(2).

In figure 7 we plot c(2)(Nr + 5) − c(2)(Nr) as a function of the points in the radial

direction, Nr. We see that this quantity has power law convergence to zero, with behaviour

∼ N−3.7
r . Our expectation is that c(1)(Nr + 5) − c(1)(Nr) would converge with a smaller

power. However, we were not able to confirm this since, due the absence of the leading

non-analytic terms and faster convergence, it becomes smaller than our numerical precision

quite quickly as we increase Nr, before it takes the asymptotic form of a power law.13 It is

worth highlighting that these tests for c(1) c(2) are associated with the DeTurck equations

we are solving and are not related to the fact that we are not solving Einstein’s equations.

On the conformal boundary we don’t impose the equations of motion but our boundary

conditions. We therefore need to check whether the equations of motion are asymptotically

satisfied by numerically checking the series expansion (A.1) of our functions.

The main error in the various tests we have discussed arises from different places in

the bulk. For figure 7 the main error comes from the near conformal boundary region, as

one might expect from the discussion above. On the other hand, the error for the plot in

figure 6 arises from a more global test and, in fact, mainly arises from the near horizon

region where ξ2 and |ϕ| take their maximum values.

We have implemented our numerical method in C++ using double precision numbers

and class data structures. The code is fully parallelised in shared and distributed memory

using a combination of MPI and OpenMP. After fixing a discretisation scheme, the problem

reduces to solving a set of non linear algebraic equations for the values of our functions on

the grid described above. This is done using the Newton-Raphson method where one starts

with an initial guess for the unknown functions at each lattice point and then iteratively

corrects it in order to obtain functions that solve the PDEs to a better and better approx-

13For a lattice with Nx = 36 and Ny = 36 we found, for example, that c(1)(Nr + 1)− c(1)(Nr) ∼ 10−9 for

Nr ≥ 30.
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imation. This boils down to solving a linear system at each step in Newton’s method. To

do this we use the PETSc library with a block-ILU(0) preconditioner in combination with

a GMRES iterative method.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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