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Abstract

This paper is devoted to the development of a stabilised implicit non-ordinary state-based peridynamics

approach. We propose a geometrically nonlinear implicit approach focusing on quasi-static analyses. Since

the construction of the Jacobian matrix is the most time consuming step in conducting this nonlinear anal-

ysis, we formulate an analytical expression based on the equation of motion of non-ordinary state-based

peridynamics to ensure optimum convergence of the global residual force. The implicit formulation can

adopt fairly large time increments, making it a good choice for analyses of finite deformation. Another

important extension presented in this paper is the modification of the correspondence material model to

remove zero-energy mode instabilities and reduce the spurious oscillations, as proposed by Silling (2017).

The derivative of the additional stabilisation term with respect to displacement is included in the formula-

tion of the Jacobian for the first time. Computational examples of 2D finite deformation problems with a

stabilised correspondence model are presented. We assess the effectiveness of different values of the sta-

bilisation parameter, G in terms of the particles’ spacings and horizon sizes for different problems. This

allows the non-ordinary state-based peridynamics approach to model material behaviour with greater ac-

curacy where correspondence materials have previously failed due to instabilities. In this paper, a damage

model is also proposed, which provides for the first time an implicit approach for the static solution of crack

propagation problems for non-ordinary state-based peridynamics. This paper lays the groundwork for non-

ordinary state-based peridynamics to be used for a much greater variety of solid mechanics problems than

is currently possible and at the same time satisfying the stability condition.

Keywords: Peridynamics; State-based; Implicit; Finite deformation; Zero-energy mode

∗Corresponding author

Preprint submitted to Computer Methods in Applied Mechanics and Engineering July 15, 2020



1. Introduction

Peridynamics (PD) was proposed by Silling [1] as a nonlocal reformulation of the equations of motion to

handle solid mechanics problems involving discontinuities. It computes the balance laws in solid mechanics

in terms of integro-differential equations and, since no spatial derivatives are required, it permits sponta-

neously emerged discontinuities without additional remedial techniques [2, 3, 4]. The problem domain is

discretised by particles linked through bonds, which contain materials constitutive information. The inter-

action between particles takes place over a finite distance defined by a horizon, δ. PD is a nonlocal theory

and this means that particles separated by a finite distance exert forces upon each other and this interaction

extends beyond nearest neighbours. Bond-based peridynamics (BB PD) is the original formulation of PD

where the interactions between particles act like spring forces and only depend on the relative displacement

of interacting particle pairs [1]. However, the BB PD scheme is restricted to constitutive models with fixed

Poisson’s ratios: ν of 1/4 for plane strain or 3D problems and 1/3 for plane stress conditions [5, 6].

As a consequence, a plastic incompressibility condition cannot be captured directly with the BB PD [2].

To address this issue, Silling et al. [7] introduced the non-ordinary state-based peridynamics (NOSB PD)

formulation as an extension of BB PD to remove the restriction of fixed Poisson’s ratios, therefore allowing

for the modelling of more complex materials in which particle interactions are defined in terms of force

state rather than pairwise force functions [8, 9]. The NOSB PD method leads to more realistic simulations

as the forces in the bonds are arrived at by considering the stress and the deformation fields at each of the

particles [3, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], which allows for modelling using

general constitutive models.

Numerous advances have been made using PD methods in the past few years including a NOSB PD

method proposed by Warren et al. to model deformation and crack propagation in an isotropic bar un-

der quasi-static loading [8]. Foster et al. [9] presented the modelling of explicit dynamic impact tests of

aluminium using the NOSB PD formulation. With its unique capability in capturing failure, it is able to sim-

ulate crack propagation and damage processes including those in rock-like materials [25] and thermoplastic

fracture [16]. The NOSB PD formulation has also been used to model crack growth in an elastic-viscoplastic

crystal [26] and in anisotropic materials [20]. However, it is interesting to note that the majority of previ-

ous PD research has used explicit time stepping formulations. Two of the rare examples of non-explicit

methods are as follows. An implicit NOSB PD formulation was presented in [10] for linearly elastic solids

implemented within Emu, a PD code in development at Sandia National Laboratories, and another implicit
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implementations of NOSB PD were presented in [27] for crystal plasticity problems and in [28] for the

simulation of elastoplasticity within polycrystalline materials. However, the work in [10] was limited to

the development and numerical implementation of a small strain linearly elastic material model. In refer-

ence [27] the computation of tangent modulus was based on the crystal plasticity constitutive model. A

conference paper has previously mentioned implicit NOSB PD but not enough detail was given about the

implementation [29].

Fracture modelling was the focus of early research in PD, utilizing simple constitutive models as stated

in [30]. NOSB PD as a nonlocal meshless method is not limited in the amount of deformation since there

are no mesh regularity constraints to consider and this has been relatively unexplored in the literature. The

PD method has been widely used to solve quasi-static problems [8, 31, 32, 27, 33, 34, 35, 22]. However

as mentioned earlier, the most common PD approaches are based on explicit time integration schemes and

a drawback arises from the limitation on the time step size to ensure numerical stability and in the case of

quasi-static loading, it becomes expensive to obtain solutions.

Recently there have been initial attempts to include material damage and failure for PD with implicit

solution procedures. Tao Ni et al. [36] introduces two implicit static solution procedures and this has been

implemented in BB PD. The most frequently used constitutive model in PD is the Prototype Microelastic

Brittle (PMB) material proposed by Silling and Askari [3] for which when a bond fails, its strength and

stiffness suddenly drop to zero. However, the discontinuity of the constitutive law prevents a standard

implementation of a Newton-Raphson type of algorithm as stated in [36]. In this work, damage will be

included for the first time within a NOSB PD approach with an implicit solution scheme based on the

Newton-Raphson (NR) solution procedure.

One of the particular drawbacks of NOSB PD is an instability problem which leads to spurious zero-

energy modes, as previously identified in the mathematical formulation of the PD theory [13, 10, 37, 38, 18,

21, 19]. Zero-energy modes have been overcome in the classical Finite Element Method (FEM) by inserting

artificial stiffness to increase stability [39]. Littlewood [26] and Breitenfeld et al. [10] working with PD

methods provided different forms of an additional term to the PD force vector state which represents the

supplemental bond between particles, resembling the method used in the FEM. A stabilised displacement

field was introduced by Wu and Ren [13] to control the zero-energy mode while Yaghoobi and Chorzepa

proposed calculation of the deformation gradient based on higher-order polynomial approximation which is

viable in enhancing the accuracy of the method with larger horizons [18]. Recently, Silling has introduced
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a stabilised “correspondence” material model which satisfies the stability condition [37]. To the best of the

authors’ knowledge, this stabilised correspondence material model has not been studied in the context of

the elimination of zero-energy modes for finite deformation or implicit NOSB PD. In the literature, further

approaches have been suggested [21, 19], which are generalisations of [37]. [40] introduced a method to

minimize the non-uniform deformation state and is similar to the stabilisation scheme recently proposed in

[37] . The convergence and accuracy of [40]’s approach is further demonstrated in [41].

In this paper, an implicit NOSB PD method for nonlinear quasi-static problems with finite deformation

is presented for the first time. Although implicit approaches are more complex and harder to implement, the

advantages of the proposed implicit approach include allowance of much larger time steps, giving benefit in

terms of computational runtime, especially for large deformation problems. Moreover, this paper assesses

the accuracy of the proposed stabilised NOSB PD framework with the correspondence material model [37]

and demonstrates it for 2D elastic large deformation problems. This paper consists of four main technical

elements. Firstly, the numerical implementations are derived within a finite deformation framework. Based

on this, the Jacobian matrices of the NOSB PD with a correspondence continuum model for both the unsta-

bilised and stabilised versions [37] are developed. The accuracy is assessed with the inclusion of different

stabilisation parameters. Finally, this paper introduces an implicit approach for crack propagation problems

in NOSB PD. It is to be noted that the implicit non-ordinary state-based formulation is implemented in a

Matlab code.

2. Non-ordinary state-based peridynamics theory with finite deformation framework

PD formulations can be classified into bond-based (BB PD) and state-based peridynamics (SB PD).

The SB PD formulations can be further categorised as ordinary state-based peridynamics (OSB PD) and

non-ordinary state-based peridynamics (NOSB PD) depending on the modelling of the force term. In the

BB PD, the forces, f, between two particles (x and x′) always have equal magnitude and opposite directions,

thus conserving linear and angular momentum. On the other hand, in the OSB PD formulation, the forces

in the bonds, T and T′ defined as the force vector states, are aligned in the direction of the bonds, as in the

bond-based approach but do not need to have equal magnitudes. The conservation of angular momentum

is satisfied in the OSB PD formulation, whereas in the NOSB PD formulation, the force states place no

restriction on the magnitude and direction of forces. [7]. These differences are illustrated in Fig. 1. The
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force densities, t and t′ are expressed as

t = T(x)〈x′ − x〉 and t′ = T(x′)〈x − x′〉, (1)

extracted by the force states operating on the corresponding relative position vectors.

Fig. 1. Illustration of the tractions in the PD bonds in (a) BB PD, (b) OSB PD and (c) NOSB PD.

2.1. Finite deformation

The deformation gradient is the fundamental quantity for measuring deformation in continuum me-

chanics. The deformation gradient characterises the deformation in the neighbourhood of a particle and is

defined as

F =
∂y
∂x
, (2)

where y denotes a particle in the deformed configuration, while x denotes the same particle in the reference

configuration. In accordance with the polar decomposition theorem, the deformation gradient allows the

deformation from an initial state to a deformed configurations to be split into a sequence of configuration

as shown in Fig. 2 where

F = RU = VR, (3)

where R is an orthogonal tensor representing pure rotation, and U and V are symmetric right and left stretch

tensors, respectively. Moreover, the right and left Cauchy-Green deformation tensors are defined as

C = U2 = FT F, c = V2 = FFT . (4)

In this paper, logarithmic (Hencky) strain is used to measure the large deformations of materials with the

Hencky hyperelasticity assumption (a linear relationship between Kirchhoff stress and logarithmic strain).

A linear hyperelastic relationship between Kirchhoff stress and logarithmic strains has been found to be an
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Fig. 2. Illustration of the polar decomposition of the deformation gradient.

accurate representation if the elastic strains are moderately large [42]. The Hencky strain is defined as

ε = ln
(
c
)
, (5)

and the Kirchhoff stress is then given by

τ = Deε, (6)

where De is the fourth order linear elastic isotropic material stiffness tensor. The Cauchy stress tensor can

be expressed as

σ =
τ

J
, (7)

where the stress tensors are related by the volumetric ratio, J between the deformed and reference configu-

rations, given by the determinant of the deformation gradient

J = det F. (8)

2.2. Non-ordinary state-based peridynamics for quasi-static analysis

Based on the principle of virtual work, the equation of motion of NOSB PD takes the following form

[7]

L + b = ρü, (9)

where the internal force vector at particle x is

L[x, t] =

∫
R

{
T [x, t]〈x′ − x〉 − T [x′, t]〈x − x′〉

}
dVx′ , (10)
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in which ρ represents the mass density in the initial configuration, ü is the second-order time derivative of

displacement u, b is the body force at time t, and T [x, t]〈x′−x〉 is the force vector state. The angle brackets

〈 〉 denotes the vector mapped by the force vector state originating at the particle in square brackets [ ]. The

L[x, t] depends not only on the deformation of all bonds connected to particle x but also on the deformation

of all bonds connected to particle x′. Vx′ is the volume associated with particle x′. A kinematic illustration

of NOSB PD is shown in Fig. 3 where R is a circular neighbourhood of given radius with δ centered at

particle x. The reference position vector state between two particles is denoted by ξ = x′−x and the relative

displacement by η = u′ − u. Using those definitions, the deformation vector state, Y denotes the deformed

state of the bond where y and y′ are shown after a displacement has been imposed on particles x and x′

respectively. The equation of motion in the NOSB PD, Eq. (9) and the integral expression in Eq. (10) can

be approximated with a finite sum as

( m∑
j=1

T [xi, t]〈x j − xi〉 − T [x j, t]〈xi − x j〉
)
V j + b(xi, t) = ρ(xi)ü(xi, t), (11)

where j is a counter for the m particles in the horizon of particle i and V j is the volume of particle j in

reference configuration. The PD force vector state of the bond vector ξ can be obtained from the first

Piola-Kirchhoff stress tensor as [8]

T [x, t]〈x′ − x〉 = ω〈ξ〉P(x)TB(x) ξ, (12)

where the first Piola-Kirchhoff stress, P(x), for each particle x can be obtained from the Cauchy stress, σ,

and the deformation gradient, F(x), as

P(x) = Jσ(x)F(x)−T . (13)
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Fig. 3. Kinematic illustration of NOSB PD in 2D.

In (12), ω〈ξ〉 is a dimensionless non-negative weighting function of radius δ in the reference frame,

that defines the horizon in which the nonlocal interactions take place. In this work, consistent with [8], a

constant weighing function is adopted, that is

ω〈ξ〉 =


1 if ξ ≤ δ,

0 if ξ > δ.
(14)

B(x) is referred to as the nonlocal shape tensor and is dependent on the orientation of the bonds in the

reference configuration and

B(x) =

∫
R
ω〈ξ〉(ξ ⊗ ξ)dVξ, (15)

where ⊗ denotes the dyadic product of two vectors. The nonlocal PD deformation gradient is expressed as

a nonlocal integration given by [7]

F(x) =

( ∫
R
ω〈ξ〉(Y(ξ) ⊗ ξ)dVξ

)
B(x)−1. (16)

For a discrete system, the shape tensor in Eq. (15) at particle i can be expressed as a Riemann sum in matrix

form as

B(xi) =


∑m

j=1 ω〈ξ〉(ξxξx)V j
∑m

j=1 ω〈ξ〉(ξxξy)V j∑m
j=1 ω〈ξ〉(ξyξx)V j

∑m
j=1 ω〈ξ〉(ξyξy)V j

, (17)
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and the nonlocal deformation gradient in Eq. (16) as

F(xi) =


∑m

j=1 ω〈ξ〉(Y(ξx)ξx)V j
∑m

j=1 ω〈ξ〉(Y(ξx)ξy)V j∑m
j=1 ω〈ξ〉(Y(ξy)ξx)V j

∑m
j=1 ω〈ξ〉(Y(ξy)ξy)V j

B(xi)
−1. (18)

The governing equation for quasi-static analysis is obtained by setting the acceleration term in Eq. (11) to

zero, i.e.

( m∑
j=1

T [xi, t]〈x j − xi〉 − T [x j, t]〈xi − x j〉
)
V j + b(xi, t) = 0. (19)

Substituting Eq. (12) into Eq. (19), the quasi-static equations of motion in NOSB PD can be expressed as

( m∑
j=1

ωi〈ξ〉P(xi)TB(xi) ξi − ω j〈ξ〉P(x j)TB(x j) ξ j

)
V j + b(xi, t) = 0. (20)

3. Numerical implementation

In general, time integration schemes are divided into two categories: explicit and implicit where the

former are usually simpler to implement than the latter. However, due to the nature of explicit time integra-

tion, which is only conditionally stable and requires small time steps, obtaining solutions under quasi-static

conditions involving large deformations becomes expensive. In these situations, implicit methods have the

potential to be more computationally efficient and accurate compared to explicit methods. In this section,

we provide a detailed implementation of a geometrically nonlinear implicit NOSB PD method.

3.1. Newton-Raphson procedure

In this paper, we utilise a full Newton-Raphson (NR) method in order to solve the nonlinear system

of equations and update the Jacobian matrix at each iteration. The Jacobian matrix is recomputed at each

iteration thus enabling convergence at a higher rate than other alternatives [43]. Imposed loads are applied

in increments and within each increment, force equilibrium is sought between internal resisting forces and

external forces, resulting in the following expression that needs to be satisfied

fint(u) − fext = 0, (21)

where fint is the internal force and fext is the external force, where from Eq. (20)

fint =
( m∑

j=1

ωi〈ξ〉P(xi)TB(xi) ξi − ω j〈ξ〉P(x j)TB(x j) ξ j

)
V j and fext = −b(xi, t). (22)
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The solution of this nonlinear system of equations can be obtained from repeatedly solving a linear system

K(4ul+1) = foob f
l , (23)

where l+1 represent the current equilibrium iteration within the NR procedure and foob f = fext- fint is the

global residual or out of balance force vector for the current displacements. K is the Jacobian matrix where

K =
∂fint

∂u
=



∂fint
1

∂u1

∂fint
1

∂u2
· · ·

∂fint
1

∂undo f
∂fint

2
∂u1

∂fint
2

∂u2
· · ·

∂fint
2

∂undo f
...

...
. . .

...
∂fint

ndo f
∂u1

∂fint
ndo f
∂u2

· · ·
∂fint

ndo f
∂undo f


, (24)

with ndo f the total number of degrees of freedom in the system. The out of balance force needs to be

evaluated in order to verify if the system is in equilibrium. The incremental displacement is equivalent to

the summation of the increment in displacement within the current loadstep, that is

un+1 = un +

nNRit∑
l=1

4ul, (25)

where n+1 represents the current loadstep and nNRit is the total number of NR iterations. The NR procedure

is performed until the convergence criterion is attained, such that

|foob f |

|fext|
≤ tol, (26)

where tol is the prescribed relative error tolerance (1 × 10−10 is used in this paper). The analysis proceeds

with the next loadstep once the NR process obtain a converged solution to within the specified tolerance. It

is to be noted that direct solver with backslash command were used for the matrix solution.

3.2. Jacobian matrix

The Jacobian matrix or so-called tangent stiffness matrix can be constructed via analytical and nu-

merical approaches. It is not feasible to compute the tangent stiffness matrix numerically due to the high

computational time and high memory requirement. We determine an analytical expression as follows

K =

In∑
i

m∑
j=1

ndo f∑
k

(
ωi(|ξ|)

∂T[xi]
∂uk

)
−

(
ω j(|ξ|)

∂T[x j]
∂uk

)
, (27)
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which can be expressed in matrix form as

K =



∑m
j=1

(
ω1(|ξ|)∂T[x1]

)
−

(
ω j(|ξ|)∂T[x j]

)
∂u1

∑m
j=1

(
ω1(|ξ|)∂T[x1]

)
−

(
ω j(|ξ|)∂T[x j]

)
∂u2

· · ·

∑m
j=1

(
ω1(|ξ|)∂T[x1]

)
−

(
ω j(|ξ|)∂T[x j]

)
∂undo f∑m

j=1

(
ω2(|ξ|)∂T[x2]

)
−

(
ω j(|ξ|)∂T[x j]

)
∂u1

∑m
j=1

(
ω2(|ξ|)∂T[x2]

)
−

(
ω j(|ξ|)∂T[x j]

)
∂u2

· · ·

∑m
j=1

(
ω2(|ξ|)∂T[x2]

)
−

(
ω j(|ξ|)∂T[x j]

)
∂undo f

...
...

. . .
...∑m

j=1

(
ωIn (|ξ|)∂T[xIn ]

)
−

(
ω j(|ξ|)∂T[x j]

)
∂u1

∑m
j=1

(
ωIn (|ξ|)∂T[xIn ]

)
−

(
ω j(|ξ|)∂T[x j]

)
∂u2

· · ·

∑m
j=1

(
ωIn (|ξ|)∂T[xIn ]

)
−

(
ω j(|ξ|)∂T[x j]

)
∂undo f


.

(28)

Substituting Eq. (12) into Eq. (51), the Jacobian can be expressed as

K =

In∑
i

m∑
j=1

ndo f∑
k

(
ωi(|ξ|)

∂Pi

∂Fi

∂Fi

∂uk
Bi (x j − xi)

)
−

(
ω j(|ξ|)

∂P j

∂F j

∂F j

∂uk
B j (xi − x j)

)
V j. (29)

Note that only the particles related to particle xi and x j contribute to the the row of the Jacobian matrix

corresponding to particle xi. For this reason, the matrix sparsity depends on the horizon size, δ. In is the total

number of particles and therefore, for a 2D problem, the global matrix size is 2In × 2In. The algorithmic PD

calculation sequence for the finite deformation formulation is given in Fig. 4, where i denotes the particle,

j is a counter for the m particles in the horizon of particle i and k is a counter for the ndof degrees of

freedom. The nonlocal shape tensor and deformation gradient is approximated for each individual particle

from which nonlocal values can be obtained for the elastic Cauchy-Green strain c(x), logarithmic elastic

strain ε(x), Kirchhoff stress τ(x) and first Piola-Kirchhoff stress P(x) before the NOSB PD force vector

state functions for each bond at a particle can be obtained. In order to construct the Jacobian matrix in Eq.

(29), we need to determine the derivative of the first Piola-Kirchhoff stress with respect to the deformation

gradient and the derivative of the deformation gradient with respect to the displacement. The derivative of

the first Piola-Kirchhoff stress with respect to the deformation gradient can be expressed as

A =
∂P
∂F

=
∂τ

∂F
F−T + τ

∂F−T

∂F
,

(30)

where A denotes the material tangent modulus, often referred to as the first elasticity tensor for materials

with an elastic constitutive law. For the sake of brevity, the complete derivation of A is not included here

(see Appendix A for the full derivation). Combining the derivative of the Kirchhoff stress with respect to the

elastic logarithmic strain tensor, Q, the stiffness matrix for isotropic linear elasticity, De and the derivative

of the Cauchy-Green strain with respect to the deformation gradient, N, we obtain the follow equation for
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the spatial tangent stiffness matrix, M where

M = QDeN, (31)

Q =
∂ε

∂c
=

1
2
∂ln(c)
∂c

, (32)

and

N =
∂c
∂F
. (33)

Forming this M matrix, we obtain A. Turning our focus to the formulation of the derivative of the deforma-

tion gradient with respect to the displacement in Eq. (29), we obtain

H =
∂F
∂uk

=


∑m

j=1 ω〈ξ〉(
∂Y(ξx)
∂uk

)ξxV j
∑m

j=1 ω〈ξ〉(
∂Y(ξx)
∂uk

)ξyV j∑m
j=1 ω〈ξ〉(

∂Y(ξy)
∂uk

)ξxV j
∑m

j=1 ω〈ξ〉(
∂Y(ξy)
∂uk

)ξyV j

B−1. (34)

Substituting Eq. (34) and Eq. (30) into Eq. (51) leads to the construction of the global tangent stiffness as

shown in Fig. 4.

3.3. Stabilised non-ordinary peridynamics

So-called correspondence material models allow a material model from standard local theory to model

long-range forces with the inherent capabilities of nonlocal PD formulation. However, in a uniform particle

discretisation, correspondence models suffer from instability due to zero-energy modes. In the context of

the NOSB PD formulation, the spurious zero-energy modes are attributed to the weak couplings between

particles within a horizon and this causes stability issues which have been reported in [10, 38, 13, 18]. In the

presence of zero-energy modes, simulations exhibit oscillations in the deformation and stress fields. This is

caused by the missing role of the centre particle when approximating the deformation gradient tensor and

all correspondence materials fail this stability condition [37]. In order to understand its origin, imagine a
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i 1 2 In FOR EACH Particle
j 1 2 ....m FOR EACH Neighbouring Par-

ticle

B shape tensor B(xi) =
∑m

j=1 ω〈ξ〉(ξ ⊗ ξ)V j (15)
END FOR

j 1 2 ....m FOR EACH Neighbouring Par-

ticle

F deformation gradient tensor F(xi) = (
∑m

j=1 ω〈ξ〉(Y(ξ) ⊗ ξ)V j)B(xi)−1 (16)
END FOR

be elastic left Cauchy-Green strain c(xi) = F(xi)F(xi)T

ε logarithmic elastic strain ε(xi) = 1
2 log(c) (5)

τ Kirchhoff stress τ(xi) = Deε(xi) (6)

P first Piola-Kirchhoff stress P(xi) = τ(xi)F(xi)−T (13)

T force vector state T(xi) = ω〈ξ〉P(xi)T B ξ (12)
j 1 2 ....m FOR EACH Neighbouring Par-

ticle

L particle internal force L(xi) =
∑m

j=1(T [xi, t] − T [x j, t])V j (10)
END FOR

Q derivative of logarithmic elas-

tic strain with respect to the left

Cauchy-Green strain

Q(xi) = 1
2
∂lnc(xi)
∂c(xi)

(A.3)

N derivative of Cauchy-Green

strain with respect to the

deformation gradient

N(xi) =
∂c(xi)
∂F(xi)

(A.5)

M spatial tangent stiffness matrix M(xi) = DeQ(xi)N(xi) (A.2)

A derivative of Piola-Kirchhoff

with respect to the deformation

gradient

A(xi) =
∂(τF−T (xi))
∂F(xi)

(30)

H derivative of deformation gradi-

ent with respect to the displace-

ment

H(xi) =
∑m

j=1 ω〈ξ〉
(
∂Y(ξ)
∂u ⊗ ξ

)
V j (29)

k 1 2 ....ndof FOR EACH Degree of freedom

K K =
∑ndo f

k

(
ωi(|ξ|)

∂T[xi]
∂uk

)
−

(
ω j〈ξ〉

∂T[x j]
∂uk

)
(51)

END FOR
END FOR

Fig. 4. Non-ordinary state-based peridynamics (NOSB PD) with isotropic finite deformation algorithm sequence where i denotes

the particle number, j denotes the neighbouring particles and k denotes the degree of freedom number.
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Fig. 5. An illustration of zero-energy modes where F(x) = Fz(x).

particle x with a circular horizon R which is given a further displacement as shown in Fig. 5, resulting in an

additional vector u while the displacement of other particles are constrained and a new deformation vector

state is then

Yz〈ξ〉 = Y〈ξ〉 − u, (35)

and thus the new deformation gradient Fz(x) is calculated based on Eq. (16) as

Fz(x) = F(x) − u ⊗
( ∫

R
ω〈ξ〉ξdVξ

)
B(x)−1. (36)

With the assumption of a circular neighbourhood R and a regular lattice of particles, the integration term

on the right hand side of Eq. (36) will vanish, and thus Fz(x) = F(x). This shows that the additional

displacement of particle x does not introduce additional deformation into the calculation of the deformation

gradient. The presence of zero-energy modes affects the deformation and therefore, various methods have

been proposed in order to alleviate this problem.

Breitenfeld et al. [10] introduced two approaches to deal with this problem with supplementary forces.

The first approach introduces a supplementary term as a function of relative displacement between particles

in the bond whereas in the second approach, the additional force state arising is calculated based on the

average of the relative displacement states of all the particles in its horizon. Littlewood [26] developed an

additional force term based on penalty term approach. The penalty force was proportional to the difference

between the actual position of a particle in the deformed configuration and tends to drive particles toward

smooth deformations. However, if the penalty value is too large, the supplementary force will dominate the

solution [10] and thus lead to lower accuracy. A stabilised displacement field approach introduced by Wu

and Ren eliminated the requirement of the coefficient calculation for the supplementary force however, the

oscillation problem still exists in the strain and stress fields [13]. Recently, an attempt has been made by

14



Silling to eliminate the zero-energy modes by adding a term to the corresponding strain energy density [37],

considering the root of the problem as a material rather than a numerical instability, where introduction of

an additional term to the force vector state is given by Tz〈ξ〉 where

T〈ξ〉 = ω(|ξ|)[σ0(F)]T · B(x) · ξ + Tz〈ξ〉. (37)

An additional stabilisation term is added to the PD force vector defined as

Tz〈ξ〉 =
GC
ω0

z(ξ), (38)

in which G is a stabilisation parameter whose value will be explored in the numerical examples. It should

be noted that parameter, G should be a constant positive number of the order of 1 [37] and C is the nominal

micromodulus, stated in [23] as

C =
12k′

πhδ4 , (39)

for 2D problems in which k′ is

k′ =


E

2(1−ν) plane stress

E
2(1−ν−2ν2) plane strain.

(40)

For the 2D case, h is the out of plane thickness and ω0 is the integration of the weighting function in the

neighbourhood

ω0 =

∫
R
ω(|ξ|)dVj, (41)

where Vj is the volume of neighbouring particles in the reference configuration. The remaining term, z(ξ)

is defined in [37] as

z(ξ) = Y(ξ) − Fξ, (42)

which represents the state of deformation that deviates from the uniform deformation of the neighbouring

particles. It can be seen that the approximate deformation gradient disappears, when the non-uniform part

is included in its approximation of a deformation state [37]( ∫
R
ω(|ξ|)z(ξ) ⊗ ξdVξ

)
B−1 =

( ∫
R
ω(|ξ|)Y(ξ) − Fξ(ξ) ⊗ ξdVξ

)
B−1

=

( ∫
R
ω(|ξ|)Y(ξ) ⊗ ξdVξ

)
B−1 − F

( ∫
R
ω(|ξ|) ξ ⊗ ξdVξ

)
B−1

= F − FBB−1

= 0.

(43)
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In this paper, we use this stabilised correspondence material model in the numerical examples to alleviate

the zero-energy mode problem. With the additional stabilisation term added to the internal force, the new

Jacobian can be expressed as

K =

In∑
i

m∑
j=1

ndo f∑
k

(
ωi(|ξ|)

∂T[xi, t]
∂uk

+
GC
ω0

(∂Y〈x j − xi〉

∂uk
−
∂F(xi)
∂uk

(x j − xi)
))
−

(
ω j(|ξ|)

∂T[x j, t]
∂uk

+
GC
ω0

(∂Y〈xi − x j〉

∂uk
−
∂F(x j)
∂uk

(xi − x j)
))
.

(44)

3.4. Boundary conditions

Imposition of essential boundary conditions (BC) in PD is somewhat different than in finite element

methods. In this section, we describe the available method on how to imposed Dirichlet and Neumann

boundary condition in PD. As a nonlocal theory, within which the integral form of the governing equation

is evaluated in the nonlocal boundary region, the nonlocal Dirichlet boundary conditions in PD are imposed

through a nonzero volume of fictitious boundary layers. As explained in [44] and based on numerical

experiments in [45], the extent of the nonzero volume of fictitious boundary layer, Rd, as illustrated in

Fig. 6 is suggested. The size of this fictitious boundary layer is equivalent to the size of the horizon used.

Displacement boundary conditions are imposed by assigning constraints to the particles in the fictitious

boundary layer. This method is proposed to ensure that the imposed prescribed constraints are precisely

reflected within the real material domain. The same method has been applied in [46, 47] for beam problems.

In the numerical examples given in this work we assign the given displacement value to particles in the

fictitious layer where Dirichlet conditions are imposed.

Fig. 6. Application of boundary conditions in peridynamics (PD) beam.

For the quasi-static problems analysed in this paper, an external load can be applied through a layer

within the actual region, Rt as shown in Fig. 6 in the form of body loads [44]. The size of this layer

equivalent to the size of the particle spacing, ∆x.
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3.5. Damage criteria

Material damage in PD can be introduced through elimination of interactions (bonds) among particles.

Once a bond fails, there is no force sustained in the bond [3] and fracture is modelled via tracking the failure

of bonds through the material. In order to specify whether a bond is broken or not, a history-dependent scalar

valued function, µ(t, η, ξ) is introduced in [3] as

µ(t, η, ξ) =


1 if d < dc,

0 otherwise,
(45)

where d is the damage criteria value and dc is the critical damage criteria value. Then, based on function

µ(t, η, ξ), the local damage at x can be quantified as [3]

ϕ(x, t) = 1 −

∫
R µ(t, η, ξ)dVx′∫

R dVx′
. (46)

The local damage ranges from 0 to 1. If the local damage of a particle is 0, all the interactions associated with

the particle are intact, while a local damage of 1 means all the interactions associated with the particle have

been eliminated (fully-broken/damaged material). The simplest damage criterion available in the literature

is based on the critical bond stretch [48]. This damage criterion had been widely used in BB PD and has

been applied in OSB PD and NOSB PD [19, 49]. In terms of the critical bond stretch, it is assumed that

when the stretch, s, between two particles, x and x′, exceeds its critical stretch value, scr, failure occurs.

The stretch between particles x and x′ is defined as

s(t, η, ξ) =
‖η + ξ‖ − ‖ξ‖

‖ξ‖
. (47)

3.6. Damage model

Crack begins to initiate when the bond stretch exceeds the critical bond stretch and the influence of this

bond on other bonds within the corresponding horizon is removed. However, in order to ensure optimum

convergence of the global equilibrium equations, instead of vanishing the influence of bond immediately, a

pragmatic approach is to specify a degradation function in the interaction of the bond as the bond stretch

increases. A term, Ts is proposed to be added to the force vector-state where

Ts =


1 if s < smin,

1
2

(
1 − tanh(β(smin+scr−2s)

smin−scr
)
)

if smin 6 s < scr,

0 otherwise.

(48)
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smin is a value between 0 to scr and β is a positive constant value to control the rate of degradation in the

bond interaction, as shown in Fig. 7. In this paper β = 3 is used and the new stabilised force vector-state is

given by

T〈ξ〉 = ω(|ξ|)[σ0(F)]T B (x) ξ Ts + Tzω(|ξ|) Ts. (49)

In order to control stability in the simulation, no bonds can completely fail during the equilibrium NR

iterations. The bonds are removed after equilibrium has been found and the contribution of the broken

bonds to the global stiffness matrix has to be removed. This is to stop oscillations occurring within the

NR procedure due to the load redistribution as bonds are removed from the analysis - we have a smooth

variation from intact to failed via equal Eq. (48). With the additional softening term added to the internal

force, the Jacobian can be expressed as

K =

In∑
i

m∑
j=1

ndo f∑
k

(
ωi(|ξ|)

∂T[xi]
∂uk

Ts[xi] + ωi(|ξ|)
∂Ts[xi]
∂uk

T[xi]
)

−

(
ω j(|ξ|)

∂T[x j]
∂uk

Ts[x j] + ωi(|ξ|)
∂Ts[x j]
∂uk

T[x j]
)
,

(50)

and with the stabilisation term, the analytical expression of the new Jacobian is as follows

K =

In∑
i

m∑
j=1

ndo f∑
k

((
ωi(|ξ|)

∂T[xi]
∂uk

Ts[xi] + ωi(|ξ|)
∂Ts[xi]
∂uk

T[xi]
)

+
(
Ts[xi]

GC
ω0

(∂Y〈x j − xi〉

∂uk
−
∂F(xi)
∂uk

(x j − xi)
)

+ Tz[xi]ω(|ξ|)
∂Ts[xi]
∂uk

))
−

((
ω j(|ξ|)

∂T[x j]
∂uk

Ts[x j] + ωi(|ξ|)
∂Ts[x j]
∂uk

T[x j]
)

+
(
Ts[x j]

GC
ω0

(∂Y〈xi − x j〉

∂uk
−
∂F(x j)
∂uk

(xi − x j)
)

+ Tz[x j]ω(|ξ|)
∂Ts[x j]
∂uk

))
.

(51)

The derivative of the softening term with respect to the displacement can be expressed as

∂Ts[xi]
∂uk

=
∂Ts

∂q
∂q
∂n

∂n
∂s

∂s
∂‖η + ξ‖

∂‖η + ξ‖

∂uk
, (52)

where

Ts =
1
2

(q), q = 1 − tanh(n) and n =
β(smin + scr − 2s)

smin − scr
, (53)

and

∂Ts

∂q
=

1
2
,
∂q
∂n

= tanh2(n − 1),
∂n
∂s

=
−2β

smin − scr
and

∂s
∂‖η + ξ‖

=
1
‖ξ‖

. (54)
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Fig. 7. Scalar function to control the decrease of the bond force, Ts.

The details of this implicit NOSB PD algorithm are given in the flowchart as shown in Fig. 8. As shown,

the following procedure is followed:

1. PD simulation starts from initialisation (parameter, mesh generation, interactions search, and bound-

ary conditions).

2. Identify smin and s value.

3. Determine Ts and calculate the new force vector-state based, T〈ξ〉.

4. The equilibrium equation is solved with iterative update of the modified Jacobian as in Eq. (51).

5. Bonds are allowed to fail after the convergence criterion is attained before applying the next load

increment.
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Fig. 8. Flowchart of the NOSB PD implicit algorithm with material failure.
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4. Numerical Examples

Five examples are presented here to demonstrate the proposed stabilised implicit NOSB PD formulation.

The first example comprises a square plate under hydrostatic extension and is used to demonstrate the effect

of the stabilisation parameter, G. The second and third examples apply the stabilised model to a clamped

and simply-supported beams respectively and the fourth example models the very large deformation of

a cantilever beam subjected to a vertical load at its free end. Finally, the fracture propagation paths are

predicted for a rectangular plate with a hole.

4.1. Hydrostatic extension

The first example is a 2D square plate under hydrostatic extension. In the analysis a plane strain condi-

tion is assumed in the third direction. The square plate had an initial length of l0 = 1 m, shown in Fig. 9a and

was fixed at the middle particle. The material model was isotropic linear elasticity with a Young’s modulus

of E = 1.2 MPa, and a Poisson’s ratio of ν = 0.2. The plate was uniformly discretised into 625 particles

(arranged in a 25 × 25 regular grid) with horizon size of δ = 1.015∆x, δ = 2.015∆x and δ = 3.015∆x.

A total force of 5000 kN/m2 was applied at each side of the plate in a single loadstep and the imposed

displacement boundary conditions are shown in Fig. 10. The final configuration is shown in Fig. 9b for the

case of δ = 2.015∆x and G = 1, clearly demonstrating finite deformation.

(a) (b)

Fig. 9. Hydrostatic extension: (a) initial configuration and (b) initial (red) and final (blue) configurations with δ =

2.015∆x and G = 1.
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The analytical deformation gradient and logarithmic strain for this problem are

[F] =

l/l0 0

0 l/l0

 and [ε] = ln

l/l0 0

0 l/l0

 . (55)

Fig. 10. Hydrostatic expansion: displacement BC.

From the analytical solution given in Eq. (55), the displacement normal to each side of the plate was

calculated to be 0.30667 m (l = 1.61334 m). The displacement error, eu was given as

eu =
1
V

In∑
i

( |up − u|
|u|

Vi

)
, (56)

where u is the displacement calculated from the analytical solution. Fig. 11 shows the dependence of the

displacement error based on G for different horizon sizes, δ and normalised particle spacing ∆x/L. It is clear

that the PD solution’s error decreases with increasing G values, achieving a minimum error before it rises

for higher coefficient values, where the solution is controlled by the correction time. The larger horizon size

increase the effects of the zero-energy modes in that a larger stabilisation parameter is needed to minimise

the error. Particular values of stabilisation parameter can affect the error. For δ = 1.015∆x, the G values only

need to be as large as 0.01 in order to obtain the minimum error. In addition, the results shown in Fig. 11

illustrate a larger relative error of displacement as the particle spacing becomes larger. Fig. 12 shows the

convergence rate for simulations which varies between 0.43 and 0.91 depending on the number of particles
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and the horizon size. It can be clearly seen that varying the number of particles and horizon sizes has an

impact on the path to the solutions to this problem.
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Fig. 11. Hydrostatic expansion: relative displacement error with G for different δ and ∆x/L .
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4.2. Clamped slender beam subjected to a uniform transverse pressure

The second problem considered was the behaviour of a slender beam subjected to a uniform transverse

pressure of p = 276 kPa applied in 10 loadsteps. The beam domain at the beginning had a length, L of

254 mm and a depth, d0 of 5.08 mm, Young’s modulus of E = 68.95 GPa and Poisson’s ratio of ν =

0.25. Due to symmetry, only half of the beam was analysed and uniformly discretised into two different

particle discretisations. To further quantify the effectiveness, three different horizon sizes of δ = 1.015∆x,

δ = 2.015∆x and δ = 3.015∆x and different values of the stabilisation parameter were used. In order to

implement a clamped boundary condition, a fictitious boundary layer was introduced outside the actual

material domain at the boundary region where the size of the layer was equivalent to the horizon size and

displacement boundary conditions were imposed through the fictitious boundary layer. As shown in Fig. 13,

the left hand end of the beam was pinned at the fictitious boundary region along the beam’s mid-axis, thus

not allowing the structure to move in both x and y-direction and roller boundary conditions applied to other

particles along the left hand fictitious region, allowing the structure to move only in the y-direction in this

location. Roller boundary conditions were also imposed along the centreline line of symmetry, as shown by

the blue particles on the right hand end of the discretised beam in Fig. 13. A uniform transverse pressure

was applied to all the particles on the top surface with the same load and a tolerance of 1×10−10 was used on

the global normalised out of balance force for unstabilised (G = 0) and stabilised (G > 0) correspondence

material.

Fig. 13. Clamped slender beam subjected to uniform pressure, p.

In Figs. 14 and 15, the final normalised vertical displacement of the material is compared against the

analytical solution of the same problem [50] for two different particle discretisations: 3 × 75 particles and

5 × 125 particles with different horizon sizes and different values of G. For a given particle spacing, the
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displacement obtained shows larger departures from the analytical solution in the absence of zero-energy

control as the horizon size increases, as shown in Figs. 14 and 15, while the smallest horizon size of one

particle spacing used in this problem, minimises the effects of zero-energy modes.

The relative displacement errors, eu are given for different particle discretisations and different horizon

sizes for unstabilised material in Table 1. As can be seen, there are significant differences (eu = 6.678× 100

for δ = 1.015∆x, eu = 2.733× 101 for δ = 2.015∆x and eu = 6.380× 101 for δ = 3.015∆x) between the three

horizon sizes with 3 × 75 particles. It is seen that as the horizon size increases, the errors increase. These

numerical results are in general agreement with observation published in [10, 18], in which it had been

demonstrated that the resulting axial displacement and stress show significant instabilities and errors as the

horizon size increases in the absence of zero-energy control. This behaviour could be due to larger horizon

sizes, where a larger number of bonds are connected to each particle which leads to an increase in the non-

uniform part of the deformation state, with the missing role of the centre particle. Hence, it is expected

that larger stabilisation term may need to be added to the force state in order to be effective at suppressing

zero-energy indicating that G must be adjusted based on the horizon size. However, continuing to increase

the value of G results in an eventual increase of stiffness, thus artificially affecting the displacement as seen

in both Figs. 14 and 15. It is found that with horizon size of one particle spacings, variations of the particles

in vertical direction had little influence on the results.

Comparing the results in Figs. 14 and 15, it can be seen that with the finer particle discretisation in

Fig. 15, the error for an unstabilised material (G = 0) is smaller than those in Fig. 14 for all horizon sizes.

Therefore using simulations with smaller particle spacings is a possible way to decrease the zero-energy

mode oscillation although it significantly reduces the computational efficiency. Clearly, the discretisation

scheme (i.e the particle arrangement) plays an important role in selecting the optimum value of G and we

can infer that NOSB PD analysis results are mesh dependent.
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Figure Fig. 16 shows the error against computational time for the implicit approach developed in this

paper alongside that of an explicit implementation using dynamic relaxation to achieve a pseudo static
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result. In this case the horizon size was set to δ = 1.015∆x, G = 0 and the particle discretisation was varied.

The errors and timings are for a uniform pressure of p = 276 kPa applied over 10 loadsteps. The results show

that for a given discretisation, both methods predict the same response, with the same relative displacement

error. The figure also show that the implicit time integration has a significantly reduced computational time.

This is due to the number of iterations required by the explicit algorithm to achieve a pseudo static, or steady

state, response. All of the analysis were conducted using MATLAB 2015b on an Intel Core i5, CPU 2.40

GHz.
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Fig. 16. Clamped beam: displacement error versus time for implicit and explicit NOSB PD.

In Fig. 17, the maximum normalised vertical displacement of the material is compared against the

analytical solution of the same problem with 3 × 75 particles and three different horizon sizes with an

“optimum” stabilisation parameter, G = 0.002 with δ = 1.015∆x, G = 0.013 with δ = 2.015∆x and

G = 0.031 with δ = 3.015∆x. The results using the NOSB PD are presented alongside the analytical

solution of Molstad [50]. In all cases excellent agreement is seen between the NOSB PD normalised vertical

displacement with the analytical result.
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Table 1. Clamped beam: Relative displacement error with different particle discretisations and different horizon sizes

for G = 0.

Particles discretisation Horizon size, δ Relative displacement error (%)

1.015∆x 6.678 × 100

3 × 75 2.015∆x 2.733 × 101

3.015∆x 6.380 × 101

1.015∆x 2.683 × 100

5 × 125 2.015∆x 1.216 × 101

3.015∆x 4.050 × 101

7 × 175 1.015∆x 1.638 × 100

9 × 225 1.015∆x 1.032 × 100
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Fig. 18. Clamped beam: stress contour, σxx for p = 276 kPa, δ = 2.015∆x with 5 × 125 particles with different G

Contours of normal stress component, σxx, and the deformed shape of the beam (x-axis and y-axis: mm)

corresponding to the external load for p = 276 GPa, δ = 2.015∆x and 5 × 125 particles for the clamped

slender beam using G = 0, 0.002, 0.004, 0.006, 0.007 and 0.008 are compared in Fig. 18. The plots show

that, without stabilisation, NOSB PD shows instabilities, evident for instance in the top plot, where colour

corresponds to stress magnitude in kPa. The absence of the zero-energy mode control leads to significant

oscillation in the stress field, which is most obvious near the support and the region experiencing larger

displacements. The stabilisation method proposed in [37] effectively suppresses the zero-energy modes

as G is increased up to G = 0.006, resulting in a stabilised stress field. However, continuing to increase

the value of G results in a domination of the stabilisation force density over the PD force density which
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subsequently results in an increase of stiffness. Table 2 presents the global Newton-Raphson (NR) residual

for the final 5 steps with 3 × 75 particles and δ = 3.015∆x and a global tolerance of 1 × 10−10. Notable in

Table 2 is that the data shows near quadratic convergence behaviour and a maximum number of iterations

of 4, indicating a correct implementation.

Table 2. Clamped beam: Newton-Raphson residuals showing near-quadratic convergence (tol = 1 × 10−10) with

δ = 3.015∆x and G = 0.031.

Step 6 7 8 9 10

Iteration 1 4.781 × 10−2 3.680 × 10−2 2.890 × 10−2 2.313 × 10−2 1.871 × 10−2

Iteration 2 4.799 × 10−5 3.805 × 10−5 2.920 × 10−5 2.206 × 10−5 1.659 × 10−5

Iteration 3 2.332 × 10−9 1.341 × 10−9 7.413 × 10−10 4.036 × 10−10 2.201 × 10−10

Iteration 4 3.532 × 10−12 2.686 × 10−12 2.965 × 10−12 2.434 × 10−12 2.626 × 10−12

4.3. Simply-supported slender beam

A beam with the same material and geometric properties as the clamped slender beam in the example

above but having simply-supported ends was next analysed. The same particle discretisations were used,

however the boundary conditions at the support were appropriately modified. As in the previous example,

the fictitious boundary layer, of equivalent size to the horizon was introduced outside the actual material

domain at the boundary region and displacement boundary conditions were imposed through this layer. To

model the simply-supported edge, only one particle at the left hand fictitious region of the middle surface

was prevented from having in-plane displacement, allowing free rotation of the remainder of the end as

shown in Fig. 19. The problem was analysed using a loading increment of 27.6 kPa, applied in 10 loadsteps

to a maximum loading of 276 kPa. Due to symmetry, only half of the beam was analysed and uniformly

discretised into two different particle discretisations with three different horizon sizes.
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Fig. 19. Simply-supported slender beam subjected to uniform transverse pressure.

The conclusions reached for the previous example are again supported by the results from this example

in that the impact of zero-energy modes for larger horizon size results in larger displacements for a given

particle spacing in the absence of additional stabilisation. The final normalised vertical displacement is

compared in Figs. 20 and 21 against the analytical result for two different particle discretisations, i.e. 3 ×

75 particles and 5 × 125 particles, with different horizon sizes and different value of the stabilisation param-

eter, G. The agreement between analytical and numerical solutions reduces as the horizon size increases,

however the small horizon size of one particle spacing used in this problem tends itself to minimise the

effect of the zero-energy modes. It is to be expected that a larger stabilisation parameter value would need

to be added to the original PD force state for a problem with a larger horizon size in order to be effective

at suppressing zero-energy modes. Since the PD formulations is nonlocal, this finding, while preliminary,

predicts that the maximum accuracy will be achieved only for the horizon size of zero. The optimum value

of G for larger horizon sizes is
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× 75 particles.
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Fig. 21. Simply-supported beam: normalised vertical displacement with changing G values and horizon sizes with 5

× 125 particles.

shown to be larger in order to provide enough stiffness for stability. However, continuing to increase the
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value of G once again results in an increase of non-realistic stiffness, and hence artificially reduced displace-

ments as seen in both Figs. 20 and 21. In Fig. 22, the pressure versus normalised displacement response

is compared against the analytical solution. The response is shown with three different horizon sizes, with

stabilisation parameters of G = 0 with δ = 1.015∆x, G = 0.05 with δ = 2.015∆x and G = 0.315 with

δ = 3.015∆x. The analytical solution given by Molstad [50] is also shown. It can be clearly seen that the

normalised vertical displacements agree well with the analytical result for all the horizon sizes.
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Fig. 22. Simply-supported beam: normalised vertical end with 3 × 75 particles.

Contours of normal stress component, σxx, and the deformed shape of the beam (x-axis and y-axis:

mm) corresponding to the total external load of p = 276 kPa, with δ = 1.015∆x and a 5 × 125 particle

distribution for the simply-supported slender beam problem are shown in Fig. 23. Once again it is clear that

NOSB PD solutions exhibit instabilities, indicating the necessity of zero-energy mode control. The absence

of the zero-energy mode control leads to significant oscillations in the stress field. Increasing the value of

G from 0 to 0.01 significantly reduces the stress oscillation leading to a more realistic stress profile. The

zero-energy modes are still evident closer to the supported end if G < 0.01. However, continuing to increase

G results in the stabilisation force density dominating the original PD force density which then results in

an increase in stiffness and a consequent drop in displacement. Table 3 gives the global Newton-Raphson

(NR) residual for loadsteps 6 to 10 in this problem, with G = 0.02 and δ = 2.015∆x. The global tolerance
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was 1 × 10−10 and the data presented in the table shows quadratic (or near quadratic) convergence of the

global out of balance force, demonstrating a correct implementation of the algorithmic consistent tangent

for finite deformation elasticity.
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Table 3. Simply-supported beam: Newton-Raphson residuals showing near-quadratic convergence (tol = 1 × 10−10)

with δ = 2.015∆x and G = 0.02.

Step 6 7 8 9 10

Iteration 1 6.120 × 10−2 4.421 × 10−2 3.070 × 10−2 2.342 × 10−2 1.842 × 10−2

Iteration 2 2.610 × 10−4 1.285 × 10−4 7.000 × 10−5 4.113 × 10−5 2.568 × 10−5

Iteration 3 5.343 × 10−8 1.279 × 10−8 3.780 × 10−9 1.309 × 10−9 5.126 × 10−10

Iteration 4 7.758 × 10−12 6.316 × 10−12 5.661 × 10−12 5.383 × 10−12 5.357 × 10−12

4.4. Cantilever beam

The fourth example tested was of a deep elastic cantilever beam, fixed at one end and subjected to a

vertical mid-height particle load on its free end. The beam has a length, L of 10 m, depth, d0 of 1 m, and

is uniformly discretised with 5 × 50 particles. Three values of horizon radius, δ = 1.015∆x, δ = 2.015∆x

and δ = 3.015∆x were used in this problem. The material properties were Young’s modulus, E = 12 MPa

and Poisson’s ratio, ν = 0.2. The beam was pinned at the fictitious boundary region at the mid-axis in both

directions and roller boundary conditions applied to other particles along the left hand fictitious region,

allowing the structure to move only in the y-direction as shown in Fig. 24. A vertical load of 100 kN was

applied in 10 loadsteps with a tolerance of 1×10−10 used on the global normalised out of balance force. The

loads are applied through a layer of actual particles on the right hand region at the mid-axis, as shown in

Fig. 24.

Fig. 24. Cantilever beam subjected to vertical mid-side load.
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Fig. 25 compares the normalised displacement, at the end of the beam for different values of δ and G

with the analytical solution [50] corresponding to the external load of 10 kN. As shown in the figure, for

the unstabilised material, a significant difference in terms of normalised displacement (eu = 0.302 with

δ = 1.015∆x, eu = 0.342 with δ = 2.015∆x and eu = 0.529 with δ = 3.015∆x) is evident between those

three horizon sizes. From Fig. 25, we can also see that increasing G from an initial value of 0 visibly affects

the normalised displacements.

In Fig. 26, the load-deflection results predicted by the NOSB PD are compared against the analytical

solution for the same problem [50] with three different horizon sizes and optimum stabilisation parameters,

i.e. G = 0 with δ = 1.015∆x, G = 0.05 with δ = 2.015∆x and G = 0.315 with δ = 3.015∆x. Fig. 26

shows there to be good agreement with the corresponding analytical solution with the optimum stabilisation

parameter. It can be clearly seen that errors are small with smallest horizon values, δ = 1.015∆x without the

addition of the stabilised term to NOSB PD. This agrees with the results published in [23] where the zero-

energy mode is not significant in local horizon (δ = 1∆x) compared to the larger neighbourhoods. Thus, a

very small value of G is needed to eliminate any zero-energy mode for problems with horizon δ = 1.015∆x.
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Contour plots of the three stress components and the deformed shape for the fully loaded cantilever are

shown in Fig. 27. These are plotted on the final deformed configuration showing the very large deformations

modelled. The stabilisation method proposed in [37] effectively suppresses the zero-energy modes with the

increased value of G, resulting in a stabilised stress field. However, for this problem, the method fails to

converge with horizon sizes of δ = 2.015∆x when G < 0.05. Table 4 shows the convergence for the final 5

load steps of the Newton-Raphson process in this case. It can be seen that the Newton-Raphson algorithm

needs more load steps to find the correct path, which then reaches asymptotic quadratic convergence.

Table 4. Cantilever beam: Newton-Raphson residuals showing near-quadratic convergence (tol = 1 × 10−10) with

δ = 2.015∆x and G = 0.05.

Step 6 7 8 9 10

Iteration 1 2.746 × 10−1 1.513 × 10−1 9.050 × 10−2 5.792 × 10−2 3.921 × 10−2

Iteration 2 6.012 × 10−1 6.251 × 10−4 4.244 × 10−4 2.790 × 10−4 1.773 × 10−4

Iteration 3 1.419 × 10−3 3.054 × 10−4 6.681 × 10−5 1.526 × 10−5 3.758 × 10−6

Iteration 4 3.705 × 10−8 1.838 × 10−9 1.679 × 10−10 1.863 × 10−11 1.861 × 10−12

Iteration 5 2.420 × 10−13 7.773 × 10−14 8.187 × 10−14 − −
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Fig. 27. Cantilever beam: stress distribution for p = 100 kN (a) σxx, (b) σyy and (c) σxy with δ = 2.015∆x and G =

0.05.

4.5. Plate with a hole

The final problem considered is the behaviour of a rectangular plate with a circular hole in the centre.

The left and right ends of the plate were subjected to a horizontal displacement in opposite directions of 1 ×

104 mm in 15 loadsteps as illustrated in Fig. 28. Layers of fictitious boundary particles introduced outside

the actual material domain at the boundary region where the size of the layer was equivalent to the horizon

size and the Dirichlet BC were imposed through the fictitious boundary layer.

Fig. 28. Plate with circular hole: geometry.
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The plate initially had a length, L of 150 mm and a width, W of 50 mm with radius of hole, r of 10

mm, Young’s modulus of E = 210 GPa and Poisson’s ratio of ν = 0.33. The analysis assumes plane strain

conditions. Horizon radius, δ = 3.015∆x and particle discretisations of 30 × 10 particles were used. The

displacement plots in x directions without material damage with 30 × 10 particles and without stabilisation

is shown in Fig. 29, resulting in an unstabilised displacement field. The same problem was analysed with G

= 0.01 and the results are shown in Fig. 30. Increasing the value of G in this problem from 0 to 0.01 leading

to a more realistic displacement profile.
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Fig. 29. Plate with circular hole: horizontal displacement plots (NOSB PD) when failure is not allowed with 30 × 10

particles and G = 0.
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Fig. 30. Plate with a circular hole: horizontal displacement plots (NOSB PD) when failure is not allowed with 30 × 10

particles with G = 0.01.

Damage is now incorporated and the critical stretch failure criterion is adopted, with a critical stretch

scr = 0.002 and smin = 0.0015. As illustrated in Fig. 31, damage is plotted with G = 0.01 at the end of the

analysis. It can be seen that the modelling predicts a wide damage area in terms of crack shape.
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Fig. 31. Plate with a circular hole: damage with 30 × 10 particles and G = 0.01 at the end of the analysis.

A finer grid spacing is now used for the same problem with 150 × 50 particles. Additionally, FEM

analysis was used to verify the accuracy of the results obtained by the proposed PD model. The variation

of horizontal displacement along the central axes when damage was not allowed is shown in Fig. 32. The

determination of the stabilisation parameter, G needs to be done before the damage is considered. From

Fig. 32, it can be seen that increasing G from an initial value of 0 visibly affects the displacements in the

x-direction. The stabilisation method is demonstrated to be effective on suppressing zero-energy modes as

G is increased up to G = 0.001.
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Fig. 32. Plate with circular hole: variation of horizontal displacement along the central axes when failure is not allowed

with 150 × 50 particles.

40



However, continuing to increase the value of G results in a domination of the stabilisation force density

over the PD force density which subsequently results in the increase of stiffness. Fig. 33 shows the dis-

placement plots without damage with G = 0.001, and the damage plots when failure is allowed is shown in

Fig. 34. As expected, the cracks are initiated from the hole boundary and propagates towards the edges of

the plate.
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Fig. 33. Plate with a circular hole: horizontal displacement plots (NOSB PD) when failure is allowed with 150 × 50

particles and G = 0.001.
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Fig. 34. Plate with a circular hole: damage plots (NOSB PD) when failure is allowed with 150 × 50 particles and G =

0.001.

5. Conclusion

This paper has presented for the first time a development of non-ordinary state-based peridynamics

(NOSB PD) for finite deformation with an implicit time integration scheme since the existing literature on

NOSB PD focuses particularly on explicit schemes. The key contribution of this paper is the construction

of the Jacobian matrix based on the analytical expression of the equation of motion of NOSB PD. Within

this, a proper implementation of the Jacobian was confirmed by the convergence rate of the global residual

force in the various examples presented. The proposed formulation appears also to be the first study to

demonstrate the modelling of 2D material focusing on quasi-static problems with finite strains.
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It has been shown that NOSB PD is quite capable of simulating complex problems involving materials

undergoing large deformation with finite deformation theory. Interestingly, this paper has been one of the

first attempts to include modification of the correspondence material model proposed by Silling [37] in

eliminating zero-energy modes for finite deformation analysis. The derivative of this stabilisation term

with respect to displacement has been included in the formulation of the Jacobian matrix for the first time.

Similar to other numerical methods, NOSB PD suffers from instability induced by zero-energy modes.

Therefore, introducing an additional stabilisation term to the force density results in an eventual increase of

the material stiffness and a stabilised stress field. A progressive damage model has been implemented for

the first time in an implicit NOSB PD framework.

Five numerical examples are presented to validate the effectiveness of this approach where analytical

results exist. Results from these examples show horizon sizes and particle spacing in different problems

appear to be related to the optimum value of G. Overall, these results indicate that the NOSB PD simulation

becomes mesh dependent in the absence of zero-energy mode control and for a given particle spacing,

a smaller horizon size shows greater accuracy with no control on the zero-energy modes. The stabilised

correspondence material model allows the proposed boundary condition to be used and bounds for values

of the stabilisation parameter G to be assessed to ensure stability. Additionally, it is shown that the value

of the optimum stabilisation parameter G used in this paper is a positive constant less than 1, as also been

suggested by Silling in [37].

The focus of this paper has been on the development of an implicit framework for large deformation

peridynamic analysis. Although the examples presented in this paper are in two-dimensions, the algorithms

are general in that they can be applied to one, two and three dimensional analysis. This paper lays the

groundwork for NOSB PD future research into a broader range of large deformation problems modelled

using NOSB PD. It also provides a starting point for modelling large deformation damage and fracture

within an implicit peridynamic setting for pseudo static problems.
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Appendix A. Material tangent modulus

The derivative of the Piola-Kirchhoff with respect to the deformation gradient is given by

Aimkn =
∂

∂Fkn
(τipF−T

pm)

=
∂

∂Fkn
(τipF−1

mp)

=
∂τip

∂Fkn
F−1

mp + τip
∂F−1

mp

∂Fkn
,

(A.1)

and the derivative of the Kirchhoff stress tensor with respect to the deformation gradient in the first term of

the right-hand side of Eq. (A.1) can be shown to be

Mipkn =
∂τip

∂Fkn

=
∂τip

∂εab

∂εab

∂ccd

∂ccd

∂Fkn

=
1
2
∂τip

∂εab

∂ln(cab)
∂ccd

∂ccd

∂Fkn
,

(A.2)

where the derivative of the elastic logarithmic strain tensor with respect to the elastic left Cauchy-Green

strain tensor follows as

Qabcd =
∂εab

∂bcd
=

1
2
∂ln(cab)
∂ccd

, where cab = FacFbc. (A.3)

Qabcd can be solved as a case of the derivative of symmetric second order isotropic tensor argument (see

Miehe [51] for details). Derivative in the second term of the right-hand side of the equation (A.2) is given

by

∂τip

∂εab
= De

ipab, (A.4)

where the De
ipab must be write in four by four matrix notation . Derivative in the last term of the right-hand

side of the Eq. (A.2) is given by

Ncdkn =
∂ccd

∂Fkn
=
∂FcgFdg

∂Fkn

= Fdg
∂Fcg

∂Fkn
+ Fcg

∂Fdg

∂Fkn

= Fdgδkcδgn + Fcgδkdδgn

= Fdnδkc + Fcnδkd,

(A.5)
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where δkc denotes the Kronecker delta tensor defined by

δkc = 1 if k = c, δkc = 0 if k , c. (A.6)

From the relation for the derivative of the inverse of a tensor given in the literature, the derivative in the

last term of the right-hand side of the Eq. (A.1) is given by

Bpmkn =
[∂(F−1)mp

∂Fkn

]T
= (−(F−1)mk(F−1)np)T . (A.7)

Substituting Eq. (A.7) into Eq. (A.1) gives

Aimkn =
∂τip

∂Fkn
F−1

mp − τipF−T
mk F−T

np . (A.8)
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