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Abstract. It is well known that the testing of zero variance components is a
non-standard problem since the null hypothesis is on the boundary of the pa-

rameter space. The usual asymptotic chi-square distribution of the likelihood
ratio and score statistics under the null does not necessarily hold because of
this null hypothesis. To circumvent this difficulty in balanced linear growth
curve models, we introduce an appropriate test statistic and suggest a permu-

tation procedure to approximate its finite-sample distribution. The proposed
test alleviates the necessity of any distributional assumptions for the random
effects and errors and can easily be applied for testing multiple variance com-

ponents. Our simulation studies show that the proposed test has Type I error
rate close to the nominal level. The power of the proposed test is also com-
pared with the likelihood ratio test in the simulations. An application on data
from an orthodontic study is presented and discussed.
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Linear mixed effects model; Permutation test; Variance components.

1. Introduction

The Linear Growth Curve (LGC) model (Rao, 1965; Laird and Ware, 1982; von
Rosen, 1991) is an important type of Linear Mixed Effects (LME) model is used
in human and animal studies for a variety of applications such as: tumor biology,
pharmacokinetics, and clinical studies of height, weight and pulmonary function
development (Demidenko and Stukel, 2002).

Given N distinct individuals, the LGC model is typically expressed in two stages.
The first stage consists of the linear regression model with random coefficients

(1.1) Yi = Ziai + εi, i = 1, ..., N,

where Yi = (Yi1, ..., Yini)
′
is an ni × 1 vector of repeated measurements on the ith

individual, Zi is an ni × k design matrix of full rank k, ai is a k× 1 random vector
of individual coefficients and εi is an ni × 1 vector of random errors with E(εi) = 0
and cov (εi) = σ2Ini . Random vectors ai and εi are mutually independent and
independent across i. The second stage consists of the linear model

(1.2) ai = Aiβ + bi, i = 1, ..., N,

where Ai is a k ×m design matrix, β is an m× 1 vector of parameters of interest
and bi is a k×1 vector of random effects with E(bi) = 0 and cov (bi) = σ2D. Scalar
σ2 and matrix D are called variance components and are unknown.
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The LGC model, (1.1) and (1.2), is a balanced linear growth curve (BLGC)
model if matrices Ai can be represented as (see Demidenko, 2004)

(1.3) Ai = (Ik ⊗ q′i) , i = 1, ..., N,

where qi is a p × 1 design vector and Zi = Z for i = 1, ..., N . Thus, the BLGC
model can be written as

(1.4) Yi = ZAiβ + Zbi + εi, i = 1, ..., N.

When p = 1 and qi = 1, the BLGC model (1.4) reduces to the balanced random-
coefficient (BRC) model

(1.5) Yi = Zβ + Zbi + εi, i = 1, ..., N.

Two special cases of the BRC model (1.5) are the balanced mixed one-way ANOVA
model (3.2) and the linear trend model with random intercepts and random slopes
(3.1) which are important in many applications.

A number of reasons makes it desirable to test the presence of random effects
in the model. Inconsistent estimators of the covariance matrix of fixed effect esti-
mators are generally obtained if random effects are neglected. On the other hand,
estimators of models with random effects are inefficient in the absence of random
effects. Also, since random effects represent the variability between individuals, in
many applications such as the orthodontic growth data presented in Section 4, it
may be of interest to test for the need of random slopes and random intercepts in
the model.

In Section 2, we introduce an appropriate test statistic and suggest a permutation
procedure to approximate its finite-sample distribution. In Section 3, we conduct
simulation studies to evaluate and compare the efficiency of the proposed test with
respect to the likelihood ratio test. In Section 4, we apply the proposed test to an
orthodontic growth data set. We conclude the paper in Section 5.

2. The Test Statistic

Initially we should test whether all random effects can be left out of the BLGC
model (1.4). In statistical language, this translates into testing the hypothesis

(2.1) H0 : D = 0

versus the alternative hypothesis that D is a non-negative definite matrix.
In the literature, the likelihood ratio (LR), score and F tests have been sug-

gested for testing variance components in LME models; see, for example, Stram
and Lee (1994), Lin (1997), Verbeke and Molenberghs (2003), Demidenko (2004)
and Giampaoli and Singer (2009). The LR, score and F tests are all based on the
normality assumption for both the random effects and errors. Unfortunately, the
normality assumption of the random effects and errors often does not hold in prac-
tice and may not always give robust results. On the other hand, it is well known
that the usual asymptotic chi-square distribution of the LR and score statistics un-
der the null does not necessarily hold because D = 0 is the boundary point of the
parameter space. Instead, the large sample distribution is a mixture of chi-square
distributions which may not always be determined for testing multiple random ef-
fects. For more details, see, Miller (1977), Self and Liang (1987), Dean (1992),
Stram and Lee (1994), Lin (1997), Gueorguieva (2001), Verbeke and Molenberghs
(2003) and Fitzmaurice et al. (2007), for example. To avoid the issues with testing
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on the boundary of the parameter space, Fitzmaurice et al. (2007) proposed a per-
mutation test which can only be used for testing a single variance component. In
this paper, we propose a permutation test which can be applied for testing multiple
variance components in BLGC models.

To explain the rationale for the new test statistic proposed in this paper, we use
the notation D∗ = σ2D and consider the statistic

(2.2) T =
1

N
tr
(
ZD̂∗Z

′
)
,

where D̂∗ is any distribution-free unbiased estimator of D∗ (e.g., minimum norm
quadratic unbiased estimator (MINQUE) or method of moments (MM) estimator).
It can easily be shown that under H0, E (T ) = 0. Hence, one can reject H0, if T
deviates much from zero. In general in the LME models, there is no closed-form
expression for D̂∗. However, particularly for the BLGC model (1.4), a closed-form

expression for D̂∗ exists.
Demidenko and Stukel (2002) have shown that an unbiased MM estimator of D∗

for the BLGC model (1.4) is

(2.3) D̂∗ =
1

N − p
Ŝ − σ̂2

N − p
(Z ′Z)

−1
N∑
i=1

(
1− q′iQ

−1qi
)
,

in which σ̂2 = 1
N(n−k)

N∑
i=1

∥∥Yi − Za0i
∥∥2, Q =

N∑
i=1

qiq
′
i and

Ŝ =

N∑
i=1

(
a0i −Aiβ̂OLS

)(
a0i −Aiβ̂OLS

)′
,

where a0i = (Z ′Z)
−1

Z ′Yi is the OLS estimator of ai in model (1.1) and

β̂OLS =

(
N∑
i=1

A′
iZ

′ZAi

)−1( N∑
i=1

A′
iZ

′Yi

)
.

The estimator (2.3) coincides with both the Bayes empirical estimator developed
by Reinsel (1985) and the MINQUE proposed by Demidenko (2004).

Substituting (2.3) into (2.2), we have

(2.4) T =
1

N (N − p)

N∑
i=1

{(
Yi − ZAiβ̂OLS

)′
PZ

(
Yi − ZAiβ̂OLS

)
− k

N
σ̂2Q∗

}
,

where Q∗ =
N∑
i=1

(
1− q′iQ

−1qi
)
and PZ = Z (Z ′Z)

−1
Z ′ is a projection matrix. For

proof of equation (2.4), see Appendix.
Without any distributional assumption for the random effects and errors, finding

the exact distribution of T is difficult. Thus we approximate the finite-sample
distribution of T using a permutation procedure.

Let {Yij : i = 1, ..., N ; j = 1, ..., n} be the original sample from the BLGC
model (1.4) where Yij is the jth repeated measurement for the ith individual. To
approximate the distribution of T , the permutation procedure randomly permutes
the individual indices for each fixed j. Under H0, the individual indices are simply
random labels and any permutation of the individual indices is equally likely. Using
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this invariance property under H0, the proposed test can be set up by the following
steps:

(1) Compute the test statistic T for the original sample, denoted T .
(2) Randomly permute the individual indices while holding fixed the covariates

Ai, and compute the test statistic T for this permutation sample.
(3) Repeat the process a large number, say B, of times, giving B test statistics,

say T b, b = 1, ..., B.
(4) Compute the proportion of permutation samples with T b greater than or

equal to Tobs.
(5) Given the significance level α, if this proportion is greater than α, accept

H0, otherwise reject H0.

In the next section, we conduct simulation studies to evaluate and compare the
efficiency of the proposed test (T -test) with respect to the LR test. We note that
the MM estimator (2.3) is not necessarily non-negative definite. In the simulations,

if this estimator is not non-negative definite, we replace it with D̂+
∗ = PΛ+P

′, where
P and Λ are, respectively, the matrix of eigenvectors and the diagonal matrix of
eigenvalues of D̂∗, and also Λ+ = max(0,Λ). D̂+

∗ is the closest matrix to D̂∗ among
all non-negative definite matrices (see Demidenko, 2004, p. 176).

In certain situations, it is of interest to test whether some random effects can be
omitted, while keeping others in the model. For example, it may be of interest to
test for the need of random slopes for linear time effects in a model with random
intercepts and slopes. Suppose D∗l is the covariance matrix of the random effects
we want to leave out of the model and Zl is the appropriate columns from the

original design matrix Z. Now, by choosing T = 1
N tr

(
ZlD̂∗lZ

′
l

)
where D̂∗l is the

appropriate block of the matrix D̂∗, and applying the mentioned procedure, the
desired test can be carried out.

3. Simulation Study

In this section, we summarize simulation studies conducted with the objective
of evaluating the behavior of the proposed test. First, the efficiency of the T -test
under different distributions for the random effects and errors is examined. Next,
we compare the efficiency of the proposed T -test with respect to the LR test.

3.1. Efficiency of the Proposed Test. To evaluate the behavior of the T -test,
we considered the linear trend model with random parameters

Yij = ξi + ηitij + εij(3.1)

ξi = α+ ai, ηi = β + bi i = 1, ..., N, j = 1, ..., n,

where tij is the jth observation time for the ith individual, α and β are fixed effects,
and ai and bi are random intercept and random slope, respectively.

In the simulations, we set β1 = 0.25, β2 = 0.5 and tij = j, and assumed that
εij ∼ N (0, 1). For simplicity in simulations, we assumed that the random intercept
ai and the random slope bi are independent. In practice, this assumption may
not be appropriate. We considered three types of distributions, normal, t and log-
normal for the two random effects. For normal random effects we assumed ai ∼
N
(
0, σ2

1

)
and bi ∼ N

(
0, σ2

2

)
, and for non-normal random effects, we assumed that

ai ∼ {(X1 − E (X1)) /
√

var (X1)} × σ1 and bi ∼ {(X2 − E (X2)) /
√
var (X2)} ×
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σ2, where the random variables X1 and X2 are distributed as both t(3) and log-
normal(0,1), so that E (ai) = 0, E (bi) = 0, var(ai) = σ2

1 , and var(bi) = σ2
2 . We

generated 1, 000 Monte-Carlo samples under model (3.1), for different numbers of
individuals N = 10, 15 and the numbers of repeated measurements n = 3, 5 for
each individual and selected B = 1, 000 permutation samples for each setting. In
the simulation study, the variance components (σ2

1 , σ
2
2) set to (0, 0) (to estimate

the size of the test), (0.02, 0.02), (0.05, 0.05), (0.1, 0.1) and (0.2, 0.2). The empirical
power of the test under each setting evaluated for a significance level of α = 0.05.

The results, displayed in Table 1, indicate that the Type I error of the T -test is
stable across all distributions and is close to the nominal 0.05 level. Furthermore,
the power of the test is high even for these small values of N , n, and (σ2

1 , σ
2
2), and

increases with (σ2
1 , σ

2
2), as expected. In addition, the results indicate that the test

is not liberal with respect to heavy-tailed distributions such as t and asymmetric
distributions such as log-normal.

Table 1. Rejection rates (expressed as percentages) for the 5%
level T -test in the linear trend model with random parameters
(3.1), with εij ∼ N(0, 1).

N = 10
Distribution of (b1i, b2i) (σ2

1 , σ
2
2) n = 3 n = 5

(Normal,Normal)

(0, 0)
(0.02, 0.02)
(0.05, 0.05)
(0.1, 0.1)
(0.2, 0.2)

5.3
8.0
14.9
25.5
40.6

4.6
21.9
45.4
66.4
80.8

(t,t)

(0, 0)
(0.02, 0.02)
(0.05, 0.05)
(0.1, 0.1)
(0.2, 0.2)

5.4
7.6
12.9
20.1
29.2

4.8
18.8
36.1
56.0
75.0

(Log-Normal,Log-Normal)

(0, 0)
(0.02, 0.02)
(0.05, 0.05)
(0.1, 0.1)
(0.2, 0.2)

4.3
7.8
13.5
20.1
30.4

5.2
18.5
31.7
47.9
64.8

N = 15
n = 3 n = 5
5.8
8.6
17.0
30.1
56.0

4.9
25.7
59.0
81.5
94.6

5.2
10.0
17.7
28.5
43.6

5.5
26.6
49.5
72.5
86.2

5.2
9.0
15.5
23.6
42.4

5.6
23.3
42.2
60.8
81.1

3.2. Comparison between the T -test and the LR test. To compare the two
tests, we considered the balanced mixed one-way ANOVA model

(3.2) Yij = µ+ bi + εij , i = 1, ..., N, j = 1, ..., n,

where µ is a general mean and bi is a random effect with E(bi) = 0 and var(bi) = σ2
b .

For model (3.2), the hypothesis (2.1) becomes H0 : σ2
b = 0 versus H1 : σ2

b > 0, and
the test statistic (2.4) simplifies to

T =
n

N(N − 1)

N∑
i=1

(
Yi. − Ȳ..

)2 − σ̂2

N
,
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where Ȳi. =
n∑

j=1

Yij/n, Ȳ.. =
N∑
i=1

Ȳi./N and

σ̂2 =
1

N (n− 1)

N∑
i=1

n∑
j=1

(
Yij − Ȳi.

)2
.

Also, by assuming normal distribution for the random effect and errors, the asymp-
totic distribution of the LR statistic for the mixed one-way ANOVA model (3.2),
when N → ∞, is the mixture (see Stram and Lee, 1994)

0.5χ2
0 + 0.5χ2

1

where χ2
0 is a point mass at 0 and χ2

1 denotes a chi-square distribution with one
degree of freedom.

In the simulations, we fixed µ = 2 and considered three types of random effect
distributions, normal, t and log-normal, and assumed that εij ∼ N (0, 1). For nor-
mal random effects we assumed bi ∼ N

(
0, σ2

b

)
, and for non-normal random effects,

we assumed that bi ∼ {(X − E (X)) /
√
var (X)} × σb, where the distribution of

random variable X is t(3) and log-normal(0,1), so that var(bi) = σ2
b . We generated

1, 000 Monte-Carlo samples under model (3.2), for different numbers of individuals
N = 7, 15, 25, 50, 100 and the number of repeated measurements n = 5 for each
individual and selected B = 1, 000 permutation samples for each setting. First, we
set σ2

b = 0 to examine the sizes of the two tests at the significance level of 0.05. The
sizes of the two tests are presented in Table 2 alongside the bias and the variance
of the estimates of σ2

b . The results suggest that the size of the T -test is much closer
to the nominal 0.05 level than is that of the LR test. Although, the size of the LR
test gets closer to the nominal level of 0.05 as the number of individuals, N, gets
larger, but it is never greater than 0.035 in any of the simulations configurations.

Table 2. Type I error rates (expressed as percentages) of the T -
test and LR test for the balanced mixed one-way ANOVA model
(3.2), with n = 5 and εij ∼ N(0, 1). The two numbers in the
parentheses are, respectively, bias and variance of the estimates of
σ2
b which have been multiplied by 1000.

Distribution of bi N = 7 N = 15 N = 25 N = 50 N = 100

Normal LR
T

2.2(19 − 3)
5.7(45 − 7)

1.7(15 − 1)
5.1(32 − 2)

2.4(11 − 0)
4.8(22 − 1)

1.8(6 − 0)
5.0(18 − 0)

3.4(6 − 0)
5.1(13 − 0)

t LR
T

1.7(24 − 5)
5.6(46 − 6)

1.7(12 − 1)
4.8(32 − 2)

2.2(13 − 1)
4.9(27 − 1)

2.5(6 − 0)
5.6(15 − 0)

3.5(7 − 0)
5.5(12 − 0)

Log-Normal LR
T

1.9(35 − 16)
5.5(53 − 7)

1.1(23 − 4)
4.5(34 − 3)

1.7(14 − 2)
4.3(25 − 1)

1.6(9 − 0)
5.4(21 − 0)

3.2(6 − 0)
5.1(13 − 0)

Then, according to Fitzmaurice et al. (2007) and our experience in the simula-
tion study, we varied σ2

b from 0.02 to 0.1, using smaller value of σ2
b in simulation

configurations with larger individual numbers, N , to compare the powers of the
two tests at the significance level of 0.05. Specifically, we set σ2

b equal to 0.1, 0.07,
0.05, 0.04, and 0.02 for N equal to 7, 15, 25, 50, and 100, respectively. The powers
of the two tests are presented in Table 3 alongside the bias and the variance of the
estimates of σ2

b . The results suggest that the LR test appears to be more powerful
than the T -test for normal random effect but for non-normal random effects the
T -test appears to be more powerful than the LR test. Also, it should be noted
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that increasing N leads to better performance for the LR test in comparison to the
T -test.

Overall, the results of the simulations indicate that the proposed T -test has the
correct Type I error rate and is more powerful than the LR test for non-normal
random effects. Moreover, a power advantage of the proposed T -test with respect
to the LR test is that the proposed test can easily be applied for testing for multiple
random effects. We note that the LR test can not be used to test for the need of
both the random intercept and the random slope in the model (3.1).

Table 3. Powers (expressed as percentages) of the T -test and LR
test for the balanced mixed one-way ANOVA model (3.2), with
n = 5 and εij ∼ N(0, 1). The two numbers in the parentheses are,
respectively, bias and variance of the estimates of σ2

b which have
been multiplied by 1000.

Distribution of bi N = 7 N = 15 N = 25 N = 50 N = 100

Normal LR
T

19.2(18 − 21)
17.8(29 − 25)

22.0(3 − 7)
19.2(9 − 7)

18.2(13 − 3)
18.6(16 − 4)

25.4(5 − 2)
24.2(5 − 2)

17.7(4 − 0)
16.1(6 − 0)

t LR
T

11.8(68 − 81)
14.2(32 − 113)

15.8(34 − 20)
16.5(104 − 221)

16.4(27 − 133)
17.1(16 − 36)

20.2(31 − 39)
20.0(20 − 27)

19.1(6 − 1)
16.0(5 − 0)

Log-Normal LR
T

13.8(11 − 119)
14.1(45 − 156)

19.1(43 − 35)
19.3(17 − 30)

17.9(24 − 13)
18.4(15 − 11)

22.6(20 − 6)
23.0(18 − 5)

20.3(2 − 0)
17.4(3 − 0)

4. Real Data Example

In this section, we consider the well-known growth data introduced by Potthoff
and Roy (1964). For this data set, an orthodontic study was conducted on 27
children, 11 girls and 16 boys, all who were 8 years of age at the beginning of
the study. On each child, the distance from the center of the pituitary to the
pterygomaxillary fissure was measured (in mm) every two years through age 14.
The study objectives were to determine if the distances were longer for boys than
girls and if the rate of change of distance differed between boys and girls. This
data set was analyzed by Fearn (1975), Rao (1987), Lee (1991) and Verbeke and
Molenberghs (2000).

Figure 1 presents plot of the distance versus age for boys and girls. Clearly, the
profiles differ on the intercept but the slopes are not evidently different. At the
outset, we consider a model where the distance varies linearly with age, and with
intercept and slope random effects to account for individual-to-individual variation.
The balanced linear growth curve model we consider here is

(4.1) Yij = (β1 + β2tj)xi + b1i + b2itj + εij , i = 1, ..., 27, j = 1, ..., 4,

where Yij is the distance for the ith child at time j, tj is the jth point in time (in
ages) in which the distance was recorded, and xi is a dummy variable that equals 1
if the ith subject is boy and 0 otherwise. Also, b1i and b2i are random effects with
zero mean, and with var(b1i) = σ2

1 , var(b2i) = σ2
2 and cov(b1i, b2i) = σ12.

The MM estimates of the variance components are σ̂2
1 = 132.8, σ̂2

2 = 0.1 and
σ̂12 = 3.2. To test for the need of both random intercept b1i and random slope b2i
in the model (4.1), the proposed test produces a test statistic of 32.71. Based on
1, 000 permutations, the p-value of the test is a value of 0.01. Thus, the proposed
test rejects the null hypothesis at the 5% nominal level, i.e, it suggests that there
are some random effects in the model. The likelihood ratio test can not handle
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Figure 1. The distance versus age for boys and girls. (Boys are
indicated with solid lines. Girls are indicated with dashed lines.)

this test. Now, we wish to test for the need of random slope in the model, i.e., we

want to test H0 : D =

[
σ2
1 0
0 0

]
against H1 : D =

[
σ2
1 σ12

σ12 σ2
2

]
. The proposed

test produces a test statistic of 2.33. Based on 1, 000 permutations, the p-value of
the test is a value of 0.19. Thus, the proposed test accepts the null hypothesis at
the 5% nominal level, i.e, it suggests that there is no random slope in the model.
Assuming normal distribution for the random effects and errors, the LR test yields
a p-value of 0.2, and hence, this test also accepts the null hypothesis at the 5%
nominal level.

We now consider the following reduced model

Yij = (β1 + β2tj)xi + b1i + εij , i = 1, ..., 27, j = 1, ..., 4.

We wish to test H0 : σ2
1 = 0 against H1 : σ2

1 > 0. Note that under the null
hypothesis, there is no random intercept in the model. The proposed test assumes
a test statistic of 20.08. Based on 1, 000 permutations, the p-value of the test equals
0.02. Also, by assuming normal distribution for the random intercept and errors,
the LR test produces a p-value of 0.03. Thus, the two tests reject the null hypothesis
at the 5% nominal level. Therefore, we conclude that a random intercept model
is appropriate to analyze these data. This conclusion agrees with the findings of
Verbeke and Molenberghs (2000).
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5. Concluding Remarks

In this paper, we have proposed a distribution-free test for testing variance com-
ponents in balanced linear growth curve models. A permutation procedure has
been described to approximate the finite-sample distribution of the test statistic.
The proposed test can easily be applied for testing for multiple variance compo-
nents due to the simple test statistic and the permutation procedure we used. The
performance of the proposed test has been illustrated via simulation studies and
a real data example. The simulation results suggest that the proposed test has
Type I error rate close to the nominal level and is more powerful than the LR test
for non-normal random effects. The R codes of this work are available upon request
from the correspondent author.

A disadvantage of available tests for variance components is the difficulty in ver-
ifying the required regularity conditions as shown in Giampaoli and Singer (2009).
The derivation of the proposed T-test is not affected by such difficulties.

Bootstrap tests can also be applied for testing variance components but we note
that bootstrap tests give approximated significance levels converging to exact when
the number of iterations B tends to infinity. When the labels of observations are ex-
changeable under the null hypothesis, it is safe and preferable to use a permutation
test because permutation tests yield exact significance levels.

For unbalanced linear growth curve models and generally for LME models, we
can consider the T-statistic (2.2), and use a permutation procedure for testing
variance components. While the benefit of this approach is its distribution-free
nature, the only problem is to derive D̂∗, because for these models, D̂∗ is usually
computed by numerical methods which may result a biased estimator of D∗. Since
the unbiasedness of D̂∗ is very important in this approach, it seems that further
research is needed to extend the procedure presented in this paper to LME models.
We finally note that in the empirical analysis, growth curves are not always linear,
so it would be of interest to generalize this test toward non-linear cases.
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Appendix: Proof of equation (2.4)

First, for D̂∗ in (2.3), we have

ZD̂∗Z
′ =

1

N − p

(
ZŜZ ′ − σ̂2Z(Z ′Z)

−1
Z ′

N∑
i=1

(
1− qi

′Q−1qi
))

=
1

N − p

(
N∑
i=1

Z
(
ai

0 −Aiβ̂OLS

)(
ai

0 −Aiβ̂OLS

)′
Z ′ − σ̂2PZQ

∗

)

=
1

N − p

(
N∑
i=1

Z
(
(Z ′Z)

−1
Z ′Yi −Aiβ̂OLS

)(
(Z ′Z)

−1
Z ′Yi −Aiβ̂OLS

)′
Z ′ − σ̂2PZQ

∗

)

=
1

N − p

(
N∑
i=1

PZ

(
Yi − ZAiβ̂OLS

)(
Yi − ZAiβ̂OLS

)′
PZ − σ̂2PZQ

∗

)
.

Hence,

T =
1

N
tr(ZD̂∗Z

′)

=
1

N(N − p)
tr

(
N∑
i=1

PZ

(
Yi − ZAiβ̂OLS

)(
Yi − ZAiβ̂OLS

)′
PZ − σ̂2PZQ

∗

)

=
1

N(N − p)

(
N∑
i=1

tr

(
PZ

(
Yi − ZAiβ̂OLS

)(
Yi − ZAiβ̂OLS

)′
PZ

)
− kσ̂2Q∗

)

=
1

N(N − p)

(
N∑
i=1

tr

((
Yi − ZAiβ̂OLS

)′
PZ

(
Yi − ZAiβ̂OLS

))
− kσ̂2Q∗

)

=
1

N(N − p)

(
N∑
i=1

(
Yi − ZAiβ̂OLS

)′
PZ

(
Yi − ZAiβ̂OLS

)
− kσ̂2Q∗

)

=
1

N(N − p)

N∑
i=1

{(
Yi − ZAiβ̂OLS

)′
PZ

(
Yi − ZAiβ̂OLS

)
− k

N
σ̂2Q∗

}
.

Then the equation follows.
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