
Applied Mathematics & Optimization
https://doi.org/10.1007/s00245-020-09719-7

Thermosolutal Convection with a Navier–Stokes–Voigt
Fluid

Brian Straughan1

© The Author(s) 2020

Abstract
We present a model for convection in a Navier–Stokes–Voigt fluid when the layer
is heated from below and simultaneously salted from below, the thermosolutal con-
vection problem. Instability thresholds are calculated for thermal convection with a
dissolved salt field in a complex viscoelastic fluid of Navier–Stokes–Voigt type. The
Kelvin–Voigt parameter is seen to play a very important role in acting as a stabi-
lizing agent when the convection is of oscillatory type. The quantitative size of this
effect is displayed. Nonlinear stability is also discussed, and it is briefly indicated how
the global nonlinear stability limit may be increased, although there still remains a
region of potential sub-critical instability, especially when the Kelvin–Voigt parameter
increases.

Keywords Kelvin–Voigt · Navier–Stokes–Voigt · Instability · Thermosolutal
convection · Solar pond

1 Introduction

The Navier–Stokes equations for the flow of a linearly viscous, incompressible fluid
are well known throughout the fields of applied mathematics and engineering. For a
Navier–Stokes fluid the response of stress to change in the velocity gradient is instan-
taneous. This special response is not enjoyed by all real life fluids and, in particular, by
many classes of viscoelastic and complex fluids. These fluids possess a stress which
does not react instantaneously and instead they remember the velocity gradient history.
Typically such fluids possess fading memory where the history dependence diminishes
as the time advances into the past. Theoretical work on such fluids is vast, see e.g.
Amendola and Fabrizio [1], Amendola et al. [2], Anand et al. [3], Anand and Christov
[4], Christov and Christov [5], Fabrizio et al. [6], Franchi et al. [7–9], Gatti et al. [10],
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Jordan and Saccomandi [11], Jordan et al. [12,13], Payne and Straughan [14], Yang
et al. [15].

Recent work (arising from the Russian literature) is focussing on a very interesting
class of complex (viscoelastic) materials associated with the names of Kelvin and of
Voigt, cf. Chirita and Zampoli [16], Berselli and Bisconti [17], Layton and Rebholz
[18]. Models for Kelvin–Voigt fluids have been presented by Oskolkov [19,20], and the
references therein. Of particular relevance to the present article are the generalizations
of the Kelvin–Voigt models to incorporate thermal effects as presented by Sukacheva
and Matveeva [21], Kondyukov [22], Sukacheva and Kondyukov [23]. A special class
of the thermal Kelvin–Voigt models are the so called Navier–Stokes–Voigt equations
which are analysed here.

Thermal convection when a salt is simultaneously dissolved in the fluid is a very
rich area within the Navier–Stokes setting, see e.g. Barletta and Nield [24], Capone et
al. [25], Galdi et al. [26], Harfash and Hill [27], Nield [28], Matta et al. [29], Mulone
[30], Straughan [31–33], Straughan and Hutter [34].

We are interested in the thermosolutal convection problem where the layer is heated
from below and simultaneously salted from below resulting in a hard mathematical
problem where the heat effect encourages the fluid to rise whereas salting below
has the opposite effect and creates a competition between the physical attributes of
heating and salting. This is the configuration of the promising method of generating
renewable energy through electricity with a solar pond, see e.g. Abdullah et al. [35],
and the present work may have a bearing on how to add an additive to stabilize the
solar pond and ensure it functions in an optimal way.

The goal of this work is to develop a model and analyse thermosolutal convection
in a layer of Navier–Stokes–Voigt fluid heated and salted from below, generalizing
the models of Sukacheva and Matveeva [21] and Sukacheva and Kondyukov [23]. We
believe this is the first analysis of this problem.

2 The Navier–Stokes–Voigt Equations for Thermosolutal Convection

Let v(x, t), T (x, t), C(x, t), p(x, t) be the velocity, temperature, concentration of a
dissolved salt, and pressure at position x and time t of a body of fluid. The Navier–
Stokes–Voigt equations for thermosolutal convection may be derived from Sukacheva
and Matveeva [21], by incorporating the concentration effect, cf. Straughan [36, Sect.
14.1]. The appropriate system of equations may be written as

(1 − λ̂�)vi,t + v jvi, j = − 1

ρ0
p,i + ν�vi + αTgki − γCgki ,

vi,i = 0,

T,t + vi T,i = κ�T ,

C,t + viC,i = κs�C .

(1)

Here λ̂, ν, ρ0, α, γ, g, κ and κs are the Kelvin–Voigt coefficient, the kinematic viscos-
ity, a reference density, the coefficient of thermal expansion of the fluid, the coefficient

123



Applied Mathematics & Optimization

of concentration in the density, gravity, thermal diffusivity, and salt diffusivity. The
symbol � denotes the Laplacian, k = (0, 0, 1), and standard indicial notation together
with the Einstein summation convention is employed throughout. For example, if
v = (v1, v2, v3) ≡ (u, v, w) and x = (x1, x2, x3) ≡ (x, y, z), then we write the
divergence of the velocity field in the forms

vi,i ≡
3∑

i=1

vi,i =∂v1

∂x1
+ ∂v2

∂x2
+ ∂v3

∂x3

=∂u

∂x
+ ∂v

∂ y
+ ∂w

∂z

For an example involving a nonlinearity, we write

vi T,i ≡
3∑

i=1

vi T,i = u
∂T

∂x
+ v

∂T

∂ y
+ w

∂T

∂z
.

To derive Eq. (1) a Boussinesq approximation has been employed whereby the density
in the buoyancy force is written as ρ = ρ0[1 − α(T − T0) + γ (C − C0)] for a
reference temperature T0 and reference concentration C0. This gives rise to the αgT ki
and γ gCki terms. Details are similar to those in Sect. 14.1 of Straughan [36] where
the Navier–Stokes analogue is analysed.

As Oskolkov [19,20] notes, the Kelvin–Voigt λ̂ term in (1) arises from a stress
relation like

σi j = 2ρ0λ̂
∂di j
∂t

+ 2μdi j , (2)

where μ(= νρ0) > 0 is a constant, di j is the symmetric part of the velocity gradient,
and σi j is the Cauchy extra stress tensor, related to the stress tensor ti j by ti j =
−pδi j + σi j . Then Eq. (1)1 follows from the balance of linear momentum equation

ρ0(vi,t + v jvi, j ) = t j i, j + ρ fi ,

with fi being the body force term. Equation (2) is a linear relationship and as such is
compatible with a linear instability analysis. One should perhaps consider an objective
derivative in (2), as discussed in another context by Christov [37]. However, we here
follow the procedure of Sukacheva and Matveeva [21], Sukacheva and Kondyukov
[23].

Equations (1) are sometimes called the Navier–Stokes–Voigt equations, cf. Layton
and Rebholz [18], or alternatively they can be called the Kelvin–Voigt equations of
order zero, or the Oskolkov equations, see Oskolkov [20].

3 Thermosolutal Convection, Heated and Salted Below

We shall suppose the Navier–Stokes–Voigt fluid occupies the horizontal layer 0 <

z < d with gravity acting downward. Equations (1) are defined on the spatial region
R

2 × {z ∈ (0, d)}, for t > 0.
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The boundary conditions on the planes z = 0 and z = d are given by

vi = 0, z = 0, d;
T = TL , z = 0, T = TU , z = d;
C = CL , z = 0, C = CU , z = d;

(3)

for prescribed constant values TL , TU ,CL ,CU , with TL > TU > 0 and CL > CU

where TL , TU are in ◦K.
The steady solution in whose stability we are interested is given by

v̄i ≡ 0, T̄ = −βz + TL , C̄ = −βs z + CL , (4)

where the temperature and concentration gradients, β, βs , are given by

β = TL − TU
d

, βs = CL − CU

d
.

The steady pressure p̄ is a quadratic in z which may then be derived from Eq. (1)1.
To investigate stability of the conduction solution (4) we introduce perturbations

(ui , θ, φ, π) by

vi = v̄i + ui , T = T̄ + θ, C = C̄ + φ, p = p̄ + π .

The equations for the perturbations are then derived and non - dimensionalized with
the scalings, cf. details in Sect. 14.1 of Straughan [36],

U = κ

d
, T = d2

κ
,

P = ρ0νU

d
, T � = U

√
βν

κgα
, C� = U

√
βsν

γ gκs
,

where d, T ,U ,C� and T � are the scales for length, time, velocity, concentration, and
temperature, respectively. Define the Rayleigh number, Ra = R2, the salt Rayleigh
number Rs = C2, the Lewis number Le, and the Prandtl number Pr , by

Ra = αgβd4

νκ
, Rs = βsgγ d4

κsν
, Le = κ

κs
, Pr = ν

κ
.

The Kelvin–Voigt parameter λ̂ is rescaled as

λ = λ̂
T
ν

.
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Now drop the *s and treat xi and t as the non-dimensional variables. The non-
dimensional form of the perturbation equations to (1) is

1

Pr

(
ui,t − λ�ui,t + u jui, j

)
= −π,i + �ui + Rkiθ − Cφki ,

ui,i = 0,

θ,t + uiθ,i = Rw + �θ ,

Le(φ,t + uiφ,i ) = Cw + �φ,

(5)

where w = u3.
Equations (5) are defined on the domain R

2 × {z ∈ (0, 1)} × {t > 0} and the
boundary conditions are

ui = 0, φ = 0, θ = 0, z = 0, 1, (6)

together with the fact that ui , φ, θ and π satsify a plane tiling periodicity in the x, y
plane.

To analyse linear instability we linearize (5) and seek solutions of the form ui =
ui (x, t)eσ t , φ = φ(x, t)eσ t , θ = θ(x, t)eσ t , π = π(x, t)eσ t . Equations (5) may then
be reduced to

σ

Pr

(
1 − λ�

)
ui = −π,i + �ui + Rkiθ − Ckiφ,

ui,i = 0,

σθ = Rw + �θ ,

Leσφ = Cw + �φ .

(7)

Next take curl curl of Eq. (7)1 and retain the third component of the resulting equation
to reduce Eq. (7) to

σ

Pr

(
1 − λ�

)
�w = �2w + R�∗θ − C�∗φ,

σθ = Rw + �θ ,

Leσφ = Cw + �φ ,

(8)

where �∗ = ∂2/∂x2 + ∂2/∂ y2 is the horizontal Laplacian. Introduce now the forms
w = w(z)h(x, y), θ = θ(z)h(x, y), φ = φ(z)h(x, y), where h(x, y) is a planform
which reflects the shape of the instability cell, cf. Chandrasekhar [38, pp. 43–52], and
�∗h = −a2h, for a wavenumber a. Then Eq. (8) are rewritten as

σ

Pr

(
D2 − a2

)
w − σ

λ

Pr

(
D2 − a2

)2
w = (D2 − a2)2w − a2Rθ + Ca2φ,

σθ = Rw + (D2 − a2)θ ,

Leσφ = Cw + (D2 − a2)φ ,

(9)

where D = d/dz and Eq. (9) hold on z ∈ (0, 1).

123



Applied Mathematics & Optimization

We must specify further information on boundary conditions. We already have

w = 0, θ = 0, φ = 0, z = 0, 1. (10)

We believe this is the first analysis to address the thermosolutal convection problem
for a Navier–Stokes–Voigt fluid. Thus we restrict attention to two stress free surfaces
and so we additionally require

D2w = 0, z = 0, 1. (11)

The equations lead to even derivatives being zero on the surfaces z = 0, 1, and then
we may write w, φ and θ as a sin series in z of form sin(nπ z), n = 1, 2, . . . We take
n = 1 since computations show this yields the lowest value of the Rayleigh number.
With the sin representation of solutions, Eq. (9) then yield a determinant equation
which leads to the following expression for R2,

R2 = C2
(

� + σ

� + Leσ

)
+

[ σ

Pr
(� + λ�2) + �2

] 1

a2 (� + σ) , (12)

where � = π2 + a2.
The stationary convection threshold follows from (12) and takes the form

R2 = C2 + �3

a2 . (13)

Upon minimization in a2 we find the critical wave number value is a2
c = π2/2 and

inserting this in (13) it follows that

Rastat = 27π4

4
+ C2. (14)

Further analysis requires us to take the real and imaginary parts of (12) and recollect
that R2 is real. To find the oscillatory convection curve we put σ = iω, ω ∈ R, and
then the real part of (12) yields

R2 =
( �2 + Leω2

�2 + Le2ω2

)
C2 + �3

a2 − ω2

a2

(� + λ�2

Pr

)
. (15)

From the imaginary part of (12) we may show that

ω2 = (Le − 1)C2a2 − �3(1 + Pr−1) − λPr−1�4

Le2[(1 + Pr−1)� + λPr−1�2] . (16)

The critical value of the oscillatory convection threshold R2 is found by employing
(16) in (15) and then minimising Ra = R2 in a2 for fixed values of λ, Le and Pr .
This we do numerically and report the findings in Sect. 4.
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Remark 1
It is possible to add a Rayleigh friction term to the right hand side of equation

(5)1 as do Di Plinio et al. [39] for the isothermal and non concentration case. In this
situation the perturbation equations (5) are replaced by

1

Pr

(
ui,t − λ�ui,t + u jui, j

)
= −π,i + �ui − ξui + Rkiθ − Cφki ,

ui,i = 0,

θ,t + uiθ,i = Rw + �θ ,

Le(φ,t + uiφ,i ) = Cw + �φ,

(17)

for a constant ξ > 0. By proceeding as outlined above one may perform a stationary
convection and an oscillatory convection analysis for system (17).
Remark 2

One could also consider a Soret effect upon the convection threshold for a Navier–
Stokes–Voigt fluid, cf. Straughan and Hutter [34]. In this case the perturbation
equations (5) are replaced by

1

Pr

(
ui,t − λ�ui,t + u jui, j

)
= −π,i + �ui + Rkiθ − Cφki ,

ui,i = 0,

θ,t + uiθ,i = Rw + �θ ,

Le(φ,t + uiφ,i ) = Cw + �φ + S�θ,

(18)

for a constant Soret coefficient S > 0. Again, one may proceed as outlined above
to perform a stationary convection and an oscillatory convection analysis for system
(18).

4 Numerical Results

We report on numerical solutions to Eqs. (14), (15) and (16). To do this we require
values for the Prandtl and Lewis numbers. The Prandtl number for water at 20◦C is
6.99 and for vegetable oils Rodenbush et al. [40] report values in the range 25-400. For
the thermal and solute diffusivities we employ values from Caldwell [41], Ozbek and
Phillips [42], Yanez Limon et al. [43] and from Engineering Toolbox. These articles
suggest values of κ = 1.43 × 10−7 m2 s−1 and κs = 1.286 × 10−9 m2 s−1 at 20◦C,
or κs in the range

1.33 × 10−9 ≤ κs ≤ 2.03 × 10−9 m2 s−1.

This leads to Lewis number values of Le = 111.2 or in the range 70.44 ≤ Le ≤ 107.5,
for primarily water based solvent. However, for commerical cooking oils κ is in the
range 4.4 × 10−8 − 8 × 10−8 m2 s−1, see Yanez Limon et al. [43], and this leads to
Lewis number values in the range 21.67–60.15.
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We have computed values of the Rayleigh number and critical wave number ver-
sus the salt Rayleigh number for various combinations of Pr , Le and λ. For the
many values we examined the qualitative behaviour is always the same and resem-
bles that of Fig. 1, where Pr = 50, Le = 21.67, although the quantitative values at
the transitions depend on the parameters Pr , Le and λ. We here report on values for
Pr = 50, Le = 21.67, for Pr = 6.99, Le = 70.44, and for Pr = 6.99, Le = 111.2.
The pattern of instability in all cases follows that of Fig. 1 in that the stationary con-
vection curve begins at Ra = 27π4/4 for Rs = 0 and is then the straight line E–S
as Rs increases. Depending on the value of the Kelvin–Voigt parameter λ there is a
transition from stationary to oscillatory convection as shown in Fig. 1, where the 0–0
curve denotes the oscillatory convection threshold when λ = 0, 1–1 curve denotes the
oscillatory convection threshold when λ = 1, and the 2–2 curve denotes the oscilla-
tory convection threshold when λ = 2. The basic conduction solution (4) is unstable
when the (Ra, Rs) values lie above the linear instability curve, and convective motion
ensues. For example, when λ = 1, the solution is unstable above the straight line E–1,
but for Rs = C2 values greater than the transition the instability is oscillatory when
Ra = R2 lies above the curve 1–1.

Observe that λ increasing raises the instability threshold, and as we might expect
λ is a stabilizing influence.

Table 1 yields the transition values for the values of Pr and Le as indicated. The
a2 values reported in this table are the critical values for oscillatory convection. We
observe that the critical oscillatory wave number values are smaller as λ increases
indicating that the convection cells become wider for increasing λ. The Lewis number
effect is to lower the critical Rayleigh number as Le increases.

5 Nonlinear Stability Considerations for Thermal Convection in a
Navier–Stokes–Voigt fluid

Let (·, ·) and ‖ · ‖ denote the inner product and norm on the Hilbert space L2(V ),
where V is a period cell for the solution.

To develop a nonlinear stability analysis a classic approach to nonlinear energy
stability will multiply (5)1 by ui , (5)2 by θ and (5)3 by φ, and integrate each in turn
over the period cell V using the boundary conditions. In this manner we obtain the
identities

d

dt

( 1

2Pr
‖u‖2 + λ

2Pr
‖∇u‖2

)
= −‖∇u‖2 + R(θ, w) − C(φ,w), (19)

and
d

dt

1

2
‖θ‖2 = R(θ, w) − ‖∇θ‖2 , (20)

together with
d

dt

Le

2
‖φ‖2 = C(φ,w) − ‖∇φ‖2. (21)
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We may add these equations to derive the energy equation

dE

dt
= RI − D, (22)

where the energy function is given by

E(t) = 1

2Pr
‖u‖2 + λ

2Pr
‖∇u‖2 + 1

2
‖θ‖2 + Le

2
‖φ‖2, (23)

the production term I is defined by

I (t) = 2R(θ, w), (24)

and the dissipation is

D(t) = ‖∇u‖2 + ‖∇θ‖2 + ‖∇φ‖2 (25)

From this one computes the value

1

RE
= max

H

I

D
, (26)

where H is the space of admissible solutions, cf. Straughan [36]. Since the C terms
disappear from I the Euler–Lagrange equations which arise from (26) yield the global
nonlinear stability threshold of RE = 27π4/4, i.e. the straight line E–E in Fig. 1. This
means that values of Ra, Rs below this threshold yield a globally stable nonlinear
solution. However, there is still the possibility of sub-critical convection in the region
above E–E and below the linear instability threshold.

If one is prepared to employ a generalized energy functional by introducing ψ =
θ − δφ where δ = C/R, and work with the function

E(t) = 1

2Pr
‖u‖2 + λ

2Pr
‖∇u‖2 + ω1

2
‖θ‖2 + ω2Le

2
‖ψ‖2 ,

then see Joseph [44], Mulone [30], it is possible with a lot of analysis and much effort,
employing numerical optimization on the parameters ω1 > 0, ω2 > 0, while also
minimizing in the wavenumber, see Straughan [45], to increase the global nonlinear
stability boundary into the region in Fig. 1 denoted by E–0–0–E. However, a lot of
analytical and computational effort is required. The threshold so obtained does not
coincide with the linear instability one and so there remain regions of possible sub-
critical instability. However, for the Navier–Stokes–Voigt fluid the coupling parameter
generalized energy method must involve λ in the maximization, Euler–Lagrange pro-
cess, to be able to achieve a global nonlinear stability boundary which will exceed the
0–0 curve when λ > 0. We believe at present this problem is open.

In the present situation because the energy in (23) involvesλ‖∇u‖2, the rate of decay
obtained is better than that observed in classical Bénard convection. This faster decay
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Table 1 Transition from
stationary to oscillatory
convection values

Ra C a2 λ Le Pr

689.96 32.4 4.935 0 21.67 50

699.36 41.8 4.903 1 21.67 50

708.75 51.2 4.872 2 21.67 50

668.33 10.82 4.935 0 70.44 6.99

688.34 30.83 4.865 1 70.44 6.99

708.26 50.75 4.800 2 70.44 6.99

664.33 6.82 4.935 0 111.2 6.99

676.95 19.44 4.889 1 111.2 6.99

689.53 32.02 4.847 2 111.2 6.99

0 10 20 30 40 50 60 70
650

700

750

Ra

C

Pr =50
Le=21.67

0 0

1 1

2 2

E E

S

Fig. 1 Graph of Ra against C with Le = 21.67, Pr = 50. The diagonal solid line (E–S) represents the
stationary convection curve. The curves 00, 11, 22 are the oscillatory convection thresholds for λ = 0, 1,
2. The horizontal dashed line (E–E) is the global nonlinear stability boundary

rate is also observed by Layton and Rebholz [18], in their Kelvin vortex solutions, see
also numerical computations of Matveeva [22].

6 Conclusions

We have developed an analysis for the thermosolutal convection problem for a Navier–
Stokes–Voigt viscoelastic fluid. We concentrate on the problem where the layer of
fluid is heated from below and simultaneously salted from below. The thermal con-
vection problem for a Navier–Stokes–Voigt fluid without a salt field was suggested
by Sukacheva and Matveeva [21], Sukacheva and Kondyukov [23]. The isothermal
model for a Navier–Stokes–Voigt fluid is explained at length by Oskolkov [19,20].

We have shown that for small enough salt Rayleigh number the onset of thermally
driven motion is by stationary convection. There is then a transition to oscillatory
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convection. The transition values are calculated for several realistic values of Prandtl
and Lewis numbers. We have shown that the transition to oscillatory convection occurs
at higher Rayleigh and salt Rayleigh numbers as the Kelvin - Voigt parameter λ

increases. The fact that the convective motion instability threshold is increased when
the Kelvin–Voigt parameter increases is very useful for solar pond design. A solar pond
is a mechanism whereby solar energy is harnessed through a thermosolutal process and
converted into renewable electric energy, cf. Abdullah et al. [35]. A solar pond consists
of a layer of salt water approximately 1–2 m thick in a horizontal configuration with
direct access to solar radiation. The salt field is arranged so that the salt concentration
decreases approximately linearly from the base of the layer. The base of the layer is
chosen to absorb solar radiation and this configuration can achieve temperatures close
to 100 ◦C in the solution near the base. The naturally heated brine solution is drawn out
and passed through a heat exchanger to generate renewable electricity. It is important
that convective motion does not commence otherwise the solution mixes and so it is
key that the conditions remain in the stable case for the problem studied herein. Our
work suggest that adding a suitable additive to the salt solution which increases the
Kelvin - Voigt parameter will ensure the solar pond does not commence overturning
instability and will, therefore greatly improve the efficiency of the device.
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