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Abstract
A number of previous studies have used working memory components to predict mathematical performance in a variety of 
ways; however, there is no consideration of the contributions of the subcomponents of visuospatial working memory to this 
prediction. In this paper we conducted a 2-year follow-up to the data presented in Allen et al. (Q J Exp Psychol 73(2):239–248, 
2020b) to ascertain how these subcomponents of visuospatial working memory related to later mathematical performance. 
159 children (M age = 115.48 months) completed the maths test for this second wave of the study. Results show a shift from 
spatial–simultaneous influence to spatial–sequential influence, whilst verbal involvement remained relatively stable. Results 
are discussed in terms of their potential for education and future research.

Introduction

Using working memory to predict mathematical attainment 
is an area of study that has gained a significant amount of 
traction in recent years. Mathematics is a broad field and 
there has been extensive research across a number of aspects 
of mathematics and working memory which has been sum-
marised in reviews and meta-analyses, from studies of typi-
cally developing populations (Friso-van den Bos et al., 2013; 
Raghubar et al., 2010), to the relationship with learning dif-
ficulties in mathematics generally (David, 2012; Swanson 
& Jerman, 2006) and in terms of the verbal and numeri-
cal domains in particular (Peng & Fuchs, 2016). According 
to the multicomponent model (Baddeley & Hitch, 1974), 
working memory involves subcomponents relating to the 
processing of visuospatial and phonological stimuli. The 
components of working memory have been reliably linked 
to academic performance on a number of occasions (e.g., 
Alloway & Passolunghi, 2011; Holmes & Adams, 2006; 
Van de Weijer-Bergsma, Kroesbergen, & Van Luit, 2015; 

see Peng, Namkung, Barnes, & Sun, 2016 for a review of 
this literature) with a reasonable amount of evidence sug-
gesting visuospatial working memory is more influential in 
younger children (e.g., Caviola, Mammarella, Lucangeli, & 
Cornoldi, 2014; Clearman, Klinger, & Szucs, 2017; Hol-
mes, Adams, & Hamilton, 2008). There is also a smaller, 
though not insignificant, amount of evidence indicating the 
involvement of verbal working memory (e.g., Kyttälä, Kan-
erva, Munter, & Björn, 2019; Wilson & Swanson, 2001); 
a finding we replicated at time 1 (T1) of this study (Allen, 
Giofrè, Higgins & Adams, 2020b).

At T1, results revealed that, when compared directly 
to spatial–simultaneous and spatial–sequential measures, 
verbal-numeric tasks were more predictive of mathemat-
ics in 7–8-year-old children. Similarly, Allen, Giofrè, Hig-
gins and Adams (2020a) demonstrated that verbal working 
memory (non-numeric) was more predictive of mathemati-
cal performance in younger children, with a move toward 
visuospatial influence in older children. It is not yet fully 
understood, however, how these components relate specifi-
cally to mathematical attainment on a longitudinal basis. 
There is some evidence suggesting visuospatial working 
memory is influential in the prediction of mathematics 
over a number of years (e.g., Bull, Espy, & Wiebe, 2008; 
De Smedt et al., 2009; Fanari, Meloni, & Massidda, 2019; 
Geary, 2011; Hilbert, Bruckmaier, Binder, Krauss, & Büh-
ner, 2019; Li & Geary, 2017); however, as indicated by 
Hilbert et al. (2019), it is necessary to consider the math-
ematics test used for the purposes of these studies. In some 
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cases, standardised measures, in line with the curriculum of 
the country are used, in which case more credence can be 
given to the real-life applicability of the findings. However, 
oftentimes researchers use tests designed specifically for the 
purposes of their study, in which case they lack the neces-
sary real-world application of the findings. There are also 
findings to the contrary indicating the importance of verbal 
working memory (e.g., Geary, Nicholas, Li, & Sun, 2017; 
Kyttälä et al., 2019), the varying influence of the subcompo-
nents depending on the area of mathematics in question (van 
der Ven et al., 2013), and even that working memory is not 
directly predictive of mathematics (Gathercole et al., 2003), 
especially when other precursor measures of mathematics 
are included (Krajewski & Schneider, 2009). One area that 
these studies do not account for is the format of the testing 
in each of the domains of working memory, for example, 
visuospatial stimuli can be shown both simultaneously and 
sequentially, which may have an influence on their predic-
tive value, particularly when considering different areas and 
levels of mathematics.

There is growing evidence for the subdivision of visuos-
patial working memory into spatial–simultaneous and spa-
tial–sequential categories, based on the presentation of the 
information during the encoding phase (e.g., as in Blalock 
& Clegg, 2010; Lanfranchi, Carretti, Spanò, & Cornoldi, 
2009). Spatial–simultaneous tasks require participants to 
recall a visual array when all items are presented simultane-
ously, whilst spatial–sequential tasks require recall of visual 
locations presented sequentially, generally in a given order 
(e.g., Mammarella et al., 2006; Mammarella, Pazzaglia, & 
Cornoldi, 2008). Evidence for a double dissociation between 
the two subtypes of visuospatial working memory (Mam-
marella et al., 2006, 2018; Wansard et al., 2015) presents 
the possibility that deficits in these subcomponents act as 
a specific vulnerability for mathematical difficulties. This 
is particularly pertinent if there is evidence of a longitudi-
nal predictive relationship between the subcomponents and 
mathematics. The relationships between the subcomponent 
of visuospatial working memory and mathematics are not, 
as yet, thoroughly understood, therefore, this paper aims to 
contribute to this understanding to develop our ability to 
predict mathematics performance from working memory 
capacity.

There are a number of issues associated with the selec-
tion of a measure of mathematics for research purposes, 
including, but not limited to, the applicable age range, the 
standardisation procedure for the test, and design purely 
for research purposes, all of which increase the risk of a 
lack of reliability and validity of the measure in a class-
room setting. To bypass some of these issues, a stand-
ardised measure was chosen which was suitable for an 
appropriate age range, which was standardised on a UK 
sample, and which was designed to map directly on to 

the current National Curriculum for England and Wales. 
Mapping onto the National Curriculum means that all chil-
dren involved in the study have been exposed to the same 
mathematical content, therefore, should have similar back-
ground experience in terms of answering the questions. 
The same mathematics test was used as at T1 (Access 
Mathematics Test). This test was selected as it covered 
topics appropriate for children aged 6-12, therefore, the 
same measure could be administered at both time points to 
make a direct comparison. The test has two forms, A and 
B, which are designed to be equal to each other in terms of 
both difficulty and the distribution of topics assessed (see 
Access Mathematics Test Handbook for this information). 
At T2, the alternate form was administered to that which 
the children had done at T1 (if form A was used at T1, 
form B was used at T2, and vice versa) such that children 
had not had previous exposure to the same questions so 
that their performance was not skewed in any way.

This study aims to identify whether there is a relation-
ship between working memory measures taken in year 3 
and a mathematics measure taken in year 5, and if so, 
whether the nature of this relationship is the same as when 
the mathematics measure was also taken in year 3. We aim 
to identify which working memory predictors can predict 
mathematical performance in year 5 when mathematical 
performance in year 3 is taken into account. We expect 
to see a shift in the extent of the relative contributions of 
the elements of working memory, particularly between the 
verbal and visuospatial elements given the suggestion of 
a developmental shift between the two ages the children 
were tested at.

Method

Participants

The initial sample included 214 7–8-year-old children, how-
ever, subject attrition over the 2-year period resulted in a 
final sample of 159 9–10-year-old children (76 male and 83 
female, M age = 115.48 months, SD = 3.43). We strove to 
re-test as many of the original opportunity sample of chil-
dren, now in year 5, as possible. Opt-out parental consent 
was obtained, as with the first administration of the study, to 
reduce bias in the sample (Krousel-Wood et al., 2006). The 
study was approved by the School of Education Ethics Com-
mittee at the University of Durham. Children with special 
educational needs, intellectual disabilities, or neurological 
and genetic conditions were not included in the study. Those 
who did not complete the first administration phase of the 
study were not included in the analysis, such as children who 
had entered the school within the last 2 years.
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Design and procedure

Previously, children had been tested individually on 
working memory measures (spatial–simultaneous, spa-
tial–sequential, and verbal) and mathematics as a class 
group in year 3 (see Allen et al., 2020b for a full descrip-
tion of this phase) to form Time 1 of the study. This second 
phase (Time 2) of the study required only a mathematics 
test, therefore, children were tested as a class group. Work-
ing memory measures were not administered at this stage 
as the intention was to understand whether it is possible 
to design a measure to be administered at the beginning 
of formal schooling to predict whether a child is likely 
to encounter mathematics difficulties in the future, hence 
this would only be measured once. Testing was done in 
the child’s usual classroom and with their class teacher 
present to minimise stress, but was completed under typi-
cal test conditions. The test was administered according 
to the instructions in the testing manual (see below for 
further explanation), with a 10-min warning prior to the 
end of the test. Paper and pencil format was used and chil-
dren could request a question be read aloud to account 
for those children with a lower reading ability. No further 
help was given as part of the reading process, nor were any 
numbers that may have been particularly pertinent to the 
question, for example “The River Nile is 3256 km long. 
Round this to the nearest 1000 km.” would be read as “The 
River Nile is this long (point to number). Round this to the 
nearest this distance (point to number)”. We used a cor-
relational design to investigate the relationships between 
earlier working memory measures and current mathemat-
ics performance.

Measures

Working memory

Working memory measures from T1 were used for this 
analysis. At T1, measures of verbal working memory [digit 
recall, backwards digit recall, and counting recall, as pre-
sented in the Working Memory Test Battery for Children; 
Gathercole & Pickering, 2001)], spatial–simultaneous work-
ing memory (4 × 3 and 4 × 4 dot matrices tasks—children 
were presented grids containing dots and were required to 
recall the positions of the dots), and spatial–sequential work-
ing memory (3 × 3 and 4 × 3 dot matrices tasks—children 
were presented grids in which dots appeared sequentially 
and were required to recall the positions of the dots in no 
specific order—and block recall; Corsi, 1972) were adminis-
tered to all children prior to the mathematics test. See Allen 
et al. (2020b) for a full description of the measures taken 
during phase one.

Mathematics

Access Mathematics Test (AMT) The AMT is a standardised 
measure of National Curriculum mathematics, designed to 
test children aged 6–12 years. It, therefore, provides clear 
evidence for how well each child performs in individual 
areas of mathematics, as well as overall. The AMT covers 
the requirements of the National Curriculum in England and 
Wales, where children are required to understand number, 
measurement, geometry, and statistics, hence providing an 
ecologically valid measure of a child’s school performance. 
Questions cover number (e.g., “the distance from New York 
to London is 3457 km. Write this distance to the nearest 
1000 kilometres”), operations (e.g., “write the missing num-
ber. __ ÷ 5 = 35”), fractions including ratio (e.g., “peanuts 
cost 40p for 100 g. How much does 120 g of peanuts cost?”), 
geometry (e.g., “the point A is moved three squares to the 
right and two squares down. Write the coordinates of this 
new point A”), measures (e.g., “how many 20p coins are 
there in £13?”), and statistics (e.g., “this bar chart, from a 
spreadsheet, shows the number of pets each pupil owns. How 
many pupils own 2 pets or more?”).

Children were read the instructions set out for the AMT, 
which included a time limit of 45 min, clarification of where 
to write their answer on the paper, and an explanation that 
workings were allowed on the paper, providing their answer 
was clearly written in the correct space. Typical classroom 
test conditions were adopted throughout. Children were per-
mitted to request questions be read aloud to them should 
they have difficulties so as not to disadvantage those with 
weaker reading abilities; however, no further explanation of 
the question, or what was required, was given. No discon-
tinuation rule was employed as children were instructed to 
complete as many questions as they could, but that questions 
were also included for children much older than they were so 
not to worry if they could not complete them all. The total 
number of test items for this test is 60, with a maximum 
score of 60.

Data analytic strategy

All analyses were performed using R (R Core Team, 2018). 
The R program (R Core Team, 2018) with the “lavaan” 
library (Rosseel, 2012) was used to conduct structural 
equation modelling (SEM). Model fit was assessed using 
a variety of indexes according to the criteria suggested by 
Hu and Bentler (1999). In particular, the Chi-square (χ2), 
the comparative fit index (CFI), the non-normed fit index 
(NNFI), the standardised root mean square residual (SRMR) 
and the root mean square error of approximation (RMSEA) 
were used to evaluate model fit, whilst the Akaike informa-
tion criterion (AIC; the lower the better) and the Chi-square 
difference (with results not statistically significant favouring 
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more parsimonious models) were used to compare the fit of 
alternative models.

Full‐information maximum likelihood (FIML) estima-
tion was used to handle missing data in our analyses. This 
method offers unbiased estimates under missing data pat-
terns such as missing completely at random (MCAR) or 
missing at random (MAR). The pattern of missingness was 
tested using correlations (see Kabacoff, 2015 for the ration-
ale). Missing values at T2 were coded 1 for missing and 0 
for present. This dummy variable was then correlated with 
our measures at T1 (i.e., WM and mathematics). None of the 
correlations were particularly large or striking (rs < 0.17), 
which suggests that the data deviate minimally from MCAR 
and may be MAR. Therefore, the assumption that data are 
either MCAR or MAR is justified. Maximum likelihood 
estimation with robust (Huber-White) standard errors and 
a scaled test statistic was used for the analyses. This test 
provides robust estimates and should be preferred in every 
normal application using SEM (Rosseel, 2010).

The influence of age in months was taken into account by 
calculating standardised residuals for each variable included 
in this study. Residuals were calculated by entering each 
score as the dependent variable and age as predictor (see 
Allen et al., 2020b; Giofrè & Mammarella, 2014 for a simi-
lar method).

Results

Table 1 shows correlations among variables at T1 and at T2 
together with descriptive statistics for these variables.

The main aim of this longitudinal paper was to evaluate 
the impact of working memory on mathematics, controlling 
for the effects of mathematics at T1. To achieve this aim, 

SEM was used, fitting a model with three latent variables for 
working memory (spatial–sequential, spatial–simultaneous, 
and verbal), and two observed variables for mathematics at 
T1 and T2. In this model, the three correlated working mem-
ory factors were predicting mathematics at T1 and T2, whilst 
mathematics at T1 was also predicting mathematics at T2. 
This latter path allows us to control for potential autoregres-
sive effects, i.e., the performance in mathematics at T2 is 
controlled for by the performance in mathematics at T1. This 
model design allows us to control for the shared contribution 
of working memory, i.e., the effect of each working memory 
factor is over and above the effect of the other predictors.

The fit of the model was good, χ2(27) = 20.73, p = 0.799, 
RMSEA = 0.000, SRMR = 0.029, CFI = 1.00, NNFI = 1.014 
(Fig. 1). In this model, paths from simultaneous and verbal 
working memory factors to mathematics at T1 were statisti-
cally significant, whilst the path from sequential working 
memory was not. As for mathematics at T2, the path from 
mathematics at T1 as well as paths from sequential and ver-
bal working memory, were statistically significant albeit 
with a small effect size, whilst the path from simultaneous 
working memory was not.

Additional analyses

Mathematics is a broad concept, addressing for example 
measurement, properties, and relations of quantities (Peng 
et al., 2016). The test we used to evaluate mathematics 
includes different components, making it possible to distin-
guish among them. This comparison is of particular interest, 
because it can be argued that the relation between verbal, 
spatial–simultaneous and spatial–sequential working mem-
ory can potentially be affected by different types of mathe-
matics skills. It can also be argued that there might be a shift 

Table 1  Pairwise correlation matrix with raw score correlations below the leading diagonal and age covaried correlations above the diagonal, 
including means and standard deviations for each measure

*p < 0.05 one tail

1 2 3 4 5 6 7 8 9 10

1. Simultaneous 4 × 3 – 0.685* 0.484* 0.437* 0.407* 0.352* 0.321* 0.180* 0.410* 0.430*
2. Simultaneous 4 × 4 0.681* – 0.416* 0.433* 0.407* 0.305* 0.289* 0.122* 0.397* 0.408*
3. Sequential 3 × 3 0.488* 0.415* – 0.573* 0.343* 0.301* 0.257* 0.112 0.308* 0.414*
4. Sequential 4 × 3 0.440* 0.430* 0.576* – 0.363* 0.257* 0.277* 0.139* 0.300* 0.372*
5. Block recall 0.416* 0.406* 0.349* 0.368* – 0.287* 0.239* 0.077 0.242* 0.238*
6. Counting recall 0.358* 0.308* 0.300* 0.253* 0.289* – 0.444* 0.322* 0.385* 0.420*
7. Backward digit 0.325* 0.290* 0.259* 0.279* 0.243* 0.445* – 0.325* 0.318* 0.390*
8. Digit recall 0.180* 0.123* 0.110* 0.135* 0.076 0.325* 0.325* – 0.156* 0.204*
9. Math assessment Y3 0.417* 0.399* 0.310* 0.302* 0.248* 0.390* 0.320* 0.158* – 0.832*
10. Math assessment Y5 0.420* 0.407* 0.411* 0.369* 0.232* 0.413* 0.387* 0.202* 0.823* –
M 28.28 20.11 18.7 15.36 21.5 16.33 10.52 26.61 11.72 24.19
SD 5.99 6.85 4.72 4.23 4.09 3.99 3.08 3.51 6.64 10.140
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in this relationship due to a change in the curriculum (i.e., 
different proportions of the different domains). According to 
this hypothesis, one could assume that verbal-numeric work-
ing memory could have a stronger relation to word-problem-
solving or to number-based mathematics skills (e.g., calcu-
lation), and visuospatial working memory to visual-related 
mathematics skills (e.g., geometry). To investigate this issue, 
we performed some additional analyses.

In a fist SEM model, similar to what we did in the afore-
mentioned SEM model, three exogenous working mem-
ory factors (i.e., variables that are not caused by another 
variable in the model) were calculated (i.e., simultaneous, 
sequential and verbal). These working memory factors were 
allowed to correlate. As for the endogenous variables (i.e., 
variables that are caused by one or more variables in the 
model), rather than including the overall score for math-
ematics as we did before, all subdomains were included 
separately (i.e., number, operations, fractions including 
ratio, geometry, measures, statistics including probability). 
Residual errors of mathematics domains were also allowed 
to correlate, this is normal practice in SEM when tasks, as 
in this case, belong to the same constructs and are intrinsi-
cally related in nature, that is they share a significant por-
tion of the variance over and above what is accounted for 
by working memory factors in this case. In the model, each 
working memory factor was independently predicting each 
mathematic variable. In this first model all betas were freely 
estimated (i.e., were supposed to be independent from each 

other). The fit of this model was satisfactory, χ2(47) = 48.70, 
p = 0.405, RMSEA = 0.013, SRMR = 0.029, CFI = 0.998, 
NNFI = 0.997, AIC = 13,200.

Having established that the model provided a satisfactory 
fit we tested several alternative nested models in which the 
betas from working memory to each mathematic domain 
were constrained to be equal across the tasks (i.e., the rela-
tionship to working memory was considered to be simi-
lar in each individual mathematic subdomain). We took a 
multi-step approach, fixing one group of betas at a time. In 
the first model, betas from simultaneous working memory 
to each mathematic domain were constrained to be equal 
(assumed to be similar across each individual math varia-
ble). The fit of this model, was similar to the previous model, 
χ2(52) = 53.24, p = 0.426, RMSEA = 0.011, SRMR = 0.030, 
CFI = 0.999, NNFI = 0.998, AIC = 13,195. Importantly this 
latter model had a lower AIC, was more parsimonious (i.e., 
had a higher number of degrees of freedom), and was not 
statistically different from the previous one, Δχ2(5) = 4.38, 
p = 0.4958, meaning that this model should be preferred 
over the previous one. This finding indicates that increasing 
the complexity of the model and assuming different betas 
(i.e., different relationships) from the simultaneous work-
ing memory factor to each mathematic subdomain was not 
necessary (i.e., the simultaneous working memory factor had 
a similar impact on each individual mathematic task).

In a further model, we went on constraining betas 
from the sequential working memory factor to each 

Fig. 1  SEM model for working memory, mathematics T1 and T2. Solid lines represent statistically significant paths (p < 0.05)
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mathematic subdomain to be equal. The fit of this model, 
was similar to the previous model, χ2(57) = 61.88, 
p = 0.306, RMSEA = 0.020, SRMR = 0.035, CFI = 0.996, 
NNFI = 0.993, AIC = 13,194. Also in this case, this lat-
ter model had a lower AIC, was more parsimonious, 
and was not statistically different from the previous one, 
Δχ2(5) = 7.85, p = 0.1645. These findings taken overall indi-
cate that increasing the complexity of the model and assum-
ing different betas (i.e., different relationships) between the 
simultaneous and sequential factor to each mathematic sub-
domain was not necessary.

In a further model, we went further on constraining 
the betas from the verbal working memory factor to each 
mathematic task. The fit of this model was somewhat 
poorer as compared to the previous one, χ2(62) = 89.36, 
p = 0.013, RMSEA = 0.046, SRMR = 0.081, CFI = 0.975, 
NNFI = 0.964, AIC = 13,211, Δχ2(5) = 25.55, p = 0.0001. 
Such a finding indicates the possible presence of misfit, 
which was examined looking at modification indices and 
residuals. The inspection of the model led us to free one of 
the betas (i.e., the link from the verbal working memory fac-
tor to the operations component). This resulted in a consider-
ably better fit, χ2(61) = 68.96, p = 0.226, RMSEA = 0.025, 
SRMR = 0.052, CFI = 0.993, NNFI = 0.989, AIC = 13,192. 
Comparing this model with all the previous ones we also 
established that this was the best fitting model as it had a 

lower AIC and was statistically superior as compared to 
all previous models. These findings taken together indicate 
that betas from simultaneous, sequential and verbal factors 
to each individual mathematic subdomain are similar, with 
only one exception (Fig. 2).

Discussion

This study aimed to investigate the contributions to written 
mathematics made by verbal, spatial–simultaneous, and spa-
tial–sequential working memory over the period of 2 years. 
Previous results (Allen et al., 2020b) highlighted a signifi-
cant relationship between mathematics and spatial–simul-
taneous and verbal working memory in 7–8-year-old chil-
dren. Therefore, we aimed to assess whether this relationship 
remained stable 2 years later or varied as a function of age.

From the correlations table, all correlations (both normal 
and after covarying for age) between mathematics, measured 
at T1 and T2, and working memory measures were statis-
tically significant. This suggests that working memory is 
related to mathematics, both at T1 and T2. With regard to 
our specific research question for this paper, we identify a 
shift in the influence of the components of working memory 
on mathematics. Whilst verbal working memory remains 
a significant predictor, spatial–simultaneous becomes 

Fig. 2  Theoretical model for the relationship between WM factors with observed mathematical subtests
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non-significant and is taken over by spatial–sequential. The 
relationship between spatial–sequential working memory 
and mathematics is stronger than that between verbal work-
ing memory and mathematics, though not significantly so, 
however, the strongest relationship remains between math-
ematics at T1 and T2. It was anticipated that this would be 
the case, therefore, the model was built in such a way that the 
significant relationships identified between spatial–sequen-
tial and verbal working memory and mathematics remain 
after accounting for the relationship between mathematics at 
T1 and T2. That is, these relationships reveal the amount of 
variance in mathematics that we are able to account for over 
and above that which is predicted by previous mathematical 
ability. As discussed in Allen et al. (2020b), the presence 
of a significant relationship with verbal working memory is 
supported by literature suggesting verbal-numeric tasks, as 
are those used in this study, show a direct relation to math-
ematical performance (as reviewed by Raghubar, Barnes, & 
Hecht, 2010).

There is a possibility that the influence of spatial–sequen-
tial working memory at T2 could be due to the complexity of 
the task. To complete sequential tasks, children are required 
to hold the initial elements of the stimuli sequence in mind 
for longer before recall, which could be considered more 
demanding than spatial–simultaneous tasks (Rudkin et al., 
2007). This requirement to hold information for longer peri-
ods of time when encoded at different time points may repli-
cate the child’s ability to handle sequentially derived infor-
mation resulting from multi-step mathematics problems. 
Older children are more likely to encounter these types of 
problems in mathematics (Department for Education, 2013), 
therefore, spatial–sequential tasks may be more predictive of 
older children’s mathematical ability (Allen et al., 2020a), 
particularly if the proportion of multi-step versus single-step 
problems encountered also increases with age, as is often the 
case. As a result, it may be that spatial–sequential working 
memory is more strongly related to mathematics than verbal 
working memory due to the way the information is encoded. 
Similarly, Caviola, Colling, Mammarella and Szűcs (2020) 
suggest that spatial working memory may provide the mental 
workspace required to complete mathematics tasks, which 
is likely to be increasingly important in multi-step tasks.

Understanding the task demands of the working memory 
tasks themselves, particularly the spatial–sequential tasks, 
cannot be an influencing factor in their relationship with 
mathematics in this study, because working memory meas-
ures were taken at T1 only, as opposed to being repeated 
at T2. Only the mathematics measure was repeated at T2. 
This calls into question the evidence that high and low abil-
ity children in mathematics are not distinguishable by their 
spatial–sequential working memory (Bull, Johnston, & Roy, 
1999), as the current result would suggest this may be possi-
ble. There is, however, an alternative argument by Andersson 

and Lyxell (2007), D’Amico and Guarnera (2005), McLean 
and Hitch (1999) that our current results support. Caution 
should be applied when trying to define distinct groups of 
children in mathematics based on their cognitive profile, as 
there is little evidence of a distinct profile of poor performers 
in mathematics in those without a diagnosis of mathematics 
difficulties.

Based on previous research suggesting a declarative shift 
(see Schneider, 2008 for a review of this literature), it is 
surprising that spatial–sequential working memory remains 
so influential in 9–10-year-old children. It has long been 
considered that younger children rely on using visuospatial 
working memory for mathematics (Van de Weijer-Bergsma 
et al., 2015), potentially because it acts as a mental ‘checker’ 
or allows them to use visual strategies that young children 
rely on so heavily. When children are first introduced to 
mathematical concepts, wherever possible the concept is 
made concrete through the use of tangible examples with 
blocks or counters, for example. This is done to give the 
children a concrete, visible reference point for the concept 
that they are able to interact with (e.g., draw on, rotate). 
Once they understand the material well enough, the scaf-
folding of concrete examples is slowly removed to make 
the work more abstract, using less tangible representation. 
By following this pattern, it is clear to see why the sugges-
tion is made that children will rely more on visuospatial 
working memory in their younger years, before making the 
transition to using verbal working memory resources when 
they are older. However, the group of children used in this 
study are older than the age at which this declarative shift 
is predicted to take place (around 7 years of age, Schneider, 
2008), therefore, suggesting that a shift of this nature may 
not tell the whole story.

One potential explanation relates to the relative lack 
of evidence regarding the individual contributions of the 
subtypes of visuospatial working memory to mathemati-
cal performance. Although not a definitive claim, a meta-
analysis by Allen, Higgins and Adams (2019) suggests 
some influence of the type of visuospatial working mem-
ory measured on the magnitude of the effect size meas-
ured in studies relating to mathematics. This synthesis 
identified that the relationship between spatial–sequential 
working memory and mathematical reasoning (problem 
solving; a large portion of the mathematics test used in 
this study) had not previously been investigated. As such, 
this paper may go some way to shedding light on this rela-
tionship, highlighting a lack of a thorough understanding 
of the interplay between mathematics and the subtypes of 
visuospatial working memory previously. This is notable, 
because the involvement of elements of visuospatial work-
ing memory in older children is supportive of other recent 
findings (Allen et al., 2020a). Unlike previous work sug-
gesting a fundamental shift in the reliance on components 
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of working memory for mathematics, the results of this 
study, taken as a whole, suggest verbal working memory 
makes a relatively stable contribution to performance, 
with the variability emerging from the involvement of 
the components of visuospatial working memory, shifting 
from simultaneous to sequential influence (see Allen et al., 
2020b for further information on T1 of this study).

It is unlikely, though not impossible, that the shift we see 
in the involvement of working memory is due to the cogni-
tive load imposed by the task as tasks are always visible and 
children have the opportunity to write down any workings 
or intermediate results, and so are not required to hold these 
items in mind. However, there is the possibility that children, 
particularly those who are anxious for example, may face 
more difficulties under timed conditions (Ashcraft & Moore, 
2009; Carey et al., 2016; Onwuegbuzie & Seaman, 1995). 
There is also some evidence that children who have poor 
working memory are also poor at comprehending text (e.g., 
Carretti, Cornoldi, De Beni, & Palladino, 2004). Similarly, 
task instructions are always present meaning children have 
the opportunity to break tasks down into smaller chunks, 
though those with particularly poor working memory may 
have difficulties with keeping their place in the instructions 
(Alloway, 2006; Gathercole & Alloway, 2004). Due to the 
nature of the paper layout, extraneous cognitive load is rela-
tively low as information is presented alongside the asso-
ciated question and graphs and diagrams are interspersed 
through the text in the most appropriate place. There may 
be some influence of cognitive load due to the increased 
number of multi-step questions designed for older children 
requiring the maintenance of intermediate steps (Sweller, 
1994), but this should be minimal in this case and is unlikely 
to fully explain the results found.

The proportions of questions concerning the different 
domains of mathematics could potentially influence the 
results over time, even though children completed the same 
longitudinal test (albeit the opposite paper at T2, balanced 
exactly for difficulty and weightings towards the different 
domains). All of the questions were included on the paper at 
T1, and some children made attempts at these, however, chil-
dren will have been able to access a greater number of these 
questions at T2 following 2 years of extra schooling. There 
is no evidence from a visual search of the frequency of ques-
tions relating to each question type that this changes over 
the course of the test. If this were the case, it may be that 
working memory influence shifts as a direct consequence 
of more questions being asked that tap different working 
memory components later in the paper, thus only older chil-
dren will be able to access them. This is not the case. As 
such, it follows that, when developing a screening measure, 
children should be screened on measures that are predictive 
over longer periods of time. It is important to include shorter 
term predictors of mathematics as well to pick up children 

who are likely to fall behind immediately, however, the focus 
should be on longer term predictors.

As with T1 of this study, there are some inherent limi-
tations. Primarily, the use of a verbal-numeric measure of 
verbal working memory. Verbal-numeric working memory 
has been shown to demonstrate a different relationship to 
mathematics than verbal working memory measures using 
stimuli not relating to numbers (see Raghubar et al., 2010 
for a review of this literature). After highlighting this as an 
issue at T1, Allen et al. (2020a) found a similar pattern of 
results using non-numeric verbal stimuli. The inclusion of 
only typically developing children has not, however, been 
addressed at this time as a clear understanding of typical 
development is necessary before investigating the nature of 
the relationship in atypical samples, such as those with diag-
nosed mathematics difficulties. As a result, we, therefore, 
remain unable to compare the development of typical and 
atypical populations to assess any differences.

In this paper we have also attempted to distinguish 
between different mathematics domains at Y5. Intriguingly, 
the relationship between simultaneous and sequential work-
ing memory factors with the different mathematic subdo-
mains seems to be quite similar. A recent meta-analysis by 
Peng et al. (2016) tested the relationship between working 
memory and different mathematics domains, demonstrating 
some small variations in terms of the correlations between 
mathematic subdomains (from 0.23 to 0.37). In fact, one 
could expect, for example, geometry to draw more on 
visuospatial skills. However, geometry seems to be a very 
complex domain involving several complex abilities (Mam-
marella et al., 2017). One possibility is that our results at 
Y5 are influenced by the nature of the geometry tasks at this 
stage in the curriculum. In a similar study, Giofrè, Mam-
marella and Cornoldi (2014), with a sample of 4th and 5th 
graders, found that working memory, independent of the 
modality, had the highest correlation with geometry. This 
finding was explained by the authors arguing that formal 
education in geometry, at this stage, involves both visuos-
patial and verbal materials (such as texts, definitions, formu-
lae, and theorems). Therefore, the absence of the stronger 
influence of visuospatial working memory is not necessarily 
surprising. As for the verbal working memory factor, the 
pattern was rather similar but with one exception.

Results reported in the present paper show that verbal 
working memory has the explanatory power in all mathemat-
ics domains. Intriguingly, the link between verbal working 
memory and a specific component (i.e., operations) seemed 
to be higher as compared with the other tasks. It could be 
argued that the manipulation of operations could draw on 
verbal and visuospatial working memory to a large extent 
(Caviola et al., 2012; Van de Weijer-Bergsma et al., 2015).

Future research should seek to continue to address the 
limitations presented here, as well as to build upon the 
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findings presented to continue to develop our understanding 
of the relationships between the components and subcom-
ponents of working memory and mathematics. Once this 
understanding has been developed, researchers can begin to 
work with atypical populations to try to ascertain whether 
these populations differ from typical populations in the ways 
in which working memory contributes to task completion. 
There are clear implications for education providers and 
researchers as in developing our understanding of this area, 
we will be able to use this knowledge to support children 
who have difficulties in mathematics through supporting 
their working memory. By understanding which elements 
of working memory are most important for mathematics at 
different ages, educators will be able to provide targeted sup-
port for children in the form of aids and alternative methods 
where necessary.

In conclusion, this study confirmed that it is possible to 
predict mathematics using working memory data gathered 
2 years previously, however, that the specific nature of the 
relationship changes over time. Spatial–sequential and ver-
bal working memory tasks are predictive of 9–10-year-old 
performance in mathematics, as opposed to spatial–simulta-
neous and verbal measures in the same children at 7–8 years 
of age.
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