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1. Introduction

The past two decades have seen a steady increase in research on dependence modeling
in general, and on copulas in particular. Not surprisingly, a vast amount of literature
on inferential methodology for copulas has emerged, e.g., on parametric and nonpara-
metric estimation (Genest et al., 1995; Omelka et al., 2009), on goodness-of-fit testing
(Genest et al., 2009; Quessy and Bahraoui, 2014) or on estimation in and testing of
nonparametric subclasses (Genest and Segers, 2009; Bücher et al., 2011), among many
others. Possibly the main reason for the interest in copulas is the fact that, in contrast
to correlation-based models, copulas allow for the modeling of different behaviours in the
tail of a distribution.1 For example, while the Gaussian copula is tail-independent and
the Student’s t copula is symmetrically tail dependent, other copulas like the Clayton or
Gumbel–Hougaard copula are characterized by asymmetric tail dependence in the sense
that the distribution’s behaviour in the upper tail does not need to equal the behaviour
in the lower tail. Despite the extensive work done on asymmetry in the tail dependence,
however, asymmetry in the copula itself (also called exchangeability) and its importance
in applied settings have so far received much less attention.

A copula is said to be asymmetric (or non-exchangeable) if C(u, v) �= C(v, u) holds
for at least one pair u, v,∈ [0, 1], i.e., if the distribution exhibits different behaviours in
the upper left and the lower right triangle of the unit square. In applications, such a
case can easily occur if, for example, there exists a causal relation between the two ran-
dom variables. Surprisingly, asymmetry in dependence is seldomly studied in economics
and financial econometrics despite its obvious usefulness.2 This is perhaps even more

Date: January 12, 2017.
1Modeling the tail of a distribution is also relevant for various applications across disciplines such as risk
management or actuarial science (see, e.g., Peng, 2008; Jong, 2012; Hua and Xia, 2014), which further
explains the growing interest in those topics.
2This is in contrast to asymmetry in tail dependence, which has been extensively studied by, e.g.,
Demarta and McNeil (2004); Patton (2006); Christoffersen et al. (2012).
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surprising given the fact that the asymmetry of a copula is closely connected with the
coskewness of a bivariate random vector, a concept widely used in the context of as-
set pricing theory (see, e.g., Kraus and Litzenberger, 1976; Harvey and Siddique, 2000;
Ang et al., 2006).

In this paper, we exploit the relation between the asymmetry of a copula and the
coskewness of a random vector and propose a new measure of asymmetry in dependence
that is based on the difference between two coskewness parameters. Consequently, our
new measure is easy to interpret and allows for an analysis of the question into which
direction the copula is skewed. Just like Spearman’s correlation coefficient is related
to Pearson’s correlation coefficient, our proxy for the asymmetry of a copula is related
to coskewness. In particular, no moment conditions are necessary for its definition and
it is invariant with respect to strictly monotone transformations of the marginals. As
a central contribution, we propose an estimator for the coskewness parameter, derive
its asymptotic normality and, based on the normal approximation, propose a test for
detecting asymmetry of the copula (see also Genest et al., 2011 or Quessy and Bahraoui,
2013 for related bootstrap-based tests).

In our empirical study, we illustrate the usefulness of our test for both the modeling of
flooding events and losses in asset management by applying our test to two data samples
from hydrology and finance. Our results, which should be of particular interest to non-
life insurers, show that both samples exhibit strong asymmetry in their dependence that
should be taken into account when modeling claims and losses.

The remaining part of the paper is structured as follows. In Section 2, we define our
new measure of the asymmetry of a copula and discuss its properties. Section 3 presents
a Monte Carlo simulation study in which we examine the finite sample performance of
our test for asymmetry. In Section 4, we illustrate our new measure by applying it to
a hydrological and a financial market data sample. Section 5 concludes. All proofs are
deferred to an appendix.

2. A new measure of the asymmetry of a copula

Let (X,Y ) be a random vector with joint cumulative distribution function (cdf) F and
continuous marginal cdfs3 FX and FY and copula C. We recall Sklar’s theorem which
establishes the following relation between the joint distribution’s cdf and its marginal
cdfs:

F (x, y) = C{FX(x), FY (y)} for all x, y ∈ R, (2.1)

where C is uniquely determined and given by the cdf of the random vector (U, V ),
with U = FX(X), V = FY (Y ). A copula C is called symmetric or exchangeable if the
following holds true:

C(u, v) = C(v, u) for all u, v ∈ [0, 1].4

While many of the most common copula models allow for radial asymmetry (in partic-
ular, the lower and upper tail dependence may be different), they often do not allow for

3The case of possibly discontinuous margins is briefly treated in Remark 2.4 below.
4This is not to be confused with the related concept of radial symmetry, C(u, v) = C(u, v), where C
denotes the survival copula associated with C.
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asymmetry in the copula itself.5 To detect such asymmetry, one could simply look at
the difference of the two functions (u, v) �→ C(u, v) and (u, v) �→ C(v, u), which is zero
for symmetric copulas, and define the following measure of asymmetry:

d∞(C) = 3 sup
(u,v)∈[0,1]2

|C(u, v) − C(v, u)|.

In fact, any distance between the two functions (u, v) �→ C(u, v) and (u, v) �→ C(v, u)
may be used to measure asymmetry. It can be shown that d∞(C) takes values in [0, 1]
(whence the constant 3), and it is equal to zero if and only if C is symmetric (see Nelsen,
2007). Replacing C by the empirical copula allows to define a test that may detect
departures from symmetry, which was proposed by Genest et al. (2011) with a recent
application in Siburg et al. (2016).

Obviously, a positive coefficient d∞(C) is hard to interpret when one is interested in
the direction of the asymmetry. However, in many applications it is important to know
for which points (u, v) or for which regions of the unit square the symmetry relation
does not hold, and in which direction it points. Hence, we propose a simpler coefficient
that allows for an easy interpretation and relates to the concept of coskewness: copula-
coskewness. Our copula-coskewness measure is related to coskewness in a similar way
the Spearman correlation is related to Pearson correlation. In particular, no moment
conditions are necessary for its definition and it is invariant with respect to strictly
monotone transformations of the marginals.6

We recall the definition of the two coskewness parameters (see, e.g., Miller, 2012):

s̄X,Y =
E[(X − μX)2(Y − μY )]

σ2XσY
, s̄Y,X =

E[(X − μX)(Y − μY )
2]

σXσ
2
Y

,

where μX , μY and σX , σY are the mean and standard deviation of X and Y , respectively.
The coefficients are defined for any (X,Y ) whose third marginal moments exist.
s̄X,Y is positive, when large values of Y tend to occur jointly with either small or large

values of X and vice versa for s̄Y,X . We define the copula-coskewness parameter as7

sX,Y := s̄U,V = 123/2 × E[(U − 1/2)2(V − 1/2)]

sY,X := s̄V,U = 123/2 × E[(U − 1/2)(V − 1/2)2].

5An extensive overview of methods how to construct asymmetric copulas from given symmetric ones can
be found in Liebscher (2008).
6One disadvantage of the copula-coskewness measure is that a value of zero does not necessarily imply
symmetry in the copula. This, however, also holds for the common skewness parameter of a real-valued
distribution. In the same way, independence of two random variables is not implied by a Spearman’s
rho that equals zero.
7Note that μU = μV = 1/2 and σ2

U = σ2
V = 1/12
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Using simple algebra yields the following result:

E[(U − 1/2)2(V − 1/2)] =

∫
(u− 1

2 )
2(v − 1

2) dC(u, v)

=

∫
u2v − uv + 1

4v − 1
2u

2 + 1
2u− 1

8 dC(u, v)

=

∫
u2v − uv dC(u, v) + 1

12 .

Here, and throughout, integration is over [0, 1]2 if not otherwise mentioned. The latter
formula shows that the copula-coskewness parameters are simple functionals of the cop-
ula C. Further note that if D is an arbitrary continuous cdf on [0, 1]2 (not necessarily a
copula), then

∫
D(u, v) dC(u, v) =

∫
C(u, v) dD(u, v) (see, e.g., Lemma 1 in Remillard,

2010). Applying this twice to the last display, we also have

E[(U − 1/2)2(V − 1/2)] =

∫
(2u− 1)C(u, v) d(u, v) + 1

12 .

This second formula expresses the copula-coskewness parameters through the copula,
but this time the copula appears in the integrand (which is convenient for proofs).

The copula-coskewness parameter sU,V attains values larger than zero when the dis-
tribution associated with the copula puts much of its mass to regions close to the points
(0, 1) or (1, 1) of the unit square. Similarly, positive values of sV,U occur whenever much
mass is concentrated near the points (1, 0) or (1, 1). The (possibly scaled) difference be-
tween the two parameters, aX,Y , is hence an obvious choice for measuring the asymmetry
of C:

aX,Y ∝ sU,V − sV,U
8.

A positive value of aX,Y indicates that large values of Y occurring simultaneously with
small values of X is more likely than large values of X occurring simultaneously with
small values of Y , and vice versa for negative values. Clearly, it would be desirable to
choose the constant in front of the difference in such a way that aX,Y ∈ [−1, 1], with
aX,Y = 0 whenever the copula is symmetric. The choice of the constant is the topic of
the subsequent Lemma 2.1.

After some simple algebra we obtain

sU,V − sV,U ∝ E[(U − 1/2)2(V − 1/2) − (U − 1/2)(V − 1/2)2]

= E[(U − 1
2)(V − 1

2 )(U − V )]

= E[U2V − V 2U ]

= 1
3 E[(V − U)3],

where the last equality follows from expanding (V − U)3 and noting that EU3 = EV 3.
The copula-coskewness-based parameter of asymmetry aX,Y is hence a multiple of the

8One might alternatively think of defining a similar coefficient based on a copula-version of the cokurtosis,
which employs fourth moments and is also widely used in the finance literature. However, the difference
between two cokurtosis parameters cannot be related to the asymmetry in dependence, as large values
of these parameters occur whenever two random variables deviate in the same direction. For this reason,
we do not pursue the investigation of copula-cokurtosis any further within this paper.
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Figure 1. Support of the copula C+ (left) and C− (right). These are
the maximal asymmetric elements with respect to the measure aX,Y .

third (central) moment of V −U . The following Lemma establishes the range of possible
values of E[(V − U)3].

Lemma 2.1. Let C denote the set of all copulas. Then

max
{∫

(v − u)3 dC(u, v) : C ∈ C} =
33

44
.

The maximum is attained for the (shuffle of min(u, v)) copula C+ whose support is the
union of the lines {(u, v) ∈ (0, 0.25) × (0.75, 1) : v = 1 − u} and {(u, v) ∈ (0.25, 1) ×
(0, 0.75) : v = u− 0.25}. Figure 1 provides a picture of the support. Similarly,

min
{∫

(v − u)3 dC(u, v) : C ∈ C} = −33

44
.

The minimum is attained for the (shuffle of min(u, v)) copula C− whose support is
the union of the lines {(u, v) ∈ (0, 0.75) × (0.25, 1) : v = u + 0.25} and {(u, v) ∈
(0.75, 1) × (0, 0.25) : v = 1− u}. Figure 1 shows a picture of the support.

A proof of Lemma 2.1, relying on the theory of mass transportation problems, can
be found in Appendix A. Lemma 2.1 suggests to scale the asymmetry parameter with
44/33. Hence, from now on, let

aX,Y :=
44

33
E[(V − U)3] =

256

27
E[(V − U)3], (2.2)

which attains values in [−1, 1] and which is equal to 0 whenever the copula is symmetric.
By the preceding calculations, we have:

aX,Y =
44

33
· 3 · 12−3/2(sX,Y − sY,X) =

32

27
√
3
(sX,Y − sY,X)

≈ 0.6842(sX,Y − sY,X).
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Estimation of aX,Y can be based on using an empirical analogue of the expression
in (2.2). More precisely, we define

âX,Y =
256

27
× 1

n(n+ 1)3

n∑
i=1

{rank(Yi)− rank(Xi)}3, (2.3)

where rank(Xi) denotes the rank of Xi among X1, . . . ,Xn; and similarly for rank(Yi).

Note that in terms of the empirical copula Ĉn(u, v) =
1
n

∑n
i=1 1(Ûi ≤ u, V̂i ≤ v), where

Ûi = rank(Xi)/(n + 1) and V̂i = rank(Yi)/(n + 1), we can rewrite (2.3) in the following
way:

âX,Y =
256

27
× 1

n

n∑
i=1

(V̂i − Ûi)
3 =

256

27
×

∫
(v − u)3 dĈn(u, v). (2.4)

Due to the fact that the sample of pseudo-observations is not independent over i,
asymptotic normality of âX,Y cannot be deduced from a simple application of the central
limit theorem. In fact, the asymptotic variance is quite complicated.

Proposition 2.2. Let (X1,X2), . . . , (Xn, Yn) be independent and identically distributed
with continuous margins and copula C. Then, with (Ui, Vi) = (F (Xi), G(Yi)), we have
the asymptotic expansion

√
n(âX,Y − aX,Y ) =

1√
n

n∑
i=1

{h(Ui, Vi)− E[h(Ui, Vi)]} + oP(1),

where h(u, v) = (256/27) · {g0(u, v) − 3g1(u) + 3g2(v)} with g0(u, v) = (v − u)3 and

g1(u) =

∫
(x− y)2 1(u ≤ x) dC(x, y) = E[(U − V )2 1(U ≥ u)],

g2(v) =

∫
(x− y)2 1(v ≤ y) dC(x, y) = E[(U − V )2 1(V ≥ v)],

and where expectation on the right-hand side is with respect to (U, V ) ∼ C. As a conse-
quence, √

n(âX,Y − aX,Y )� N (0, σ2),

where σ2 = (256/27)2 ·Var {(V − U)3 − 3g1(U) + 3g2(V )
}
.9

A proof of the proposition can be found in Appendix A. Note that the result does
not require any smoothness assumptions on the copula at all. This is in contrast to, for
instance, the test for symmetry of Genest et al. (2011) which relys on the assumption of
existing continuous first order partial derivatives of the copula C. The formal test that
we are going to derive below can hence be used under far broader conditions than the
test of Genest et al. (2011).

Making inference (confidence bands or testing) on basis of Proposition 2.2 requires
estimation of the asymptotic variance. Motivated by the asymptotic expansion, we
propose to estimate σ2 by σ̂2, defined as the empirical variance of the (observable)

sample Ẑ1, . . . Ẑn, where

Ẑi = (256/27) · {g0(Ûi, V̂i)− 3ĝ1(Ûi) + 3ĝ2(V̂i)}, i = 1, . . . , n,

9Note that E[(V − U)3 − 3g1(U) + 3g2(V )] = 4E[(V − U)3] by Fubini’s theorem.
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and

ĝ1(Ûi) =
1

n− 1

n∑
j=1,j �=i

(Ûj − V̂j)
2 1(Ûj ≥ Ûi),

ĝ2(V̂i) =
1

n− 1

n∑
j=1,j �=i

(Ûj − V̂j)
2 1(V̂j ≥ V̂i).

It can be shown that σ̂2 is consistent for σ2. As a consequence, we can derive asymptotic
one- or two-sided confidence bands for aX,Y and can formally test the hypothesis of
symmetry by rejecting symmetry whenever nâ2X,Y /σ̂

2 > χ2
1−α, the 1− α-quantile of the

χ2-distribution. The test asymptotically holds its level and is consistent against any
alternative with aX,Y �= 0.

Remark 2.3 (Modeling asymmetric dependence structures). Once significant asymmetry
in the copula has been detected, a natural follow-up question is how such an asym-
metric dependence structure should be modeled by the statistician. For this task, a
suitable list of candidate asymmetric parametric copula families is needed. A lot of
research has focussed on constructing asymmetric copulas (see Genest and Nešlehová,
2013; Liebscher, 2011 for recent overviews): for instance, one can simply rotate common
symmetric copulas like the Gumbel or Clayton copulas by 90 or 270 degrees, or consider
convex combinations thereof. Alternatively, one could use general construction meth-
ods like gluing (Siburg and Stoimenov, 2008), patchwork constructions (Durante et al.,
2009), or a method known as Khoudraji’s device (Khoudraji, 1995), implemented in the
R-package copula (Hofert et al., 2016) and used throughout the simulation study in Sec-
tion 3 below. The skewed t-copula also possesses an additional parameter that governs
the skewness of the copula (Demarta and McNeil, 2004; Christoffersen et al., 2012).

For each candidate copula family, the parameters of the copula can then easily be esti-
mated using standard procedures like, e.g., the Inference-for-Margins-method (Joe and Xu,
1996), pseudo-maximum-likelihood-estimation (Genest et al., 1995), or minimum-distance-
estimation (Tsukahara, 2005). After the parameters of each candidate parametric copula
family have been estimated, the statistician has to decide on the question which copula
model fits the data best. For this task, one could test the goodness-of-fit of each model
using copula-specific goodness-of-fit-tests (see, e.g., Genest et al., 2009) or employ model
selection criteria like Akaike’s Information Criterion.

Remark 2.4 (Extension to possibly discontinuous margins). Extensions of aX,Y and âX,Y

to discontinuous margins are possible, but should be interpreted with care: formula (2.1)
from Sklar’s theorem can be satisfied by several different copulas formally resulting in
an identification problem for the copula; in particular, the hypothesis of symmetry is not
well-defined. Still, one may be tempted to stick to a particular element from the class
of all copulas satisfying (2.1), and the multilinear extension copula C� (also known as
checkerboard copula) provides a natural choice in this case. Formally, C� is defined as
the cdf of the random vector (ψF (X,W1), ψG(Y,W2)), where

ψF (x,w) = F (x−) + w{F (x) − F (x−)}, ψG(y,w) = G(y−) + w{G(y) −G(y−)},
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and where W1,W2 are iid standard uniform and independent of (X,Y ),10 see, e.g.,
Genest et al. (2013). The latter authors show that C� plays a central role when an-
alyzing dependence coefficients (see also Nešlehová, 2007). For purely discrete margins,
it has further been shown in Genest et al. (2014) that C� is equal to the independence
copula if and only if X and Y are stochastically independent. One natural extension of
aX,Y as defined in (2.2) to the case of discrete margins is therefore given by

a�X,Y =
256

27

∫
[0,1]2

(v − u)3 dC�(u, v).

As before, symmetry of C� implies that a�
X,Y = 0. For the estimation of a�

X,Y in the case

of purely discrete margins, one must replace C� by the empirical checkerboard copula
Ĉ�n , see Genest et al. (2014). Asymptotic normality may then be derived similarly as
in the proof of Proposition 5.2 in Genest et al. (2014). However, calculation of the
estimator is difficult and the interpretation of the hypothesis of symmetry of C� is not
obvious (even if C� is symmetric, there may well be other copulas satisfying (2.1) which
are asymmetric). Eventually, this is another illustration of the fact that the extension
of copula methodology to discontinuous margins is difficult and yet mysterious; a lot of
additional general research seems to be necessary (see also Section 6 in Genest et al.,
2011).

3. Finite sample performance of the test for asymmetry

A Monte Carlo simulation study is performed to illustrate the finite-sample perfor-
mance of the copula-coskewness test for asymmetry. In particular, the test is compared
to the competing test from Genest et al. (2011), implemented in the R-package copula

(Hofert et al., 2016), function exchTest; in the following shortly GNQ-test.
The following setup is used for the simulation study: we consider two two-parametric

copula families constructed from Khoudraji’s device (Khoudraji, 1995; Liebscher, 2011),
namely

CCL
δ,θ (u, v) = uδCCL

θ (u1−δ , v), δ ∈ [0, 1], θ ≥ 1;

CGU
δ,θ (u, v) = uδCGU

θ (u1−δ , v), δ ∈ [0, 1], θ > 0.

Here, CCL
θ and CGU

θ denote the Clayton and the Gumbel–Hougaard copula, respectively.
As argued in Genest et al. (2011), Figure 1, both families are symmetric iff δ ∈ {0, 1},
with δ = 1 corresponding to the independence copula. For the simulation study, we
consider 42 different choices for the parameters: θ varies in such a way that Kendall’s
tau of the underlying Clayton (or Gumbel–Hougaard) copula is equal to 0.5 or 0.75 and δ
varies in the set {0, 0.05, 0.1, . . . , 0.95, 1}. Hence, various models from the null hypothesis
and the alternative are covered by these choices. Figure 1 in Genest et al. (2011) shows
that, for both models, the departure from symmetry is maximal for δ = 0.5 and Kendall’s
tau equal to 0.75. Finally, three sample sizes are considered (n = 50, 100, 200), the
number of bootstrap replications for the GNQ-test is set to M = 500 and the level of
the tests is fixed to α = 0.05.

10As a consequence, C = C� is the unique copula in case of continuity of the margins.
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In Figure 2, we present finite-sample simulation results concerning the empirical
level/power of the test, based on N = 3, 000 repetitions. Both tests decently hold their
level under the null hypotheses corresponding to δ = 1 (the independence copula) and
are slightly conservative if δ = 0 (the standard symmetric Clayton and Gumbel copula
models). In the latter case, the smaller the sample size, the more conservative the tests.
In terms of power, there is no clear winner between the two tests. One the one hand, the
copula-coskewness tests is clearly preferably over the GNQ-test if the parameter τ is set
to τ = 0.5; uniformly over the sample sizes and the two models. On the other hand, for
τ = 0.75, the further we move away from independence (that is, for smaller values of δ),
the GNQ-test begins to show a superior behavior. This advantage, however, becomes
smaller with increasing sample size.

As a conclusion, the copula-coskewness tests provides a decent (and computationally
attractive) competitor to the GNQ-test for symmetry of a copula.

4. Applications

In this section, we illustrate our new proxy for asymmetry in dependence by apply-
ing the concept of copula-coskewness in two major fields of research in which copulas
have become one of the mainstays of dependence models: hydrology and finance. Both
applications should yield interesting insights for non-life insurers. In our first study
on hydrological data, we show how asymmetric dependence structures naturally appear
in river systems making our new test of asymmetric a valuable tool for modeling and
forecasting floods (and consequently claims). In our second empirical study, we show
that portfolios of financial assets are frequently characterized by asymmetric dependence
structures. Our new test can thus help asset managers to detect these asymmetries and
chose a suiting asymmetric copula model for forecasting losses.

4.1. Hydrology. Consider a simple river system consisting of a main river and a trib-
utary. We are interested in the bivariate dependence between flood events on the main
river occurring upstream (X) and downstream (Y ) of the confluence of the two rivers.
A flood at station X necessarily yields a flood at station Y , whereas a flood at station Y
may also well be caused by a flood stemming from the tributary, with a comparably low
water level at station X. As a consequence, one would expect asymmetry in the copula
between the two variables: mass may be attained to subsets of the unit cube close to
the point (0, 1), but not to subsets close to the point (1, 0), resulting in a positive value
for the copula-coskewness parameter aX,Y . The strength of the asymmetry of course
depends on the precise location of the gauges and the local climatic conditions.

The information that the dependence between X and Y is asymmetric can be of
beneficial use for both property insurers and reinsurance companies. For example, non-
life insurers are interested in accurate forecasts of floods, the probability of losses, and
the size of ensuing claims. The accuracy of these forecasts, however, depends critically
on the correct modeling of the claims and the factors causing them. While the uni-
variate modeling of claims in non-life insurance with the use of skewed distributions
has attracted considerable attention in the past (see, e.g., Eling, 2012), studies on the
multivariate distribution of these data have not addressed the potentially asymmetric
nature of the dependence inherent in claims and risk factors (see, e.g., Czado et al., 2012;
Erhardt and Czado, 2012, for applications of symmetric copulas in actuarial science). In
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Figure 2. Empirical level of the copula-coskewness test for asymmetry
(solid lines) and the GNQ-test proposed in Genest et al. (2011) (dashed
lines). Both δ = 0 and δ = 1 correspond to the null hypothesis.

this section, we illustrate that bivariate hydrological data are indeed characterized by
asymmetry in their dependence structure. A non-life insurer that aims at forecasting
floods and insurance claims should thus consider a distributional model that includes a
copula that can account for the found asymmetry.

We consider a data set which reveals that the above heuristic is in fact statistically
significant. The data set consists of n = 84 bivariate maximal summer water flows (i.e.,
of flood events, measured in m3/s) measured between 1929 and 2012 at the river Flöha
in Saxony, Germany. The river station Pockau (X) lies approximately 20 km upstream
of the river station Borstendorf (Y ) and, in between, two smaller rivers join the river
Flöha. Note that the river Flöha is an inflow of the river Elbe which caused severe
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Figure 3. Left: Maximal summer flows in m3/s measured at gauges
in Pockau and Borstendorf, Germany. Right: Corresponding pseudo-
observations.

floods in eastern Germany during 2006 and, most recently, 2013. The observations are
illustrated in Figure 3. Note in particular that the marginal distributions are heavy
tailed (ML-estimators of the tail index γ under a GEV-assumption are 0.52 and 0.54
with standard errors of 0.12 and 0.14, respectively) whence regular (second and) third
moments and coskewness parameters do not exist; it is really mandatory to switch to
(some) standard scale for the margins. From the plot of the pseudo-observations we
can in fact observe that, from the subsample of observations far from the main diagonal
(say, at distance larger than 0.1), a slightly higher proportion lies above than below the
diagonal.

Applying the methodology developed in this paper, the null hypothesis of symmetry
gets rejected with a p-value of 0.020. The estimated parameter value is âX,Y = 0.012,
which is positive as expected by the above heuristics. The 95%-two-sided confidence
interval based on the normal approximation in Proposition 2.2 is given by [0.002, 0.024].
The estimated value may appear rather low on first sight, which, however, is not too
surprising, given that the two joining rivers are quite small (not longer than 30km),
resulting in very similar climatic conditions at the entire river system. Floods will
hence quite often occur simultaneously, as can also be seen from the plot of the pseudo-
observations and an estimated value of Spearman’s rho of 0.92. Finally, note that the
Cramér-von-Mises test for symmetry of the copula by Genest et al. (2011) also rejects
the null hypothesis, with a p-value of 0.005 based on N = 50, 000 multiplier bootstrap
repetitions. The latter test, however, does not give any insight into the direction of
asymmetry.

4.2. Finance. Recall the interpretation of coskewness s̄X,Y and s̄Y,X of two assetsX and
Y . Whenever s̄X,Y has positive and high values, large values of Y tend to occur jointly
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Figure 4. Histogram of asymmetry parameters.

with small and large values of X (which translates into more copula-mass around the
points (0, 1) and (1, 1) of the unit cube). Assume for example that X and Y are daily
returns of two financial assets (e.g., stocks or indices). The copula-coskewness-based
asymmetry parameter aX,Y is defined as the difference of the two copula-coskewness
parameters and thus, measures which joint movements of the returns are more likely.
When aX,Y is zero, high returns of Y tend to occur jointly with higher returns of X in the
same way high returns of X tend to occur jointly with lower returns of Y . When aX,Y

is unequal to zero, we observe a diversification benefit for investors. When coskewness
of the two assets X and Y is high, we expect higher returns of asset Y to be associated
with small and large values of X. On the other hand, mediocre returns on asset X do
not necessarily occur jointly with high returns of asset Y . In this way, Y may provide
an opportunity to hedge extreme (negative) returns of asset X while normal returns of
X are associated with mediocre returns of Y .

This kind of asymmetry could be found in returns of different markets, e.g., a thriv-
ing oil market may induce an increase in profits for industrial companies that provide
respective equipment. In contrast, however, a successful industrial firm may not affect
the oil market in the same way. Further, one might find asymmetry in the dependence of
returns on stocks in a sub-sector and returns on a diversified market index (e.g., financial
firms’ stocks as part of the S&P 500 equity index) 11

We apply our copula-coskewness-based asymmetry measure to a variety of finan-
cial market indices covering returns/yields on equity (e.g., S&P 500 Composite, MSCI
World), commodities (e.g., TOPIX Oil & Coal, Gold Bullion LBM, Raw Sugar, Cot-
ton), and U.S. treasury bonds. In total, we compile 21 financial time series from Thom-
son Reuters Financial Datastream that cover the time period from January 4, 1990

11See also Siburg et al. (2016) for a related interpretation of asymmetry in bivariate financial data.
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Figure 5. Left: Asymmetry parameters and p-values of the test of
Genest et al. (2011) tests. Right: Asymmetry parameters and corre-
sponding p-values of copula-coskewness-based test.

to December 31, 2015 (6,780 observations). We employ AR(3)- and GJR-GARCH(1,1)-
processes and filter all univariate time series before computing rank-transformed pseudo-
observations. These are then used to estimate our asymmetry measure for all bivariate
pairs of the indexes in our sample. In Figure 4, we plot a histogram of the asymmetry
parameters of all pairs of indexes. We can observe that the distribution of the asymme-
try measure is slightly skewed towards negative values among the full sample. However,
most of the values lie between zero and 0.02, with an average of about 0.002 across all
pairs.

In total, we test our null hypothesis of symmetry for all 190 bivariate combinations
of the 21 indices covering several markets using the copula-coskewness-based test and
the asymmetry-test proposed in Genest et al. (2011). Using copula-coskewness, for 23
out of 190 pairs the null hypothesis of symmetric dependence is rejected at the 5% level.
Thus, our test suggests asymmetry in dependence for about 12.1% of all combinations
in our sample. In comparison, testing exchangeability using the test of Genest et al.
(2011) yields 26 out of 190 pairs (13.7%) for which the null hypothesis is rejected at
the 5% level. In Figure 5, we plot the resulting p-values of both tests against the
asymmetry measure calculated for all pairs. Both pictures reveal that most of the p-
values below the 5% level correspond with a positive value of the asymmetry measure
aX,Y . This is even more pronounced for our new test. As to be expected, higher p-
values for the copula-coskewness-based test are associated with lower absolute values
of aX,Y , whereas the other test does not reveal an obvious pattern of test results being
associated with asymmetry in dependence measured by aX,Y . Finally, unreported results
on the computational time needed by both tests shows that our test based on copula-
coskewness is significantly faster than the alternative test of Genest et al. (2011) which
requires about 34 times more computation time (with 1,000 multiplier iterations) than
our test.

Table 1 provides a descriptive overview of the 23 pairs of assets that exhibit strong
asymmetry. We observe that our measure of asymmetry is large and positive for five
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(U.S.) equity indexes paired with the LMEX (London Metal Exchange) index. For ex-
ample, the asymmetry in dependence is strongest for the S&P500 Composite or S&P500
Banks with the LMEX index with values of 0.063 and 0.059, respectively. Referring to
our interpretations above, the equity indexes provide a diversification strategy for com-
modity markets. However, similar results hold true, e.g., for the U.S. 10 year T-Bill and
Gold Bullion LBM (aX,Y = 0.024) or LME-Aluminium (aX,Y = 0.023)12, which suggests
another possibility: Pairing U.S. equity indexes or government bonds with commodity
indexes from abroad, in this case the LMEX or LBM in the UK, yields strong and sta-
tistically significant positive asymmetries in dependence.13 Although the directions of
asymmetric dependence between these markets are not obvious on first sight, we em-
pirically find that the U.S. market may provide diversification benefits for (commodity)
indexes abroad. However, the same relation holds true for the MSCI World equity index
excluding U.S. firms and thus, it is more likely that the equity market is a hedge against
extreme negative returns in the commodity market.

Further, we observe that the combination of a broad equity index and smaller (bank)
stock indexes exhibits positive and significant asymmetric dependence. For example,
the asymmetry in dependence of the G12-DS Banks G7-DS Banks indexes is small,
but significant and positive. Although the Russell 2000 index comprises more U.S.
stocks than the S&P 500 Composite index, we still find that higher returns of the latter
index are associated with both lower and higher returns of the Russell 2000 index, most
likely due to the dominance of the S&P 500 index in the United States. However, the
patterns in dependence of broader and smaller indexes documented above is consistent
across most combinations of equity indexes in our sample. Further, we find this kind of
relation between a broad index and smaller ones in commodity markets as well: Moody’s
Commodities Index exhibits significant positive asymmetric dependence when paired
with LME-Aluminium and a cotton index.14

As mentioned above, the asymmetric dependence between two assets could be ex-
ploited for hedging purposes. For example, consider the case of oil and cotton for which
we found a significantly negative asymmetric dependence between the two. Assuming
an investor is long in oil, the negative asymmetric dependence shows that extreme drops
in the price of oil will be offset by extreme price surges in cotton. Conversely, extreme
increases in the price for oil will not coincide with extreme losses from an investment in
cotton. Constructing a hedging strategy that exploits the information on the asymme-
try of the dependence, however, is not straightforward as not only the (a)symmetry of
the copula but also (e.g.) the correlation structure needs to be taken into account de-
pending on the risk preferences of the investor when constructing the hedge. Moreover,

12Note that a negative asymmetry in dependence of X and Y is the same as a positive asymmetric
dependence of Y and X.
13Similarly, we also find asymmetric dependence of the MSCI World Index without U.S. firms and an
oil index.
14We also compare indexes of non-equity markets such as cotton or oil with LME-Aluminium and Gold
Bullion LBM indexes. Oil and cotton exhibit a negative value of aX,Y and thus, cotton may be used to
hedge against extreme drops in oil prices. The relation of oil prices and our gold or aluminium indexes
is also clear. Higher values of our oil index are associated with both high and low prices of aluminium
and gold. However, these findings are not as intuitive as other asymmetry coefficients of indexes and
could also be the result of a false rejection.
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the effectiveness of the hedge will of course depend critically on the absolute degree of
asymmetry. We leave this issue for future research to explore.

Copula-coskewness Index i Index j

0.0634 S&P 500 COMPOSITE LMEX Index
0.0588 S&P 500 BANKS LMEX Index
0.0442 G7-DS Banks LMEX Index
0.0400 RUSSELL 2000 LMEX Index
0.0378 G12-DS Banks LMEX Index
0.0353 MSCI WORLD EX US Gold Bullion LBM
0.0281 MSCI WORLD EX US LME-Aluminium
0.0256 Crude Oil-Brent Cur. Month LME-Aluminium
0.0238 Moody’s Commodities Index LME-Aluminium
0.0232 US T-Bill 10 Year LME-Aluminium
0.0230 EU-DS Banks Gold Bullion LBM
0.0175 MSCI WORLD EX US TOPIX OIL & COAL PRDS.
0.0159 S&P 500 COMPOSITE EU-DS Banks
0.0140 S&P 500 COMPOSITE G12-DS Banks
0.0137 S&P 500 COMPOSITE G7-DS Banks
0.0092 Moody’s Commodities Index Cotton
0.0078 S&P 500 COMPOSITE RUSSELL 2000
0.0004 G12-DS Banks G7-DS Banks
-0.0083 G7-DS Banks MSCI WORLD EX US
-0.0222 Crude Oil-Brent Cur. Month Cotton
-0.0237 Gold Bullion LBM Crude Oil-Brent Cur. Month
-0.0239 US T-Bill 10 Year Cotton
-0.0240 Gold Bullion LBM US T-Bill 10 Year

Table 1. Asymmetry parameters for pairs with significant asymmetry
in dependence (5% level)

5. Conclusion

In this paper, we have proposed to measure asymmetry in dependence by looking
at differences in the coskewness of standardized bivariate random vectors. Our proxy
for a data sample’s degree of asymmetry of the copula is easy to interpret, signals
the direction into which the probability mass of the copula is skewed, and the related
test allows for a fast testing of the null hypothesis of symmetric dependence. In our
two application studies, we have shown that both hydrological and financial market
data may exhibit asymmetry in the underlying copulas. Both the interpretations of
asymmetry in dependence being due to a causal relation between two random variables
X and Y as well as asymmetry signaling diversification benefits during bearish market
phases underline the importance of accounting for asymmetric dependence structures in
financial applications. Thus, our test should constitute a helpful tool for non-life insurers
for both the modeling of insurance claims and portfolio losses.

Future research could try to investigate the systematic nature of the found asymmetric
dependence structures in more detail.

Appendix A. Proofs

Proof of Lemma 2.1. We only consider the claim for the maximum, the one for the
minimum follows from symmetry. A simple calculation shows that

∫
(v − u)3 dC+ =
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33/44, whence it remains to be shown that C+ is a maximizer of the map C �→ ∫
(v −

u)3 dC(u, v).
Let B([0, 1]) denote the set of bounded Borel-measurable functions on [0, 1]. Propo-

sition 2 in Gaffke and Rüschendorf (1981) shows that the maximum in Lemma 2.1 is
attained, and Corollary 3 in the same reference characterizes that maximum: C∗ is a
maximizer of C �→ ∫

(v − u)3 dC(u, v) if and only if there exist functions f, g ∈ B([0, 1])
such that f(u)+ g(v) ≥ (v−u)3 and such that f(u)+ g(v) = (v−u)3 almost surely with
respect to the measure induced by C∗.

An argumentation similar to the one in Example 1(a) of Gaffke and Rüschendorf
(1981) suggests to define

f(u) =

{
− 6

64 − 1
2(2u− 1)3, u < 1

4
1
64 − 3

16u, u ≥ 1
4

and

g(v) =

{
1
64 +

3
16v, v ≤ 3

4
6
64 +

1
2 (2v − 1)3, v > 3

4 .

The proof of Lemma 2.1 is finished once we have shown that f(u) + g(v) = (v − u)3

whenever (u, v) ∈ supp(C+), and that f(u) + g(v) ≥ (v − u)3 for all (u, v) ∈ [0, 1]2.
First, let (u, v) ∈ supp(C+) = A1 ∪A2, where A1 = {(u, v) ∈ (0, 0.25)× (0.75, 1) : v =

1− u} and where A2 = {(u, v) ∈ (0.25, 1)× (0, 0.75) : v = u− 0.25}. If (u, v) ∈ A1, then

f(u) + g(v) = f(u) + g(1 − u) = − 6
64 − 1

2 (2u− 1)3 + 6
64 + 1

2(1− 2u)3 = (1− 2u)3

= (v − u)3.

Similarly, if (u, v) ∈ A2, then

f(u) + g(v) = f(u) + g(u− 1
4) =

1
64 − 3

16u+ 1
64 +

3
16 (u− 1

4 ) = − 1
64

= (v − u)3

It remains to be shown that h(u, v) := f(u) + g(v) − (v − u)3 is nonnegative for all
(u, v) ∈ [0, 1]2. Four cases need to be distinguished, we begin by u ≥ 1/4 and v ≤ 3/4.
Let x = (v − u), a number in [−1, 1/2]. Then

h(u, v) = 1
64 − 3

16u+ 1
64 + 3

16v − x3 = 1
32 + 3

16x− x3.

The polynomial on the right-hand side can be easily seen to be nonnegative on [−1, 1/2]
(with two zeros at x = −1/4 and x = 1/2).

Now, consider u < 1/4 and v > 3/4. Let x = 2v−1 ∈ (1/2, 1] and y = 1−2u ∈ (1/2, 1],
such that v−u = (2v−1+1−2u)/2 = (x+y)/2. By convexity of t �→ t3 on the nonnegative
numbers, we have

(v − u)3 =
{
1
2(x+ y)

}3 ≤ 1
2x

3 + 1
2y

3 = f(u) + g(v),

whence h(u, v) ≥ 0.
Third, let u < 1/4 and v ≤ 3/4, then

h(u, v) = − 5
64 − 1

2(2u− 1)3 + 3
16v − (v − u)3.
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Since ∂
∂uh(u, v) = 3{(v − u)2 − (1 − 2u)2} = 3(v + 1 − 3u)(v + u− 1) is nonpositive on

[0, 1/4] × [0, 3/4], the function u �→ h(u, v) is nonincreasing for any v, whence

h(u, v) ≥ h(14 , v) = − 1
64 +

3
16 − (v − 1

4 )
3.

The polynomial on the right-hand side can be easily seen to be nonnegative on [0, 3/4]
(with two zeros at v = 0 and v = 3/4).

Finally, let u ≥ 1/4 and v > 3/4, then

h(u, v) = 7
64 − 3

16u+ 1
2 (2v − 1)3 − (v − u)3.

Since ∂
∂vh(u, v) = 3{(2v − 1)2 − (v − u)2} = 3(2v − u+ 2)(3v + u− 1) is nonnegative on

[1/4, 1] × [3/4, 1], the function v �→ h(u, v) is nondecreasing for any v, whence

h(u, v) ≥ h(u, 34) =
11
64 − 3

16 − (34 − u)3.

The polynomial on the right-hand side can be easily seen to be nonnegative on [1/4, 1]
(with two zeros at u = 1/4 and u = 1). The proof is finished. �

Proof of Proposition 2.2. Let Cn(u, v) =
√
n(Ĉn(u, v) − C(u, v)} denote the empirical

copula process. As a consequence of (2.4), we can write
√
n(âX,Y − aX,Y ) = (256/27) ·∫

(v − u)3 dCn(u, v). Random variables of the form
∫
g(u, v) dCn(u, v) are considered in

Theorem 6 in Radulovic et al. (2014). For g(u, v) = g0(u, v) = (v − u)3, the functions
T1(g) and T2(g) defined in formula (21) of that reference are given by

T1(g) = −3g1, T2(g) = 3g2.

It now follows from the proof of Theorem 6 in Radulovic et al. (2014) (in their notation:

from the asymptotic equivalence of Z̄n and Z̃n) that∫
(v − u)3 dCn(u, v) =

∫
{g0(u, v)− 3g1(u, v) + 3g2(u, v)}dαn(u, v) + oP(1),

where αn(u, v) = n−1/2
∑n

i=1{1(Ui ≤ u, Vi ≤ v) − C(u, v)}. The integral on the right-
hand side of this display can be written as

n−1/2
n∑

i=1

(27/256) · {h(Ui, Vi)− E[h(Ui, Vi)]},

which implies the assertion. �
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