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Volcanic eruptions are driven by the growth of gas bubbles in magma. The timing and rate of bubble growth are
important because they determinewhether enoughgas pressure can develop to fragment themelt. Bubbles grow
in response to decompression and diffusive transport of dissolved volatiles (predominantly H2O) that exsolve
into the bubbles. Growth is resisted by the viscosity of the melt. Both melt viscosity and H2O diffusivity have
non-linear dependence on the concentration of H2O dissolved in the melt, which necessitates a numerical ap-
proach tomodelling bubble growth. Several bubble growthmodels have previously been published and applied,
but none of them has been validated against continuous, in situ experimental data or provided as a user-friendly
tool. Here we present a numerical bubble growth model, implemented in MATLAB, which allows for arbitrary
temperature and pressure pathways, and accounts for the impact of spatial variations in dissolved H2O concen-
tration on viscosity and diffusivity.We validate themodel against two sets of experimental data: (1) New contin-
uous data for gas-volume fraction as a function of time, collected using optical dilatometry of vesiculating
hydrous obsidian samples which were heated from 930 °C to 1000 °C at atmospheric pressure. This dataset cap-
tures isobaric, isothermal bubble growth under strongly disequilibrium conditions. (2) Discrete data from pub-
lished decompression experiments at 825 °C and pressures from 200 MPa to ~5 MPa with decompression rates
from 0.1MPa s−1 to 10MPa s−1. These experiments represent isothermal, decompression-driven bubble growth
spanning equilibrium to strongly disequilibrium conditions. The numerical model closely reproduces the exper-
imental data across all conditions, providing validation against contrasting bubble growth scenarios. The vali-
dated model has a wide range of potential volcanological applications, including forward modelling of bubble
growth phenomena, and inverse modelling to reconstruct pressure–temperature–time pathways from textures
and volatile contents of eruptive products.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Introduction

Bubble growth drives magma ascent in the shallow crust. The rate of
bubble growth is an important control on whether an eruption is effu-
sive or explosive, because rapid growth can lead to magma fragmenta-
tion (Degruyter et al., 2012; McBirney and Murase, 1970; Sparks,
1978; Verhoogen, 1951). Accurate modelling of bubble growth pro-
cesses is therefore necessary for the investigation of many physical vol-
canological problems. However, explicit forward-modelling of bubble
growth remains challenging because it involves several non-linear and
coupled physico-chemical processes (Blower et al., 2001; Liu and
Zhang, 2000; Lyakhovsky et al., 1996; Navon et al., 1998; Proussevitch
ellin).

. This is an open access article under
and Sahagian, 1998; Sparks, 1978); consequently, a numerical approach
is required to model bubble growth accurately. Furthermore, the pres-
sure and temperature changes that drive and modify bubble growth
may vary in a complex way as a packet of magma moves through the
volcanic system from crustal reservoir to final emplacement (Carey
et al., 2013; McIntosh et al., 2014). For practical applications, therefore,
a model should be flexible, accurate, and numerically stable over non-
linear temperature and pressure pathways.

Bubbles grow through equation-of-state expansion when the gas
pressure exceeds the ambient pressure confining the magma. The ex-
cess pressure usually arises from a combination of decreasing confining
pressure and exsolution of volatile species (principally H2O) into the
bubble. Growth is retarded by viscous stresses arising in the shell of sil-
icate melt that surrounds the bubble, as it flows to accommodate the
growth. Importantly, both melt viscosity and the diffusivity of H2O
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. The geometry of the numerical bubble growth model following Proussevitch et al.
(1993) and Blower et al. (2001). a) A single unit cell, comprising a spherical bubble in a
concentric spherical melt-shell. The line x1 → x2 is a radial transect across the melt shell;
other symbolic notation is defined in the main text in Section 2. b–d) Schematic
representation of spatial variation in concentration of dissolved H2O, melt viscosity, and
diffusivity of H2O, across the radial transect x1 → x2 during bubble growth.
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depend on the concentration of H2O dissolved in the melt
(e.g., Giordano et al., 2008; Hess and Dingwell, 1996; Zhang and Ni,
2010). Concentration itself varies as H2Odiffuses through the shell in re-
sponse to changes in solubility at the bubble wall (Blower et al., 2001;
Lensky et al., 2001; Proussevitch and Sahagian, 1996; Proussevitch and
Sahagian, 1998). It is this inter-dependence of processes that renders
the problem strongly non-linear.

Previous studies of bubble growth processes in magma have adopted
theoretical,mathematical, andnumerical approaches (Blower et al., 2001;
Chernov et al., 2018; Huber et al., 2014; L'Heureux, 2007; Lensky et al.,
2004; Proussevitch and Sahagian, 1998; Proussevitch et al., 1993;
Sparks, 1978; Toramaru, 1995) or experimental or phenomenological ap-
proaches (Burgisser and Gardner, 2004; Gardner et al., 1999; Gardner
et al., 2000; Giachetti et al., 2019; Hajimirza et al., 2019; Hamada et al.,
2010; Liu and Zhang, 2000; Mangan and Sisson, 2000; Masotta and
Keppler, 2017; Mourtada-Bonnefoi and Laporte, 2004; Ryan et al.,
2015a; Ryan et al., 2015b). This previous work has demonstrated that
changes in temperature and pressure, and variations inmelt composition,
volatile supersaturation, volatile species, and bubble number densities,
are important in controlling the dynamics of bubble growth and, conse-
quently, the characteristics of volcanic eruptions, underlining the need
for a validated and general numerical model for bubble growth. There is
also significant potential to use bubble growth models in an inverse
sense, to make inferences about eruptive conditions from analysis of nat-
ural erupted products, based on observed vesicle size distributions (e.g.
Carey et al., 2013) or volatile concentrations measured in transects in
glass away from vesicles (e.g. Watkins et al., 2012).

In this contribution, we provide a general, easy-to-use,
experimentally-validated numerical tool for modelling bubble growth
in magmas under arbitrary conditions. Building on the mathematical
model formulation of Blower et al. (2001), Proussevitch et al. (1993)
and Proussevitch and Sahagian (1996), we develop a general computer
model using MATLAB, which we make available as a supplementary
package. We validate our model against data from two complementary
types of experiment: (1) in situ continuous data for bubble growth
under isobaric non-isothermal conditions, generated specifically for
this study; and (2) a collated suite of data from published decompres-
sion tests (Burgisser and Gardner, 2004; Hamada et al., 2010;
Mourtada-Bonnefoi and Laporte, 2004). As a result, the validated
model can be used confidently to generate a complete description of
the bubble growth history – evolving bubble radius, melt-shell thick-
ness, internal gas pressure, spatial distribution of H2O, and associated
physical properties of the melt – for arbitrary pressure–temperature–
time pathways. We anticipate that the model will be used to forward
model natural magmatic and volcanic scenarios, to plan and interpret
laboratory experiments, and to invert data from natural samples to re-
construct eruptive history.

2. Numerical model

We adopt the mathematical framework of Blower et al. (2001),
which is, in turn, built on the work of Proussevitch and Sahagian
(1996). The model solves the hydrodynamics of the melt surrounding
the bubble, the diffusion of H2O through the melt, the equation of
state of H2O in the bubble, and the mass balance of H2O between the
melt and the bubble. We extend the framework to include the effects
of surface tension and update the componentmodels for material prop-
erties. The numerical implementation is described in detail in Appendix
A, and a downloadable, user-friendly MATLAB implementation of the
modelwith usermanual is available as an online electronic supplement.

2.1. Geometry

We adopt a ‘shell model’ (Blower et al., 2001; Proussevitch et al.,
1993) in which the bubbly magma is conceptually divided into units
composed of a spherical bubble and its associated spherical shell of
melt (Fig. 1). This approach reduces the problem to 1D spherical sym-
metry, which simplifies formulation and computation, but it does not
capture asymmetry introduced by bubble–bubble interactions, which
become increasingly important as the bubble volume fraction increases.
The bubble–shell unit is used to compute the growth and resorption be-
haviour of a single bubble in response to pressure and temperature
changes. We follow the approach of Proussevitch et al. (1993) and gen-
eralize this to the behaviour of a body of bubbly magma by assuming
that all of the units are identical, hence that the evolution of physical
properties of the unit – porosity, bubble radius, melt-shell viscosity,
etc. – is identical to that of the bulk magma. This leads to the following
relationships among bubble radius R, shell radius S (where both R and S
are measured from the bubble centre; Fig. 1), the gas volume fraction ϕ,
and the bubble number density per unit volume of dense magma Nb:

Vm ¼ 1
Nb

¼ Vg

ϕ
−Vg ;Vg ¼ ϕVm

1−ϕð Þ ¼
4
3
πR3;R ϕ;Nbð Þ

¼ Vg

4=3ð Þπ
� �1

3

;ϕ R;Nbð Þ ¼ Vg

Vg þ Vm
� � ;Nb R;ϕð Þ ¼ 1

Vm
;

ð1Þ

where Vm is the volume of themelt and Vg is the volume of the gas in the
shell–bubble system.

We define the radial thickness of the melt shell as L= S− R (Fig. 1),
such that

Vg þ Vm ¼ 4
3
πS3 ¼ 4

3
πR3

ϕ
; S

¼ Rϕ−1
3 ¼ Lþ R:

ð2Þ

Together Eqs. (1) & (2) capture all the geometrical relationships re-
quired in our model.

2.2. Governing equations

Amodified formof the Rayleigh-Plesset equation describes the hydro-
dynamics of the growth of a spherical bubble in a finite incompressible
shell of liquid in the absence of inertial effects (Proussevitch et al., 1993)
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pg ¼ p∞ þ 2Γ
R

þ 4η
dR
dt

1
R
−

R2

S3

 !
ð3Þ

where pg is the pressure of the gas in the bubble, p∞ is the hydrostatic
pressure acting on the outside of the liquid shell, pc = 2Γ/R is the capil-
lary pressure at the bubble wall, for which Γ is the gas-liquid interfacial
tension, η is the viscosity of the liquid in the shell, and t is time. Formag-
matic systems, the viscosity of the melt is a strong function of local dis-
solved H2O content; since this varies radially over time as H2O diffuses
in and/or out of the bubble, the radial distribution of viscosity also
evolves over time. Blower et al. (2001) adapted Eq. (3) to account for
changes in the radial distribution of viscosity by integrating over the
shell thickness in spherical coordinates. We adopt this approach, and
additionally include the capillary pressure, which was neglected by
Blower et al. (2001), to improve fidelity for bubbles that are sufficiently
small that the capillary term is important:

pg ¼ p∞ þ 2Γ
R

þ 12R2 dR
dt

Z S0

R0

η xð Þx2

R3−R3
0 þ x3

� �2 dx; ð4Þ

where R0 and S0 are the radius of the bubble andmelt shell at t=0, and
x is the radial Lagrangian coordinate which represents the spatial coor-
dinate in the melt shell.

The use of a radial Lagrangian coordinate system simplifies the
mathematical formulation of the integral because, in this system, the ra-
dial position x of any infinitesimal shell of melt does not change as the
bubble grows or shrinks. The Lagrangian radial coordinate x is related
to the Eulerian radial coordinate A by conservation of volume

A3−R3 ¼ x3−R3
0: ð5Þ

Evaluation of Eq. (4) requires the radial distribution of viscosity η(x) at
time t, which depends on the spatial distribution of H2O concentration in
the melt C(x) at time t. This is computed by solving the one-dimensional
form of Fick's second law in spherical coordinates in the Lagrangian coor-
dinate system (Blower et al., 2001; Braithwaite et al., 1999):

∂C
∂t

¼ 1
x2

∂
∂x

D
A4

x2
∂C
∂x

 !
; ð6Þ

where D is the diffusivity of H2O in the melt, which appears inside the
outer spatial derivative because it depends on the local H2O concentra-
tion. The Lagrangian reference frame accounts for the advective flux of
H2O molecules towards or away from the bubble wall as the bubble
grows or shrinks (Blower et al., 2001). The radial H2O concentration
distribution C(x) is converted to a radial viscosity distribution η(x) via
a constitutive law for η(C), which is discussed later in Section 2.3.3,
allowing the integral in Eq. (4) to be evaluated. The radial H2O concen-
tration distribution is used to compute the mass m of gas in the bubble
at time t by assuming conservation of mass of H2O within the bubble–
shell unit

m ¼ m0 þ 4πρm

100

Z S0

R0

C x;0ð Þx2 dx−
Z S0

R0

C x; tð Þ dx
 !

; ð7Þ

wherem0 is the initial mass of gas in the bubble, ρm is the density of the
melt and C is in wt%. Themassm(t) and the bubble radius R(t) can then
be converted to pg at any given pressure and temperature using an
equation of state for the gas (or supercritical fluid) phase, which is
discussed later in Section 2.3.2. For most situations of interests, the sys-
tem of equations (Eqs. (1)–(7)) must be solved numerically to compute
R(t) and ϕ(t).
2.3. Material properties

Solution of the governing equations requires models for various
physical properties of the materials, as functions of pressure pg or p∞,
temperature T, and concentration of H2O dissolved in the melt C. The
relevant physical properties are: 1) solubility of H2O in the melt phase
Cs(pg,T); 2) diffusivity of H2O through the melt D(C,p∞,T); 3) equation
of state for the gas (or supercritical fluid) phase ρg(pg,T); and 4) the vis-
cosity of the melt phase η(C,T). In this section we present constituent
models for these physical properties. The models are appropriate for
the volatile species (H2O) and melt composition (rhyolite) used in the
experiments that produced the data we use to validate our model
(Section 3). However, the flexibility of the generalmathematical frame-
work presented above allows different constituentmodels to be chosen
for other volatile phases and melt compositions. Effects associated with
the heat of vaporization are neglected in our model. This is explored in
Sahagian and Proussevitch (1996), but may be a minor effect at most
magmatic conditions (Liu et al., 2005).

2.3.1. Solubility and diffusivity
The solubility sets the concentration boundary condition for the gas–

melt interface, determining whether H2O will exsolve from the melt
into the bubble, or resorb from the bubble back into the melt. Liu et al.
(2005) present an equation for the solubility of H2O

Cs ¼
354:94pg0:5 þ 9:623pg−1:5223pg1:5
� �

T
þ 0:0012439pg

1:5; ð8Þ

where pg is in MPa and T is in K. Eq. (8) is based on experiments on syn-
thetic haplogranites and natural rhyolites at 700 to 1200 °C and 0 to
500 MPa. This model is poorly constrained at low pressure and the
dataset against whichwe validate our numerical model includes results
from experiments conducted at atmospheric pressure (0.1MPa). There-
fore, we derive a low-pressure solubilitymodel byfitting the same func-
tional form as in Eq. (8) to Cs(T) data from Fig. 5b and Table 3 of Ryan
et al. (2015b), for rhyolitic melt at 0.1 MPa and 900–1100 °C. Here we
neglect the pressure dependence and aim to find a simple model for
the temperature dependence of the solubility of water specifically for
use with 0.1 MPa experiments. We find:

Cs ¼ 92:3
T

þ 0:0287: ð9Þ

The starting material used by Ryan et al. (2015b), and used to con-
strain Eq. (9), is identical to the material that we use in our 0.1 MPa ex-
periments. We use either Eq. (8) or (9) to calculate Cs, choosing the
equation that is more appropriate for the relevant experimental
conditions.

At low H2O concentration (C ≲ 2 wt%), the diffusivity of total H2O in
rhyolite is captured by Eq. (15) of Zhang and Ni (2010):

D ¼ C exp −18:1þ 0:001888 p∞−
9699þ 3:626 p∞

T

� �
; ð10Þ

where p∞ is in GPa and T is in Kelvin. This equation is appropriate for the
continuous, in situ experiments, which are conducted at atmospheric
pressure. At higher H2O concentrations (C N 2 wt%), diffusivity shows
an exponential dependence on H2O concentration, hence a more so-
phisticated formulation for D(C,p∞,T) is required (e.g. Coumans et al.,
2020). We use a combination of Eqs. (1), (7a), (13) and (14) from
Zhang and Ni (2010) for modelling the decompression experiments,
which have H2O concentration up to C = 6.8 wt%. Both diffusion
functions are based on experiments using natural and synthetic
metaluminous/peraluminous rhyolites at 676 to 1900 K, 0 to 1.9 GPa,
and 0 to 8 wt% total H2O.
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2.3.2. Equation of state
Solution of Eqs. (1)–(7) gives the time evolution of the radius of the

bubble R and themass of H2O in the bubblem, fromwhich the density of
H2O in the bubble is calculated as

ρg ¼ 3m

4πR3M
; ð11Þ

where ρg is in mol cm−3,m is in grams,M is in g mol−1, and R is in cm.
These units are chosen to be consistentwith constants used in the equa-
tion of state of Pitzer and Sterner (1994), which is used to determine the
pressure in the gas (or supercritical fluid) phase

pg
10GT

¼ ρg þ a1ρg
2−ρg

2−
a3 þ 2a4ρg þ 3a5ρg

2 þ 4a6ρg
3

a2 þ a3ρg þ a4ρg
2 þ a5ρg

3 þ a5ρg
4

� �2
þ a7ρg

2e −a8ρgð Þ þ a9ρg
2e −a10ρgð Þ ð12Þ

where pg is in MPa, T is the temperature in Kelvin, G = 83.144 cm3 bar
K−1mol−1 is the gas constant, and a1− a10 are temperature-dependent
parameters given in Pitzer and Sterner (1994).

2.3.3. Melt viscosity
The melt viscosity η is computed as a function of temperature and

local H2O concentration using the empirical parameterization of
Giordano et al. (2008). This parameterization has been calibrated for a
range of melt compositions common in terrestrial volcanic rocks –
mafic to silicic, subalkaline to peralkaline, and metaluminous to
peraluminous – against experiments spanning a temperature range of
525–1705 °C and H2O concentrations from 0 to 8 wt%. The model is
based on the Vogel-Fulcher-Tamman equation for non-Arrhenian tem-
perature dependent viscosity:

log10η ¼ J1 þ
J2

T− J3
; ð13Þ

where η is in Pa s, and J1, J2, and J3 are parameters that depend on melt
composition, computed following Giordano et al. (2008).

2.4. Numerical methods

A numerical solution has been developed, in the MATLAB program-
ming environment, to solve the governing equations presented in
Section 2.2 and compute the required material properties via the auxil-
iary equations presented in Section 2.3. The principal output is the bub-
ble radius as a function of time R(t), which is computed by solving
Eq. (4) for dR/dt and integrating. The solution of Eq. (4) requires that
the spatial distribution of dissolved H2O be known at each timestep;
this is determined through solution of Fick's second law (Eq. (6)) via
the method of lines. This approach involves approximating the spatial
derivatives using finite differences such that the partial differential
equation is transformed into a coupled system of ordinary differential
equations in time, which we solve using MATLAB's in-built solver
ODE15s (Shampine and Reichelt, 1997). Solutions are computed on a
radial line through themelt shell, discretized into nodes that are spaced
logarithmically to give the highest spatial resolution near the bubble
wall, where the concentration gradient is highest.

2.4.1. Initial conditions and boundary conditions
The numerical model requires initial values for the bubble radius R

and shell thickness S, the pressure in the bubble pg and at the shell's
outer wall p∞, the isothermal system temperature T, the mass of H2O
in the bubble m0, and the spatial distribution of H2O concentration in
the shell C(x). In principle, these quantities can be set to any value
that is within the range of validity for the models used to compute ma-
terial properties. In practice, we initialize themodel to equilibrium con-
ditions, such that: (1) the temperature, pressure, bubble radius, and
mass of H2O in the bubble satisfy the equation of state (Eqs. (11) and
(12)); (2) the pressure in the bubble balances the sum of the ambient
pressure and capillary pressure, i.e. pg = p∞ + pc; (3) the H2O concen-
tration in the shell is uniform (i.e. the same for all x). Once the model
is initialized, p∞ and T may be varied arbitrarily as functions of time to
drive changes in the modelled system. Initial bubble radius can be set
by either defining an initial gas volume fractionϕ and computing the ra-
dius from bubble number density Nb, or by setting the radius directly.
The model does not include the bubble formation process and cannot
be initialized with a bubble radius (or gas volume fraction) of zero;
hence, when modelling growth immediately following bubble forma-
tion, bubble radius must be initialized to a small but non-zero value.
In practice, when we wish to model bubble growth from formation,
we set the initial gas volume fraction to the arbitrary value of ϕ0 =
10−6, which is chosen to be small enough that subsequent growth is in-
dependent of the choice of ϕ0.

Boundary conditions at the inner and outer edges of the melt shell
are required. At the inner edge (i.e. the bubble–melt interface) the con-
centration of dissolved H2O is set to the solubility value, determined for
current values of pg and T, via Eq. (8) or (9). At the outer edge, a zero-
flux boundary condition is imposed by setting the spatial gradient of
the concentration of dissolved H2O to zero. A further condition is that
the total mass of H2O in the bubble–shell unit (i.e. both dissolved and
as a free phase) is conserved throughout the simulation.

2.4.2. Availability of code
Details of the implementation of the numerical model, including

pseudo-code, are provided in Appendix A. A user-friendly version of
the code, implemented inMATLAB, is available to download in the Sup-
plementary information. A brief user guide is available as an electronic
supplement.

3. Experimental methods

We validate the model presented in Section 2 against two contrast-
ing and complementary suites of experimental data. The first dataset,
generated specifically for this study, captures the continuous evolution
of the gas volume fraction ϕ of a vesiculating rhyolite melt during
heating at 1 atm. This approach, which is chosen principally because
the resulting data arewell suited tomodel validation, also has direct ap-
plication to the natural scenario of thermal vesiculation of magma
(Lavallée et al., 2015). Continuous data provide a strong test of the bub-
ble growth model because: (1) they contain a much larger number of
individual ϕ(t) datapoints than conventional discontinuous datasets
from high-pressure, high-temperature (HPHT) experiments; (2) a sin-
gle sample can be tracked through all stages of bubble growth; and
(3) thedataset is not complicated bypoorly-constrained resorption pro-
cesses during quench (McIntosh et al., 2014).

The second dataset is drawn from published HPHT decompression
experiments (Burgisser and Gardner, 2004; Hamada et al., 2010;
Mourtada-Bonnefoi and Laporte, 2004). While these experiments are
discontinuous in nature, they complement the continuous experiments
because: 1) they include significant changes in pressure, replicating
conditions that are typical of natural volcanic systems; and 2) they ex-
tend the range of methodologies and compositions considered. Fig. 2
shows, schematically, the different pressure and temperature pathways
represented by the two suites of experimental data.

3.1. Continuous isobaric experiments

These experiments use a tholeiitic rhyolite obsidian from
Hrafntinnuhryggur, Krafla (Iceland) as startingmaterial (see glass com-
position for sampling site ‘AO’ given in Tuffen and Castro, 2009). Ryan
et al. (2015b) used glass from the same outcrop location to collect the
data that we use to calibrate the solubility model for atmospheric pres-
sure (Eq. (9)). They measured the initial H2O concentration of the glass



Fig. 2. A schematic of the pressure–temperature–time histories for two different types of experiment modelled in this study: a) continuous isobaric experiments performed as part of this
study; and b) published decompression experiments (Burgisser and Gardner, 2004; Hamada et al., 2010; Mourtada-Bonnefoi and Laporte, 2004). For each plot, i, ii, and iii represent times
forwhich schematic representations of the bubble–shell unit are shownunderneath. In a): bubble growth (i, ii, iii) is drivenby the increase in temperature,which reduces H2O solubility. In
b): bubble growth (i, ii) is driven by decompression, while bubble shrinkage (iii) is driven by decreasing temperature, which causes volume decrease by equation of state and increased
solubility, which drives resorption of H2O into the melt shell. All these processes are captured by the numerical model (Section 2).
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to be Ci=0.114±0.013wt% using Fourier transform infrared spectros-
copy (FTIR).

Continuous ϕ(t) data were collected during heating of the obsidian
using a Hesse Instruments EM-201 Optical Dilatometer, following
Wadsworth et al. (2016). Obsidian cores of 3 to 5 mm diameter and
height are loaded into a mini-tube furnace and back-lit with a halogen
lamp such that the silhouette is projected towards a CCD camera captur-
ing images continuously at 1Hz. Images are stored for analysiswhen the
temperature recorded by the thermocouple under the sample plate
changes by N1 °C, or when the area of the image occupied by the sample
has changed by more than 1% since the last stored image. The samples
were heated at a constant rate to a dwell temperature in the range
930− 1000 °C. Experimental conditions are given in Table 1. The evolv-
ing gas volume fraction of the sample during the experiment is recon-
structed from the imagery by applying a Canny edge detection
algorithm to find the outer edge of the silhouette, then applying the
solid of revolution technique (Wadsworth et al., 2016) to find the vol-
ume V(t). We correct for melt/glass expansion with changes in temper-
ature by correcting the data to background expansion observed prior to
bubble nucleation. The gas volume fraction is calculated as

ϕ tð Þ ¼ V tð Þ
V0

−1; ð14Þ

where V0 is the initial, bubble-free volume of the sample. All sample di-
mensions were measured after experiments to confirm the volume cal-
culations from image analysis; the overall uncertainty was found to be
of the same order as the uncertainty derived from the pixel resolution,
which is ~0.6% relative.
Table 1
Experimental parameters for continuous, isobaric experiments.

Sample Heating
rate
K/s

Dwell
temperature
°C

Dwell
time
h

Final recorded
porosity
[–]

K_1_1050 0.5 1000 7.9 0.64a

K_2_975 0.5 930 10 0.42a

K_3_975 0.5 930 11.8 0.38a

K_4_1000 0.5 950 9.5 0.37
K_5_1050 0.3 1000 9.4 0.24
K_6_1050 0.5 1000 1.9 0.25

a Samples reach equilibrium porosity (Figs. 3–5).
3.2. Decompression experiments

We compile published data from decompression experiments per-
formed by Burgisser and Gardner (2004), Mourtada-Bonnefoi and
Laporte (2004), and Hamada et al. (2010). A summary of relevant ex-
perimental details is given below, and full details can be found in the
original works.

Burgisser and Gardner (2004) conducted experiments on natural
rhyolite glass, with 75.6 wt% SiO2, from the Panum Crater dome (CA,
USA). Experimental charges were held with excess H2O at 825 °C and
150 MPa in an externally heated pressure vessel for 5 days to ensure
uniform saturation. Samples first underwent a nucleation step, in
which the pressure was dropped from 150 MPa to 100 MPa ‘instanta-
neously’, and held for 10 to 15 min to produce a unimodal population
of ‘seed’ bubbles at equilibrium and with a bubble number density
that is repeatable within a narrow interval (Table 2). Samples were
then decompressed at different controlled rates, to different final pres-
sures pf using a stepwise method to approximate linear decompression.
Upon reaching final pressure, the samples were quenched rapidly,
cooling below the glass transition in around 3 to 10 s. Relevant experi-
mental parameters are summarized in Table 2.

Mourtada-Bonnefoi and Laporte (2004) and Hamada et al. (2010)
conducted experiments on natural rhyolite glass, with 77.4 wt% SiO2,
from Güney Dagi, Turkey. Both studies followed similar experimen-
tal procedures, which differed from Burgisser and Gardner (2004).
Hydrated glass samples were made with 6.83 to 7.05 wt% H2O
(Mourtada-Bonnefoi and Laporte, 2004) and 6.6 wt% H2O (Hamada
et al., 2010), which acted as the starting material for decompression
experiments. For both studies, the samples were loaded into an ex-
ternally heated pressure vessel and first pressurized to ~250 MPa
and then heated to either 700 °C (Hamada et al., 2010) or 800 °C
(Hamada et al., 2010; Mourtada-Bonnefoi and Laporte, 2004) in
~60 to 90 min. These temperatures and pressure conditions, at
which the samples were H2O undersaturated, were chosen to ensure
that the samples were bubble-free before decompression, in contrast
with the experiments of Burgisser and Gardner (2004). Experimen-
tal charges were decompressed at different rates to a variable final
pressure, then quenched isobarically. In this study, we use data
only from experiments in the Mourtada-Bonnefoi and Laporte
(2004) and Hamada et al. (2010) suites that were decompressed at
~1 MPa s−1 in order to provide continuity between the datasets col-
lected at 700 °C and 800 °C. Relevant experimental parameters are
summarized in Table 2.



Table 2
Selected experiments from Burgisser and Gardner (2004) – samples beginning 'ABG',
Hamada et al. (2010) – samples beginning ‘SN’, and Mourtada-Bonnefoi and Laporte
(2004) – samples beginning ‘A’.

Sample Experimental
temperature
°C

Final
pressure
MPa

Decompression
rate
MPa s−1

Initial bubble
number density
×1012 m−3

Final
porosity
ϕ

ABG1 825 100 0.0 1.8 0.06
ABG6 825 80 0.1 1.0 0.13
ABG2 825 60 0.1 1.7 0.22
ABG8 825 40 0.1 1.7 0.33
ABG3 825 40 0.1 0.4 0.27
ABG9 825 30 0.1 0.6 0.50
ABG11 825 30 0.1 1.6 0.35
ABG20 825 90 0.5 2.2 0.55
ABG14 825 80 0.5 2.2 0.67
ABG25 825 70 0.5 9.1 0.12
ABG15 825 60 0.5 1.4 0.19
ABG16 825 50 0.5 1.1 0.24
ABG30 825 30 0.5 3.5 0.44
ABG32 825 10 0.5 0.5 0.79
ABG26 825 70 1.0 4.0 0.10
ABG27 825 60 1.0 5.6 0.17
ABG28 825 50 1.0 2.5 0.24
ABG31 825 40 1.0 1.5 0.29
ABG29 825 30 1.0 3.2 0.42
AGB33 825 40 10.0 1.8 0.22
SN12 700 70 0 0 0
SN14 700 60 1 0 0
SN16 700 50 0.7 3.3 0.04
SN23 700 40 0.9 7.6 0.23
SN18 700 30 1 9.8 0.32
A4 800 99 1 0 0
A5 800 88 1.03 0 0
A6 800 85 1.24 2.3 0.02
A2 800 79 0.96 2.3 0.03
A13 800 70 1.24 7.6 0.18
A1 800 59 0.82 4.1 0.31
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3.3. Modelling experimental data

The bubble growth model does not capture the bubble nucleation
process; consequently, certain assumptions are required to initialize
the model for application to the experimental data. For experiments
that begin undersaturated, we assume an initial gas volume fraction of
ϕ0 = 10−6 (a value sufficiently small that the subsequent growth is
not dependent on this choice ofϕ0) at H2O saturation,where the bubble
radius is computed from the chosen initial Nb using Eq. (1). For the
range of Nb used in these experiments initial radii are from 0.5 to
5 μm. It is important that the initial bubble size is larger than the critical
bubble (Proussevitch and Sahagian, 1996), so that surface tension does
not cause the bubble to shrink rapidly to a singularity. For some exper-
iments there are material quantities (for instance bubble number den-
sity or initial dissolved H2O concentration) that are not known
sufficiently accurately to allow the initial conditions to be defined a
priori. These quantities are determined by minimization to the experi-
mental data. The specific steps required to apply the numerical model
to the various experiments are presented below.

3.3.1. Continuous, isobaric experiments
We apply ourmodel to the in-situ bubble growth experiments using

a parameter sweeping approach in which we vary the initial H2O con-
centration Ci and bubble number density Nb; the ranges were chosen
based on the experiments of Ryan et al. (2015b). We set the initial tem-
perature as the temperature at which the melt becomes saturated for
the assumed Ci, as determined by the solubility law (Eq. (9)). The ther-
mal history T(t) follows the experimental pathway from the point of
saturation. Pressure p∞ =0.1 MPa throughout. Model outputs are com-
pared with the experimental data to investigate goodness-of-fit and
each model run is calibrated to the relevant ϕ(t) dataset using the
root mean square error (RMSE) between data and model. In addition
to quantifying the overall goodness-of-fit, the calibration provides
best-fit values and uncertainties for poorly constrained input parame-
ters and quantifies the model sensitivity to input parameters.

3.3.2. Decompression experiments
The Burgisser and Gardner (2004) experiments are modelled from

the beginning of the decompression step and samples are assumed to
start in equilibrium with the conditions at the end of the nucleation
step. The initial gas volume fraction ϕi and H2O concentration Ci are cal-
culated using the solubility law (Eq. (8)) and the conditions of the nu-
cleation step (pressure drop from 150 to 100 MPa at 825 °C) under
the assumption that all H2O exsolved from the melt goes into the bub-
bles. Model runs are performed by parameter sweeping over bubble
number density, which is varied over the experimentally observed
range of 0.4 × 1012 to 10 × 1012 m−3 (Table 2), and over pressure path-
ways that bracket the experimental values: decompression rates of 10,
1, and 0.1 MPa s−1 to final pressures pf in the range 95 to 10 MPa.
When pf is reached the models follow an isobaric linear quench path-
way (Fig. 2b) of 100 K/s, consistent with the experiments.

The Mourtada-Bonnefoi and Laporte (2004) and Hamada et al.
(2010) experiments are modelled together, since they adopt the same
experimental procedure. We use the initial H2O concentration Ci re-
ported in the original studies, which ranges from 6.6 to 7.05 wt%. The
initial gas volume fraction ϕi was 10−6 and bubble number density Nb

had a range of roughly 0.5 × 1012 to 10 × 1012 m−3. The initial pressure
is set at a value consistentwith the pressure at which bubble nucleation
occurs as extracted from Hamada et al. (2010) Fig. 4 (pi = 52 MPa at
T=700 °C, and pi =85MPa at T=800 °C). Model runs are performed
at a decompression rate of 1 MPa s−1. When pf is reached, the models
follow an isobaric linear quench pathway of qquench = 100 K/s
(Fig. 2b) consistentwith the experiments. Both suites of decompression
experiments include samples with H2O contents that are higher than
the stated range of validity of the diffusivity model presented in
Eq. (10), so we use instead the diffusivity model encapsulated in
Eqs. (1), (7a), (13), and (14) of Zhang and Ni (2010). This model is
more complex than Eq. (10) but is valid over the appropriate range of
H2O concentrations.

Eachmodel run yields a complete ϕ(t) pathway for the sample from
the start of the experiment to the end of the quench. For each set of
modelling runs that bracket the conditions for an experimental suite,
the minimum and maximum ϕ at each pf is computed from among
the model runs. These limits define a model range for comparison
with the experimental data.

4. Results and analysis

4.1. Modelling of continuous, isobaric experiments

The samples heated at atmospheric pressure show a characteristic
sigmoidal ϕ(t) growth curve (Fig. 3). Sample growth – which corre-
sponds to bubble growth – is slow initially, then accelerates as temper-
ature increases and melt viscosity drops, before slowing again as the
sample approaches equilibrium saturation at atmospheric pressure
and the experimental dwell temperature. Results are qualitatively sim-
ilar to those of Ryan et al. (2015b) except that their experiments do not
show the slow and accelerating early growth phases, presumably be-
cause their samples are loaded directly into a furnace pre-heated to
the dwell temperature, such that the samples heat rapidly and most of
the growth occurs at the dwell temperature. The slow and accelerating
growth phases indicate that the high viscosity of themelt at lower tem-
peratures plays an important role in limiting bubble growth rate in our
experiments.

The best-fit model ϕ(t) data show close agreement with the experi-
mental data (Fig. 3a, sample K_2_975), faithfully capturing all stages of
accelerating and decelerating growth. The companion plot (Fig. 3b)



a) b)

c)

Fig. 3. Application of the numerical bubble growth model to experiment K_2_975 (see Table 1 for experimental conditions) which reaches an equilibrium gas volume fraction, ϕ≈ 0.4.
a) Observed data and the best fit model. b) Goodness-of-fit between the model and the data, represented as root mean squared error (RMSE), as a function of Ci and Nb. The ‘bullseye’
pattern indicates a clear global minimum in Ci and Nb, which are therefore well constrained. c) Model outputs for four different combinations of Ci and Nb (see legend) demonstrate
the effect of each parameter on growth rate and equilibrium gas volume fraction.
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shows the dependence of goodness-of-fit on the values of the two
swept parameters: bubble number density Nb, and initial H2O concen-
tration Ci. For this dataset there is a clear minimum of root-mean-
square-error (RMSE) atNb=2.11 × 1010m−3 and Ci=0.1106 wt%. La-
belledmodel ϕ(t) curves showhow themodel deviates from the data as
the bubble number density and initial H2O concentration are varied, il-
lustrating the sensitivity of the goodness-of-fit to those parameters
(Fig. 3c). This analysis shows that the initial H2O concentration controls
the equilibrium bubble volume fraction, and the bubble number density
controls the rate of approach to equilibrium. Higher initial H2O concen-
tration leads to higher equilibrium bubble volume fraction at constant
pressure simply because there are more exsolved moles of H2O at equi-
librium. Higher bubble number density leads to faster bubble growth
because the distance over which H2O must diffuse through the melt to
exsolve into the bubble is shorter, and because the shell of viscous
melt that provides resistance to growth is thinner.

The model can reproduce growth curves closely for all experiments
in which the final bubble volume fraction ϕ ≲ 0.4. However, the quality
of constraint on thebest-fit parameters depends on the nature of the ex-
perimental data, as shown in Fig. 4. For example, the data from sample
K_3_975 (Fig. 4a) are very similar to those for sample K_2_975
(Fig. 3a), except that the equilibrium bubble volume fraction plateau
is not as well defined. This results in a distinctive covariation of the
swept parameters, manifesting as a trench-like RMSE minimum in the
goodness-of-fit plot (Fig. 4b). This is more pronounced for sample
K_4_1000 (Fig. 4c, d)which does not reach the equilibriumplateau dur-
ing the experimental run time, and still more pronounced for sample
K_6_1050 (Fig. 4e, f) which does not clearly reach the inflection be-
tween accelerating and decelerating growth. The result is that equilib-
rium gas volume fraction is poorly constrained, leading to poor
constraint on initial H2O concentration. This, in turn, facilitates co-
variation of bubble number density: for instance, a lower initial H2O
concentration can be compensated by a higher bubble number density
to give a similar ϕ(t) curve over the data range. Where there is strong
co-variation, if an independent constraint on one of the variables (Ci
orNb) is available, thenminimization of themodel can be used to deter-
mine the value of the other variable.

Fig. 4g, h shows a sample that approaches ϕ ~ 0.25. The data come
close to the equilibrium plateau, so the minimum is well defined, but
because the final gas volume fraction is low the constraint on the initial
H2O concentration is rather poor. Thismanifests as awider RMSE trench
than is found for samples that approach a higher equilibrium gas vol-
ume fraction.

For samples that reach a final bubble volume fraction ϕ ≳ 0.4, the
model is not able to capture accurately the whole of the sample growth
curve. Fig. 5 presents data for sample K_1_1050, which approaches an
equilibrium gas volume fraction ϕ = 0.64. This equilibrium value is
used to compute the initial H2O concentration Ci = 0.114 wt% (via the
equation of state and Eqs. (1) and (8)). A suite of model runs that
sweep over bubble number densities are shown in Fig. 5. The data
closely track the model for a small range of Nb for ϕ ≲ 0.25, but deviate
to successively lower Nb for ϕ ≳ 0.25, indicating that the model overes-
timates bubble growth rate for higher ϕ. This implies that some of the
model assumptions are violated at higher gas volume fractions.



a)

c)

b)

d)

e) f)

g) h)

Fig. 4.Application of the numerical bubble growthmodel to experiments K06_975 (a, b), K07_1000 (c, d), K11_1050 (e, f) and K10_1050 (g, h) (see Table 1 for experimental conditions). a,
c,e,g) Observed data and the best fit model. b,d,f,h) Goodness-of-fit between the model and the data, represented as root mean squared error (RMSE), as a function of Ci and Nb. Best fit
parameters for K06_975 are Ci=0.1106, log10Nb=10.326, for K07_1000 areCi=0.1100, log10Nb=10.177, for K11_1050 are CH2O=0.1065, log10Nb=10.544, and forK07_1000 are CH2O

=0.1035, log10Nb=10.544. The equilibrium gas volume fraction is not as well defined by the observed data for these samples it is in sample K05_975 (Fig. 3); this manifests as a best-fit
trench of covariation, rather than a ‘bullseye’ pattern, indicating that the best fit parameters are not as well constrained. For sample K11_1050 (e, f) the data stop well short of the
equilibrium gas volume fraction and a similarly good fit is obtained for pairs of values anywhere along the trench of covariation. Sample K10_1050 (g, h) has a low equilibrium gas
volume fraction compared with other samples, which results in a broader trench.
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4.2. Modelling of decompression experiments

Each decompression experiment yields data only for the final state
of the sample at the end of the experimental run. However, application
of the numerical model allows us to reconstruct the evolution of the gas
volume fraction throughout the experiment. Fig. 6 shows twomodelled
Fig. 5. Application of the numerical bubble growth model to experiment K_1_1050 (see
Table 1 for experimental conditions) which reaches a relatively high equilibrium gas
volume fraction of ϕ ≈ 0.64. The solid lines represent distinct model runs at different
bubble number densities. The initial H2O concentration for the model runs was
estimated from the equilibrium gas volume fraction (see text for details). Note that at
ϕ ≳ 0.4, no single model curve captures the data, which cross model curves towards
lower bubble number densities.
ϕ(t) curves for decompression experiment sample ABG27 (see Table 2
for experimental conditions); the equilibrium growth curve is also plot-
ted. The twomodel runs are identical except that: 1) they assume differ-
ent values for the bubble number density; and 2) one assumes instant
quench, equivalent to stopping the model before cooling, while the
other run includes a realistic quench rate, and so captures bubble
Fig. 6. Application of numerical model to experiment ABG27 (Table 2). Decompression
rate is 1 MPa s−1 from initial pressure 100 MPa to final pressure 60 MPa. Black line
represents the equilibrium growth curve for the initial H2O concentration and dwell
temperature. Model runs for two different bubble number densities are shown,
bracketing the range of Nb observed in the experimental samples (Table 2): ‘max. run’
with Nb = 10 × 1012 m−3 is stopped at pf, mimicking an instantaneous quench; ‘min.
run’ with Nb = 0.4 × 1012 m−3 includes quench at 100 K/s at pf. The difference between
the max. and min. runs for the range of experimental conditions across the suite of
samples in Table 2 defines the range of ϕ shown in the shaded bands in Fig. 7.
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shrinkage and resorption during isobaric cooling. In both cases, the
curves show accelerating growth during isothermal decompression.
The run that includesmodelling of the quench process shows decelerat-
ing shrinkage during isobaric cooling. The shrinkage is driven by a com-
bination of the equation-of-state decrease in gas volume as temperature
drops, and by resorption of H2O from the bubble, back into the melt, as
the solubility increases with decreasing temperature (Eq. (8)). Analyti-
cal evidence for thermally-driven resorption in the same suite of sam-
ples is presented by McIntosh et al. (2014). Owing to the resorption
during quench, the peak gas volume fraction attained by the sample is
substantially higher than the final, measured value.

The two curves in Fig. 6 show the effect of varying bubble number
density and quench cooling rate on the ϕ(t) evolution of a sample.
Higher bubble number density leads to faster growth, shifting the
modelledϕ(t) towards the equilibriumcurve. As before, growth is faster
at higher bubble number density because the distance over which H2O
must diffuse through the melt to exsolve into the bubble is shorter,
and because the shell of viscousmelt that provides resistance to growth
is thinner. Therefore, the gas volume fraction reached at the final pres-
sure is higher, and nearer the equilibrium value, for higher bubble num-
ber density. In general, a faster quench allows less time for the sample to
resorb and shrink – the instant quench run can be thought of as the lim-
iting case of fast cooling – hence the final gas volume fraction is higher
for a faster quench.

We conductedmodel runs of the sort shown in Fig. 6 for the range of
experimental conditions across the suite of samples in Table 2 (i.e. sam-
ples from Burgisser and Gardner (2004), Mourtada-Bonnefoi and
Laporte (2004), and Hamada et al. (2010)). Values of bubble number
density and cooling rate during quench (instant quench and linear
quench at 100 K/s) are bracketed to produce amaximum andminimum
curve for final gas volume fraction as a function of final pressure, for
three different values of decompression rate (Burgisser and Gardner
samples) and for two different temperatures (Mourtada-Bonnefoi and
Laporte, and Hamada et al. samples). Model output curves and corre-
sponding experimental data are plotted in Fig. 7. The agreement be-
tween model and data is good, with all experimental datapoints
falling within the relevant range of model results. Both disequilibrium
bubble growth and thermal resorption during quench tend to produce
final samples with lower gas volume fractions than would be found
under equilibrium conditions. For example, at a decompression rate of
1 MPa s−1 and a final pressure of 60MPa, accounting for disequilibrium
and resorption could decreasefinalϕ from the equilibriumvalue of 0.25,
a)

Fig. 7. Application of the numerical bubble growth model to decompression experiment datase
decompression rates of 10, 1 and 0.1MPa s−1 at 825 °C. Black diamond represents a sample tha
Solid line represents the equilibrium growth profile. b) Experimental data of Mourtada-Bonnefo
of 1MPa s−1 at 700 and 800 °C. Solid lines represent the equilibrium growth profile for the two
final ϕ, resulting from bracketing values of bubble number density and quench rate (Fig. 6). Fo
10 × 1012 m−3 demarking the minimum and maximum edges of the shaded areas.
to as little as 0.13 (Fig. 6). The model can be used to deconvolve the ef-
fects of disequilibrium and quench resorption, allowing the pre-quench
gas volume fraction to be reconstructed for the experimental samples.

5. Discussion

The results and analysis presented in Section 4 validate the numeri-
cal model that we develop in Section 2 over a wide range of experimen-
tal conditions. Modelling of the continuous, isobaric experiments
(Sections 3.1 and 4.1) constitutes a high-resolution test of the model
under strongly disequilibrium conditions in which bubble growth is
driven by supersaturation of the melt at constant pressure and varying
temperature. Modelling of the decompression experiments (Sections
3.2 and 4.2) tests the model under conditions that are more typical of
volcanic and magmatic systems, in which isothermal bubble growth is
driven by decreasing pressure, generating varying degrees of disequilib-
rium. Together, these tests demonstrate that the model can be applied
successfully over arbitrary pressure–temperature–time pathways.

5.1. Scope and validity

The continuous data demonstrate that themodel closely reproduces
theϕ(t) evolution of sampleswithϕ ≲ 0.4 (Figs. 3, 4, and 5). For samples
that reach equilibrium at a gas volume fraction below this threshold
(Figs. 3 and 4) the model captures the whole of the bubble growth, in-
cluding its approach to equilibrium, with a high degree of fidelity. For
the sample that reaches equilibrium at gas volume fraction above this
threshold (Fig. 5) the model reproduces the early part of the bubble
growth curve (i.e. when ϕ ≲ 0.4), but overestimates bubble growth
rate for ϕ ≳ 0.4. This mismatch most likely arises because the model
does not explicitly account for bubble–bubble interactions. These inter-
actions become increasingly important as gas volume fraction increases
and bubbles begin to impinge on one another, breaking the spherical
symmetry that is assumed by the model (Fig. 1). Bubble interaction
can lead to coalescence at high gas volume fraction (Blower et al.,
2001; Giachetti et al., 2019; Mueller et al., 2005), effectively reducing
the bubble number density, leading to slower bubble growth. We
note, however, that the model accurately predicts a final gas volume
fraction as high as ϕ ~ 0.8 for the decompression experiments (Fig. 7).

The best-fit residual betweenmodel and data for each of the samples
presented in Figs. 3–5 is plotted in Fig. 8. For all samples, regardless of
final gas volume fraction, the residual between model and data is less
b)

ts (Table 2). a) Experimental data of Burgisser and Gardner (2004) and model outputs for
t has only undergone the initial decompression (150MPa to 100MPa) to nucleate bubbles.
i and Laporte (2004) and Hamada et al. (2010) andmodel outputs for decompression rate
temperatures. The coloured/shaded bands (a, b) represent the range inmodelled values of
r both a) and b) the range of bubble number densities are Nb = 0.4 × 1012 m−3 to Nb =



Fig. 8. Residuals between the gas volume fractions of the best fit models ϕmodel and the in
situ experimental data ϕobs (Figs. 3–5) from this study, showing close agreement over the
full bubble growth history for samples with final gas volume fraction ϕ ≲ 0.4. There is a
slight tendency for the model to underestimate growth (+ve residual) at low ϕ and
overestimate (−ve residual) at higher ϕ. The residual is more pronounced for the
sample with the highest final gas volume fraction (K_1_1050), see main text for
discussion.
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than 5% for ϕ ≲ 0.3, and for samples with a final gas volume fraction
ϕ ≲ 0.4, the residual is within 2% for the entire bubble growth history.
Fig. 8 also shows that there is a slight systematic tendency for the
model to underestimate growth rate at low gas volume fraction, and
overestimate growth rate at high gas volume fraction. The most likely
explanation is that the samples do not contain a population of identical
monodisperse bubbles, as is implicitly assumed in the modelling, but a
population of bubbles that nucleated at different times, with different
initial radius, and with non-uniform spatial distribution. Consequently,
the growth of the whole sample is a convolution of the growth of a pop-
ulation of bubbles that are growing at different rates, to different final
(local) gas volume fractions. The convolution of many growth curves
will tend to produce a global growth curve that is shallower than the
growth curve for a best-fit ‘average’ bubble, which would manifest as
a residual with the shape shown in Fig. 8. The implication is that more
accurate modelling of the growth of a heterogeneous sample could be
achieved by convolving individual growth curves for bubbles with dif-
ferent characteristics, representative of the sample. This could be
straightforwardly implemented with the existing numerical code
through simple post-processing of cohorts of model runs.

While the model has been validated against samples of rhyolitic
composition, it can be applied to silicate melts of arbitrary composi-
tion if component models for the relevant material properties (solu-
bility, diffusivity, and viscosity: see Section 2.3) are available. The
MATLAB code was designed with ease-of-use in mind, and different
models for material properties can be straightforwardly imple-
mented as functions that are called by the main routine. Currently,
the model is limited to systems in which H2O is the only significant
volatile species but including other gases would be straightforward
where appropriate models for the equation of state, solubility, and
diffusivity are available.

A more significant limitation is that the model assumes perfect
closed-system degassing – i.e. that a bubble remains in, and only
interacts with, the aliquot of melt in which it nucleated. The
model is not, therefore, appropriate for systems in which gas is
lost from a bubble by escape through a permeable foam, or in
which bubbles ascend through the melt with an appreciable slip
velocity.
5.2. Applications

The principal application of the numerical model is expected to be in
forward modelling of bubble growth and resorption in magma in re-
sponse to changes in pressure and/or temperature. Previous modelling
in this area has focussed primarily on the growth of bubbles in response
to decompression during ascent of magma that feeds a volcanic erup-
tion (e.g., Liu and Zhang, 2000). The validation of ourmodel for strongly
disequilibrium conditions, as well as for conditions under which tem-
perature change is driving bubble growth and resorption, demonstrates
that the model can also find application in scenarios that involve more
complex pressure–temperature–time pathways. Natural scenarios, of
this sort, to which the model could be confidently applied include: the
thermal vesiculation of magma undergoing viscous or frictional heating
under shear (Lavallée et al., 2015); repeated cycles of decompression,
quenching, and heating in pyroclastic material that accretes to conduit
walls (Gardner et al., 2018); cyclic pressurization–depressurization of
magma subjected to seismic shaking (Manga and Brodsky, 2006);
post-eruptive expansion of bubbly pyroclasts (Giachetti et al., 2010;
Kaminski and Jaupart, 1997); and post-emplacement cooling-driven re-
sorption in pyroclasts (Watkins et al., 2017).

The model could also be applied in the inverse sense, to reconstruct
pressure–temperature–pathways from analytical measurements of vol-
atile distributions around vesicles preserved in volcanic glass, such as
those observed by (McIntosh et al., 2014). Similarly, the model could
be applied to determine and correct for the effects of resorption during
quench to reconstruct bubble sizes and gas volume fractions in natural
samples before quench.

Potential applications are not limited to natural scenarios but also in-
clude modelling of HPHT experiments. For example, forward modelling
could be used to identify suitable experimental conditions to investigate
interesting phenomena, or to produce samples with particular textural
characteristics; inversemodelling could beused to correct for the effects
of resorption during quench.

6. Conclusions

Wedescribe and validate an easy-to-useMATLAB implementation of
a numerical model for the growth and resorption of bubbles in magma
undergoing arbitrary pressure–temperature–time pathways. Validation
against new, continuous in situ data for natural samples vesiculating at
atmospheric pressure demonstrates that the model accurately captures
bubble growth for ϕ ≲ 0.4, but indicates that bubble–bubble interac-
tions, which are not captured by this, or any other bubble growth
model described in the volcanological literature, become important at
higher gas volume fractions. Validation against decompression experi-
ments from the literature demonstrates that the model accurately cap-
tures decompressive growth and thermally-driven resorption of
bubbles for experiments at widely differing degrees of disequilibrium,
for conditions relevant to the syn-eruptive ascent of magma. The
model is available via the online supplementary materials.

The modelling approach and implementation is flexible and ex-
tendable, opening avenues for future research. Cohorts of model
runs for bubbles with differing initial conditions (timing of nucle-
ation, size of nucleus, size of melt shell) could be convolved to cap-
ture more accurately the bulk growth of heterogeneous magmas.
Constituent models for material properties, such as solubility and
diffusivity of H2O, and viscosity of the melt, can be changed by
the user to facilitate application to a range of magma compositions.
Additional volatile phases could be added straightforwardly where
suitable solubility and diffusivity models are available. For exam-
ple, the addition of CO2 would facilitate application to basalts,
where significant CO2 concentrations are common. The addition
of volatile species with solubilities and diffusivities that differ
from those of H2O (CO2, SO2, Cl, F, etc.) would allow more accurate
and unique inversion of measured gas compositions to reconstruct
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degassing depths. Similarly, the representation of H2O as two
interconverting species (molecular and hydroxyl water) using, for
example, the model of Coumans et al. (2020), would enable volatile
distributions around vesicles to be used to determine decompres-
sion pathways with greater fidelity.
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Appendix A. Numerical methods

The numerical forwardmodel solves Fick's second law (Eq. (6) of the
main text) using themethod of lines (MOL).Weused the1-dimensional
form of Fick's second law in spherical coordinates in a Lagrangian coor-
dinate system (Blower et al., 2001; Braithwaite et al., 1999) and is re-
peated here for convenience:

∂CH2Ot

∂t
¼ 1

x2
∂
∂x

DH2Ot

A4

x2
∂CH2Ot

∂x

 !
A3

¼ x3 þ R3−R3
0

ðA:1Þ

where A is the radial Eulerian coordinate. The spatial dimension x is
discretized into a number n of logarithmically spaced points from the
bubble wall R to the shell edge Swhich has thickness L (computed from
Eq. (2) in Section 2.1):

xi¼2: nþ1ð Þ ¼ L� 10
αþ i−2ð Þ −α

n−1ð Þ

� �
þ R ðA:2Þ
where α = − 2 and x1 = R. The finite difference grid is block-centred,
such that the ODEs are solved at the mid-point of each of the blocks –
the ‘nodes’ – which have positions defined by:

xc ¼
xi¼2: nþ1ð Þ þ xi¼1:n
� �

2
ðA:3Þ

where c = 1…n. The concentration of total H2O at each node is repre-
sented by a value inwt% in a 1 × nmatrix: CH2Ot(xc). The initial H2O con-
centration for each node is set as the initial H2O concentration of the
glass. The outer boundary (shell edge) has a Neumann boundary condi-
tion, such that the diffusiveflux of H2O is zero (i.e.DH2Ot∂CH2Ot/∂x=0at
xn). Conceptually this means that adjacent spherical bubbles to not ex-
change mass with each other. Initial mass of H2O in the bubble is com-
puted using the gas law (Section 2.3.2) at the initial pressure,
temperature, and volume of bubble f(R0). Therefore, we are assuming
the initial gas pressure is equal to the initial system (liquid) pressure
plus the pressure arising from surface tension.

The function that is called by the solver ODE15s is represented by the
following pseudo-code:

1. Determine the temperature at the current timestep.
2. Determine the pressure of the system p∞ at the current timestep.
3. Compute the mass of H2O that has been transported to or from the

melt shell (Eq. (7)).
4. Compute the pressure of the gas phase pg using themass of H2O, vol-

ume of the bubble, temperature and the gas law (Section 2.3.2).
5. Compute the H2O concentration at the bubble wall node via the sol-

ubility law (Section 2.3.1).
6. Compute the diffusivity DH2Ot

of H2O at each node (Section 2.3.1).
7. Determine spatial gradient in H2O concentration ∂CH2Ot/∂x at each

node using a first-order finite difference approximation on the con-
centration array CH2Ot(xc).

8. Determine the diffusive flux at each node J = − DH2Ot
∂CH2Ot

/∂x; set
J = 0 at xn.

9. Determine the gradient of the diffusive flux ∂J/∂x for a sphere in a La-
grangian reference frame at each node using a second-order finite
difference approximation on the flux array J(xi); this is equal to the
−∂CH2Ot/∂t at each node, according to Fick's second law (Eq. (A.1)):

∂CH2Ot

∂t
¼ −

∂ J
∂x

¼ 1
x2

∂
∂x

x3 þ R3−R3
0

� �4
3

x2

0
B@

1
CA� J

0
B@

1
CA ðA:4Þ

10. Compute the viscosity of the melt at each node η(x) using the
Giordano et al. (2008) model (Section 2.3.3).

11. Compute the integrated viscosity across the melt shell using trape-
zoidal numerical integration.

ηh i ¼
Z S0

R0

η xð Þx2

R3−R3
0 þ x3

� �2 dx ðA:5Þ

12. Re-arrange the Rayleigh-Plesset equation (Eq. (3)) and solve fordR=dt
using the integrated viscosity (Eq. (A.5)).

dR
dt

¼
pg−p∞−

2Γ
R

� �
12R2 ηh i

ðA:6Þ

13. Return a vector with to the ODE15s solver with�∂ J=∂t anddR=dt as
the last value.
In this way, ODE15s simultaneously solves ∂CH2Ot=∂t (following

Eq. (A.4)) for each node and dR=dt throughout the duration of the sim-
ulation. The final output is amatrixwith CH2Ot(xi, t) and R(t) for any time
of potential interest. Please see the downloadable scripts and user man-
ual for more information.



12 J.P. Coumans et al. / Journal of Volcanology and Geothermal Research 402 (2020) 107002
Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.jvolgeores.2020.107002.
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