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Abstract 

A CFD study on horizontal oil-water flow with high viscosity ratio (O(103)) was conducted 

with the VOF multiphase model in conjunction with the SST k–ω turbulence scheme. Suitable 

settings of the CFD models and numerical solution were highlighted. Particularly, the wall contact 

angle is shown to be important regarding the oil fouling phenomenon commonly seen in water-

lubricated transportation of highly viscous oil. Satisfactory predictions of flow patterns were 

obtained. Water holdup calculations were consistent with measurements, attaining relative 

discrepancy within 14%. However, pressure gradients exhibited inconsistencies with relative 

discrepancy within 70%, for which poor prediction of oil fouling for some simulations is the main 

cause. Nevertheless, the CFD models provided reasonable estimate of the water lubrication degree 

for water-lubricated flow. Detailed flow characteristics of core annular flow (CAF) with high 

viscosity ratio were discussed in particular based on the 3D simulation results.  
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1 Introduction 

Flows of immiscible liquids with high-viscosity ratios are encountered in many industries such as 

food processing, pharmaceutical, and petroleum industries. In heavy crude oil production, water-

lubricated transportation, i.e., transportation of heavy oil together with surrounding water that lubricates 

the pipe, has attracted attentions for its economic benefit of minimal pumping power. The most 

advantageous flow regime of water-lubricated transportation is core annular flow (CAF) — continuous 

oil-core surrounded by continuous water-annulus. Less desirable phase configurations with continuous 

water include oil plugs in water (OPL) and dispersed oil lumps in water (OLP).  

A large number of experimental studies on water-lubricated flow reported results on flow patterns 

and/or pressure gradients, see Joseph et al. (1999), McKibben et al. (2000a and 2000b), Grassi et al. 

(2008), Sotgia et al. (2008), Wang et al. (2011), and Cavicchio et al. (2018), to cite but a few. Other 

investigations included phase holdup measurements in addition to flow patterns and/or pressure 

gradients, see for example, Arney et al. (1993), Oliemans et al. (1987), Bannwart (1998), Sridhar et al. 

(2011), Strazza et al. (2011) and Shi et al. (2017c). It is challenging and often expensive to measure 

detailed flow characteristics that are of importance to improvement of engineering design and operation. 

Three-dimensional numerical modelling has assumed an increasing role in the context of multiphase 

flows, offering access to both local flow fields and global parameters.  

Thus far, numerical studies of high-viscosity oil-water CAF focus on descriptions of interfacial 

waves and their transitions. Dedicated in-house CFD codes have been used for analyse of interfacial 

waves in CAF. Ooms et al. (1984) adopted the lubrication theory framework to model horizontal CAF 

with prescribed interfacial waves under the assumption of the oil core being solid. A similar approach 

was used later by Bai et al. (1996) for the study of low Reynolds number concentric CAF with 

axisymmetric interfacial waves. Ko et al. (2002) extended the aforementioned model by adopting the 

turbulence SST k–ω scheme. Li and Renardy (2000) applied a volume-of-fluid (VOF) scheme to 

enhance the wave shape simulation. In a similar vein, Ooms et al. (2013) and Housz et al.(2017) adopted 

the VOF model to simulate horizontal CAF at low and high Reynolds number respectively. The level 

set method for studying CAF at low Reynolds number was a preferred framework in Lee and Kang 
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(2016). The importance of interfacial waves in the levitation of the core liquid is highlighted from the 

above numerical investigations.  

In addition to dedicated in-house CFD codes, commercial CFD packages have been employed 

increasingly for both research and engineering design. A reasonable number of studies with commercial 

CFD packages on CAF in vertical flow lines and CAF through particular geometries/devices have been 

reported. Amongst which, we mention the works of Ghosh et al. (2010, 2011) on downward CAF in a 

vertical pipe and CAF in a vertical U bend. The VOF model was adopted by the above authors. 

Satisfactory agreement was reached between predictions and experimental results. Jiang et al. (2014) 

used the Eulerian-Eulerian approach to simulate CAF in a vertical U bend and did not find any major 

deviation to predictions obtained with the VOF model in Ghosh et al. (2011). CAF in a flow line with 

a sudden contraction followed with expansion was investigated by Kaushik et al. (2012). The authors 

found that downstream phase distributions are significantly altered by the cross-sectional changes. 

Dehkordi et al. (2017) simulated CAF through a horizontal venturi and a nozzle flow meter with the 

VOF approach. Fair predictions of pressure drop and water holdup were obtained. Non-Newtonian oil-

water core annular flow through return bends was simulated by Jiang et al. (2018) in which the 

influences of non-Newtonian oil properties on the pressure gradient and oil fouling were studied.    

In all the aforementioned CFD studies, the oil-to-water viscosity ratios range between 200 and 900 

(i.e., O(102)). In engineering applications of water-lubricated heavy oil transportation, the oil-to-water 

viscosity ratio can be much higher with O(103) or above, for which studies with CFD packages are quite 

limited. Also, investigations with CFD packages on CAF and other flow regimes of water-lubricated 

flow in elongated horizontal flow lines, that is, fully developed horizontal flows, are rather scarce. The 

CFD models and numerical solution settings that are tested with low- or medium-viscosity fluids do not 

necessarily provide satisfactory predictions for high-viscosity fluids. In this study, we report simulations 

of oil-water flow with viscosity ratio of O(103) in horizontal pipelines with L/d =154 and 197, and the 

flow at the downstream of the pipelines is either fully developed or nearly fully developed. The 

objectives of the simulations are to examine the capability of the CFD models to simulate highly viscous 

oil-water two-phase flow and identify areas with respect to the numerics and physical correlations where 
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further improvement is needed. By carefully selecting a set of initial parameters and schemes, the 

capabilities of VOF model to predict reasonable flow patterns are shown. Highlighted is the influence 

of static contact angles on the capture of oil fouling film on pipe wall and the prediction of pressure 

gradients. The flow characteristics of CAF with high viscosity ratio were discussed in particular based 

on the 3D simulation results.     

2 CFD model and simulation setup 

2.1 CFD models 

The VOF model implemented in FLUENT was used to conduct the numerical simulations. This 

model has been shown to provide satisfactory calculations for oil-water flow with medium viscosity 

ratio in our separate study (Shi et al., 2017b). The oil-water system is described through a set of 

conservation equations for the mixture (Eqs. 1 and 2) and oil phase (Eq. 3).  
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The oil-water interface tracking is accomplished by solving for the volume fraction of the oil phase 

(set as the secondary phase) in Eq. (3). The material properties of the mixture, i.e., density   and 

viscosity   in the transport equations, are weighted by the volume fraction of each phase present in 

the control volume, see  Eqs. (4) and (5). The volume fraction of the water phase (set as the primary 

phase) is determined by the constraint of fluid continuity (Eq. 6) after solving for oil phase in equation 

(3). 

wwoo  +=  (4) 

wwoo  +=  (5) 
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The body force term, F , in the momentum equation (Eq. (2)) results from the presence of the 

interface. It denotes the contribution of the interfacial tension and requires further modelling. The 

continuum surface force (CSF) model proposed by Brackbill et al. (1992) was used (see Eqs. (7–10)).  
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For the cells in contact with rigid boundaries, the wall adhesion at fluids interfaces is accounted for 

by the following equation: 

wlwlwlwl  sinˆcosˆˆ tnn +=  (10) 

where wln̂  and 
wlt̂  are the unit vectors normal and tangential to the wall, respectively. The contact angle,

wl , is the angle tangent to the fluids interface with respect to the wall. The contact angle is time 

dependent and has its own dynamics. In this study, an initial static contact angle was prescribed. 

In conjunction with the VOF multiphase flow model, the shear stress transport (SST) k–ω model 

was used for turbulence modelling. A brief description of the SST k–ω model is given in Appendix.  

2.2 Simulation geometries and boundary conditions 

The numerical simulations presented in this study were benchmarked by our previous experimental 

campaign detailed in Shi et al. (2017a and 2017c). Oil and water phases were pumped separately into a 

T-junction of a horizontal pipe. Nominal oil and water viscosities are μo=5000 cP and μw=1cP, with 

densities of ρo=910 kg/m3 and ρw=998 kg/m3 and oil-water interfacial tension  =0.02 N/m.   

The schematic representation of the simulation geometry is shown in Figure 1. The primary 

geometry, denoted as Geometry I, has an internal diameter d=0.026 m and length L=4 m. Simulation 

results of flow through Geometry I were used to validate the CFD models. A scale-up of Geometry I to 

Geometry II with internal diameter d=76 mm and length L=15 m was used to investigate the flow in a 

larger diameter pipe. Each branch of the T-junction has a length of h=0.2 m for both geometries. 
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Hexahedral meshes with progressive refinement near the pipe wall with the height of first cell falling 

within the desired range of y+<5 were generated for the two geometries. A sensitivity analysis was 

conducted for grid size integrity from the solutions. The meshes consist of about 1.2 million and 1.9 

million cells with heights of adjacent cells to the pipe wall of 0.2 mm and 1 mm for Geometry I and 

Geometry II, respectively.  

The velocity boundary was set up at the inlets. Velocity profiles of developed laminar flow for the 

oil phase (Reynolds number 0.2 < Reo < 100) and developed laminar or turbulent flow for the water 

phase (Reynolds number 500 < Rew < 40 000) were loaded into the solver via UDF (user-defined 

functions) to have fully developed flows before the junction. The hydraulic diameter and corresponding 

turbulence intensity were also specified following Fluent user guide (2012), that is 𝐼𝑜 = 0 and 𝐼𝑤 =

0.16Re𝑤 −1/8. A gauge pressure of zero was applied at the outlet. No-slip boundary condition was 

imposed at the wall. A constant contact angle was imposed at wall adhesion condition, a value of 
wl

=175° was adopted unless otherwise specified; different wall contact angles were tested and discussed 

in the section 3.1. 

2.3 Solution setup and simulation programme 

Transient isothermal flows were solved with pressure-based segregated algorithm and explicit VOF 

scheme. The Geo-Reconstruct scheme was used for interface reconstruction. The SIMPLE scheme was 

used for the pressure-velocity coupling and the PRESTO! scheme was adopted for the pressure 

interpolation. The upwind scheme of 1st order then 2nd order for momentum equations was followed for 

a smoother convergence rate. A time step of dt=10−4 s was used. Convergence criteria were put at 

absolute errors of εerr≤10-4 for continuity and momentum equations, and at εerr≤10-6 for turbulence 

equations. Static pressures and water volume fractions were monitored at specific positions. Simulations 

were processed for amply long periods, ensuring fully established flows. Simulations with geometry I 

were benchmarked with flow conditions of experiments, profiled conditions were instead used when 

experimental data is not available for the purpose of mechanistic analysis. The programme of 

simulations performed in this study is listed in the Table 1. 
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3 Sensitivity to numerical setting 

3.1 Wall contact angles 

Presetting a static contact angle at the boundary does not mean that liquids are static at the contact 

line. The assumed contact angle is used to adjust the surface normal in cells near the wall. The liquids 

and the contact angle will move each time step towards their equilibrium positions under local stresses. 

For convenience, a series of simulations were performed with prescribed static contact angles. The goal 

here is to investigate the sensitivity of the numerical results to the prescribed contact angles for highly 

viscous oil-water flow (capillary number Ca =
𝜇𝑈

𝜎
≫ 1) and further estimate the most accurate static 

contact angles for simulations in the present study. Predicted flow patterns from cases with different 

contact angles are shown in Figure 2. The corresponding experimental flow pattern is also displayed 

for comparison. All simulations predicted water-lubricated flow, which is consistent with the 

experimental observations that water-lubricated flow is the dominant flow category in high-viscosity 

oil-water flow in either hydrophobic or hydrophilic pipelines (McKibben et al., 2000a, 2000b; Sridhar 

et al., 2011; Shi and Yeung, 2017). The dissimilarity between the predicted phase configurations lies in 

the degree of oil fouling on the pipe wall. A reduction in the prescribed static contact angle of the oil 

phase at the wall is accompanied with enhanced surface wetting by the oil phase, hence an increase in 

oil fouling on the pipe wall. As shown in Figure 2, the flow pattern obtained with an initial static contact 

angle of 175° is the closest match to the experimental flow pattern for the case under consideration. A 

wall contact angle of 175° was adopted in the following simulations in this study and fair agreement 

between simulation results and experimental data was reached for most of the numerical tests.  It is 

worth remarking that the ad-hoc method of imposing a static contact angle is a deficient representation 

of the reality, therefore the results on oil fouling capture should be interpreted with caution. A better 

approach is via models of dynamic contact angle. Existing models of dynamic contact angle are 

empirically based and limited to flows with low Reynolds and capillary numbers (Jiang et al., 1979, 

Van Mourik et al.,2005). We leave the study on modelling of dynamic contact angel for high capillary 

number fluids for future work.   
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3.2 Initialization methods 

Much of this section is devoted to analyse the evolution of the mixture flow under a selected 

initialization procedure of the device. Simulations referred to by S-6a and S-6b in Table 1 were carried 

out using respective prescribed initial conditions of the water phase and initial conditions of the oil 

phase. The visualization of the results showing the phases' redistributions at specific instants is shown 

in Figure 3. Contrasting behaviours of mixture flows at earlier stages of simulations are demonstrated. 

At t=4 s for the case initialised with the water phase conditions, a long transient finger (instability) of 

turbulent water is displacing a certain amount of more viscous oil. By contrast, at t=5 s for the case 

initialised with the oil phase conditions, droplets of viscous oil are present in a turbulent water phase. 

Intriguingly, both the simulations converge to the flow pattern of oil lumps in water (OLP), which is 

consistent with experimental observations. Celerities and trajectories to the settling regime are sensitive 

to the initial conditions. To be precise, we examined the average pressure gradient and water holdup 

most downstream of the junction. The mean pressure gradients (0.86 kPa/m and 0.82 kPa/m for 

simulation S-6a and S-6b, respectively) and water holdups (0.86 and 0.87 for simulation S-6a and S-6b, 

respectively) from the simulations with different initialization methods are comparable when 

statistically steady solutions are reached.  

The initial conditions are essential aspects of a simulation and crucial in affecting the routes to 

solution. It is of importance to check whether statistically-steady solutions are reached by monitoring 

relevant parameters. Obviously, the initialization with water phase conditions in our case offers a shorter 

path to convergence to the developed flow regime, hence this choice was adopted all along the present 

study.  

3.3 Volume fraction interpolation  

The evaluation of the ability of interpolation schemes to accurately rebuild oil-water interfaces is 

conducted by comparison against experiments. Simulations referenced to as S-2a and S-2b in Table 1 

were respectively performed using Geo-Reconstruct scheme and CICSAM (Compressive Interface 

Capturing Scheme for Arbitrary Meshes) scheme. Both schemes are usually recommended for 

reconstruction of sharp contours. The CICSAM scheme is recommended for flows involving phases of 
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high viscosities in Fluent theory guide (2012). Flow patterns obtained with Geo-Reconstruct scheme 

and CICSAM scheme are both CAF, which is in conformity with experimental output, as illustrated in 

Figure 4. However, the predicted oil-water interface with the Geo-Reconstruct scheme better matches 

the experimental observation. The Geo-Reconstruct scheme revealed a core oil with a relatively smooth 

top-side and a wavy bottom-side, analogous to the configuration observed in the experiment. The 

CICSAM scheme however showed a smooth oil-core with little sign of wavy features on the bottom-

side. It goes without saying that the Geo-Reconstruct scheme is adopted in the present study.  

4 Results and discussion 

4.1 Flow patterns and visual validations 

Flow patterns obtained with CFD simulations and their corresponding experimental counterparts are 

illustrated in Figure 5. Overall, the calculations on a variety of flow patterns agree with experimental 

observations. These predictions range from core flow in S-3 and S-8a, to oil plugs in water in S-1 and 

oil lumps in water in S-5 and S-6a. Dispersed water in oil is predicted in S-7, which is an anticipated 

flow regime for flows with very high ratios of oil-to-water flow rates. Note here the experimental 

counterpart to simulation S-7 was not available due to limitation of the experimental facility on 

achievable minimum water flow rate.  

Oil fouling film on pipe wall is a distinctive phenomenon in high-viscosity oil-water flow. It 

manifests itself by ripples on the pipe wall as illustrated with experimental snapshots in Figure 5. In our 

experimental campaign, oil fouling was observed in various regimes of water-lubricated flow, including 

core flow, oil plugs in water, and oil lumps in water. Cross sectional cuts of predicted pipeline flow are 

displayed in Figure 6. Of particular interest are the predictions from S-8a and S-15 which represent 

CAF in Geometry I and Geometry II respectively. Partial oil fouling (spots of oil on the wall) is 

predicted with CFD for the test S-8a while more pronounced oil fouling film is predicted for the test S-

15. As said before, the wall adhesion effect is affected by the specified static wall contact angle. A 

prescribed static contact angle of 175° was used in both tests, thus the difference in the degree of oil 

fouling between the two tests is less likely caused by the specified wall contact angle. Whether oil 

fouling is heavier in flow conditions of test S-15 is not clear and needs validation of future experimental 
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work. In addition, it is noted that the mesh resolution of the region adjacent to the pipe wall can also 

affect the prediction of oil fouling thus the quantitative results on the oil fouling should be treated with 

caution. Nevertheless, the qualitative results on the captured oil fouling spots/film on the pipe wall by 

CFD are very encouraging.  

4.2 Parametric investigation on flow patterns 

4.2.1 Ratio of gravitation to viscous force  

Having shown that the CFD models are capable to predict reasonable flow patterns, we conducted a 

parametric investigation on flow patterns. A wide range of flow conditions can be tested with the 

validated CFD models.  

In a review on experimental liquid-liquid flows, Shi and Yeung (2017) found that the ratio of 

gravitation to viscous force, G V⁄ =
∆𝜌𝑔𝐷2

𝜇𝑈
, is a good candidate to characterise flow patterns of liquid-

liquid flows over a wide range of flow conditions. The gravitation to viscous force ratio reflects the 

competitive role of gravitational force and viscous force on phase configuration of oil-water flows. The 

viscous force is expressed as the product of the characteristic viscosity, 𝜇𝑜 , and velocity, 𝑈𝑚 . The 

impact of gravitational–viscous force balance on the oil-water flows is demonstrated in Figure 7. Figure 

7(a) shows change of flow pattern with oil viscosity hence G/V. A reduction in oil viscosity from 5000 

cP to 100 cP, hence an increase in G/V from 0.2 to 9.7 induces a lifting of the oil core, leading to a 

progressive change of flow regime from CAF to stratified flow.  

Figure 7(b) displays the change of phase configuration with G/V due to change of pipe diameter. 

For the flow condition of Uso=0.4 m/s, and Usw=0.2 m/s, CAF develops in Geometry I, while wavy 

stratified flow develops in Geometry II. The gravitation to viscous force ratio is 1.7 for the latter case, 

indicating a flow system of viscous force and gravitational force comparable in which stratified flow is 

one of the possible phase configurations. There are entrained discontinuous water streams inside and at 

the top of the oil phase in Figure 7(b-ii). This flow regime is a transitional flow pattern from stratified 

flow to CAF; CAF develops when the discontinuous water streams become continuous.  

Another simulation was performed in Geometry II at Uso=2.0 m/s, and Usw=0.5 m/s under which 

G/V=0.4. It is anticipated that CAF or intermittent flow would develop as the viscous force becomes 
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dominant in the flow system. The calculated phase configuration is CAF as shown in Figure 7(b-iii). 

Compared to the test shown in Figure 7(b-ii), we can see that for oil-water flow in a larger diameter 

pipe, higher oil flow rate is required to form stable CAF. 

4.2.2 Froude number  

The definition of Froude number for internal multiphase flows is far from unequivocal in the 

literature. Here, Fr = √
𝑈𝑠o

2

𝑔𝐷
∆𝜌

𝜌𝑤

 is adopted for investigation. It is related to the ratio of kinetic energy to 

potential energy of the oil phase. At high kinetic energy, i.e., Fr >>1, the oil phase is shooting at speed 

through the pipe in a concentric fashion with little effect of the potential energy. The change of phase 

configuration with 𝑈𝑠o hence Fr is displayed in Figure 8(a). A progressive change of flow regime from 

concentric CAF to eccentric CAF is predicted with a decrease in 𝑈𝑠o from 0.8 m/s to 0.12 m/s, hence a 

decrease in Fr from 5.3 to 0.8. Figure 8(b) shows the change of phase configuration with Fr due to 

change of oil density. The oil core gets more concentric as the density difference between the fluids 

gets lower hence the Fr gets higher. Also, the oil core flows in the lower part of the annulus when the 

oil density is much higher than the water density. 

4.3 Pressure gradient and water volume fraction  

A comparison of predicted pressure gradients and water holdups against experimental results is 

shown in Table 2. Predictions of water holdups are consistent with measurements, having relative 

discrepancy within 14%. Irregularities are present in the predicted pressure gradients with relative errors 

ranging between 3% and 70%. The large discrepancies in pressure gradients calculated here very likely 

have their source in the poor estimation of oil fouling on the pipe wall. For cases S-5 and S-6a the 

pressure gradients were under predicted with little oil contact with the pipe wall observed in the 

calculated phase configurations, while thin oil fouling film was observed in experiments. Conversely, 

for the case S-2a both the pressure gradient and the oil contact with the pipe wall were over predicted 

compared to experimental results. As has been discussed in Section 3.1, the capture of the oil fouling 

on the pipe wall is affected by the wall contact angle modelling as well as the mesh resolution.  
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The water lubrication effect of water-lubricated high-viscosity oil-water flow in reducing the 

pressure gradient of single oil flow is demonstrated in Figure 9 illustrating the gauge pressure along the 

horizontal pipe for the simulation case S-6a. The slope of the line reflects the pressure gradient. Zone I 

represent the horizontal pipe section before the intersection; oil alone flows in that section before z=0 

where it meets single-phase water flow coming through a T-shaped junction. The pressure gradient is 

constant along the pipe in zone I with − d𝑝 𝑑𝑧⁄ = 23 kPa/m. Zone II represents the developing region 

of the oil-water flow. The pressure gradient first has a sudden increase at the intersection since the bulk 

velocity increases and transient change occurs here; it decreases gradually along the pipe until reaching 

zone III where water-lubricated flow is developed. The pressure gradient in Zone III is significantly 

reduced with − d𝑝 𝑑𝑧⁄ = 0.6 kPa/m. The pressure drop reduction factor, PDRF =
−(d𝑝/d𝑧)𝑜𝑤

−(d𝑝/d𝑧)𝑠𝑜
 , defined 

as the pressure gradient of oil-water flow to single phase oil flow at the same oil flow rate, is commonly 

used to demonstrate the water lubrication degree (Arney et al., 1903; Rodriguez et al., 2009). A 

comparison between PDRF obtained from CFD simulations and experiments is shown in Figure 10. A 

fair agreement is shown between measured and predicted PDRF. This shows that the CFD models can 

provide reasonable estimates of the water lubrication degree.  

4.4 Cross-sectional flow characteristics of horizontal CAF 

Among different flow regimes of water-lubricated flow, the CAF has been a focus of great interest 

driven by on one side its potential to save significant energy for high-viscosity oil transport, and on the 

other side the flow mechanists to understand this particular flow regime of liquid-liquid flow. In this 

section, the cross-sectional flow characteristics of horizontal CAF, which are seldom measured in 

experiments, are discussed based on the simulation results.  

The cross-sectional phase distributions and dimensionless velocity profiles at different positions 

downstream of the junction are shown in Figure 11. Three typical cases, eccentric CAF (Case S-8a), 

virtually concentric CAF due to higher oil density (Case S-8a-Rho2), and virtually concentric CAF due 

to higher oil inertia (Case S-15), are depicted in Figures 11(a), (b) and (c), respectively. The volume 

fraction of the oil phase varies along the flow direction, reflecting the fluctuation of the phase interface 

along the flow direction. Due to the fluctuating interface, the dimensionless velocity profile along the 
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pipe varies even for established flow. The flow profiles get similar after around 120 times the pipe 

diameter downstream the junction for cases with Resw=5190 (Figure 11a and b) and around 170 times 

the pipe diameter for the case with Resw=37 924 (Figure 11c), indicating the flow is developed or 

approaching to be fully developed if not yet. Below we discuss the flow characteristics of CAF based 

on those flow profiles which can virtually represent those of a developed CAF. With reference of the 

phase distribution profiles, the velocity profiles illustrate that the velocity across the highly viscous oil 

core is virtually constant. That the oil core flows inside the water as a rigid body when the oil viscosity 

is much higher than the water viscosity has been used as an assumption in some analytical studies 

(Ooms et al,1984; Ooms et al., 2012). This assumption is validated by the CFD simulation results. It is 

worth emphasizing that the assumption of the rigid oil core in CAF is valid only when the oil viscosity 

is significantly higher than the annular water viscosity. Our separate numerical study of oil-water flow 

with matched density and medium viscosity ratio has shown that the oil core cannot be treated as a rigid 

body when the oil viscosity is just one order higher than the water viscosity (Shi et al., 2017b).  

The velocity profile is virtually symmetric for concentric CAF as shown in Figure 11(bii) and (cii). 

The oil core flows as a solid body with a velocity higher than the average velocity of the annular water 

layer. Across the annular water layer, the velocity decreases quickly towards the pipe wall. For the 

eccentric CAF as shown in Figure 11(a), the top water layer is thinner than the bottom water layer. The 

velocity distribution for eccentric CAF is far off symmetric. Above the oil core, the velocity decreases 

quickly towards the pipe wall in the thin top water layer. Below the oil core, the velocity first increases 

then decreases towards the pipe wall. The oil-water slip ratios (i.e., the phase average velocity ratios, 

Uo/Uw) are higher than 1 for the concentric CAF shown in Figure 11(b) and (c), while slightly lower 

than 1 for the eccentric CAF shown in Figure 11(a). The average oil core velocity of developed CAF in 

Figure 11(a) and (b) is close to the mixture velocity, while it is as high as around 1.4 times of the mixture 

velocity in Figure 11(c). This is related to the absolute height of the water layer, hence the degree of the 

water lubrication effect. The cases in Figure 11(a) and (b) are CAF in Geometry I, while the case in 

Figure 11(c) is CAF in Geometry II. Though the relative water layer heights for the two concentric CAF 
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illustrated in Figure 11(b) and (c) are similar (around 10%-20% of the pipe diameter), the absolute 

height of the water layer is higher for the latter case. 

The distribution of the oil volume fraction of CAF shown in Figure 11(c) is slightly different from 

that shown in Figure 11(a) and (b), having higher oil fractions in regions adjacent to the wall. This 

reflects the captured oil fouling film on the pipe wall. As has been discussed in Section 4.1, oil fouling 

film is more clearly captured with the simulation in a large-diameter pipe.   

Figure 12 shows the turbulent kinetic energy and turbulent intensity of virtually developed core flow 

along the vertical line on the symmetry plane of two different cross-sections. Turbulent kinetic energy 

is the mean kinetic energy per unit mass associated with eddies in turbulent flow. The turbulent intensity 

is defined as the ratio of the root-mean-square of the velocity fluctuations to the mean flow velocity. 

The turbulent kinetic energy indicates the turbulence strength and the turbulent intensity indicates the 

relative turbulence strength. The distributions of the turbulent kinetic energy and turbulent intensity 

match the phase distributions shown in Figure 11, having higher values in the annular water layer, and 

very low values in the high-viscosity oil-core. For the eccentric CAF case in which the oil flows in the 

upper part of the pipe, the turbulent intensity is higher in the bottom water layer than in the upper thinner 

water layer (Figure 12a).  

4.5 Pressure at the core–annular interface  

One of the questions regarding CAF in a horizontal pipe is how the buoyancy force on the core, 

resulting from density difference between oil and water, is counterbalanced. Ooms et al. (2013) 

explained the levitation of the core by the net downward force on the core liquid resulted from pressure 

variations in the annular layer. Figure 13 displays the static pressure at the core–annular interface for 

an eccentric core flow case. It is shown that the pressure is higher where the core gets close to the pipe 

wall. This for the first time from a separate CFD study verifies the explanation by Ooms et al. (2013) 

on the stability of the eccentric core flows. The pressure distribution also shows variations in the 

directions of the net pressure along the flow direction, indicating the existence of the moment of the 

pressure on the core liquid.  
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5 Conclusions 

A numerical study on horizontal oil-water flow with high viscosity ratio was conducted with the 

CFD code Fluent. The VOF multiphase model in conjunction with the SST k–ω scheme was applied 

for the simulations. The sensitivities of the numerical results to the flow domain initialization method, 

volume fraction interpolation schemes at phase interfaces, and wall contact angles are investigated. For 

water-lubricated flow, the water initialization method and the oil initialization method ultimately lead 

to similar results but the water initialization method requires less computational time. The Geo-

Reconstruct scheme for the volume fraction interpolation gives more accurate prediction of the phase 

interface. The influence of the wall contact angle is not significant with regard to the phase configuration 

at the macro level for the oil-water flow with high-viscosity ratio (i.e., high capillary number flows). 

However, the predicted oil fouling film on the pipe wall is sensitive to the wall contact angle. It was not 

possible yet to adequately quantify the wall adhesion influence on the outputs.  

The phase configurations calculated from the CFD models agree well with the experimental flow 

patterns. Moreover, the calculated flows are consistent with the anticipated flow patterns from 

mechanistic analysis based on the dimensionless numbers of G/V and Fronde number, demonstrating 

the capability of the aforementioned dimensionless numbers on describing the flow characteristics of 

two-phase flow. The quantitative agreement between predictions and experiments varied within 70% 

for the pressure gradient and 14% for the water volume fraction. The relatively high variation in the 

quantitative accuracy of the predicted pressure gradient is linked to the capture of the oil fouling film 

on the pipe wall. 

The numerical results show that for CAF with high-viscosity ratio, the velocity across the oil core is 

virtually constant. The pressure at the core–annulus interface is higher where the core gets close to the 

pipe wall, resulting in a downward net pressure which can counter balance the buoyancy force on the 

core.  

Appendix  

The governing equations of the SST k-ω model are: 
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Turbulent kinetic energy:  
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Specific dissipation rate: 
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where
kG , 

G  represent the generation of k  and  , respectively; 
kY , 

Y  represent the dissipation of 

k  and  , respectively; D represents the cross-diffusion term; t  represents the turbulent viscosity, 






k
t = . More information on the formulation for these quantities can be found in Wilcox (1988), 

Menter (1994) or Fluent theory guide (2012).  

The turbulence damping option was activated in this study. An additional source term is added to 

the ω-equation for reduction of the destruction term ( Y ). This additional source term is expressed as 

2
  ii nAS =  (A.3) 

2

6

n
B

i

i


=




  

(A.4) 

iiiA  = 2  (A.5) 

where 
iA  represents an interface area density that activates the correction term in the vicinity of the 

interface only (
iA =0 outside the interface region); i  is the volume fraction of phase i ; n  is the grid 

size in the interface region;   is a closure coefficient,  =0.075; B is a damping factor which can be 

specified, the default value was used. 

Nomenclature 

iA
 interface area density, m-1 

B  turbulence damping factor 

𝑑 internal pipe diameter, m 
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D  cross-disfussion term in the specific dissipation rate equation, kg m-2s-2 

F external body force per unit volume, kg m-2s-2 

𝑔 gravitational acceleration, m s-2 

kG  production of turbulent kinetic energy, kg m-1s-3  

G  generation term of the turbulence specific dissipation rate, kg m-2s-2 

I turbulence intensity 

𝑘 kinetic energy of turbulence, m2 s-2 

n̂  unit surface normal vector, m-1 

wln̂  unit vector normal to the wall, m-1 

p pressure, N m-2 

S  source term for reduction of the destruction term in the specific dissipation rate 

equation, kg m-2s-2 

t time, s 

wlt̂  unit vector tangential to the wall, m-1 

u velocity, m s-1 

U average velocity, m s-1 

Um mixture average velocity, m s-1 

Umax mixture maximum velocity, m s-1 

Uo average velocity of the oil phase, m s-1 

Uw average velocity of the water phase, m s-1 

Uso superficial oil velocity, m s-1 

Usw superficial water velocity, m s-1 

kY  dissipation of turbulent kinetic energy, kg m-1s-3 

Y  dissipation term for the turbulence specific dissipation rate, kg m-2s-2 

z longitudinal position from the junction, m 
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       Greek letters 

𝛼 volume fraction 

𝛽 closure coefficient in turbulence damping term, 0.075 

wl  angle between the wall and the tangent to the interface at the wall, ° 

𝜅 interface curvature, m-1 

𝜇 molecular viscosity, kg m-1s-1 

𝜇𝑡  turbulent viscosity, kg m-1s-1 

𝜌 density, kg m-3 

𝜎 surface tension coefficient, N m-1 

𝜎𝑘 Prandtl number for kinetic energy equation 

𝜎𝜔 Prandtl number for specific dissipation rate equation 

𝜔 specific dissipation rate, s-1 

  additional specific dissipation rate term in the interface turbulence damping 

model, s-1 

Δ𝑛 grid size in the interface region, m 

       Dimensionless groups 

Ca capillary number, Ca =
𝜇𝑈

𝜎
 

Fr 
Froude number, Fr = √

𝑈𝑠o
2

𝑔𝐷
∆𝜌

𝜌𝑤

  

𝐺/𝑉 gravitation to viscous force ratio, G V⁄ =
∆𝜌𝑔𝐷2

𝜇𝑈
 

Re Reynolds number, Re =
𝜌𝑈𝑑

𝜇
 

        Subscripts 

𝑘 kinetic energy equation 

o oil 
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so superfacial oil 

sw superfacial water 

t turbulence 

w water 

wl wall 

𝜔 specific dissipation rate equation 
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Table Captions 

Table 1. Programme of simulations. 

Table 2. Comparison of experimental and CFD predicted pressure gradients and water holdups. 
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Figure Captions 

Figure 1. Schematic diagram of the simulation geometry.  

Figure 2. Predicted flow patterns from simulations using different wall contact angles (the red and blue 

represent oil and water respectively) and the corresponding experimental flow pattern (oil core inside 

annular water). (a) 175°; (b) 120°; (c) 60°; (d) 5°; (e) snapshot of experimental flow.  

Figure 3. Development of phase configuration with simulation time. (a) Water initialization (Run S-

6a); (b) Oil initialization (Run S-6b). 

Figure 4. Predicted flow patterns from simulations using different volume fraction interpolation 

schemes at the interface and the corresponding experimental flow pattern. (a) Geo-Reconstruct scheme 

(Run S-2a); (b) CICSAM scheme (Run S-2b); (c) Snapshot of experimental flow.  

Figure 5. Comparison of experimental and CFD predicted flow patterns. Illustrations of experimental 

flow patterns are snapshots of developed experimental flow; the darker color represents oil and the 

lighter color represents water. Illustrations of CFD flow patterns show oil and water phases in red and 

blue respectively. 

Figure 6. Calculated phase configurations across a specific cross-section of the horizontal pipe with 

simulation time (the red and blue represent oil and water respectively). (a) Run S-6a; (b) Run S-8a; (c) 

Run S-15. 

Figure 7. Change of phase configuration with change of the gravitation to viscous force ratio (G V⁄ =

∆𝜌𝑔𝐷2

𝜇𝑜𝑈𝑚
). (a) different oil viscosities (i, 5000 cP, G/V=0.2; ii, 1000 cP, G/V=1; iii, 500 cP, G/V=2; iv, 

100 cP, G/V=9.7) and (b) different pipe diameters (i, d=26 mm, G/V=0.2; ii , d=76 mm, G/V=1.7) under 

controlled phase velocities Uso=0.4 m/s, and Usw=0.2 m/s. (b-iii) d=76 mm, Uso=2.0 m/s, and Usw=0.5 

m/s, G/V=0.4.  

Figure 8. Change of phase configuration with change of Froude number (Fr). (a) different oil velocities 

at Usw=0.2 m/s (i, Uso=0.12 m/s, Fr=0.8; ii, Uso=0.4 m/s, Fr=2.7; iii, Uso=0.8 m/s, Fr=5.3). (b) different 

oil densities at Uso=0.4 m/s and Usw=0.2 m/s (i, 910kg/m3, Fr=2.7; ii, 960kg/m3, Fr=4.1; iii, 1100kg/m3, 

Fr=2.5). 
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Figure 9. Predicted pressure along the horizontal pipe (Run S-5). 

Figure 10. Pressure drop reduction factor (PDRF) from simulations and measurements versus input 

water volume faction (Cw) at different superficial oil velocities. (a) Uso=0.1 m/s; (b) Uso=0.4 m/s.  

Figure 11. Phase distribution (i) and velocity profiles (ii) of high-viscosity oil CAF at different 

distances downstream of the junction. (a) Case S-8a, Geometry I, Resw=5190, ρo=910 kg/m3; (b) Case 

S-8a-Rho2, Geometry I, Resw=5190, ρo=960 kg/m3 ; (c) Case S-15, Geometry II,  Resw=37 924, ρo=910 

kg/m3. 

Figure 12. Turbulent kinetic energy (i) and intensity (ii) of virtually developed CAF. (a) Case S-8a, 

Geometry I, Resw=5190, ρo=910 kg/m3; (b) Case S-8a-Rho2, Geometry I, Resw=5190, ρo=960 kg/m3 ; 

(c) Case S-15, Geometry II,  Resw=37 924, ρo=910 kg/m3. 

Figure 13. Static pressure at the core–annular interface. The black lines illustrate the outline of the 

internal pipe wall. Run S-8a, Resw=5190. 
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Table 1. Programme of simulations. 

Notation of Simulation a) 

Flow conditions and fluid properties b) 
Experimental 

flow pattern c) Uso 

(m/s) 

Usw 

(m/s) 

µo 

(cP) 

ρo   

(kg/m3) 
Reso Resw 

S-1 0.06 0.23 5000 910 0.3 5968 OPL 

S-2a; S-2b 

 (Change volume fraction 

interpolation schemes) 

0.11 0.10 5000 910 0.5 2595 CAF 

S-3 0.12 0.18 5000 910 0.6 4671 CAF 

S-4 0.12 0.41 5000 910 0.6 10639 CAF 

S-5 0.12 0.61 5000 910 0.6 15 828 OLP 

S-6a; S-6b 

(Change initialization 

methods) 

0.12 0.81 5000 910 0.6 21 018 OLP 

S-7 0.40 0.02 5000 910 1.9 519 - 

S-8a; S-8b; S-8c; S-8d 

(Change wall contact 

angles) 

0.40 0.20 5000 910 1.9 5190 CAF 

S-8a-Rho2 0.40 0.20 5000 960 2.0 5190 - 

S-8a-Rho3 0.40 0.20 5000 1100 2.3 5190 - 

S-8a-Mu2 0.40 0.20 1000 910 9.5 5190 - 

S-8a-Mu3 0.40 0.20 500 910 18.9 5190 - 

S-8a-Mu4 0.40 0.20 100 910 94.6 5190 - 

S-9 0.40 0.40 5000 910 1.9 10 379 CAF 

S-10 0.40 0.60 5000 910 1.9 15 569 CAF 

S-11 0.40 0.80 5000 910 1.9 20 758 CAF 

S-12 0.80 0.04 5000 910 3.8 1038 - 

S-13 0.80 0.20 5000 910 3.8 5190 - 

S-14 (Geometry II)  0.40 0.20 5000 910 1.9 5190 - 

S-15 (Geometry II) 2.00 0.50 5000 910 9.5 37 924 - 
a) Geometry I is used for the simulations when it is not noted.   
b) Other properties not included in the table: ρw= 998 kg/m3, µw=1 cP and σ=0.02 N/m.   
c) OPL, oil plugs in water; CAF, core annular flow; OLP, dispersed oil lumps in water. For more detailed 

description, please refer to Shi et al. (2017c). 
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Table 2. Comparison of experimental and CFD predicted pressure gradients and water holdups. 

Notation of Simulation a) 
Flow pattern b) 

(Exp. / CFD) 

Pressure gradient (kPa/m)  Water holdup 

Exp. CFD Error  Exp. CFD Error 

S-1 OPL / OPL 0.964 0.845 -12 %  - - - 

S-2a CAF / CAF 1.24 2.06 66 %  0.39 0.36 -9 % 

S-3 CAF / CAF 1.31 2.15 64 %  0.50 0.43 -14% 

S-4 CAF / CAF 1.75 1.08 -38 %  0.67 0.76 13% 

S-5 OLP / OLP 1.97 0.61 -69 %  0.77 0.81 6% 

S-6a OLP / OLP 2.33 0.86 -63 %  0.77 0.86 12% 

S-7 - / OC - 62.73 -  - - - 

S-8a CAF / CAF 3.11 3.26 5 %  0.34 0.33 -2% 

S-9 CAF / CAF 2.68 2.54 -5 %  0.51 0.47 -8% 

S-10 CAF / CAF 2.6 2.67 3 %  0.59 0.58 -2% 

S-11 CAF / CAF-OLP 2.94 4.6 56 %  0.63 0.61 -2% 

S-12 - / OC - 130.36 -  - - - 

S-13 - / CAF - 12.06 -  - - - 

S-14 (Geometry II)  - / ST - 5.58 -  - - - 

S-15 (Geometry II) - / CAF - 8.2 -  - - - 
 

a) Geometry I is used when not specified.   
b) Flow pattern: OPL, oil plugs in water; CAF, core annular flow; OLP, dispersed oil lumps in water; 

CAF-OLP, transitional flow between CAF and OLP; OC, oil-continuous flow.  
c) Error: (φcfd-φexp) / φexpv 
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Figure 1. Schematic diagram of the simulation geometry.  
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Figure 2. Predicted flow patterns from simulations using different wall contact angles (the red and blue 

represent oil and water respectively) and the corresponding experimental flow pattern (oil core inside 

annular water). (a) 175°; (b) 120°; (c) 60°; (d) 5°; (e) snapshot of experimental flow.  
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Figure 3. Development of phase configuration with simulation time. (a) Water initialization (Run S-

6a); (b) Oil initialization (Run S-6b). 
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Figure 4. Predicted flow patterns from simulations using different volume fraction interpolation 

schemes at the interface and the corresponding experimental flow pattern. (a) Geo-Reconstruct scheme 

(Run S-2a); (b) CICSAM scheme (Run S-2b); (c) Snapshot of experimental flow.  
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Figure 5. Comparison of experimental and CFD predicted flow patterns. Illustrations of experimental 

flow patterns are snapshots of developed experimental flow; the darker color represents oil and the 

lighter color represents water. Illustrations of CFD flow patterns show oil and water phases in red and 

blue respectively. 
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Figure 6. Calculated phase configurations across a specific cross-section of the horizontal pipe with 

simulation time (the red and blue represent oil and water respectively). (a) Run S-6a; (b) Run S-8a; (c) 

Run S-15. 
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Figure 7. Change of phase configuration with change of the gravitation to viscous force ratio (G V⁄ =

∆𝜌𝑔𝐷2

𝜇𝑜𝑈𝑚
). (a) different oil viscosities (i, 5000 cP, G/V=0.2; ii, 1000 cP, G/V=1; iii, 500 cP, G/V=2; iv, 

100 cP, G/V=9.7) and (b) different pipe diameters (i, d=26 mm, G/V=0.2; ii , d=76 mm, G/V=1.7) under 

controlled phase velocities Uso=0.4 m/s, and Usw=0.2 m/s. (b-iii) d=76 mm, Uso=2.0 m/s, and Usw=0.5 

m/s, G/V=0.4.  
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 Figure 8. Change of phase configuration with change of Froude number (Fr). (a) different oil 

velocities at Usw=0.2 m/s (i, Uso=0.12 m/s, Fr=0.8; ii, Uso=0.4 m/s, Fr=2.7; iii, Uso=0.8 m/s, Fr=5.3). (b) 

different oil densities at Uso=0.4 m/s and Usw=0.2 m/s (i, 910kg/m3, Fr=2.7; ii, 960kg/m3, Fr=4.1; iii, 

1100kg/m3, Fr=2.5). 
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Figure 9. Predicted pressure along the horizontal pipe (Run S-5). 
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Figure 10. Pressure drop reduction factor (PDRF) from simulations and measurements versus input 

water volume faction (Cw) at different superficial oil velocities. (a) Uso=0.1 m/s; (b) Uso=0.4 m/s.  
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Figure 11. Phase distribution (i) and velocity profiles (ii) of high-viscosity oil CAF at different 

distances downstream of the junction. (a) Case S-8a, Geometry I, Resw=5190, ρo=910 kg/m3; (b) Case 

S-8a-Rho2, Geometry I, Resw=5190, ρo=960 kg/m3 ; (c) Case S-15, Geometry II,  Resw=37 924, ρo=910 

kg/m3. 
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Figure 12. Turbulent kinetic energy (i) and intensity (ii) of virtually developed CAF. (a) Case S-8a, 

Geometry I, Resw=5190, ρo=910 kg/m3; (b) Case S-8a-Rho2, Geometry I, Resw=5190, ρo=960 kg/m3 ; 

(c) Case S-15, Geometry II,  Resw=37 924, ρo=910 kg/m3. 
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Figure 13. Static pressure at the core–annular interface. The black lines illustrate the outline of the 

internal pipe wall. Run S-8a,  Resw=5190. 

 


