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Abstract

We propose a unified approach for multilevel sample selection models using a gener-
alized result on skew distributions arising from selection. If the underlying distributional
assumption is normal, then the resulting density for the outcome is the continuous compo-
nent of the sample selection density, and has links with the closed skew-normal distribution
(CSN). The CSN distribution provides a framework which simplifies the derivation of the
conditional expectation of the observed data. This generalizes the Heckman’s two-step
method to a multilevel sample selection model. Finite sample performance of the maxi-
mum likelihood estimator of this model is studied through a Monte Carlo simulation.

Key Words: Unit and Item non-response; Closed skew-normal distribution; Selection distribu-
tion; Neck Disability Index.

1 Introduction

Scores derived from response to questionnaires are widely used in health and social studies to
measure aspects of health and well being. This type of study is usually planned as a longi-
tudinal study. Sometimes, the treatment effects at a measurement occasion may be desirable
and a cross-sectional view of the data will make two missing data types inevitable- unit and
item non-response. Unit non-response occurs when the whole questionnaire is missing for a
patient and item non-response occurs where a response has not been provided for a question.
The traditional practice is to use weighting adjustments for unit non-response and imputation
methods for item non-response. Weighting adjustment means weights are assigned to sample
respondents in order to compensate for their systematic differences relative to non-respondents,
whereas imputation involves filling in missing values (singly or multiply) to produce a complete
data set.

Although these methods have reached a high level of sophistication, they normally assume
that the missing data mechanism is MAR (missing at random), an assumption that cannot be
verified using the observed data alone. Apart from this, patients may refuse to answer sensitive
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questions (e.g. underlying health issues, drug addiction) on a questionnaire for reasons related
to the underlying true values for those questions. Thus, when we suspect that non-response
may depend on missing values, then a proper analysis will be to model jointly the population
of complete data and the non-response process. Sample selection models are therefore viable
tools.

Sample selection models arise in practice as a result of the partial observability of the
outcome of interest in a study. The data are missing not at random (MNAR) because the ob-
served data do not represent a random sample from the population, even after controlling for
covariates. The model was introduced by Heckman (1976) where he proposed a full maximum
likelihood estimation under the assumption of normality. Although the model has its origin
from the field of Economics, it has been applied extensively in other fields like Finance, So-
ciology and Political science, but sparingly in medical research. A prominent application to
treatment allocation for patients and links with the skew-normal distribution was discussed by
Copas and Li (1997).

The Heckman (1976) selection model, and by extension the Copas and Li (1997) model,
was formulated with one-level selection equation. Sometimes, it is necessary to distinguish
between the two forms of non-response. This implies that both unit and item non-response
simultaneously affect the outcome of interest and both types of non-response are potentially
correlated. This distinction can be used to study factors that affect the two non-responses
independently and jointly.

Similar models have been discussed in the literature. Poirier (1980) investigated random
utility models in which observed binary outcomes do not reflect the binary choice of a single
decision-maker, but rather the joint unobserved binary choices of two decision-makers. This
model was further developed by Ham (1982). A slight modification of this model was consid-
ered in De Luca and Peracchi (2006, 2012) in which an extension of Poirier (1980) model was
used to jointly analyze items and unit non-response in a survey data. Further application of
multilevel selection models in cross-sectional settings can be found in Bellio and Gori (2003)
and Rosenman et. al. (2010).

A general selection distribution for a vector Y ∈ Rp has a PDF (Probability Density Func-
tion) fY given by

fY(y) = fY?(y)
P (S? ∈ C |Y? = y)

P (S? ∈ C)
, (1)

where S? ∈ Rq and Y? ∈ Rp are two random vectors, and C is a measurable subset of Rq (see
Arellano-Valle et al. (2006)). Selection distributions depend on the subset C of Rq. The usual
selection subset is defined by

C(β) = {s ∈ Rq | s > β},

where β is a vector of truncation levels. In particular, equation (1) links selection distributions
and skew distributions, and hidden truncation model can be considered a special case of these
models. The use of selection distributions for making inference about the population character-
istics (without appropriate corrections) in a sample selection framework is not recommended.
This can lead to inflated type 1 error, where parameters in the model become significant, when
in fact they are not; see for example (Little and Rubin, 2002; Carpenter et al., 2002).

Although the result in (1) is not new, it does not define a complete sample selection density.
A sample selection density consists of a continuous component and a discrete component. The
main goal of this article is to show that the continuous component of the classical Heckman
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selection model and its extensions belong to the closed skew-normal (CSN) distribution and
to propose the use of full information maximum likelihood, which is rarely used, for param-
eter estimation in multilevel sample selection settings. Since the CSN distribution is a well
established distribution, moment based estimators and maximum likelihood estimators for any
number of selection equations and one outcome equation can readily be defined. This provides
a unified method for studying sample selection problems with more than two levels; current
econometric literature is restricted to two levels.

We initially address two levels sample selection models, and then indicate the generaliza-
tion. The article is organized as follows. In section 2, we describe the classical sample selec-
tion model and its multilevel extensions. Finite sample performance of the model is studied via
Monte Carlo simulation in section 3. We also study the coverage attributes of the sample selec-
tion parameters in this section. Application of the model to a real dataset and model diagnostics
are given in section 4. An extension of the model with an underlying skew-normal process is
shown to have an extended version of the CSN distribution in section 5 and conclusions are
given in section 6. The Appendix contains the derivation of three-level sample selection model
via a hidden truncation framework.

2 Sample Selection Models

We first describe the classical one-level Heckman sample selection model in this section and
its moment based estimator. The continuous component of the sample selection density of the
model is linked with the CSN distribution. This link is used to formulate multilevel sample
selection model in a straightforward way.

2.1 Copas and Li (1997) Sample selection model

Copas and Li’s (1997) paper is probably the first instance where the link between sample selec-
tion models and selection (skew) distributions was established. Consider a univariate case of
the model given in equation (1) but with the selection subset C(0), which has a simple selec-
tion distribution. That is, let Y ?

i be the outcome variable of interest, assumed linearly related to
covariates xi through the standard multiple regression

Y ?
i = β′xi + ε1i, i = 1, . . . , N. (2)

Suppose the main model is supplemented by a selection (missingness) equation

S?1i = γ′xi + ε2i, i = 1, . . . , N, (3)

where β and γ are unknown parameters and xi are fixed observed characteristics not subject to
missingness, the variance of ε2i = 1 because the variance is not identifiable from sign alone
and the variance of ε1i = σ2. Selection is modeled by observing Y ?

i only when S?1i > 0 (the
0 threshold is arbitrary since no symmetry is assumed), i.e. we observe Si = I(S?1i > 0) and
Yi = Y ?

i Si for n =
∑N

i=1 Si of N individuals. Thus an observation has the conditional density

f(y|x, S = 1) =
f(y, S = 1|x)

P (S = 1|x)
=
f(y|x)P (S = 1|y, x)

P (S = 1|x)
. (4)
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The quantity f(y|x) is a proper PDF, with a skewing function P (S = 1|y, x), and a normalizing
function P (S = 1|x). It is straightforward to show that under the additional assumption(

ε1i

ε2i

)
∼ N2

{(
0
0

)
,

(
σ2 σρ
σρ 1

)}
;

f(y|x, S = 1; Θ) =

1
σ
φ
(
y−β′x
σ

)
Φ

(
γ′x+ρ

(
y−β′x
σ

)
√

1−ρ2

)
Φ(γ′x)

, (5)

(see Copas and Li (1997)), where Θ = (β, σ, γ, ρ). The parameter ρ ∈ [-1,1] determines the
correlation of Y ?

i and S?1i, and hence the severity of the selection process. This equation is
not the full sample selection density. The density of the sample selection model is composed
of a continuous component corresponding to the conditional density f(y|x, S = 1; Θ) and a
discrete component given by P (S = 1|x). The marginal distribution of the selection equation
determines the nature of the model to be fitted to the discrete component. In Copas and Li
(1997) (and Heckman (1976)), a probit model P (S = s) = {Φ(γ′x)}s{1 − Φ(γ′x)}1−s was
used. The log-likelihood function is therefore

l(Θ) =
n∑
i=1

Si

(
ln f(yi|xi, Si = 1; Θ)

)
+

n∑
i=1

Si(ln Φ(γ′xi)) +
n∑
i=1

(1− Si) ln Φ(−γ′xi). (6)

The maximum likelihood estimation based on (6), which is equivalent to equation (14) of
Copas and Li’s (1997) model, is not robust to deviations from the normality assumption. This
prompted Heckman (1979) to develop the two-step estimator (TS). The TS estimator is derived
from the conditional expectation of the observed data, and is given by

E(Y |x, S? > 0) = β′x+ σρΛ(γ′x), (7)

where Λ is the inverse Mills ratio. Details of this model, including its sensitivity to collinearity
among covariates, can be found in Heckman (1979) and Puhani (2000).

As expected, from Arellano-Valle et al. (2006), equation (5) belongs to the extended skew-
normal (ESN) distribution family. To see this, we let µ = β′x, λ0 = γ′x/

√
1− ρ2 ∈ R and

λ1 = ρ/
√

1− ρ2 ∈ R in (5); we then have the PDF written in the four-parameter ESN form
given by

f(y;λ0, λ1, µ, σ) =
φ
(
y−µ
σ

)
Φ
(
λ0 + λ1(y−µ

σ
)
)

σΦ

(
λ0√
1+λ21

) ,

where λ0 & λ1 are shift and shape parameters respectively (see (Azzalini, 1985; Capitanio et al.,
2003)). The ESN distribution is a special case of the closed skew-normal (CSN) distribution,
which is defined below.

Definition 1 Consider p ≥ 1, q ≥ 1, µ ∈ Rp, ν ∈ Rq, D an arbitrary q × p matrix, Σ and
∆ positive definite matrices of dimensions p × p and q × q, respectively. Then the PDF of the
CSN distribution is given by:

fp,q(y) = Cφp(y;µ,Σ)Φq(D(y − µ);ν,∆), y ∈ Rp, (8)

with:
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C−1 = Φq(0;ν,∆ +DΣD′),

where φp(.;η,Ψ), Φp(.;η,Ψ) are the PDF and CDF (Cumulative Distribution Function) of a
p-dimensional normal distribution with mean η ∈ Rp and p× p covariance matrix Ψ. We write
Y ∼ CSNp,q(µ,Σ, D,ν,∆), if y ∈ Rp is distributed as CSN distribution with parameters
q,µ, D,Σ,ν,∆. The special case of ν = 0 in (8), gives,

fp,q(y) = 2qφp(y;µ,Σ)Φq(D(y − µ);0,∆),

which is the multivariate skew-normal distribution discussed in Azzalini and Valle (1996).
When q = 1 and ν 6= 0 in (8), we obtain the multivariate ESN distribution. If p = 2 and
q = 1, a bivariate skew-normal distribution is derived. It is straightforward to see that the PDF
in (8) includes the normal distribution as a special case when D and ν = 0. The properties of
CSN distribution that simplify the formulation of multilevel sample selection models include
its moment generation function and derivatives of multinormal integrals, and can be found in
Gonzalez-Farias et. al. (2004) and Dominguez-Molina et. al. (2004).

Given equation (5), the continuous component of the Heckman (1976) sample selection
density, which is essentially an ESN distribution, can be written as

f(y|x, S = 1) =
φ
(
y; β′x, σ2

)
Φ
(
ρ
σ

(
y − β′x

)
;−γ′x, 1− ρ2

)
Φ
(

0;−γ′x, 1
) ,

which has CSN form

(Y |x, S = 1) ∼ CSN1,1

(
β′x, σ2,

ρ

σ
,−γ′x, 1− ρ2

)
.

2.2 Multilevel Sample Selection Models

Multilevel sample selection arises when more than one selection process affects the outcome
of interest in a study. These models have been discussed in the literature in various forms.
Suppose (2) is supplemented with n possible selection processes (not necessarily hierarchical)
given as 

S?1i = α′1xi + ε2i

S?2i = α′2xi + ε3i

...
S?ni = α′nxi + ε(n+1)i,

where S1i = I(S?1i > 0), S2i = I(S?2i > 0),. . . , Sni = I(S?ni > 0). The usable observations
are the Yi = Y ?

i ∗ S1i ∗ S2i · · · ∗ Sni with density f(yi|xi, S1i = 1, S2i = 1, . . . , Sni = 1). This
density is the continuous component of the multilevel sample selection density. The discrete
component is determined by the marginal distribution of the selection mechanisms. Unlike in
the single selection process, the binary regression is determined by the nature of the selection
process.

When multilevel selection models are mentioned in the literature (econometric literature in
particular), what usually comes to mind is a two-level selection process. This has an outcome
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equation (binary (e.g. Poirier (1980)) or continuous (e.g. Ham (1982))) and two selection equa-
tions with trivariate Gaussian error distribution assumption. At the end, a two-level extension
of the Heckman two-step method is derived and used to analyze the observed data. However,
there are cases where more than two selection processes can affect the outcome of interest. In
some of these cases, the selection mechanisms are combined to make the model more man-
ageable and the complicated algebra required to write more than two-level Heckman selection
method is avoided in the process.

The combination of selection equations may result in information loss and inability to an-
swer pertinent research questions. Consequently, we propose a link between the continuous
component of the multilevel sample selection density and the CSN density (or its extension
when the underlying assumption is a symmetric or skew-symmetric distribution) using equa-
tion (1). This link is used to generalize the moment based Heckman’s two-step method to
a multilevel sample selection model. The discrete component is a multivariate probit model
whose nature is determined by its level of observability. In addition, since the distribution of
the observed cases follow the CSN distribution, full information maximum likelihood can be
used for parameter estimation. Without loss of generality, we use a two-level sample selection
model to illustrate the unification of multilevel sample selection problems into a distributional
framework.

3 Two-level Selection models and Monte-carlo simulation

In this section, we show that the continuous component of a multilevel sample selection density
is also a CSN density. This simplifies the derivation of the conditional expectation and variance
of the observed data. A simulation study is used to study finite sample properties of the MLEs
for the two-level model.

3.1 Two-level Selection models

Suppose equations (2) and (3) are supplemented with an additional selection equation

S?2i = α′xi + ε3i, i = 1, . . . , N. (9)

If the regression errors follow a trivariate Gaussian distribution, and we normalize the variances
of ε2i and ε3i to one in order to identify the coefficients of the binary response equations, thenε1i

ε2i

ε3i

 ∼ N3

0
0
0

 σ2 σρ12 σρ13

σρ12 1 ρ23

σρ13 ρ23 1

 .

Now, (4) can be generalized to a two-level selection model as

f(y|x, S1 = 1, S2 = 1)) =
f(y|x)P (S1 = 1, S2 = 1|y, x)

P (S1 = 1, S2 = 1)
. (10)

The marginal distribution of Y is f(y|x) = φ(y; β′x, σ2). Similarly,

P (S1 = 1, S2 = 1) = 1− Φ2(−γ′x,−α′x; ρ23) = Φ2(γ′x, α′x; ρ23).
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Using the conditional distribution properties of the normal distribution, P (S1 = 1, S2 = 1|y, x)
becomes

Φ2

(
D(y − β′x);

(
−γ′x
−α′x

)
,Σ?

2

)
,

where D = (ρ12/σ, ρ13/σ)′ and Σ?
2 =

(
1− ρ2

12 ρ23 − ρ12ρ13

ρ23 − ρ12ρ13 1− ρ2
13

)
. When appropriate sub-

stitutions are made in equation (10) and the model is standardized, the resulting density be-
comes:

φ(y; β′x, σ2)Φ2

(
γ′x+ρ12( y−β

′x
σ

)√
1−ρ212

,
α′x+ρ13( y−β

′x
σ

)√
1−ρ213

; ρ23−ρ12ρ13√
1−ρ212
√

1−ρ213

)
Φ2(γ′x, α′x; ρ23)

. (11)

Model (11) includes the three missing data mechanisms discussed in the missing data liter-
ature (see for example, Rubin (1976), Diggle and Kenward (1994) and Little and Rubin (2002)).
If the non-intercept terms in γ and α, as well as ρ12 and ρ13 are zero in (11), the data are MCAR
(missing completely at random). That is, the non-response processes for both the unit and item
are independent both of observed data and of unobservable parameters of interest. If ρ12 and
ρ13 are zero in (11) the data are MAR, and valid inference about the conditional distribution of
Y given x can be made when adjustment for missing data is made using covariates on complete
cases. The difference between MCAR and MAR missing data mechanism is that there are no
predictors of missingness in the former, since the realized sample is a random sample from
the fully responding units. If ρ12 or ρ13 is different from zero in (5), then the missing data are
MNAR. In this case, the missing data process is said to be informative or non-ignorable, as
valid inference depends on adequate adjustment for the selection process.

Equation (11) is equivalent to equation (10) given in Ahn (1992). It has a CSN density
representation given by:

φ(y;µ1, σ
2)Φ2(D(y − µ1);ν,Σ?

2)

Φ2(0;ν,Σ2)
, (12)

where 0 = (0, 0)′, ν = (−µ2,−µ3)′, µ1 = β′x, µ2 = γ′x and µ3 = α′x. It is easy to see that
Σ2 = Σ?

2 +Dσ2D′.

Insert Figure 1 about here:

A plot of the PDF given by (12) is shown in Figure 1. The ‘CSN(Normal)’ represents the
normal distribution as a special case of the CSN distribution. The parameters are µ1 = 1, σ = 1,

D = (0, 0)′, ν = (0, 0)′, and Σ?
2 =

(
1 0
0 1

)
. The ‘CSN(Skew-normal)’ is a skew-normal

equivalence of CSN distribution with D = (1, 2)′, and other parameters kept as in the normal
case. The more general form of the CSN is marked as ‘CSN(General)’ with ν = (−2, 4)′ and
other parameters kept as in the skew-normal. The more general CSN can be more or less skew
depending on its parameters. This general form is the structure of the sample selection model.

In general, the continuous component of a multilevel sample selection density is a CSN
density. In the bivariate case, it is given by equation (11). The discrete component of the log-
likelihood function can be described by a bivariate probit model since the marginal distribution
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of the selection equation is a bivariate normal distribution. Roughly speaking, the normalizing
constant of the continuous component will turn out to be the observed component of the discrete
process, which is Φ2(γ′x, α′x; ρ23) in this case. There are various bivariate models that fit into
this framework depending on the assumption about the observability of S1 and S2. This ranges
from separate observability of both S1 and S2 to observability of S1S2 only (see Meng and
Schmidt (1985)).

The fact that sample selection density consists of two ‘separate’ components, and the con-
tinuous component belongs to an established family of skew distributions, makes the extension
of the two-level sample selection problem into a multilevel sample selection problem straight-
forward. For instance, in the three-level sample selection problem, the continuous component
of the sample selection density is a CSN density with dimensions p=1 and q=3 (see the deriva-
tion in the Appendix). This separation ensures that the continuous component of the density
has no link with the hierarchical nature of the selection process. If the selection process is hier-
archical, there is only one possible model for the discrete component regardless of the number
of selection equations. This model is a multivariate probit model with full observability. As
the number of selection equations increases however, the number of possible non-hierarchical
multivariate probit models with sample selection increases. In practice, subject matter expertise
can help narrow down the models to a manageable size when applied to a specific data problem.
Extension of the continuous component to multivariate measurements is also straightforward.

3.2 Moments and Maximum Likelihood estimator for multilevel selection
model

The fact that the continuous component of the two-level (hence multilevel) sample selection
density is from a well established CSN family results in a straightforward formula for its mean
and variance. These models turn out to be generalizations of Heckman’s two-step method.

The mean is then given by:

E(Y |x, S?1 > 0, S?2 > 0) = β′x+ σρ12Λ1(θ) + σρ13Λ2(θ), (13)

where

Λ1(θ) =
φ(γ′x)Φ

(
α′x−ρ23γ′x√

1−ρ223

)
Φ2(γ′x, α′x; ρ23)

and Λ2(θ) =
φ(α′x)Φ

(
γ′x−ρ23α′x√

1−ρ223

)
Φ2(γ′x, α′x; ρ23)

.

Λ1(θ) and Λ2(θ) are the bivariate inverse Mills ratio. This equation extends Heckman’s two-
step method (see equation (7)) to two-level selection problems. A standard bivariate probit
model is fitted depending on what is assumed about the observability of S1 and S2 and γ & α
are estimated. These are used to construct Λ1(θ̂) and Λ2(θ̂) for cases with S1 and S2 greater
than zero. These quantities are taken as additional covariates in (13) and fitted by least squares.
The coefficient of the additional covariates give estimates of σρ12 and σρ13 respectively.

To visualize the impact of the correlation (ρ23) between the selection equations on the
outcome model, we plot the second component of the expectation (E(Y |x, S?1 > 0, S?2 > 0)-
β′x) as a function of ρ12γ

′x+ ρ13α
′x, the combined mean of the selection variables. We fix ρ12

and ρ13 to be 0.7 and 0.5 respectively for values of ρ23= {0, 0.3, 0.5 and 0.7}. The standard
deviation, σ, simply scales the correction factors.

From Figure 2a, the conditional expectation will be overestimated if ρ23 is greater than zero
and we assume it to be zero, for negative values of the combined selection predictors (ρ12γ

′x+
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ρ13α
′x). The difference diminishes as the linear predictors become positive. In addition, Figure

2a shows that the bivariate inverse Mills ratio can be linear over a wide range of its support. In
practice, an exclusion restriction is usually imposed whereby there are variables in the selection
equations that does not appear in the outcome model or vice-versa. This ensures that we do not
rely on the non-linearity of the bivariate inverse Mills ratio for model identifiability.

Sometimes, the marginal effect of the covariates (xi) on the outcome Yi in the observed
sample may be of interest. For the extended Heckman two-step method given by (13), the
effect consists of three components- the direct effect of the covariates on the mean of Yi which
is captured by β and the indirect effects of the covariates in the two selection equations. The
marginal effect is given by:

∂

∂xi
E(Y |x, S?1 > 0, S?2 > 0) =β′ − σρ12

[(γ′ − ρ23α
′√

1− ρ2
23

Λ(θ)
)
− α′(α′x)Λ2(θ)

]
−σρ13

[
γ′Λ1(θ)Λ2(θ) + (Λ2

(
θ)
)2]

,

(14)

where Λ(θ) = φ(γ′x)φ
(
α′x−ρ23γ′x√

1−ρ223

)/
Φ2(γ′x, α′x; ρ23). Figure 2b shows that the conditional

marginal effect of xi on Yi will be underestimated if ρ23 is greater than zero and we assume it
to be zero, for negative values of the combined selection predictors (ρ12γ

′x + ρ13α
′x). These

effects also dies out as the predictors becomes positive.

Insert Figure 2 about here:

A consistent estimate of the variance can be derived from the conditional variance given
by:

var(Y |x, S?1 > 0, S?2 > 0) =σ2 − σ2ρ2
12(γ′x)Λ1(θ)− σ2ρ2

13(α′x)Λ2(θ)

+
φ2(γ′x, α′x; ρ23)

Φ2(γ′x, α′x; ρ23)

[
2σρ12σρ13 − ρ23(σ2ρ2

12 + σ2ρ2
13)
]

−
(
σρ12Λ1(θ) + σρ13Λ2(θ)

)2

=σ2 + υ.

(15)

The error terms of the selected sample are heteroscedastic. A generalization of Heckman’s
estimator for σ2 given by

σ2 = (S −
∑

υ̂i)/N2,

where S is the sum of squared residuals from the second-step regression, N2 is the size of the
complete cases, and υi equals υ̂i after parameter estimates have been substituted for their true
values, can be used to get consistent estimator for σ2.

The log-likelihood function takes the form:

l(Ω) =
N∑
i=1

(
S1iS2i

[
ln f(yi|xi, S1i = 1, S2i = 1)

]
+ S1iS2i

[
ln Φ2(γ′xi, α

′xi; ρ23)
]

+S1i(1− S2i)
[
ln Φ2(γ′xi,−α′xi;−ρ23)

]
+ (1− S1i)S2i

[
ln Φ2(−γ′xi, α′xi;−ρ23)

]
+(1− S1i)(1− S2i)

[
ln Φ2(−γ′xi,−α′xi; ρ23)

])
,

(16)

where Ω = (β, σ, γ, α, ρ12, ρ13, ρ23).
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3.3 Monte Carlo Simulation

The finite-sample performance of the models in section 3.2 are studied here. We consider
maximum likelihood estimator ((16)) which we referred to as the multilevel selection normal
model (MSNM). The moment based multilevel two-step (MTS) estimator given by (13) and
multiple imputation (MI) of missing data are also considered. The outcome equation is Y ?

i =

0.5 + 1.5xi + ε1i, where xi
iid∼ N(0, 1) and i = 1, . . . , N = 1000. The two-level selection

equations are given as S?1i = 1 + 0.4xi + 0.3wi + ε2i and S?2i = 1 + 0.6xi + 0.7wi + ε3i,
where wi

iid∼ N(0, 1). The error terms are generated from a trivariate normal distribution with

covariance matrix Σ =

 1 0.7 0.5
0.7 1 ρ23

0.5 ρ23 1

. This construction implies that the variance of the

outcome model is 1. We take ρ23 = {0, 0.3, 0.5, 0.7} to assess its effect on the parameters of
the outcome model, and 1000 replications are used in all the simulation.

We only observe values of Y ?
i when both S?1i and S?2i are greater than zero. With this repre-

sentation, roughly 30% of the observations were censored, and we allow for full observability
in the bivariate process. For the MI, x1 and x2 are used as covariates for the imputation model
and the regression model of interest only includes x1. We use 10 imputations for each of the
samples generated.

Insert Tables 1 and 2 about here:

Tables 1 and 2 show the results of the simulation when the correlation between the selection
equations are low and moderately high. The MSNM preforms better than the MTS as expected,
although at a higher computational cost. When ρ23 = 0, 45% of the simulation results were
discarded under the MTS method because the values of ρ12 and ρ13 are outside their admissible
range. Roughly, 8% and 1.9% of the simulation results are outside the admissible range when
ρ23 = 0.3 and 0.5 respectively. However, all the values of ρ12 and ρ13 are in the interval [-1,1]
when ρ23 = 0.7. A noticeable impact of the values of ρ23 is that the intercept of both the MSNM
and the MTS models consistently have lower bias as ρ23 increases. The reverse is the case with
MI, and the procedure is clearly inappropriate for multilevel sample selection models.

Arguably, the log-likelihood function of the MSNM models are not globally concave. The
initial values have to be chosen carefully for the model to converge, and not to converge to
a local maximum. This was accomplished in the simulation by choosing the initial values
in the neighborhood of the values used for the data generation. In addition, the correlation
parameters (ρ12 and ρ13) were constrained to be within [-1,1]. This results in further flexibility
which cannot be achieved under the MTS method since the correlations are tied to the variance,
which in turn is heteroscedastic.

We also assess the coverage probabilities of Wald test and LRT for the hypothesis of selec-
tion bias, that is the hypothesis H0 : ρ12 = ρ13 = 0. The data are simulated as described earlier
with 1000 replications but with sample sizes N = 500 and 1000. We take 0.05 as the nominal
significance level and the multivariate Wald test is as described on p.78 of Enders (2010).

Insert Table 3 about here:

Table 3 shows the results of the coverage probabilities for fixed values of ρ23. The LRT
maintains the nominal coverage when ρ23 = 0 and N =1000. The performance of the LRT is
better than the Wald test both in the medium and large sample sizes.
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4 Application to MINT Trial

We examine data from a multi-center randomized controlled trial of treatments for Whiplash
Associated Disorder (WAD) referred to as Managing Injuries of the Neck Trial (MINT), in
which two treatment regimes were compared: physiotherapy versus reinforcement of advice
in patients with continuing symptoms after three weeks of their initial visit to the Emergency
Department (ED) (Lamb et. al., 2007). As with many longitudinal patient-reported outcome or
quality of life studies, the data were collected using questionnaires at regular intervals over a
follow-up period at 4, 8 and 12 months after patient’s ED attendance.

The main goal of the study is to determine if there is any meaningful difference in the
treatments. The primary outcome of interest is return to normal function after the whiplash
injury, and is measured using the Neck Disability Index (NDI). The NDI is a self-completed
questionnaire which assess pain-related activity restrictions in 10 areas including personal care,
lifting, sleeping, driving, concentration, reading and work and result in a score between 0 and
50. It was developed in 1989 by Howard Vernon as a modification of the Oswestry Low Back
Pain Disability Index. The NDI has been shown to be reliable and valid (Vernon and Mior,
1991), hence its use as a standard instrument for measuring self-rated disability due to neck
pain by clinicians and researchers.

There are 599 patients with a total of 1934 measurements and 372 (62%) patients have com-
plete observations (i.e. scores at all measurement occasions). Patients were allocated equally
to the treatment of interest, physiotherapy, and the control, ‘usual advice’ contained in the
Whiplash Book (Burton et. al., 2001)). The mean age is approximately 41 years with range 18
to 78 years. The fact that the responses were derived from the use of a 10-item questionnaire
posed several challenges. One of the challenges is item and unit non-response and dropout
with time. The question on driving has the highest number of missingness among the items
on the NDI scale. A possible explanation for this is that some of the patients are not driving,
and the question is not open-ended to avoid skipping it when it is not relevant. Regardless of
this possibility, clinicians are interested in knowing if the question motivated the respondents
to fail to answer other questions on the scale. We focus on the measurement at months 12,
where more data are missing on this question than other measurement occasions, and use the
two-level sample selection model to jointly analyze the non-response processes.

In line with the study design, 599 patients are expected to return the questionnaire. After
removing covariates with missing values, the sample size consists of 567 patients. Of the
patients, 79 patients returned the questionnaire blank (genuine unit non-response). Vernon
recommended that patients with only 2 missed items should be considered complete, with
mean imputation used for adjustment. There are 45 patients in this category, making a total of
101 unit non-respondents. The unit is first observed before the question of interest, the driving
question, is answered. We have 61 patients who did not respond to this question. Of course,
unit non-respondents are also item non-respondents, making patients with item non-response
to be effectively 185 patients.

The questions to answer are whether unit and item non-response are related and whether
both are related to the outcome of interest. To answer the first question, we consider a bivariate
probit model with sample selection for unit and item non-response and estimate the correlation
parameter. This model is also used to identify possible predictors of non-response in the unit
and item equations. Unlike the discrete component of (16), the log-likelihood function for a
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bivariate probit sample selection model is

l(γ, α, ρ23) =
N∑
i=1

(
S1iS2i

[
ln Φ2(γ′xi, α

′xi; ρ23)
]

+ S1i(1− S2i)
[
ln Φ2(γ′xi,−α′xi;−ρ23)

]
+(1− S1i)

[
ln Φ(−γ′xi)

])
.

(17)

A simulation study (not reported here) showed that if the selection model (17) is correctly
specified, correct specification includes imposing exclusion restrictions on the covariates in the
two equations of the unit and item, the model parameters are consistent. In addition, one can test
the hypothesis of conditional independence between unit and item non-response using a Wald
test or likelihood ratio test. To fit the two-step method to a two-level selection problem with
sample selection between unit and item non-response, the probit model needed in the bivariate
inverse Mills ratio is the one given by equation (17). Patients may feel that the treatment they
received is of no benefit, and thereby discontinue treatment. This will lead to unit non-response
rather than item non-response. We therefore include treatment indicator (‘physio’) as a possible
predictor of unit non-response. Other baseline variables in the data, e.g. ethnicity, employment
status and region could not be included in the data analysis because they are subjected to various
degrees of missingness.

Insert Table 4 about here:

The results in Table 4 show that there is conditional independence between unit and item
non-response for the scores using Wald test. This was further affirmed by the likelihood ratio
test that compares the maximized values of the log-likelihood function in Table 4 with the sum
of the log-likelihoods for two simple probit models for unit and item non-response separately
(P-value=0.262). Increasing age is associated with increase in both types of non-response. The
driving question is less likely to be answered by women. Fewer older women than older men
have driving licences.

Insert Table 5 about here:

Table 5 contains the results of the MSNM models with ρ23 6= 0 & ρ23 = 0, and the extended
Heckman’s 1979 model (MTS). The ‘wad’ variable stands for Whiplash Associated Disorder
(Whiplash describes both the mechanism of injury and the symptoms caused by that injury).
It is a categorical variable with grade 3 the most severe neck disability and grade 1 the least,
recorded before the patient enters the study. The ‘baseline’ are the NDI scores of patients at the
start of the study. We include ‘wad’ and ‘baseline’ variables in the outcome model to assess
their relationship with the NDI scores at month 12. Age and baseline are positively associated
with the outcome.

Insert Figure 3 about here:

The results of MSNM model with ρ23 6= 0 are reported for completeness sake. This result
also strengthen the earlier conclusion about conditional independence of unit and item non-
response reported in Table 4 (p-value = 0.243 for the LRT). Under the model with conditional
independence (ρ23 = 0), separate probit models are used for unit and item non-response for
the discrete components of the log-likelihood function given in (16). The standard errors for
the parameter estimates in the MTS method are obtained using 200 non-parametric bootstrap
samples. The MTS estimates show a significant effect of sex on NDI score, indicating the
inadequacy of the method.
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We examine the normalized profile log-likelihood of the correlation parameters from our
preferred model (MSNM with ρ23 = 0). Figure 3 shows the plots of these profiles, with the
profile for ρ23 obtained from the bivariate probit model in Table 4. The profiles for ρ13 and ρ23

are well behaved, but the profile of ρ12 is asymmetric and does not decay to zero. Consequently,
the use of standard errors to produce interval inference can sometimes be misleading. In the
case of the NDI scores, the Wald standard errors and the profile interval resulted in the same
conclusion for ρ12 and we retained the former in Table 5.

In practice, sample selection models are used for explanation purposes rather than predic-
tion. However, it is possible to validate the model by the validation of its components. That
is, the outcome and the selection components are validated separately. The approach we use
for validation is by plugging in the parameter estimates from our preferred model into equation
(13) to obtain fitted scores. Figure 4 shows the residual plot and the histogram of the residuals.
The parameter estimates are unbiased but the errors are heteroscedastic. Factors that could be
responsible for this include omission of variables that can possibly interact with the variables
included in the model. We are unable to include these covariates because of severe missingness.
In addition, the scores are bounded and we recommend transformation of the outcome using,
for example, the logistic transformation before the application of the multilevel model.

Insert Figure 4 about here:

5 Multilevel Skew-normal Selection model

Multilevel sample selection models are generally identifiable but the price to pay for the iden-
tifiability is possibility of model misspecification. Although sensitivity analysis on the model
parameters is justifiable, the use of a range of plausible parametric representations, especially
those having the normal distribution as special case, is preferred. The two most common de-
viations from normality are nonnormal peakedness and asymmetry. As noted by Mudholkar
and Hutson (2000), the effects of asymmetry on the normal theory methods are generally more
serious than those of the nonnormal peakedness. A similar model to the one given by equation
(11) can be constructed with an underlying multivariate skew-normal distribution (Azzalini and
Valle, 1996; Azzalini and Capitanio, 1999) as follows.

Suppose we have a joint process where the outcome Y is skewed and the two selection
models have skewness parameters equals to zero. The joint distribution can be written in a
CSN form. That is,YS1

S2

 ∼ CSN3,1

{
µ = (β′x, γ′x, α′x),Σ =

 σ2 σρ12 σρ13

σρ12 1 ρ23

σρ13 ρ23 1

 , D = (λ/σ, 0, 0), ν = 0,∆ = 1

}
.

The conditional probability P (S1 = 1, S2 = 1|y, x) is

CSN2,1

{
µ =

[
γ′x+ ρ12

(y − β′x
σ

)
, α′x+ ρ13

(y − β′x
σ

)]′
,Σ = Σ?

2, D
? = (0, 0)′,

ν = λ
(y − β′x

σ

)
,∆ = 1

}
,

(18)

where Σ?
2 is as defined in section 3.1. Since the skewness parameters in (18) are zero, it reduces

to the normal distribution given in equation (11). Similarly, the marginal selection process
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P (S1 = 1, S2 = 1) has a bivariate skew-normal distribution

SN2

{(
γ′x
α′x

)
,

(
1 ρ23

ρ23 1

)
,

( −λ(ρ12−ρ13ρ23)

(1−ρ223+λ[ρ212+ρ213−2ρ12ρ13ρ23])
−λ(ρ13−ρ12ρ23)

(1−ρ223+λ[ρ212+ρ213−2ρ12ρ13ρ23])

)}
.

The continuous component of this model has density

2
σ
φ
(
y−β′x
σ

)
Φ
(
λ(y−β′x)

σ

)
Φ2

(
γ′x+ρ12( y−β

′x
σ

)√
1−ρ212

,
α′x+ρ13( y−β

′x
σ

)√
1−ρ213

; ρ23−ρ12ρ13√
1−ρ212
√

1−ρ213

)
P (S1 = 1, S2 = 1)

. (19)

The normalizing constant P (S1 = 1, S2 = 1) determines the nature of the binary regression
model for the discrete process, which is a bivariate binary regression model with skew-normal
link. The correlations and the skewness parameter λ contribute to the skewness in the model.

If λ = 0 in (19), then equation (11) is recovered. This model can be extended to more than
two-level selection processes. The central model will be an extended version of the CSN distri-
bution and an appropriate binary regression model depending on the degree of observability of
the outcome. The required extended CSN distribution can be derived by adding p-dimensional
random vector from the multivariate skew-normal distribution to an independent q-dimensional
random vector from the truncated multivariate normal distribution.

6 Concluding Remarks

Classical sample selection models and their multilevel counterparts have been in the literature
for some time. We have therefore, not claimed any originality in this proposal. What we have
done however, is to unify two streams of literature on this matter and propose a framework
for easy generalization to any number of selection equations in a straightforward manner, and
which to the best of our knowledge has not been proposed elsewhere. We also demonstrated the
advantage of the full information maximum likelihood and the power of the LRT in two-level
sample selection models, which are rarely used in practice.

The econometric literature usually assumes a joint Gaussian error distribution for the out-
come and the selection equations. By using properties of truncated normal distribution, the
moment-based estimators of sample selection model is derived. On the other hand, the statis-
tics literature contains studies on the closed skew-normal (CSN) distribution. Although the
CSN distribution is elegant and a generalization of the Azzalini skew-normal distribution, its
use is limited in likelihood based methods due to identifiability issues. When used in sample
selection framework, the CSN becomes identifiable due to extra information from the selection
process.

A simulation study was conducted to assess the performance of the likelihood (MSNM) and
the moment (MTS) based estimators of the two-level sample selection model. The performance
of multiple imputation (MI) was also investigated. The MSNM approach outperformed the
MTS method and the variance in the MTS method are consistently larger. The impact of the
correct specification of the association parameter (ρ23) between the selection equations was
also examined. As ρ23 becomes larger, the bias in σ also increases. The discarded results when
ρ23 = 0 under the MTS method can suggest that likelihood estimators also have problems
at the boundary of the parameter space. The MI approach failed in this setting and it is not
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recommended generally for cross-sectional MNAR data. In addition, we showed that LR tests
generally have better coverage than the multivariate Wald test for the MSNM model. The
application demonstrated the value of the MSNM in separating factors associated with item
and unit non-response, and in providing more accurate estimates of the outcome model.

On model identifiability, the Fisher information matrix for two selectivity criteria was de-
rived in Ahn (1992) and was shown to be nonsingular. Even in the more than two-level cases,
we expect the model to be identifiable. The continuous component (CSN) would necessarily
be non-identifiable in general, and the use of a selection distribution in sample selection frame-
work is incorrect. The model will become identifiable from the additional information from the
discrete component. The central advantage of the CSN distribution in sample selection frame-
work with symmetric and asymmetric distributions cannot be overemphasized. We have shown
in (19) that the model is an extension of the CSN distribution.

The main advantage attributed to the moment estimator of sample selection model is its
robustness to deviations from normality assumption. But the problem of multicollinearity out-
weigh this robustness gain as noted by Puhani (2000). As the number of selection equations
increase, the construction of appropriate sets of covariates for exclusion restriction becomes
difficult. Considering the simplicity of the CSN density, it is easier to construct a likelihood
function and optimize it. Computational complexity in the likelihood framework is no longer a
set back as R software, for instance, have packages that can evaluate multidimensional normal
integrals up to 1000 components (Genz and Bretz , 2009). The generalization we proposed
has better prospects in observational studies and surveys where multilevel selection processes
need to be analyzed jointly and with information on likely variables that could potentially be
responsible for a particular selection process included in the analysis.
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Figure 2: Plots of correction factor and marginal effect for different values of correlation between the
selection equations ρ23: (a) Correction factor; (b) Marginal effects.
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Table 1: Simulation results (multiplied by 10,000) for zero and low correlation between the
selection equations.

Bias MSE
MSNM MTS MI MSNM MTS MI

ρ23 = 0
β0 204 948 2987 46 240 914
β1 -74 -337 -6059 20 49 3685
σ -24 242 3268 14 75 1084
γ0 42 64 26 28
γ1 41 56 27 30
γ2 19 -28 26 27
α0 52 88 34 34
α1 44 80 34 34
α2 131 205 40 38
ρ12 -823 -5412 678 5967
ρ13 137 1915 316 834
ρ23 -2 32 55 49

ρ23 = 0.3
β0 79 103 3203 52 258 1048
β1 -80 -330 -6534 21 41 4283
σ -32 392 3520 15 121 1255
γ0 42 30 27 27
γ1 35 30 28 29
γ2 29 12 27 26
α0 53 86 35 36
α1 46 58 32 33
α2 117 130 39 37
ρ12 -923 -5812 725 6904
ρ13 60 1442 269 628
ρ23 13 26 43 39
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Table 2: Simulation results (multiplied by 10,000) for moderate to high correlation between the
selection equations.

Bias MSE
MSNM MTS MI MSNM MTS MI

ρ23 = 0.5
β0 28 18 3344 61 656 1140
β1 -94 -20 -6845 23 91 4699
σ -37 370 3666 17 123 1359
γ0 47 51 29 29
γ1 3 11 30 32
γ2 21 -26 25 26
α0 38 69 33 32
α1 20 46 32 33
α2 56 69 36 36
ρ12 -1352 -2305 1013 6947
ρ13 99 -489 253 813
ρ23 9 14 32 28

ρ23 = 0.7
β0 20 -7 3441 53 560 1206
β1 -74 -14 -7169 21 77 5154
σ -51 2099 3803 16 1366 1461
γ0 40 47 26 26
γ1 49 52 29 29
γ2 54 37 27 26
α0 53 58 34 35
α1 62 62 32 33
α2 39 30 37 35
ρ12 -830 -1890 565 7600
ρ13 -150 -618 223 445
ρ23 24 20 19 19
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Figure 3: Normalized Profile likelihoods of correlation parameters: (a) Unit non-response (ρ12); (b)
Item non-response (ρ13); (c) Correlation between unit and item non-response (ρ23).
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Figure 4: (a) Residual plot for the observed scores; (b) Histogram of residuals with Normal Curve.

Table 3: Empirical significance levels (as %) of the tests of selection bias for the nominal
significance level α = 0.05 in the MSNM model.

N = 500 N = 1000
ρ23 Wald LRT Wald LRT
0.0 4.7 5.4 5.2 5.0
0.3 4.2 5.3 4.6 4.9
0.5 3.6 4.4 4.4 4.9
0.7 3.5 4.6 4.3 4.7
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Table 4: Probit model for dropout at months 12.
Missing at 8 months

Bivariate Probit Individual Probit
Estimate S.E. p-value Estimate S.E. p-value

int(u)a 0.397 0.243 0.103 0.403 0.242 0.096
age 0.016 0.005 0.004 0.016 0.005 0.004
sex(f) 0.102 0.138 0.462 0.100 0.138 0.467
physiotherapyb 0.061 0.133 0.648 0.050 0.133 0.710
int(i)c 0.190 0.233 0.416 0.196 0.234 0.403
age 0.014 0.005 0.010 0.013 0.005 0.012
sex(f) 0.635 0.136 0.000 0.632 0.136 0.000
ρ23 0.113 0.101 0.260
Loglik -439.321 -217.520d -222.431e

aIntercept for unit non-response.
bTreatment received. ‘Usual advice’ was used as reference.
cIntercept for item non-response.
ditem non-response.
eunit non-response.
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Table 5: Fit of Two-level selection models (ρ23 6= 0) & ρ23 = 0), and extended Heckman’s
two-step method to the NDI scores at 12 months.

MSNM(ρ23 6= 0) MSNM(ρ23 = 0) MTSa

Estimate S.E. p-value Estimate S.E p-value Estimate S.E p-value

Selection Equations

int(u)b 0.359 0.242 0.139 0.365 0.242 0.131 0.403 0.242 0.096
age 0.016 0.005 0.003 0.016 0.005 0.003 0.016 0.005 0.004
sex(f) 0.087 0.137 0.528 0.086 0.137 0.529 0.100 0.138 0.467
physiotherapy 0.129 0.138 0.352 0.114 0.138 0.406 0.050 0.133 0.710
int(i)c 0.180 0.235 0.443 0.188 0.235 0.424 0.196 0.234 0.403
age 0.014 0.005 0.010 0.014 0.005 0.011 0.013 0.005 0.012
sex(f) 0.636 0.136 0.000 0.633 0.136 0.000 0.632 0.136 0.000
ρ23 0.118 0.101 0.241

Outcome Equation

intercept -7.690 3.067 0.013 -7.573 3.148 0.017 -5.960 1.784 0.001
age 0.141 0.035 0.000 0.141 0.036 0.000 0.122 0.028 0.000
sex(f) 1.500 1.294 0.247 1.437 1.320 0.277 1.958 0.781 0.006
physiotherapy 0.181 0.758 0.812 0.162 0.759 0.831 0.193 0.821 0.814
baseline 0.536 0.068 0.000 0.538 0.068 0.000 0.500 0.048 0.000
whiplash2d -0.623 1.060 0.557 -0.620 1.061 0.559 -0.612 1.086 0.287
whiplash3e -0.630 1.425 0.659 -0.636 1.425 0.656 -0.625 1.494 0.676
σ 8.079 0.573 0.000 8.058 0.557 0.000 7.772 0.321 0.000
ρ12 0.767 0.169 0.000 0.757 0.178 0.000 0.741 0.012 0.000
ρ13 0.223 0.571 0.697 0.154 0.584 0.792 0.353 0.715 0.622
Loglik -1877.497 -1878.180

aExtended two-step method where individual probit model is used for the inverse Mills ratio.
bIntercept for unit non-response.
cIntercept for item non-response.
dWhiplash Associated Disorder- grade2. Grade1 was used as reference.
eWhiplash Associated Disorder- grade3. Grade1 was used as reference.
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Appendix

Three-level sample selection model

Since hidden truncation models are special cases of selection distributions, a three-level selec-
tion model can be derived using an extension of the model of Arnold et al. (1993). We consider
the non-truncated marginal of a truncated quadrivariate normal random variable and apply the
result of Cartinhour (1990).

Suppose f(y, s1, s2, s3) is the density of a quadrivariate normal random variable with mean
vector µ = (µ1, µ2, µ3, µ4)′ and covariance matrix

Σ =


σ2 σρ12 σρ13 σρ14

σρ12 1 ρ23 ρ24

σρ13 ρ23 1 ρ34

σρ14 ρ24 ρ34 1

 .

Suppose further that W = (Y, S1, S2, S3)′ has joint density{
f(w) = 1

C
1√

(2π)4|Σ|
e−1/2(w−µ)′Σ−1(w−µ), w ∈ R

= 0, otherwise

where R is a rectangle in 4-space; R: −∞ < y < ∞, cs1 < s1 < ∞, cs2 < s2 < ∞ and
cs3 < s3 < ∞. C is a normalizing constant (necessary to ensure that the density function
integrates to 1) given by

C =

∫
R

1

C

1√
(2π)4|Σ|

e−1/2(w−µ)′Σ−1(w−µ)dw.

This implies (Y, S1, S2, S3) has a truncated quadrivariate normal distribution. S1, S2 and S3 are
truncated below at cs1 , cs2 and cs3 respectively. We are interested in the marginal distribution
of Y , which is the only non-truncated random variable in this formulation. Using Cartinhour
(1990), we can write the required density as,

f(y) =
1

C
e−1/2(

y−µ1
σ2

)2
∫ ∞
cs1

∫ ∞
cs2

∫ ∞
cs3

1√
(2π)3|A−1

¬y |
e−1/2(w¬y−m(y))′A¬y(w¬y−m(y))dw¬y, (20)

where w¬y = (s1, s2, s3)′, A−1
¬y = Σ?

3 =

 1− ρ2
12 ρ23 − ρ12ρ13 ρ24 − ρ12ρ14

ρ23 − ρ12ρ13 1− ρ2
13 ρ34 − ρ13ρ14

ρ24 − ρ12ρ14 ρ34 − ρ13ρ14 1− ρ2
14

 (this is

the inverse of the submatrix of the inverse of Σ when the row and column corresponding to y
are deleted), and m(y) is defined as m(y) = µ¬1 + (y−µ1/σ

2)k; with µ¬1 = (µ2, µ3, µ4), and
k = (σρ12, σρ13, σρ14)′. We determine C and the double integral in equation (20).

Now, C can be written as a centralized normal integral

Φ4



−∞

cs1 − µ2

cs2 − µ3

cs3 − µ4

 ,


∞
∞
∞
∞

 ; Σ

 = Φ3

0
0
0,

 ,

cs1 − µ2

cs2 − µ3

cs3 − µ4

 ; Σ3

 , (21)
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where Σ3 =

 1 ρ23 ρ24

ρ23 1 ρ34

ρ24 ρ34 1

. Using properties of multivariate normal cumulative distribu-

tion function and the definition of m(y), the triple integral reduces to

Φ3

σρ12

σρ13

σρ14

(y − µ1

σ2

)
;

cs1 − µ2

cs2 − µ3

cs3 − µ4

 ,Σ?
3

 (22)

The required density is derived when equations (21) and (22) are substituted in equation (20).
The PDF is

φ(y;µ1, σ
2)Φ3(D(y − µ1);ν,Σ?

3)

Φ3(0;ν,Σ3)
,

where 0 = (0, 0, 0)′, D = (ρ12/σ, ρ13/σ, ρ14/σ)′, and ν = (cs1 − µ2, cs2 − µ3, cs3 − µ4)′. It is
easy to see that Σ3 = Σ?

3 +Dσ2D′.

The continuous component of the three-level sample selection model can be written as

φ(y; β′x, σ2)Φ3

{
D(y − β′x);

−α′1x−α′2x
−α′3x

 ,Σ?
3

}

Φ3

{0
0
0

 ;

−α′1x−α′2x
−α′3x

 ,Σ3

} .

where cs1 , cs2 & cs3 are zero, and µ1 = β′x, µ2 = α′1x, µ3 = α′2x and µ4 = α′3x.
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