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Abstract

When undertaking a numerical solution of Helmholtz problems using the Boundary Element
Method (BEM) it is common to employ low-order Lagrange polynomials, or more recently
Non-Uniform Rational B-Splines (NURBS), as basis functions. A popular alternative for high
frequency problems is to use an enriched basis, such as the plane wave basis used in the Partition10

of Unity Boundary Element Method (PUBEM). To the authors’ knowledge there is yet to be
a thorough quantification of the numerical error incurred as a result of employing high-order
NURBS and Lagrange polynomials for wave-based problems in a BEM setting. This is the focus
of the current work, along with comparison of the results against PUBEM. The results show
expected improvements in the convergence rates of a Lagrange or NURBS scheme as the order15

of the basis functions is increased, with the NURBS basis slightly outperforming the Lagrange
basis. High-order Lagrange and NURBS formulations can compare favourably against PUBEM
for certain cases. In addition, the recently observed pollution effect in BEM is studied for
a travelling wave in a duct and the numerical dispersion presented for all three sets of basis
functions.20
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1 Introduction

In solving wave problems engineers have a variety of numerical methods available. For high-frequency
problems there are methods based on statistical energy descriptions or on physical optics. For lower
frequencies where, for example, it may be important to capture diffraction effects, engineers typically25

rely on the discrete methods, the most popular of which are the Finite Element Method (FEM) and
BEM, the latter of which is the focus of the current work. Further, without prejudice against the
time-domain methods which are important for many classes of wave problem, our focus in this
paper is the frequency-domain approach in which the waves are assumed to propagate at a single
frequency. In this case the governing wave equation reduces to a time-harmonic form known as the30

Helmholtz equation. In approximating the solution to this equation, both the finite and boundary
element methods are classically formulated by expressing the solution element-wise in the form of
a piecewise polynomial variation. Thus, the problem is reduced to seeking the amplitudes of these
polynomial basis functions.

There are different sources of error in these numerical methods. Firstly, the discretisation error,35

which results from the fact that the solution cannot generally be written as a set of (typically
low-order) piecewise polynomial functions. Secondly, there may be integration errors in computing
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terms in the system matrices. And thirdly, it has been widely reported that the FEM suffers from
the pollution effect [1, 2], which is manifested in a progressive error in capturing the wavelength
over a long distance and can be described as a form of numerical dispersion. In order to control40

discretisation errors, one can adhere to certain heuristic rules; a common one suggests the use of 8-
10 degrees of freedom per wavelength to capture what is essentially a sinusoidal solution. However,
as the frequency increases, care is required since adhering to such a heuristic alone will become
insufficient to control pollution errors.

In the search for more accurate and/or efficient approximations, researchers have investigated the45

use of different basis functions that might improve upon low-order piecewise polynomials. There have
been a number of methods comprising high-order basis functions, including the use of Bernstein and
Lobatto polynomials, which show promising results [3,4] and are further explored as the Bernstein-
Bézier Finite Element Method (BBFEM) [5] (which also admits the use of static condensation to
improve computational efficiency). Other improvements to FEM aimed at the high-frequency regime50

have been made by utilising the Partition of Unity Method [6,7] such as the Partition of Unity Finite
Element Method (PUFEM) [8,9] and the Variational Theory of Complex Rays (VTCR) [10], in which
plane waves are used to form the basis, therefore injecting the correct sinusoidal behaviour of the
solution directly into the element formulation. A number of discontinuous plane-wave enrichment
schemes have also been presented, such as the Plane Wave Discontinuous Galerkin Method (PWDG)55

[11, 12], the Discontinuous Enrichment Method [13], and the Ultraweak Variational Formulation
(UWVF) [14], the latter of which has been shown to be a special case of PWDG. All of these so-
called ‘enriched’ methods are inspired by Trefftz methods, since solutions to the governing PDE are
used to inform the choice of basis.

Reformulating the governing PDE using Green’s second identity produces a boundary integral60

equation, the discretisation of which forms the foundation of the BEM. This reduces the dimension-
ality of a given problem, meaning that instead of requiring the computation of volumetric integrals
in 3D, only surface integration is required, with 2D surface integrals becoming 1D line integrals.
Whilst this reduction in dimensionality offers benefit for interior acoustic problems, the greatest
improvements are found when considering exterior problems in an unbounded domain. Taking a65

scattering problem as an example, only the boundary of the scattering object would require discreti-
sation, but acoustic variables could be recovered at any location as a result. In addition, by virtue of
employing Green’s functions which are free-space solutions to the governing PDE, the Sommerfeld
radiation condition [15] (which states that nothing is reflected from infinity) is satisfied by con-
struction. By contrast, a finite element model of a scattering problem requires an artificial domain70

truncation and some non-reflecting boundary condition prescribed over the truncation boundary. It
is for these reasons that BEM presents an attractive alternative in particular for scattering problems.

Traditional BEM approaches employ similar techniques to describe the variation of the acoustic
variable as FEM, i.e. piecewise polynomial Lagrangian shape functions. Trefftz-based methods can
also be applied in order to obtain accurate solutions from coarse discretisations. A plane wave75

basis is used in the Partition of Unity BEM (PUBEM) [16–18] wherein it has been shown that
the number of degrees of freedom per wavelength in each coordinate direction required to achieve
‘engineering accuracy’ may be reduced from 8 − 10 to approximately 2.5. This is a general or
engineering-type approach because the number of enrichment waves and their directions can be
varied, allowing for solution of problems in a wide class of geometries, including those with reflections80

such as scattering from non-convex obstacles. This is noteworthy as there are more problem-specific
enrichment methods wherein leading order behaviour is built-in to the enrichment [19,20] to obtain
extremely efficient and accurate solutions for certain classes of problem. Another Trefftz boundary
approach (though not BEM) is the Method of Fundamental Solutions (MFS) [21] which for many
problems can give an attractive combination of accuracy and computational efficiency.85

Isogeometric analysis (IGA) [22] is a numerical technique that employs a spline basis, such
as NURBS, and has gained popularity in recent years. This is due to the fact that it allows direct
importation of geometries from CAD, exact representation of geometries formed from conic sections,
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and improved convergence properties afforded to it by its smooth, non-negative basis functions. Since
its inception IGA has been developed for a number of applications [23–25], in a BEM setting (termed90

IGABEM) [26–28] and using T-splines for acoustics problems [29]. IGA lends itself well to BEM
due to the fact that an IGABEM model can be obtained directly from CAD, whereas using FEM
a volumetric NURBS description would be required, and this is non-trivial to generate from most
CAD model boundary representations. The benefit of NURBS boundary discretisations has been
combined with a plane wave basis [30, 31] to form the eXtended Isogeometric Boundary Element95

Method (XIBEM).
With such a broad spectrum of basis functions available, it is timely to compare their numerical

performance. In a finite element context, high-order polynomial basis functions and wave-based
methods have been compared [32] and another comparison made between BBFEM and PUFEM [5].
Recently, high-order finite element IGA (IGAFEM) schemes [33, 34] have been studied for acoustic100

problems, but with no comparison against the equivalent enriched scheme. To the authors’ knowledge
this has not been extended to a boundary element setting. Thus, the focus of this paper is as follows.
Firstly, we explore the numerical performance of high-order basis functions for acoustics problems
in BEM, namely NURBS and Lagrangian shape functions. Secondly, we compare the results with
PUBEM in the form of L2 error and condition number κ of the resulting system of equations. In105

addition, the existence of some pollution error in BEM has recently been demonstrated [35], and
quantified for a number of low-order basis functions. Pollution error for high-order and enriched
bases are investigated in the current work and illustrated through an example of a travelling wave
propagating in a long duct. While it might be suggested that the inclusion of an analytical plane
wave in the basis functions would eliminate pollution, the pollution effect has been observed in a110

PWDG setting [36] (apart from the trivial case in which the basis includes the pure direction of
propagation of a single plane wave). To the authors’ knowledge this has not been studied for a plane
wave boundary element basis.

2 Boundary Integral Equation

2.1 Formulation115

The Helmholtz equation and relevant boundary conditions are presented in this section, along with
the corresponding Boundary Integral Equation (BIE). Both interior wave propagation and exterior
scattering problems are considered in this paper, the latter of which requires the inclusion of an
incident wave in the the BIE. For convenience in both the interior and exterior cases we define a
domain contained by each geometry as Ω ⊂ R2 having boundary Γ. The domain containing the120

medium in which acoustic waves propagate is defined as Ωf = R2\Ω for the external scattering
problems and Ωf = Ω for the interior problem. We begin with the Helmholtz equation, which is the
time-harmonic wave equation.

∇2φ(x) + k2φ(x) = 0, x ∈ Ωf (1)

wherein ∇2 is the Laplacian operator, k is the wave number which is defined as k = 2π/λ (where
λ is the wavelength under consideration) and the unknown acoustic potential is denoted as φ ∈ C.125

Imposing a Robin boundary condition on (1), given by

∂φ(q)

∂n
= αφ(q) + β, q ∈ Γ (2)

then employing Green’s second identity [37] to reformulate the Helmholtz equation as a BIE in terms
of ‘source’ and ‘field’ points (p and q respectively), which are located on the boundary Γ, provides
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the following:

c(p)φ(p) +

∫
Γ

[
∂G(p,q)

∂n
− αG(p,q)

]
φ(q)dΓq =

∫
Γ

βG(p,q)dΓq + φinc(p). (3)

In the above, c(p) is referred to as a ‘jump’ term and varies depending on the external angle130

of the boundary Γ at the locations of p. φinc is an incident wave which is only to be included for
exterior scattering problems and the vector n is the outward facing unit normal vector from Ωf . A
direct collocation method is employed, wherein (3) is satisfied at the chosen set of collocation points
p, instead of a Galerkin scheme, which would require multiplication of (3) by a test function and
integrating over Γ. The Green’s function for the Helmholtz equation in 2D is defined as follows,135

G(p,q) =
i

4
H

(1)
0 (kr), (4)

where H
(1)
0 is the Hankel function of the first kind and of order zero, and r is the Euclidian distance

between p and q. In order to solve (3) we discretise Γ into E elements, with S basis functions to
describe the variation over an element e, to produce

c(p)φ(p) +

E∑
e=1

S∑
s=1

∫ 1

−1

[
∂G(p,q)

∂n
− αG(p,q)

]
Ψs(ξ)J

edξφes =

∫
Γ

βG(p,q)dΓq + φinc(p), (5)

in which Ψs denotes the basis functions, which remain general at this stage, φes represent the un-
knowns describing the potential distribution, Je is the Jacobian of the geometric mapping (x, y)→ ξ140

and the local coordinate ξ ∈ [−1, 1] is employed over each element. This results in the following
linear system of equations in matrix form.[

C + H−αG
]{

φ
}

=
{
βb + φinc

}
, (6)

where C contains the interpolations of c(p), H and αG contain the boundary integrals from the left
hand side of (5), φ is the vector of the unknowns, βb is a vector containing the boundary integrals
from the right hand side of (5) and φinc is a vector of evaluations of the incident wave potential at145

the collocation locations. The order of the basis employed is equal to S − 1, thus S = 3 produces a
quadratic basis, of order 2 and S = 12 produces a basis of order 11.

2.2 Basis functions

2.2.1 Lagrange polynomials.

The first basis functions considered are conventional Lagrangian shape functions, which describe φ150

as follows.

φ =

S∑
s=1

ΨL
s (ξ)φes, (7)

where

ΨL
s (ξ) :=

∏
0≤m≤S
m6=s

ξ − ξm
ξs − ξm

=
(ξ − ξ0)

(ξs − ξ0)
. . .

(ξ − ξs−1)

(ξs − ξs−1)

(ξ − ξs+1)

(ξs − ξs+1)
. . .

(ξ − ξS)

(ξs − ξS)
. (8)

It is common to employ quadratic Lagrangian polynomials in BEM simulations for acoustic prob-
lems, having 3 basis functions per element. In the current work however, higher order functions are
studied, ranging from 3-12 basis functions per element, shown in Fig. 1.155
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Figure 1: Lagrangian basis functions with a, b, c and d showing S = 3, 6, 9 and 12 respectively.

2.2.2 NURBS.

The second basis studied in this paper is a NURBS basis, which describes φ as follows.

φ =

S−1∑
s=0

ΨB
p,s(ξ)φ

e
s, (9)

where

ΨB
p,s(ξ) :=

Np,s(ξ)ws∑S
i=0Ni,p(ξ)ws

(10)

and ws are a set of weights, Np,s are pth-degree B-spline basis functions, which can be represented160

for p > 0

Np,s(ξ) =
ξ − ξs

ξs+p − ξs
Np−1,s(ξ) +

ξs+p+1 − ξ
ξs+p+1 − ξs+1

Np−1,s+1(ξ), (11)

and for p = 0

N0,s(ξ) =

{
1, if ξs ≤ ξ ≤ ξs+1

0, otherwise
(12)

In line with the Lagrangian basis, we consider 3-12 NURBS basis functions per element, and
illustrate in Fig. 2 the case for ws = 1, s = 1, ..., S, for which the NURBS basis reverts to the
B-spline basis.165

2.2.3 Plane waves.

The third and final basis that is employed in this paper is the plane wave enriched basis of PUBEM.
Here, a set of quadratic Langrangian shape functions are multiplied by a linear combination of plane
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Figure 2: NURBS basis functions with all weights ws = 1; a, b, c and d show S = 3, 6, 9 and 12
respectively.

waves propagating in different directions to form the basis functions, as follows.

φ =

S∑
s=1

M∑
m=1

ΨL
s (ξ)Asmeikdsm·q, (13)

170

dsm = (cos θsm, sin θsm), θsm =
2π(m− 1)

M
(14)

M represents the number of plane waves per node, i =
√
−1 and dsm are the unit direction

vectors of propagation of the plane waves. The modified version of (5) is as follows,

c(p)φ(p)+

E∑
e=1

S∑
s=1

M∑
m=1

∫ 1

−1

[
∂G(p,q)

∂n
−αG(p,q)

]
Ψs(ξ)e

ikdsm·qJedξAesm =

∫
Γ

G(p,q)βdΓq+φinc(p),

(15)
the solution of which produces a set of unknown amplitudes Asm from which the acoustic potential
φ can be recovered, according to (13).

Before moving on to testing, two aspects relating to implementation are noted here. In PUBEM175

taking M > 1 results in a requirement to collocate at non-nodal locations, meaning that interpolation
is required, for example, to apportion the jump terms between the different terms in the matrix row
that multiply the non-zero basis functions at the collocation point. Secondly, for exterior problems
both BEM and PUBEM can suffer from non-uniqueness of the solution at frequencies corresponding
to eigenfrequencies of the associated interior problem. In order to remedy this we adopt in the180

current work the Combined Helmholtz Integral Equation Formulation (CHIEF) [38] which involves
collocating inside the scattering object. This is commonly used in the engineering literature; the
resulting system of equations is over-determined and requires an appropriate solver, but is faster and
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simpler than the Burton and Miller approach [39] commonly adopted in the mathematics literature
to ensure uniqueness of solution.185

3 Numerical testing

3.1 Implementation

In this section high-order NURBS and Lagrange polynomial bases are compared with PUBEM, using
an L2 relative error norm defined as

η(φ; Γη) =
||φ− φref ||L2(Γη)

||φref ||L2(Γη)
, (16)

where φref is a reference solution and the L2 norm is taken over a contour Γη that will be defined on190

each usage. Computational efficiency will be presented in terms of the number of degrees of freedom
per wavelength, a quantity we denote τ . The condition number, κ, of each resulting system of
equations is also observed. Three test cases are considered: scattering by a single cylinder, scattering
by multiple cylinders and a plane wave propagating along the length of a duct, all of which have
analytical solutions. For the exterior scattering problems, the cylindrical obstacles are assumed195

to be perfectly reflecting or ‘sound-hard’, and for the duct the relevant boundary conditions will
be presented. Numerical integration is performed using a sub-divided Gauss-Legendre quadrature
scheme with a sufficient number of integration points to ensure that the integration error is negligible.
A range of discretisations and wave numbers are tested, with an additional pollution study for the
duct case. The number of degrees of freedom used is denoted Nd. All codes are implemented in200

MATLAB.

3.2 Scattering by a cylinder

Scattering by a sound-hard cylinder (i.e. a circular obstacle in 2D) in an infinite domain is a bench-
mark problem having an analytical solution [40], wherein the scattered potential at a point p̄ can
be represented by a series solution comprised of Bessel functions, as follows.205

φref (p̄) =
J

′

0(ka)

H
′
0(ka)

H0(kr)− 2

∞∑
n=1

in
J

′

n(ka)

H ′
n(ka)

Hn(kr) cos(nθ), p̄ ∈ Ωf (17)

To represent this example using BEM, a sound-hard Neumann boundary condition is applied on
Γ, defined by

∂φ(q)

∂n
= 0, q ∈ Γ. (18)

This reduces (5) to

c(p)φ(p) +

E∑
e=1

S∑
s=1

∫ 1

−1

∂G(p,q)

∂n
Ψs(ξ)J

edξφes = φinc(p) (19)

We consider the case of the unit cylinder being impinged by a plane wave travelling in the
positive x-direction. The total potential for this example for the case k = 2π is shown in Fig. 3.210

η is evaluated over the circular contour Γη = {(x, y) : x = 2 cos θ, y = 2 sin θ, θ ∈ (0, 2π)}. For the
Lagrange polynomial basis and the NURBS basis we consider four orders 2, 5, 8 and 11 (as shown in
Fig. 1 and Fig. 2). For the PUBEM basis, a fixed number of elements, E = 4 is used, increasing Nd
by incrementing the number plane waves per node, M .
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Figure 3: (left) Real part of the total potential, (right) absolute value of total potential, for scattering
by a unit cylinder, k = 2π.
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Figure 4: L2 relative error η vs. Nd for scattering by a unit cylinder, k = 2π.
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Firstly, the wavenumber is fixed at k = 2π but Nd is increased to ≈ 250, which corresponds to215

τ ≈ 40. This far exceeds the requirement to achieve ‘engineering accuracy’ with any of the basis
functions that are being tested, but it offers insight into the broader numerical behaviour. The results
can be seen in Fig. 4, which shows a clear benefit in computational efficiency from using higher order
functions. These results are somewhat expected as in [28] we see an increase in accuracy as a result
of increasing the order of a NURBS basis from 2-3, for elasticity problems. It is evident that the220

Lagrange and NURBS bases offer similar numerical performance, and that the NURBS basis does
not offer the clearer improvement that has been seen in other, predominantly low-order, IGABEM
applications. Though, 3rd order NURBS and Lagrange shape functions are shown to converge at
a similar rate for acoustic scattering by a torus in [29]. We consider the following explanation.
IGABEM can be expected to give improvements over the classical piecewise polynomial basis for225

two reasons: (i) the exact geometric description, and (ii) the smoother, non-negative basis. As long
as the geometric error produced by the Lagrange basis functions is small in comparison with the
wavelength, the implications on the solution error will be limited. Once the Lagrange models in this
study are sufficiently refined to observe the heuristic on the required τ , the geometric description is
certainly of sub-wavelength accuracy, so the difference we are seeing in the errors is likely to reduce230

to the effect of the improved smoothness and non-negativity of the NURBS basis. It can be seen
that this effect is a mild one, so that the errors produced by high order Lagrange and NURBS bases
are rather similar. For simple geometries, it would also be possible to use a more compact geometric
description with a lower order NURBS than that used to approximate the acoustic potential solution,
in a similar way to the use of the classical idea of sub-parametric finite elements.235

PUBEM is seen to quickly achieve a higher level of accuracy, but is eventually overtaken by
the higher order NURBS and Lagrange bases with the increased severity of ill-conditioning in the
PUBEM linear system at large τ [16]. In order to illustrate this, the condition number κ is shown
for the Lagrange and NURBS systems in Fig. 5, which indicates that whilst increasing the order of
basis functions employed does increase κ, increasing Nd has no detrimental impact on the condition240

number. Contrary to this, Fig. 6 shows a direct comparison between κ, Nd and η for the PUBEM
case and it is evident that as the degrees of freedom increase, so does the condition number, and the
limitations of the solver restrict the accuracy of the solution. Notwithstanding this comment, it is
clear that, as long as a suitable solver is chosen that can deal with such ill-conditioned matrices, the
most accurate PUBEM solutions are to be found from the most poorly conditioned systems because245

these benefit from the most enriched approximation space.
PUBEM is designed as a method specifically aimed at the mid-high frequency range. We are

testing it here for problems with lower k to investigate its performance against Lagrange and NURBS
bases. For this reason, another comparison is made for the single cylinder case, in which Nd is fixed,
but k varies. It is not possible to force the number of degrees of freedom used for each basis to250

equal one another, but for each discretisation Nd ∈ [220, 224]; the results are displayed in Fig. 7.
The results show that, as expected, PUBEM outperforms the other methods at high frequency, but
importantly it is evident that the high-order methods function optimally at large τ (i.e. at small k
when Nd is fixed) whereas the converse is true for PUBEM.

3.3 Scattering by three cylinders255

The second example considered is the scattering of an incident plane wave by 3 sound-hard circular
cylinders in an infinite domain. The problem has an analytical solution [41], wherein the scattered
potential φref for a set of N cylinders can be represented on the boundary of the vth cylinder by a
series solution comprised of Hankel functions,

φref (av, θv) = − 2i

πkav

∞∑
n=−∞

Avn
H ′
n(kav)

einθv , (20)
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Figure 5: (Left) Condition number κ vs. Nd for Lagrange basis, (Right) Condition number κ vs.
Nd for NURBS basis, for scattering by a unit cylinder, k = 2π.

where av is the radius of the vth cylinder, θv is the angle from the positive x-axis of the vth cylinder260

to the point of evaluation and Hn is a Hankel function of the first kind and order n. The infinite
series can be truncated to a finite number of terms, with Avn obtained according to [41]. We define
the boundary of each cylinder as Γ1,Γ2 and Γ3 and evaluate the error norm η over their union so
that Γη =

⋃v=3
v=1 Γv.

We consider the case of three unit cylinders located at a radius of 3 from the origin (0, 0) with265

centres at angles of 0, 2π
3 and 4π

3 , being impinged by a plane wave travelling in the positive x-
direction. The total potential for this example with k = 4π is shown in Fig. 8. It is evident that
with the inclusion of reflections, the solution is more complicated than that of the single cylinder.

The same selection of basis functions and discretisations employed for the single cylinder example,
are applied to each cylinder in this example. As with the single cylinder example, we fix the270

wavenumber, for this case at k = 4π, and vary the degrees of freedom per circle up to ≈ 250. The
results in Fig. 9 display very similar behaviour to those obtained for the single cylinder. There is
a clear benefit in using high-order basis functions and the Lagrange results are in close agreement
with the NURBS results. There is also very similar behaviour with the PUBEM results, reaching
a high level of accuracy quickly, before gradually being overtaken by the high-order NURBS and275

Lagrange functions, due to conditioning limitations. This happens slightly later (at Nd ≈ 210) than
for the single cylinder case (Nd ≈ 140), which the authors attribute to the increase in k, because
this produces a τ range that is more favourable for PUBEM. The respective condition numbers of
the resulting systems of equations are shown in Fig. 10 for the Lagrange and NURBS basis, with
the PUBEM condition number in Fig. 11. It is clear that the behaviour is similar to the previous280

example again, as the lowest condition numbers are seen in the Lagrange basis, with a slight increase
associated with the NURBS basis and a substantial increase for PUBEM. It is worth noting that
using PUBEM offers an improvement in η of 4-5 orders of magnitude over the conventional quadratic
Lagrange polynomial basis for much of the Nd range.
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Figure 6: PUBEM L2 relative error η and condition number κ for scattering by a unit cylinder,
k = 2π.
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Figure 7: L2 relative error η for scattering by a unit cylinder, with Nd ∈ 220-224.

Figure 8: (left) Real part of the total potential, (right) absolute value of total potential, for scattering
by three unit cylinders, k = 4π.
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Figure 9: L2 relative error η vs Nd (per cylinder) for scattering by three unit cylinders, k = 4π.
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Figure 10: (Left) Condition number κ vs. Nd for Lagrange basis, (Right) Condition number κ vs.
Nd for NURBS basis, for scattering by three unit cylinders, k = 4π.
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Figure 11: PUBEM L2 relative error η and condition number κ for scattering by three unit cylinders,
k = 4π.
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3.4 Plane wave propagating along the length of a duct285

The third example is a plane wave propagating along the length of a duct, which is in essence a 1D
problem, but is being analysed here in 2D. We consider the analytical case wherein the potential at
a point p̄ is given by

φref (p̄) = eikx(p̄), p̄ ∈ Ωf . (21)

eikx

ΩfW

Γ

L

x

y

α = ikβ = −ik

Figure 12: Duct boundary conditions and domain.

We consider this as an acoustic cavity problem with Robin boundary conditions α = 0, β = −ik
prescribed on the left hand side of the duct, and α = ik, β = 0 on the right hand side; these can be290

seen along with relevant dimensions in Fig. 12. Along the horizontal boundaries we prescribe α = 0
and β = 0, corresponding to the ‘sound-hard’ condition. We evaluate the error norm η over the line
Γη = {(x, y) : x ∈ (0, L), y = W/2}. Results from a test case in a short duct of dimensions L = 1,
W = 1, with k = 4π, are displayed in Fig. 13, and it is evident that the error η follows a similar
pattern to that in the previous examples. Increasing the order of basis functions employed causes a295

reduction in error, with Lagrange polynomials and NURBS offering similar performance.
Before discussing the PUBEM results, details of the PUBEM discretisation should be outlined.

To generate the plots of error norm η for the Lagrange and NURBS schemes in Fig. 13, the process is
straightforward; first select the order of basis to be employed, then increase the number of elements
to give the required total number of degrees of freedom. For example, in the first two examples300

of exterior scattering from cylinders, a coarse discretisation of 4 elements per cylinder was used,
with M chosen to provide the required number of degrees of freedom, Nd. In PUBEM there are
two options, one can increase the total number of elements, E (i.e. h-refinement), or increase the
number of plane waves M included per node (a process akin to p-refinement, and sometimes called
Q-refinement). It has been shown that the latter is favourable [17], until τ becomes sufficiently305

large to cause severe ill-conditioning, at which point an increase in the number of elements, E, with
an associated reduction in the number of plane waves M , becomes the favourable option. This is
similar to the hp-refinement schemes commonly found in the finite element literature.

In this problem, the obvious choice is to include the x-direction in the set of plane waves used to
form the basis. Clearly, then, the solution to the problem is contained in the approximation space310

and it would be expected that a solution with very low errors would be obtained. This is indeed
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the case, and one can also reduce M to 1 (i.e. including only the x-direction and no other directions
in the plane wave basis). This is demonstrated in Table 1, which displays η for a range of ducts
of length L up to 200λ for the case k = 4π, with only a single element used on each side of the
duct. It is evident that a high level of accuracy is consistently achieved for this coarsest of meshes,315

independently of L.
We repeat that this high accuracy for such a small number of degrees of freedom comes as no

surprise, since the exact solution is contained in the approximation space. However, it is more
interesting to investigate the performance of PUBEM where M > 1 and the x-direction is not
contained in the basis. It is well known that a linear combination of (a sufficient number of) plane320

waves can reproduce any solution of the Helmholtz equation, and here we explore the behaviour of
PUBEM with this multiple wave expansion in approximating the plane wave propagating through
the duct. It is this set of plane wave directions (not including θ = 0) that has been used to produce
the PUBEM results in Fig. 13. Clearly it remains possible to recover the acoustic potential with
high accuracy.325
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Figure 13: L2 error η vs. Nd per side for a travelling wave in a duct, k = 4π.

L/λ 2 20 100 200
τ 1 0.1 0.02 0.01
η 3.0996e− 13 3.5676e− 13 3.5802e− 13 3.4503e− 13

Table 1: Relative error η with M = 1 using only a single element per side, k = 4π.
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Figure 14: (left) Condition number κ for the Lagrange and NURBS basis, (right) Condition number
κ and L2 error η for the plane wave basis, for a travelling wave in a duct, k = 4π.

3.4.1 Pollution error in the duct.

Pollution error is a commonly studied numerical aspect of FEM schemes for Helmholtz problems [1].
But it has only recently been investigated for the BEM by Marburg [35], who used piecewise constant,
linear and quadratic basis functions in a BEM approximation of propagation of a plane wave along a
long, slender, air-filled duct. A pollution effect was observed in this BEM study. In this section, we330

explore the same duct, with the same number of degrees of freedom per side as the finest of Marburg’s
discretisations, but using high-order and plane wave enriched basis functions. The dimensions of
this example are W = 0.2 m and L = 54.4 m, with the speed of sound in air taken to be 340 m/s
and a frequency of 750 Hz.

To produce the results, 1632 degrees of freedom are included along each of the long sides of the335

duct, and a local absolute error η1 = |φ− φref |, is computed over Γη. From observing η1 in Fig. 15
it is clear that both the Lagrange and NURBS bases are subject to a pollution effect manifested in
degradation in accuracy with increasing coordinate x. Increasing the order of basis employed does
reduce the overall error, but the error is seen to increase as a function of x. Again, the results of the
Lagrange and NURBS bases produce very similar results (the conditioning is benign in both cases,340

and the condition numbers for this example are shown in Table 2). The PUBEM discretisations
employed are M = 1, 8, 10 and 12, with the corresponding number of elements, E, to provide
the appropriate number of degrees of freedom per side. For the M = 8, 10 and 12 discretisations
the plane wave directions are equispaced, but the x-direction is explicitly excluded from the basis,
whereas for the M = 1 case, it is the only direction included in the basis. Fig 16 displays the345

variation in error η1 with position in the duct. For the case M = 1 the errors are consistently very
small, and there is no evidence of any meaningful pollution error. For M = 8, 10, 12 the errors
are highly oscillatory in x, which may perhaps be expected for errors in the range 10−9 to 10−11,
but a small underlying positive gradient is visible that suggests there is a mild pollution effect when

17



Lagrange NURBS PUBEM
Order κ Order κ M κ

2 50.3 2 51.5 1 49.6
5 47.8 5 72.8 8 1.9e+ 18
8 90.6 8 1137.3 10 1.3e+ 19
11 1341.6 11 1972.4 12 3.6e+ 18

Table 2: Condition number κ for the duct with L = 54.4m, W = 0.2m and f = 750Hz

Figure 15: (left) Local error η1 for the Lagrange basis, (right) Local error η1 for the NURBS basis
for a travelling wave in a duct having L = 54.4, f = 750Hz, and including 1632 degrees of freedom
on each long side.

using a plane wave basis. These results for pollution errors in the PUBEM are consistent with the350

observations of Gittelson for the plane-wave enriched Discontinuous Galerkin (PWDG) method [36].

4 Conclusions

Numerical performance of high-order NURBS and Lagrange polynomial bases has been compared
with the plane wave basis of PUBEM for three benchmark problems. Results show a marked
improvement in accuracy from increasing the order of NURBS and Lagrange polynomial bases, with355

a reduction in error of up to 6 orders of magnitude. The resulting condition number of the system
of equations increases along with the order, but for the examples studied by the authors (up to 11th
order functions per element), both systems are well conditioned and the accuracy of the solution is
not adversely affected. The NURBS and Lagrange basis sets provide very similar numerical solutions
in the relative L2 error norm, with NURBS performing slightly the better of the two. The PUBEM360

has been shown to consistently outperform the lower order bases, but for large τ the 11th order
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Figure 16: Local error η1 for the PUBEM basis for a travelling wave in a duct having L = 54.4,
f = 750Hz, and including 1632 degrees of freedom on each long side.

Lagrange and NURBS bases generate better conditioned linear systems and can achieve greater
accuracy. Additionally, the pollution error in BEM has been observed in an example of a travelling
wave in a long duct, even whilst employing high-order basis functions, or a plane wave basis. The
overall error in the duct can reduced by increasing the order of the basis functions, or by enriching365

it, but a pollution error will still develop for waves propagating over a long distance.
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[2] Babuška, I., Ihlenburg, F., Paik, E.T. and Sauter, S.A., 1995. A generalized finite element
method for solving the Helmholtz equation in two dimensions with minimal pollution. Computer
methods in applied mechanics and engineering, 128(3-4), pp.325-359.

[3] Petersen, S., Dreyer, D. and von Estorff, O., 2006. Assessment of finite and spectral element
shape functions for efficient iterative simulations of interior acoustics. Computer methods in375

applied mechanics and engineering, 195(44-47), pp.6463-6478.

[4] Bériot, H., Prinn, A. and Gabard, G., 2016. Efficient implementation of highorder finite elements
for Helmholtz problems. International Journal for Numerical Methods in Engineering, 106(3),
pp.213-240.

[5] El Kacimi, A., Laghrouche, O., Mohamed, M.S. and Trevelyan, J., 2018. Bernstein-Bézier based380
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