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20 Abstract

21 Sedimentary basins that open and close during the last stages of mountain building represent an 

22 important exploration criterion for orogenic gold deposits. However, the genetic and/or preservation 

23 controls of these synorogenic, or “Timiskaming-type”, sedimentary basins and their controlling fault 

24 systems on orogenic gold deposits remain unclear. Herein we address that knowledge gap and report new 

25 U-Pb detrital zircon and Re-Os sulphide (arsenopyrite and pyrite) geochronology and sulphide Pb isotope 

26 results for the Paleoproterozoic Lynn Lake greenstone belt (LLGB), Manitoba, Canada. The youngest 

27 detrital zircon from all six meta-conglomerate and -psammite samples of the synorogenic Sickle Group, 

28 and previously reported U-Pb zircon ages for post-Sickle Group intrusions, are used to constrain its 

29 depositional timing from 1836 ± 15 to 1831 ± 4 Ma. Replicate analyses of one highly-radiogenic 

30 arsenopyrite sample from an auriferous vein at the MacLellan gold deposit yield a weighted average Re-Os 
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31 model age of 1824 ± 12 Ma, which is identical to previously published in situ U-Pb xenotime ages at the 

32 same deposit (1827 ± 8 Ma). Each of these hydrothermal ages demonstrate that early-stage auriferous veins 

33 immediately post-date deposition of the Sickle Group and most likely occurred prior to peak metamorphism 

34 (1814–1801 Ma). This sequence of events is very similar to the Abitibi greenstone belt, suggesting that a 

35 synorogenic phase of extension and rapid burial of auriferous veins by Timiskaming-type Sickle Group 

36 sediments may have played an important genetic and/or preservation control on early-stage gold 

37 mineralization in the LLGB. However, unlike the Abitibi greenstone belt, none of the known gold deposits 

38 within the LLGB are hosted within the Sickle Group. Younger Re-Os model arsenopyrite ages at 1782 ± 

39 16 Ma from the MacLellan gold deposit also post-date synorogenic sedimentary basins by ca. 50 Myr. 

40 These late-stage auriferous veins are unrelated to the synorogenic extensional phase and more likely reflect 

41 repeated fluid focusing along reactivated structures during a post-peak metamorphic phase of hydrothermal 

42 activity. The multi-stage hydrothermal history of orogenic gold deposits in the LLGB also provides a 

43 possible explanation for the mixture of depleted mantle-like and highly radiogenic fluid components that 

44 are inferred from age-corrected sulphide Pb isotope compositions (µ1.8 Ga = 8.9–10.6). Reworked cratonic 

45 margins and their associated greenstone belts thus represent favourable depositional settings for auriferous 

46 fluids at multiple stages throughout the lifespan of an orogen. 

47

48 1 Introduction

49 Mountain systems are enormous features of Earth’s continental crust that stretch along strike for 

50 1000s of kilometres and take 10s to 100s of millions of years to build. The process of mountain building is 

51 often referred to as orogenesis and may involve accretionary stages during the subduction of oceanic 

52 lithosphere and collisional stages after the ocean floor between two continental blocks has been completely 

53 subducted (Cawood et al., 2009; Wilson, 1966). Orogenic gold deposits are somewhat unique relative to 

54 other ore systems because they can form at various stages of orogenesis (e.g., accretionary and collisional) 

55 and are hosted by multiple rock types of all geological ages (Goldfarb et al., 2001; Groves et al., 1998; 

56 Kerrich and Wyman, 1990). Most authors attribute gold transport in these settings to metamorphic fluids 
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57 based on the broad “syn” orogenic timing and isotopic signature (C-O-S isotope) of the auriferous veins. 

58 However, recent advances in geochronology have demonstrated that many orogenic gold districts are 

59 characterized by multiple, overprinting hydrothermal events that in detail may pre- and/or post-date the 

60 peak metamorphic timing of their host rocks (Arne et al., 2001; Lawley et al., 2015, 2013; Le Mignot et al., 

61 2017; Morelli et al., 2005; Rasmussen et al., 2006). The pre- and post-metamorphic timing of auriferous 

62 veins and multi-stage hydrothermal history of these orogenic gold deposits is inconsistent with gold-bearing 

63 fluids of local metamorphic origin. Resolving the complete source-to-ore pathways of these gold ore 

64 systems and their drivers within an evolving orogen thus require precise age constraints for the timing of 

65 gold deposition, metamorphism, and magmatism during each orogenic stage. 

66 Many orogenic gold deposits also share a close spatial and temporal relationship with sedimentary 

67 basins that open and close during the last stages of orogenesis (Barley et al., 1989; Bleeker, 2012; Cameron, 

68 1993; Krapež and Barley, 2008; Poulsen et al., 1992). In the Neoarchean Abitibi greenstone belt, these 

69 synorogenic sedimentary rocks are concentrated along the two main auriferous faults and are referred to as 

70 Timiskaming-type basins (Bleeker, 2015, 2012; Cameron, 1993; Poulsen et al., 1992). Detailed structural 

71 and geochronology studies in the Timmins area suggests that rapid burial of auriferous veins following a 

72 synorogenic phase of extension may have played an important genetic and preservation control on orogenic 

73 gold deposits (Bleeker, 2015, 2012). However, precise geochronology constraints for the timing of 

74 sedimentation are required to test whether Timiskaming-type sedimentary basins can be used as an 

75 exploration vector in other gold districts. 

76 Herein we address those knowledge gaps and report new U-Pb detrital zircon and Re-Os sulphide 

77 (arsenopyrite and pyrite) geochronology results for the Paleoproterozoic Lynn Lake greenstone belt. These 

78 ages, combined with previously reported metamorphic and igneous age constraints, provide a more 

79 complete picture of the various stages of accretionary and collisional orogenesis within the southwestern 

80 Tran-Hudson Orogen (THO). We demonstrate that early-stage auriferous veins immediately post-date a 

81 synorogenic phase of extension and sedimentation, but occurred ca. 10 Myr prior to peak amphibolite facies 

82 metamorphism. New ages further demonstrate that late-stage arsenopyrite post-date peak metamorphism 
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83 by ca. 30 Myr. The implications of this new temporal framework to orogenic gold deposit genesis in the 

84 LLGB are discussed below. 

85

86 2 Regional geology

87 The THO is a Paleoproterozoic (1.9–1.8 Ga) collision zone that formed after the closure of the 

88 Manikewan ocean (Corrigan et al., 2009; Hoffman, 1988; Stauffer, 1984). In Manitoba and Saskatchewan, 

89 continental collision involved three main cratonic blocks (i.e., Superior, Hearne, and Sask cratons; Fig. 

90 1)(Ansdell, 2005; Ashton et al., 1999; Bickford et al., 1990; Hoffman, 1988; Lewry et al., 1994). Multiple 

91 Paleoproterozoic granite-greenstone belts (e.g., Flin Flon, Glennie, La Ronge, and Lynn Lake), which 

92 separate these three cratonic blocks, comprise the Reindeer Zone and represent some of the only remnants 

93 of what was likely a vast (1000s of km) intervening ocean basin (Ansdell, 2005; Stauffer, 1984; Symons 

94 and Harris, 2005). The oldest arc fragments from all three granite-greenstone belts suggests that the 

95 Manikewan ocean closure likely started at ≤ 1.92 Ga (Ansdell, 2005; Corrigan et al., 2009; Maxeiner and 

96 Rayner, 2011). 

97 The Lynn Lake greenstone belt (LLGB) represents one example of these Paleoproterozoic arc-

98 related ultramafic to felsic rock assemblages hosted within the interior, or internides, of the THO (Fig. 1–

99 3)(Baldwin et al., 1987; Bateman, 1942; Gilbert et al., 1980; Milligan, 1960; Syme, 1985). To the west, the 

100 LLGB is mostly correlative with the La Ronge greenstone belt in Saskatchewan (Fig. 1)(Maxeiner and 

101 Demmans, 2000). To the south, the LLGB is separated from the broadly coeval Flin Flon greenstone belt 

102 by the Paleoproterozoic Kisseynew basin (Fig. 1)(Ansdell and Norman, 1995; Machado et al., 1999; White, 

103 2005; Zwanzig, 1997, 1999). All three greenstone belts and the intervening Kisseynew sedimentary basin 

104 have been deformed and metamorphosed at amphibolite facies during multiple stages of arc accretion and 

105 continent-continent collisions as part of the THO (Ansdell, 2005; Bickford et al., 1990; Corrigan et al., 

106 2009, 2005; Lewry et al., 1994; Lewry, 1981). 

107 In the LLGB, the oldest mafic to felsic metavolcanic rock package and its associated 

108 metasedimentary successions (e.g., banded iron formation, BIF; conglomerate; greywacke; and 
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109 volcaniclastic rocks) comprise the Wasekwan Group (1.91–1.85 Ga; Fig. 2–3)(Baldwin et al., 1987; 

110 Beaumont-Smith et al., 2006; Beaumont-Smith and Böhm, 2002; Gilbert et al., 1980; Milligan, 1960; Syme, 

111 1985). Multiple stages of felsic volcanism (1892–1886 and 1856–1842 Ma)(Beaumont-Smith and Böhm, 

112 2003, 2002), coupled with a wide range of mafic volcanic rock compositions, each pointing to a unique 

113 geodynamic setting, suggest that the Wasekwan Group consists of multiple terranes that were later 

114 structurally juxtaposed (Beaumont-Smith, 2008; Beaumont-Smith and Böhm, 2003, 2002; Zwanzig et al., 

115 1999). Overall, mafic volcanic rocks are dominated by arc-like trace element signatures with mafic volcanic 

116 rock compositions of mixed tholeiitic to calc-alkaline character (Beaumont-Smith, 2008; Zwanzig et al., 

117 1999). Isotopic evidence (Sm-Nd) suggests that some of these mafic volcanic rocks interacted with older, 

118 and currently unexposed, continental crust, consistent with volcanism along a rifted continental-margin 

119 (Beaumont-Smith and Böhm, 2003, 2002). Lesser mafic volcanic rocks with mid-ocean ridge (MORB)- to 

120 enriched ocean island basalt (OIB)-like trace element signatures possibly formed in an intra-oceanic setting 

121 and may be unrelated to arc volcanism (Glendenning et al., 2014). The isotopic, geochemical, and age 

122 differences (e.g., ca. 1.91 versus 1.85 Ga) between the different mafic to felsic volcanic rock packages have 

123 been used to separate the LLGB into at least three sub-domains: (1) Northern; (2) Southern; and (3) Fox 

124 (Beaumont-Smith and Böhm, 2003; Zwanzig et al., 1999). However, mapping these individual rock 

125 packages within the multiply deformed and metamorphosed LLGB remains a significant challenge 

126 (Beaumont-Smith and Böhm, 2003; Glendenning et al., 2014; Zwanzig et al., 1999). In Saskatchewan, a 

127 succession of mafic tectonite, harzburgite, pillow basalt, pelite, and iron formation, referred to as the 

128 Lawrence Point lithotectonic assemblage, has been interpreted as a dismembered supra-subduction zone 

129 ophiolite (Maxeiner et al., 2005); it was assumed to be ca. 1.9 Ga and forms the southern component of the 

130 La Ronge Domain, along strike of the southern Lynn Lake belt. 

131 The timing of structural imbrication for each of the LLGB sub-domains is constrained by the age 

132 of mafic, intermediate, and felsic plutons comprising the 1.89–1.87 Ga Pool Lake suite (Turek et al., 2000). 

133 These intrusions stitch mafic volcanic rock packages and each of the LLGB sub-domains (Beaumont-Smith 

134 and Böhm, 2003, 2002; Zwanzig et al., 1999), suggesting that at least some of the disparate volcanic 
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135 environments were amalgamated prior to ca. 1.87 Ga. Gabbroic rocks that host the Lynn Lake Ni mine are 

136 coeval with the youngest examples of the Pool Lake igneous suite (1871 ± 2 and 1870 ± 6 Ma)(Turek et 

137 al., 2000). The amalgamated LLGB was then intruded by a second suite of ca. 1.85 Ga intermediate to felsic 

138 intrusions (Beaumont-Smith et al., 2006; Beaumont-Smith and Böhm, 2003, 2002). The nominally younger 

139 ages of these intrusions have special regional geological significance because they are coeval with the 

140 Wathaman-Chipewyan batholith, which stiches the La Ronge-LLGB segment of the THO to the southern 

141 Hearne cratonic margin (Fumerton et al., 1984; Meyer et al., 1992). Smaller granitic to intermediate 

142 intrusions and dykes of similar age within the LLGB gold deposit stratigraphy may thus mark its final 

143 transition from an oceanic arc-environment to a continental setting (Yang and Lawley, 2018). However, in 

144 Saskatchewan, Wathaman-aged plutons such as the 1.859 Ga Butler Island diorite (Corrigan et al., 2001) 

145 intruding the Lawrence Point lithotectonic assemblage of the La Ronge Domain are instead interpreted as 

146 evidence for ongoing intraoceanic subduction (Maxeiner et al., 2005). Similar 1.86–1.85 Ga rhyodacite 

147 intrusions in the LLGB are possibly interpreted as the equivalents of this younger juvenile arc (Beaumont-

148 Smith and Böhm, 2003). Because the Pool Lake igneous suite (1.89–1.87 Ga) contains similar rock types, 

149 the spatial distribution of the Wathaman-aged intrusions (ca. 1.85 Ga) and younger, arc-related volcanic 

150 rock packages within the LLGB remains poorly understood. Hereafter the ca. 1.85 Ga intrusions are referred 

151 to as the Burge Lake igneous suite (Beaumont-Smith et al., 2006) and are similar in timing to the “successor-

152 arc” plutons elsewhere in the Reindeer Zone (Syme, 1988). 

153 Younger meta-sedimentary successions (i.e., cobble to pebble conglomerate, psammite, arkose) 

154 comprising the Sickle Group unconformably overly the 1.90–1.87 Ga Wasekwan Group and 1.89–1.87 Ga 

155 Pool Lake igneous suite (Fig. 4). Late tonalitic to pegmatitic dykes and intrusions are demonstrated to cut 

156 the Sickle Group in places. The oldest examples of these inferred post-Sickle Group intrusions, such as the 

157 Fox Mine tonalite, provide a minimum depositional U-Pb zircon crystallization age at 1831 ± 4 Ma 

158 (Beaumont-Smith and Böhm, 2004, 2003, 2002; Turek et al., 2000). A syn-deformational tonalite dyke that 

159 cuts meta-sedimentary rocks comprising the folded Wasekwan Group provides a near identical U-Pb zircon 

160 age at 1829 ± 2 Ma, suggesting that burial of the Sickle Group was rapidly followed by folding and faulting 
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161 (Beaumont-Smith and Böhm, 2003). The maximum depositional age of the Sickle Group is the focus of the 

162 current study and is discussed below. Rare exposures of turbidite-like meta-greywacke and -mudstone 

163 comprising the Burntwood Group (i.e., Kisseynew basin) are folded and intercalated with the Sickle Group 

164 in the southwest corner of the LLGB (Fig. 2). The Burntwood Group is the main sedimentary rock package 

165 comprising the large 1.86–1.83 Ga Kisseynew basin (Fig. 2–3)(Ansdell et al., 1995; Machado et al., 1999; 

166 White, 2005; Zwanzig, 1999). 

167 Multiple deformation events have been identified in the LLGB with the earliest recognized 

168 deformation phase corresponding to the faulted contacts between the disparate volcanic rocks packages of 

169 the Wasekwan Group (Anderson and Böhm, 2001; Beaumont-Smith and Böhm, 2002; Ma and Beaumont-

170 Smith, 2001; Park and Lentz, 2002). However, the main deformation phase (D2) corresponds to isoclinal 

171 folds and a penetrative W-trending S2 fabric that can be traced for over 100 km across the LLGB (Fig. 2). 

172 All of the known gold deposits are controlled by the D2 stage of deformation (Beaumont-Smith and Böhm, 

173 2003). Re-folded map patterns at district scale and detailed field-based studies suggest that multiple fabric 

174 and fold generations re-work and overprint S2 (Anderson and Böhm, 2001; Beaumont-Smith and Böhm, 

175 2004, 2003; Hastie et al., 2018; Park and Lentz, 2002; Samson and Gagnon, 1995; Samson et al., 1999). 

176 These younger and overprinting deformation phases (D3, D4, D5, and D6) are important because, in some 

177 cases, they appear to exert a control on the gold-bearing veins and their volcanic host rock stratigraphy, 

178 which are both of interest to on-going mineral exploration in the district (discussed below).

179  Peak metamorphism and the main stage of deformation post-date all rock types of the LLGB and 

180 the Kisseynew basin, except perhaps for some small and late-stage tonalitic (1819 ± 1 Ma) and pegmatitic 

181 (1815 ± 3 Ma) dykes (Beaumont-Smith and Böhm, 2004, 2003, 2002). These late-stage dykes constrain the 

182 timing of D2 to between 1819–1815 Ma. The earliest timing for regional metamorphism in the LLGB is 

183 constrained between 1814–1801 Ma, based on U-Pb dating of suspected metamorphic zircons (1814 ± 1 

184 Ma and 1801 ± 15 Ma) hosted within the older igneous plutons and dykes (Beaumont-Smith and Böhm, 

185 2003, 2002). Some of these older igneous plutons were associated with an earlier and cryptic phase of 

186 contact metamorphism that is overprinted by the regional event linked to D2. Late-stage tonalitic and 
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187 pegmatitic dykes that are syn- to post-date D2 host even younger metamorphic zircon and titanite (1783 ± 

188 3 Ma; 1766 ± 15 Ma; 1758 ± 8 Ma), suggesting that high-grade metamorphic mineral growth may have 

189 continued episodically until at least ca. 1.76 Ga (Beaumont-Smith and Böhm, 2003, 2002). Pegmatite dykes 

190 with crystallization and/or metamorphic ages at 1.78–1.77 Ga are interpreted to by syn-D3; whereas 

191 deformed tonalite dykes that yield U-Pb zircon age at 1758 ± 8 Ma correspond to D4 (Beaumont-Smith and 

192 Böhm, 2002). This broad ca. 56 Myr interval is consistent with metamorphic ages peripheral to the LLGB, 

193 which define peak metamorphism at 1.81–1.80 Ga and a cryptic secondary metamorphic event and/or 

194 thermal pulse at 1.79–1.78 Ga (Couëslan et al., 2013; Schneider et al., 2007). Evidence for earlier regional 

195 metamorphic ages have been reported elsewhere in the Reindeer Zone (e.g., ca. 1.83 Ga) and north of Lynn 

196 Lake, although their significance in the LLGB remains unclear (Ansdell and Norman, 1995; Couëslan et 

197 al., 2013; Machado et al., 2011, 1999). Biotite cooling ages (K-Ar and 40Ar-39Ar) suggest that temperatures 

198 in the LLGB were below 400–300°C after ca. 1.77 Ga (Lowdon et al., 1963; Moore et al., 1960; O’Connor 

199 et al., 2019; Turek, 1967). 

200 The peak metamorphic assemblage within the meta-volcanic host rocks of the Fox mine comprise 

201 biotite-garnet-sillimanite-cordierite-cummingtonite, suggesting temperatures in excess of 550°C at 

202 moderate pressure (3 kbar) in the westernmost LLGB (Elliott-Meadows et al., 2000). Preliminary garnet-

203 biotite thermometry results at the MacLellan deposit support these temperature estimates (535–560°C) 

204 (O’Connor et al., 2019) and are consistent with middle amphibolite facies metamorphism across the LLGB. 

205 Despite the broadly coeval timing of metamorphism, metamorphic temperatures in the Kisseynew basin 

206 immediately south of the LLGB were considerably higher (upper amphibolite facies) based on extensive 

207 development of garnet-sillimanite-cordierite mineral assemblages in migmatitic sedimentary gneisses and 

208 partial melt development (750 ± 50 °C and 5.5 ± 1 kbar)(Kraus and Menard, 1997; White, 2005). 

209

210 3 Deposit geology

211 The discovery of the Lynn Lake Ni-Cu deposit in the 1940s led to the development of a significant 

212 base metal and gold mining center in the LLGB and exploration continues to this day. Three of the largest 
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213 gold deposits within the LLGB were sampled as part of the current study: (1) MacLellan; (2) Gordon 

214 (formerly Farley Lake); and (3) Burnt Timber. Each of these gold deposits is hosted within the Wasekwan 

215 Group rather than the younger, overlying Sickle Group. The geology of each gold deposit is discussed 

216 below. 

217

218 3.1 MacLellan deposit

219 The MacLellan deposit was an underground gold and silver mine in the 1980s after its initial 

220 discovery in the 1940s. Approximately 0.1 Mt of Au at 5.46 g/t Au were extracted during its brief (1986–

221 1989) mining history (Staples et al., 2017). Multiple, discontinuous high-grade ore zones occur within a 

222 broader NE-SW trending and steeply dipping package of faulted Wasekwan Group meta-volcanic and lesser 

223 meta-sedimentary rocks. Total proven and probable reserves within the most recent assessment include 

224 18.08 Mt at 1.63 g/t Au and 4.43 g/t Ag (0.947 Moz Au and 2.578 Moz Ag)(Staples et al., 2017).

225 Multiple auriferous and barren mineralization styles and vein-types have been identified at the 

226 MacLellan deposit (Figs. 5–6)(Augsten et al., 1986; Beaumont-Smith, 2003; Beaumont-Smith and Böhm, 

227 2004, 2002; Glendenning et al., 2014; Hastie et al., 2018; Ma et al., 2000; Ma and Beaumont-Smith, 2001; 

228 Park and Lentz, 2002; Samson and Gagnon, 1995; Samson et al., 1999). One of the earliest mineralization 

229 styles correspond to isoclinally folded, centimetre-scale quartz veins and more cryptic zones of silica 

230 flooding with transposed alteration halos comprising fine to ultrafine arsenopyrite (± pyrrhotite ± pyrite) 

231 and biotite (Fig. 5c). 

232 Thicker, laminated quartz-chlorite veins with coarse arsenopyrite also occur within some high-

233 grade Au ore zones (Fig. 5a, d). Both arsenopyrite-bearing vein types and their associated biotite and 

234 chlorite alteration halos are isoclinally folded and transposed parallel to the main S2 fabric (Figs. 5a–d; 6a–

235 b), resulting in gold ore zones with abundant intrafolial and rootless folds and extensive boudinage. 

236 Arsenopyrite is an important visual indicator of high-grade ore zones at the MacLellan deposit. However, 

237 coarse visible gold is rarely observed in this mineralization style, which may suggest that gold within these 

238 zones is structurally bound within arsenopyrite (Hastie et al., 2018). Multiple examples of each arsenopyrite 
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239 texture type were sampled for Re-Os geochronology and Pb isotope and trace element geochemistry as part 

240 of the current study (i.e., vein-hosted versus replacement-style arsenopyrite). 

241 Base metal quartz-carbonate veins represent a third vein type at the MacLellan deposit. These veins 

242 often host abundant pyrite, pyrrhotite, sphalerite, galena, (Fig. 5f) and more rarely arsenopyrite and coarse 

243 visible gold. Because galena is argentiferous, base metal-rich veins comprise an important component of 

244 the Ag resource at the MacLellan deposit (Staples et al., 2017). All of these veins have a pre- to syn-D2 

245 timing that is similar to the gold-only veins described above, but some of the most sulphide-rich base-metal 

246 quartz veins are brecciated and/or have a net texture- to massive sulphide-like appearance. The texture and 

247 polymetallic signature of these veins, coupled with Zn-, Pb- and Ag-bearing mineralized zones that are 

248 locally decoupled from gold ore zones at the deposit scale, share some similarities with VMS-style 

249 mineralization (Fedikow and Gale, 1982). Gold ore zones also yield anomalous Ni-rich (e.g., pentlandite) 

250 concentrations and detailed mineralogical studies have documented a range of ultrafine Sb (tetrahedrite ± 

251 polybasite ± pyargite ± geocronite ± breithauptite ± ullmannite)- and/or Ag (Ag-rich electrum ± 

252 argentopentlandite)-bearing minerals that are somewhat unusual for other gold deposits in the LLGB and 

253 globally (Augsten et al., 1986). 

254 The relative timing of folded and transposed veins with the S2 fabric suggest a pre- to syn-D2 timing 

255 for all three auriferous veins types and mineralization styles (Beaumont-Smith and Böhm, 2004, 2003, 

256 2002; Hastie et al., 2018; Ma et al., 2000; Ma and Beaumont-Smith, 2001; Peck et al., 1998). However, 

257 most of the coarse visible gold grains observed in the present study occur in massive and decussate-textured 

258 amphibole, chlorite, carbonate, and pyrite alteration zones (Fig. 5b). Coarse visible gold within these 

259 amphibole + chlorite alteration zones typically occurs in the absence of sulphide and veining, which is 

260 unlike the other mineralization styles described above. Previous studies have interpreted these texturally 

261 and mineralogically distinct zones as post-D2 due to the massive appearance of fine grained chlorite and 

262 the randomly oriented texture of the coarse-grained amphibole (Hastie et al., 2018; Samson et al., 1999). 

263 Chlorite and amphibole also appear to overprint biotite-rich halos in the areas where both alteration 

264 assemblages are present, which is consistent with a relatively late timing for overprinting amphibole + 
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265 chlorite alteration. New field observations, however, demonstrate that these zones are locally deformed and 

266 transposed by the S2 fabric (Fig. 5b). As will be discussed below, the regional S2 fabric is likely a composite 

267 structure that was multiply reactivated for tens of millions of years. Individual hydrothermal or alteration 

268 events, even if temporally distinct, may therefore be impossible to recognize using the S2 fabric as a relative 

269 timing marker and in the absence of precise and spatially resolved (i.e., in situ analysis) geochronological 

270 constraints. Barren quartz, quartz + carbonate, quartz + carbonate + chlorite and quartz + amphibole + 

271 chlorite veins are also reworked by S2, suggesting that auriferous fluids represent one component of a 

272 broader period of hydrothermal activity that likely overlapped in time with the main period of deformation 

273 (D2). 

274 Post-D2 fabrics are also locally developed in drill core at the MacLellan deposit (Fig. 5e). Pyrite, 

275 pyrrhotite, and chalcopyrite are concentrated within the S3 fabric where present, possibly pointing to 

276 overprinting hydrothermal alteration on pre- to syn-D2 veins. These fabrics are relatively common in drill 

277 core intervals comprising biotite schist (Fig. 5e). Because pyrite-bearing S3 fabrics were only recognized 

278 adjacent to pre- to syn-D2 veins, it is possible that post-S2 sulphide replacement reflects late remobilization 

279 rather than a younger hydrothermal alteration event. Minor remobilization of Au is also inferred from its 

280 late paragenesis at the micro-scale and the apparent importance of intersecting D2 and post-D2 structures as 

281 structural controls at the deposit-scale (Hastie et al., 2018). Post-D2 quartz and quartz-calcite veinlets 

282 observed in core typically have sericite and calcite alteration halos that overprint biotite and/or chlorite-

283 amphibole alteration styles, and, in the absence of pre- to syn-D2 veins, are devoid of gold. 

284

285 3.2 Gordon deposit

286 Prospectors discovered gold occurrences around the Gordon deposit in the 1940s, which ultimately 

287 led to a brief open-pit mining operation between 1996 and 1999 (Staples et al., 2017). Total proven and 

288 probable reserves from the most recent assessment suggest that the Gordon deposit contains approximately 

289 8.72 Mt at 2.42 g/t Au (0.678 Moz Au)(Staples et al., 2017). The deposit is hosted by a steeply N- to NW-

290 dipping BIF of the Wasekwan Group. The moderate to shallow S-dipping geometry of the ore zones (25–
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291 45°) relative to the steeply dipping S0/S1/S2-fabric suggests that auriferous fluids at Gordon may 

292 significantly post-date other pre- to syn-D2 gold deposits within the LLGB (Beaumont-Smith, 2003; 

293 Beaumont-Smith et al., 2000; Peck et al., 1998). Shallow- to moderately-dipping quartz veins that cut north 

294 to northwest-trending open F4 chevron folds are also consistent with a post-D2 timing, although it is unclear 

295 whether these veins were mineralized (Beaumont-Smith et al., 2000). The hydrothermally altered and 

296 deformed (D2) dioritic intrusion at the southern edge of the past-producing open pit yielded a U-Pb zircon 

297 crystallization age of 1854 Ma, which provides a maximum age estimate for gold mineralization (Lawley 

298 et al., 2018). 

299 Two mineralization styles were recognized at the Gordon deposit: (1) pyrite + pyrrhotite 

300 replacement of magnetite-rich BIF (Fig. 5j); and (2) quartz + sulphide (pyrrhotite ± pyrite) + carbonate + 

301 amphibole veins (Fig. 5i). Vuggy pyrite veins with massive to semi-massive pyrrhotite and coarse visible 

302 gold intersect the main deposit fabric (S2) at high angle (Fig. 5j). Pyrite and/or pyrrhotite alteration halos at 

303 the margins of these veins also locally define an S3 fabric, which has been previously been interpreted to 

304 reflect a late structural timing for the Gordon deposit. However, multiple other lines of evidence support a 

305 pre- to syn-D2 timing for gold mineralization: (1) moderately- to flat-dipping veins with coarse visible gold 

306 are locally folded and transposed by S2 in drill core; (2) pre- to syn-D2 veins (quartz + chlorite + amphibole) 

307 that are isoclinally folded or boudinaged are also a ubiquitous feature of the high-grade ore zones; (3) 

308 shallow-dipping auriferous quartz veins host the peak-metamorphic mineral assemblage (i.e., actinolite + 

309 grunerite + chlorite; Fig. 6c–f), which elsewhere in the LLGB has a broad syn-D2 timing,; and (4) coarse 

310 visible gold occurs within some steeply dipping quartz-chlorite-amphibole veins that have a pre- to syn-D2 

311 relative timing (Fig. 5i). 

312 Two possible scenarios are provided to explain these apparently contrasting field relationships: (1) 

313 gold was introduced pre- to syn-D2 with minor remobilization into post-D2 veins and fabrics. If correct, the 

314 shallow- to moderately-dipping geometry of the Gordon ore zones suggest that progressive D2 deformation 

315 and subsequent events did not significantly impact the deposit geometry, which is unlike the extensive 

316 transposition and structural reworking at the other deposits within the LLGB; and/or (2) gold was initially 
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317 introduced pre- to syn-D2 and then subsequently overprinted by a second generation of shallow-dipping 

318 veins and gold ore zones that post-date the main stage of D2. Multiple pyrite samples from replacement and 

319 vein-hosted mineralization styles (pre- to syn-D2 and post-D2) were collected in an attempt to provide 

320 absolute timing constraints on the Au mineralization at the Gordon deposit. 

321

322 3.3 Burnt Timber deposit

323 Drill core availability was limited at Burnt Timber relative to the MacLellan and Gordon deposits. 

324 Burnt Timber was also not included in the most recent mineral reserve estimate (Staples et al., 2017). 

325 However, the geology and mining history of Burnt Timber have been previously described (Anderson and 

326 Böhm, 2001; Beaumont-Smith, 2000; Jones et al., 2006, 2000; Peck et al., 1998). Gold was initially 

327 discovered in the 1980s before going into production between 1993 and 1996 as an open pit operation 

328 (Staples et al., 2017). The deposit is hosted by a W-trending and steeply dipping package of hydrothermally 

329 altered (e.g., biotite, ankerite, quartz, pyrite, chlorite, sericite) mafic meta-volcanic rocks and lesser 

330 interflow meta-sedimentary rocks of the Wasekwan Group. 

331 High-grade gold ore zones are locally associated with pre- to syn-D2, hydrothermally-altered 

332 (calcite + ankerite + sericite + pyrite + arsenopyrite) felsic feldspar porphyry dykes (Fig. 5h)(Jones et al., 

333 2006, 2000). Multiple quartz veins types are present at Burnt Timber, including (1) narrow unmineralized 

334 quartz-pyrite veins, (2) auriferous quartz + carbonate + sulphide (pyrite ± chalcopyrite ± arsenopyrite ± 

335 galena) + biotite + chlorite veins, and (3) late-stage, unmineralized quartz + pyrite + chlorite veins (Jones 

336 et al., 2006). Mineralized quartz veins and hydrothermally altered host rocks within the high-grade Au ore 

337 zones are transposed, boundinaged, and isoclinally folded parallel to the main S2 deposit fabric (Fig. 5g). 

338 Three pyrite samples were collected from pre- to syn-D2 quartz + carbonate veins (n = 2) and their pyrite-

339 rich alteration halo (n = 1). 

340

341 4 Methods

342 4.1 U-Pb detrital zircon geochronology
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343 U-Pb detrital zircon geochronology was completed at the Geological Survey of Canada, Ottawa, 

344 using the Sensitive High Resolution Ion Microprobe (SHRIMP). All six samples were crushed and milled 

345 in mild steel prior to mineral separation using a combination of Wilfley Table, density (Methylene Iodide) 

346 and magnetic techniques (Frantz™ isodynamic separator). Non-magnetic zircon grains were then hand-

347 picked under ethanol and imaged using a Zeiss Evo 50 Scanning Electron Microscope (SEM) in back-

348 scattered electron (BSE) and cathodoluminescence (CL) modes. 

349 Analytical procedures are described in Stern (1997). Multiple crystals of primary (i.e., 6266; 

350 207Pb/206Pb age = 559 Ma) and secondary (i.e., 1242; 207Pb/206Pb = 2679.8 ± 0.2 Ma)(Davis et al., 2019) 

351 zircon standards were mounted with unknowns and gold-coated prior to analysis. Isotopic ratios were 

352 measured using single electron multiplier in pulse counting mode. Spot size depended on the zircon 

353 morphology and texture, but ranged from 9 × 12 µm to 17 × 23 µm. Data were processed offline using 

354 SQUID (v. 2.5) software (Ludwig, 2009). No fractionation correction was applied to the Pb-isotope data. 

355 Common Pb correction utilized the Pb composition of the surface blank (Stern, 1997). The SHRIMP 

356 analytical data are reported in supplementary material Table 1. Detrital zircon weighted average ages were 

357 calculated using Isoplot v. 4.10 (Ludwig, 2009) and are reported with errors at the 2σ level of uncertainty. 

358

359 4.2 Sulphide mineral separation

360 Arsenopyrite, pyrite, and pyrrhotite mineral separates were prepared at the Geological Survey of 

361 Canada using an approach that minimizes contact with metal. Samples were coarsely crushed in plastic 

362 with a plastic-wrapped hammer until approximately 90% of material passed through a 500 µm nylon sieve. 

363 Crushed material was then transferred to an agate mortar and milled in an ethanol slurry for 10 minutes. 

364 The median grain size of the sulphide powders following this approach was approximately ≤ 20 µm based 

365 on laser diffraction analysis with a Beckman Coulter LS 13 320 particle size analyzer. Sulphide powders 

366 were then purified using a combination of density (i.e., Methylene Iodide) and magnetic (i.e., Frantz™ 

367 isodynamic separator) mineral separation methods. Finally, non-magnetic sulphide powders were split into 

368 three aliquots for: (1) Re-Os geochronology; (2) Pb isotope analysis; and (3) trace elements analysis.
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369

370 4.3 Re-Os arsenopyrite and pyrite geochronology

371 Re-Os sulphide geochronology was completed at the Durham Geochemistry Center, Department 

372 of Earth Sciences, Durham University (Lawley et al., 2013). Sulphide mineral separates were weighed and 

373 loaded in to Carius tubes (Shirey and Walker, 1995), with a known amount of Re-Os tracer solution (spike) 

374 that contains a known 185Re and 190Os abundance and isotopic composition. Spike samples were digested 

375 in a reverse aqua regia solution (11N HCl:15.5N HNO3) at 220°C for 24 h. Room-temperature solvent 

376 extraction and micro-distillation were used to isolate Os from the acid mixture; whereas Re was isolated 

377 using NaOH-acetone solvent extraction and anion chromatography. Purified Re and Os aliquots were then 

378 loaded on Ni and Pt filaments, respectively, prior to thermal ionization mass spectrometry (TIMS) using a 

379 Thermo Scientific TRITON mass spectrometer. Isotopic compositions for Re and Os were measured by 

380 static Faraday collection and in peak-hopping mode on a secondary electron multiplier, respectively. 

381 Analytical uncertainties are propagated and incorporate uncertainties related to Re and Os mass 

382 spectrometer measurements, isotopic composition, abundance of the blank, spike calibrations, 

383 reproducibility of standard Re and Os isotope values, and decay constant uncertainty (1.666 × 10−11 

384 yr−1)(Smoliar et al., 1996). Standard solutions of Re (i.e., zone-refined Re ribbon) and Os (i.e., Durham 

385 Romil Osmium Standard, DROsS) were analyzed during each analytical session in order to monitor long-

386 term mass spectrometry reproducibility. The Os standard measurements recorded in this study (e.g., 

387 187Os/188Os = 0.1608 ± 0.0001 2σ; n = 7) are identical to the long-term average 187Os/188Os = 0.16095 (± 

388 0.00097 2σ). The Re standard measurements recorded in this study (e.g., 185Re/187Re = 0.5988 ± 0.0006 2σ; 

389 n = 7) are within uncertainty at 2σ to the long-term Re standard average 185Re/187Re = 0.59811 (± 0.00296 

390 2σ). Weighted averages were calculated using Isoplot v. 4.10 and are reported with errors at the 2σ level. 

391 All Re-Os analytical results are reported in supplementary material Table 2. 

392

393 4.4 Pb isotope analyses
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394 Pb isotope analyses were completed at the Isotope Geochemistry and Geochronology Research 

395 center (IGGRC; Department of Earth sciences, Carleton University) following Cousens (1996). Mineral 

396 separates were dissolved in a mixture of concentrated HF and HNO3. The residue was then re-dissolved in 

397 a mixture of HNO3 and HCl prior to further chemical separation. Isotope ratios were measured by TIMS 

398 (Thermo Scientific TRITON) and are corrected for fractionation using the NBS 981 standard values of Todt 

399 et al. (1996).

400 Replicate analyses of BCR-2 (n = 7) over the course of this study yielded Pb isotope ratios 

401 (206Pb/204Pb = 18.744 ± 0.017; 207Pb/204Pb = 15.613 ± 0.020; 208Pb/204Pb = 38.693 ± 0.068; 208Pb/206Pb = 

402 2.0642 ± 0.0020; 207Pb/206Pb = 0.8329 ± 0.0006) that are in good agreement with their preferred values from 

403 GeoReM (206Pb/204Pb = 18.754 ± 0.009; 207Pb/204Pb = 15.622 ± 0.005; 208Pb/204Pb = 38.726 ± 0.022; 

404 208Pb/206Pb = 2.064 ± 0.001)(Jochum et al., 2005). The total range measured for NBS 981 in a 2 year period 

405 bracketing the analyses are (2σ uncertainty): ± 0.017 for 206Pb/204Pb; ± 0.021 for 207Pb/204Pb; ± 0.038 for 

406 208Pb/204Pb; ± 0.0021 for 208Pb/206Pb; ± 0.00038 for 207Pb/206Pb. The total procedural blanks were less than 

407 50 picograms. Reported analytical uncertainties include corrections for mass bias, which are based on 

408 replicate analysis of NBS981. All analytical results are reported in supplementary material Table 3. 

409

410 4.5 LA-ICP-MS trace element analyses

411 Sulphide mineral separates were mixed with a micro-crystalline cellulose binder (Sigma-Aldrich) 

412 and pressed into pellets (Specac 5 mm die; 2 tonnes for 5 minutes) prior to direct analysis by laser ablation 

413 inductively coupled plasma mass spectrometry (LA-ICPMS; Agilent 7700x ICP-MS coupled to a Photon 

414 Machines Analyte G2 193-nm excimer laser ablation system) at the Geological Survey of Canada. Pressed 

415 sulphide powders were ablated using a 40 µm laser spot and a fluence of 4.5 J/cm2 at 10 Hz. The ablation 

416 aerosol was transported to the ICP-MS using 1 l/min He (MFC-1: 0.6 l/min; MFC-2: 0.4 l/min) and was 

417 mixed with approximately 1 l/min Ar. Analyses consisted of 40 s of background measurement prior to 60 

418 s of ablation, and ~50 s of washout between samples. The instrument was tuned on NIST-612 to achieve > 

419 9,000 cps/ppm 175Lu (50 µm spot, ~7 J/cm2 at 10 Hz), while minimizing the production of oxides (< 0.25% 
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420 for ThO+/Th+) and maintaining a U/Th signal intensity ratio of ~ 1.0. Details on the instrument setup are 

421 provided in supplementary material Table 4. 

422 Concentrations were calculated from the time-resolved LA-ICPMS spectra using standard-sample-

423 standard bracketing and the Glitter software package (Griffin et al., 2008). The United States Geological 

424 Survey (USGS) doped synthetic basalt glass standard GSE-1G was used as the primary calibration standard; 

425 whereas Fe was used as the internal standard based on its stoichiometric concentration for each of the 

426 targeted sulphide mineral separates. Pressed sulphide powder standards MASS-1 (USGS) was used as a 

427 qualitative control standard to monitor instrument performance and to demonstrate that using basaltic glass 

428 GSE-1G as the primary standard is appropriate for sulphide analyses. A second quality control standard, 

429 i.e., sulphide Cu standard OREAS-111, was milled and pressed into pellets using the same method as 

430 unknowns. Reference concentrations for primary and secondary standards were taken from the online 

431 geological and environmental reference materials database (GeoReM)(Jochum et al., 2005), except for 

432 OREAS-111 which was based on its certificate values for bulk powder analysis. Calibration of Te was 

433 based on an internal working value (GSE-1G = 279 ppm) calculated from repeated measurement of 

434 NIST610. Reported results represent the average of three replicate analyses for each sample. We note that 

435 the In concentrations reported in supplementary material Table 3 have not been corrected for the isobaric 

436 interference on 115In from 115Sn.

437 Replicate analyses of the quality control standard MASS-1 suggest that measurement repeatability 

438 is generally ≤ 10% (RSD) for most trace elements above the analytical detection limit. Exceptions include 

439 Se (11%) and Pd (12%). Measurement repeatability for OREAS-111 is considerably worse, although RSD 

440 is generally ≤ 20% for most trace elements above the analytical detection limit (exceptions include: Sn = 

441 50%; Th = 61%). The poor measurement repeatability for OREAS-111 is somewhat expected given that 

442 the standard is certified for whole-rock analysis of Cu ores rather than microanalysis. It is possible that 

443 OREAS-111 contains micrometric mineral inclusions that were not effectively homogenized during milling 

444 and pellet making. Natural sulphide mineral separates likely contain similar inclusions and the relatively 

445 poor measurement repeatability of OREAS-111 may be more typical of unknowns. 
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446 Replicate analysis of MASS-1 further suggest that measured concentrations are typically within 

447 20% of their accepted values for most elements (Co = 1%; Ni = 2%; Cu = 3%; Zn = 7%; As = 19%; Mo = 

448 5%; Ag = 16%; In = 12%; Sn = 13%; Tl = 16%; Pb = 1%; Bi = 6%; Au = 15%). Exceptions include Cr (-

449 86%), Se (37%), Cd (32%), Sb (-36%), and Te (34%). Concentrations for these elements should therefore 

450 be treated as semi-quantitative, particularly because several of these elements were also problematic for 

451 OREAS-111 (Cr = 44%; Te = 35%). Other problematic elements within OREAS-111 included Zn (36%) 

452 and Sn (31%). However, analytical accuracy for OREAS111 was generally good overall despite the 

453 relatively poor measurement repeatability discussed above (Co = 7%; Ni = 3%; Cu = 5%; As = 3%; Mo = 

454 4%; Ag = 4%; Cd = 10%; In = 2%; Sb = 18%; W = 18%; Tl = 21%; Pb = 21%; Bi = 20%; Th = 3%; U = 

455 10%). All sulphide geochemistry results and methods are presented in supplementary material Table 3 and 

456 supplementary material Table 4, respectively. 

457

458 5 Results and interpretation

459 5.1 U-Pb detrital zircon geochronology results

460 Three meta-conglomerate samples were collected at the southern limit of the LLGB (17CL0714-

461 1522; 18CL0809-1104; 18CL0812-1218); whereas one meta-conglomerate was sampled at the 

462 unconformable contact between the Sickle and Wasekwan Groups (17CL0715-1035)(Figs. 2–3). Other 

463 meta-conglomerate horizons are intercalated with cross-bedded meta-sandstone, suggesting a common 

464 depositional environment for both rocks types during Sickle Group sedimentation. Conglomerate clasts are 

465 well rounded and mostly comprise granite, quartzite, and quartz veins along with lesser conglomerate, 

466 sandstone, mudstone, and volcanic rocks. Many of these clasts were folded, hydrothermally altered, and 

467 possibly metamorphosed prior to sedimentation. With the possible exception of rare fuchsite-bearing 

468 volcanic and hematite-altered sedimentary rocks, most of the clasts within the conglomerate are fairly 

469 typical of the greenstone belts within the Reindeer zone. Sampling was focused on the sandy matrix of each 

470 conglomerate sample and excluded large clasts wherever possible. Meta-Psammite (17CL0718-0915) and 

471 -conglomerate (18CL0825-1525) samples from the northern LLGB were collected to test the timing of 
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472 rocks previously mapped as the Zed Lake greywacke and Ralph Lake conglomerate, respectively (Milligan, 

473 1960). The timing relationship between these rock packages with the Sickle Group and the greenstone belts 

474 was not previously known

475 The results from six U-Pb detrital zircon samples are presented as part of the current study (Figs., 

476 7–8). Zircon morphologies from mineral separates recovered from each sample were diverse and ranged 

477 from rounded, equant grains of obvious detrital origin to long, euhedral, and undamaged zircon crystals that 

478 were likely sourced from nearby rocks of igneous origin (Fig. 7). Oscillatory zoning was recognized in the 

479 majority of zircon crystals, although some obvious primary zoning was overprinted by metamict zircon 

480 domains (Fig. 7). Altered zircon domains were concentrated along fractures, grain boundaries, and/or 

481 replacing specific bands of the oscillatory zoning. In some of the most extreme cases, metamict zircon 

482 domains resulted in skeletal zircon structures. The most damaged zircon crystals were recovered from the 

483 meat-psammite sample 17CL0718-0915. A small subset of zircon grains also contain a bright (i.e., bright 

484 in back-scatter electron imaging) µm-thin rim that was too small to target with the spot sizes used in this 

485 study. A representative suite of zircon grains morphologies and textures from each sample were targeted 

486 for analysis (Fig. 7). After obtaining an initial age profile, the youngest zircon of each sample was then 

487 targeted for repeat analyses to constrain a maximum depositional age for the Sickle Group (Fig. 8). The 

488 Th/U ratio of the detrital zircons (Th/U mean = 0.43; standard deviation = 0.22; range = 0.01–1.65) tends 

489 to be higher than previously published results for metamorphic zircons (Th/U < 0.07)(Rubatto, 2002), 

490 which, coupled with their morphology and zoning patterns, suggests that most of the analyzed grains 

491 presented herein are igneous in origin. 

492 Sickle Group conglomerate sample 18CL0809-1104 (analysis ID = 12404) yielded the youngest 

493 detrital zircon population. This sample was collected at the southernmost margin of the LLGB (Fig. 2). Six 

494 replicate analyses of the youngest concordant zircon grain yield a weighted average 207Pb/206Pb age of 1836 

495 ± 15 Ma (MSWD = 1.3; n = 6; 12404-071; Fig. 7). This age is essentially identical to the youngest Sickle 

496 Group zircon, which is based on an unpublished and discordant (+8%) U-Pb TIMS single zircon 207Pb/206Pb 

497 age at 1830 ± 3 Ma (C. Böhm pers. comm.). One other young detrital zircon grain from sample 18CL0809-
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498 1104 was not reproducible over three analyses, which resulted in an imprecise age with an unacceptably 

499 large MSWD (weighted average 207Pb/206Pb age at 1836 ± 150 Ma; MSWD = 150; n = 3). The next two 

500 youngest reproducible zircon grains recovered from this sample yield slightly older weighted average 

501 207Pb/206Pb ages at 1854 ± 14 Ma (MSWD = 0.9; n = 7; 12404-007) and 1851 ± 13 Ma (MSWD = 0.3; n = 

502 3; 12404-058). The vast majority of the remaining zircon grains yield a prominent 207Pb/206Pb age mode at 

503 ca. 1.86 Ga, which likely reflects a mixture of locally sourced detritus (1.90–1.87 Ga Wasekwan Group and 

504 Pool Lake igneous suite and the ca. 1.86–1.85 Ga Burge Lake igneous suite). Replicate analyses of one 

505 zircon grain yield a significantly older weighted average 207Pb/206Pb age at 2525 ± 5 Ma (n = 2; 12404-029; 

506 Fig. 7). 

507 Cobble conglomerate sample 17CL0715-1035 (analysis ID = 12171) was collected at the 

508 unconformable contact between the Pool Lake igneous suite and the overlying Sickle Group at Hughes 

509 Lake (Figs. 2–3). This sample yielded multiple zircon grains with concordant 207Pb/206Pb ages ≤ 1.85 Ga, 

510 including weighted average 207Pb/206Pb ages at 1842 ± 13 (MSWD = 1.2; n = 9; 12171-065), 1843 ± 28 

511 (MSWD = 1.8; n = 4; 12171-027), 1842 ± 13 (MSWD = 1.2; n = 9; 12171-065), and 1847 ± 8 (MSWD = 

512 0.9; n = 5; 12171-141). Most of the remaining detrital zircons yield ages ranging from (1.90–1.86 Ga); 

513 whereas a smaller subset of analyses yield concordant 207Pb/206Pb ages at ca. 2.1, 2.4, 2.5, and 2.7 Ga. The 

514 dominant age mode and lesser subset of ca. 2.5 Ga zircon grains are similar to the age profile of the detrital 

515 zircon sample described above (Fig. 8).

516 The youngest two zircon grains within the Sickle Group quartz pebble conglomerate sample 

517 17CL0714-1522 (analysis ID = 12170) yield weighted average ages of 1845 ± 13 Ma (n = 2; 12170-022) 

518 and 1852 ± 7 Ma (MSWD = 0.8; n = 4; 12170-066). This sample also yielded a prominent 207Pb/206Pb age 

519 mode at 1.86 Ga, with lesser modes at ca. 2.4 and 2.5 Ga. The detrital zircon age profile of this sample is 

520 in good agreement with the cobble conglomerate samples described above, which were collected lower in 

521 the stratigraphy of the Sickle Group (Fig. 8). One zircon yielded a significantly older concordant 207Pb/206Pb 

522 age at 3357 ± 8 Ma (12170-018).
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523 Sickle Group cobble conglomerate sample 18CL0812-1218 (analysis ID = 12405) contained two 

524 zircon grains with concordant weighted average 207Pb/206Pb ages of 1842 ± 9 Ma (MSWD = 0.6; n = 6; 

525 12405-010; Fig. 7) and 1849 ± 11 Ma (MSWD = 0.3; n = 6; 12405-041; Fig. 7). Both of these youngest 

526 detrital zircon ages overlap within analytical uncertainty at 2σ with the ≤ 1.85 Ga recovered from the other 

527 meta-conglomerate samples. The remaining detrital zircons yield a prominent 207Pb/206Pb ages age mode at 

528 1.86 Ga and a few scattered 207Pb/206Pb ages at ca. 2.4, 2.5, and 2.7 Ga (Fig. 8). 

529 Zircons recovered from the northern Sickle Group psammite sample 17CL0718-0915 (analysis ID 

530 = 12172), which is part of the previously defined Zed Lake greywacke (Milligan, 1960), were smaller and 

531 more metamict than the other samples, which required a smaller spot to target the relatively small surface 

532 area of pristine domains. Because of the smaller spot size, individual U-Pb ages are associated with a 

533 relatively large analytical uncertainty and replicate analyses of the youngest zircon grain were not attempted 

534 for this sample. However, the age profile of sample 17CL0718-0915 is similar to the more precise detrital 

535 zircon ages recovered from the Sickle Group, including a prominent mode at ca. 1.86 Ga and lesser 

536 Paleoproterozoic to Archean zircon grains (Fig. 8). 

537 Replicate of the youngest zircons recovered from the Ralph Lake conglomerate sample 18CL0825-

538 1525 (analysis ID = 12407) yield a weighted average 207Pb/206Pb age at 1849 ± 30 Ma (MSWD = 2.7; n = 

539 8; 12407-016). The relatively large MSWD for this youngest detrital zircon is due to one anomalously 

540 young analysis. If excluded, the remaining analysis yield a slightly older, but more precise weighted average 

541 207Pb/206Pb age at 1857 ± 16 Ma (MSWD = 1.1; n = 7; Fig. 7). This age is essentially identical to the next 

542 youngest detrital zircons, including weighted average 207Pb/206Pb ages at 1858 ± 8 Ma (MSWD = 2.1; n = 

543 8; 12407-057) and 1860 ± 16 Ma (MSWD = 1.7; n = 7; 12407-026). The maximum depositional age and 

544 prominent 207Pb/206Pb age mode at ca. 1.86 Ga is thus very similar to Sickle Group samples (Fig. 8). The 

545 few older detrital zircon ages for the Ralph Lake conglomerate at ca. 2.4, 2.5, 2.7, and 3.0 Ga are also 

546 similar to the other dated samples (Fig. 8). Together, the available age results suggest that the Ralph Lake 

547 and Sickle Group conglomerates were broadly coeval and contain detritus of similar age provenance. 

548
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549 5.2 Re-Os geochronology results

550 Multiple arsenopyrite, pyrite and/or pyrrhotite mineral separates were prepared (n = 38) from three 

551 deposits (i.e., MacLellan, Gordon, and Burnt Timber). Of these, only 19 samples yielded sufficient Re to 

552 attempt Re-Os dating (total analyses = 23; Fig. 9). Arsenopyrite and pyrite results scatter about a ca. 1.8 Ga 

553 errorchron (1794 ± 18 Ma; 2σ; MSWD = 159; n = 15; York model 3; initial 187Os/188Os = 1.0 ± 0.9). 

554 Reproducible replicate analyses suggest that this excess data-point scatter reflects disparate sulphide 

555 generations rather than an analytical artifact (supplementary material Table 2). 

556 Sulphide samples that yield high 187Re/188Os ratios (> 5000) and/or calculated 187Osr concentrations 

557 (> 98%) are highly radiogenic, suggesting that nearly all of the measured 187Os is due to the radiogenic 

558 decay of 187Re with minimal contribution of common 187Os (Lawley et al., 2015, 2013; Stein et al., 2000). 

559 For these highly radiogenic arsenopyrite and/or pyrite samples, model ages can be calculated in a manner 

560 that is similar to molybdenite model ages (Fig. 9). Two replicate analyses of the two arsenopyrite samples 

561 with the highest 187Re/188Os (6132–16564; n = 4) yield weighted average Re-Os model ages at 1824 ± 12 

562 (n = 2) Ma and 1782 ± 16 Ma (n = 2). Both of these ages are relatively insensitive to the choice of initial 

563 Os composition. The older ca. 1.82 Ga arsenopyrite sample was taken from a pre- to syn-D2 quartz-sulphide 

564 vein at the MacLellan deposit; whereas the younger ca. 1.78 Ga arsenopyrite sample was collected from 

565 sulphide- and biotite-altered host rocks adjacent to a pre- to syn-D2 quartz-sulphide vein at the same deposit 

566 (Fig. 9). Both of these ages were obtained from coarse arsenopyrite porphyroblasts and within analytical 

567 uncertainty of previously published U-Pb xenotime and monazite ages from the same deposit (Lawley et 

568 al., 2019). Replicate analyses of one highly radiogenic pyrite sample (187Re/188Os = 694–1005; 187Osr = 

569 98%) represent the best available timing estimate for sulphide replacement from the Gordon deposit at 1838 

570 ± 28 Ma (n = 2). A regression through the three reproducible arsenopyrite and pyrite samples from the 

571 MacLellan and Gordon deposits yield a York Model 1 Re-Os isochron age of 1823 ± 4 Ma (MSWD = 1.5; 

572 n = 6; initial 187Os/188Os = 0.60 ± 0.02). 

573 The remaining arsenopyrite and pyrite analyses are moderately to highly radiogenic (187Osr = 57–

574 99%), but scatter to lower 187Re/188Os ratios (57–2418) and yield a broad range of Re-Os model ages (1980–
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575 764 Ma; Fig. 9). For samples that contain a small but variable proportion of common Os, Re-Os model ages 

576 should be regarded as minimum ages. A subset of the older pyrite analyses from the MacLellan deposit (≥ 

577 1.83 Ga) yield a York Model 1 Re-Os isochron age of 1865 ± 21 Ma (MSWD = 0.04; n = 4; initial 

578 187Os/188Os = 0.48 ± 0.06). Two of these three samples share a similar paragenesis (i.e., pyrite-rich biotite 

579 schist), which may suggest that the oldest Re-Os model ages reflect early-sulphide deposition that pre-dates 

580 regional metamorphism. However, pyrite mineral separate with older apparent ages are associated with 

581 large analytical uncertainties and one sample within this potential group was collected adjacent to veins 

582 that yield Re-Os model pyrite ages older than the host rock, which likely reflects isotopic disturbance. A 

583 subset of anomalously young samples, including the two samples from Burnt Timber, yield model ages that 

584 cluster around ca. 1.3 and 0.8 Ga (Fig. 9). These ages are considerably younger than any of the previously 

585 published ages for the THO. Anomalously young Re-Os model ages may reflect disturbance and/or variable 

586 resetting to produce geologically meaningless dates. Alternatively, young pyrite ages reported herein may 

587 reflect young fluids that circulated during Meso- to Neoproterozoic re-heating and/or some other form of 

588 cratonic instability (McDannell et al., 2018). The young tectonothermal history of the THO was previously 

589 identified using K-feldspar thermochronology (40Ar/39Ar multi-diffusion domain analysis)(McDannell et 

590 al., 2018), but, prior to this study, has not been reproduced by other isotopic dating methods. Because of 

591 some evidence for Re-Os disturbance in the sulphide samples that yield old apparent “ages” (i.e. pre-date 

592 ca. 1.83 Ga) and the uncertain geological significance of the youngest sample subset, the reproducible Re-

593 Os model ages for the two highly radiogenic samples from the MacLellan deposit represent the preferred 

594 timing for sulphidation in the LLGB (ca. 1.82 and 1.78 Ga; Fig. 9). 

595

596 5.3 Pb isotope and trace element results

597 Sulphide (i.e., arsenopyrite, pyrite and pyrrhotite) mineral separates prepared for Re-Os dating 

598 yield a range of 206Pb/204Pb (15.468–46.414), 207Pb/204Pb (15.164–18.830) and 208Pb/204Pb (35.029–44.581) 

599 ratios (n = 38). The available data scatter around Paleoproterozoic secondary errorchrons (not shown), 

600 which is consistent with the inferred timing of sulphidation (i.e., 1.82–1.78 Ga; discussed above) and points 
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601 to significant radiogenic in-growth of Pb after sulphide deposition. To correct for the growth of radiogenic 

602 Pb, measured Pb isotope ratios were back-projected along secondary 1.8 Ga isochrons to intersect the 

603 Stacey and Kramers (1975) primary isochron at 1.8 Ga. The intersection of primary and secondary 

604 isochrons represent the best available estimate for the Pb isotope composition for each sample at 1.8 Ga 

605 (Fig. 10). Uncertainty over the true age of the sulphide mineral separates has the potential to add scatter to 

606 the calculated initial Pb isotope compositions; however, the broadly co-linear distribution of all samples 

607 along Paleoproterozoic secondary Pb errorchron suggests that Meso- to Neoproterozoic sulphides, if 

608 present, did not significantly impact the U-Pb systematics. The calculated range of initial Pb isotope 

609 compositions (i.e., U/Pb) is more likely to reflect mixing between depleted mantle-like (i.e., low-µ) and 

610 crust-like (high-µ) end-members. 

611 Age-corrected Pb isotope compositions (µ1.8 Ga) range from 8.9–10.6, which extend from depleted 

612 to enriched U/Pb ratios relative to the terrestrial silicate curve (i.e., µ = 9.7; Fig. 10)(Stacey and Kramers, 

613 1975). Least radiogenic samples are similar to the composition of juvenile, mantle-derived magmas in the 

614 THO (Arndt and Todt, 1994), whereas the more radiogenic Pb isotope signatures are similar to global 

615 models for the isotope composition of the crust and galena from nearby volcanogenic massive sulphide 

616 deposits (Sangster, 1978). 

617 Aliquots of each mineral separate were also milled and pressed into pellets prior to trace element 

618 analysis by LA-ICPMS. Integrating trace element data, Re-Os geochronology, and age-corrected Pb 

619 isotope data for the same sample suite provide new constraints on the timing and composition of the ore 

620 fluids. Arsenopyrite analyses from the MacLellan deposit yield the greatest concentrations for Au + Ag + 

621 Pb + Zn ± Cd ± In ± Sb (Fig. 10). Part of this compositional range is likely due to micro-inclusions of 

622 native Au, galena and sphalerite that remained in arsenopyrite after mineral separation and were mixed 

623 during pellet making. 

624 Pyrite from the MacLellan and Burnt Timber deposits are somewhat less radiogenic and, with the 

625 exception of As + Ni + Co + Cu (± Pt ± Pd), are mostly trace-element poor (Fig. 10). Pyrite analyses from 

626 Gordon trend towards more radiogenic Pb isotope compositions and are also relatively Bi + Te enriched 
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627 (± Mo; Fig. 10). These elements likely occur as telluride and/or bismuthide minerals, which occur with 

628 Au at the micro-scale (Fig. 6c–f). The trend from least- to most radiogenic pyrite analyses from both 

629 deposits may point to variable mixing between depleted mantle-like and more radiogenic crust-like fluid 

630 components (µ1.8 Ga ≥ 9.74)(Stacey and Kramers, 1975). Radiogenic fluids appears to have introduced Re, 

631 possibly due to the precipitation of ultrafine molybdenite and/or other very fine grained Re-bearing 

632 phases that were not apparent during petrography (e.g., germanite and renierite)(Selby et al., 2009). It is 

633 possible that molybdenite inclusions, if present, may have contributed to the complex distribution of Re-

634 Os model ages (Fig. 10). The origin of these radiogenic fluids is also unclear and could represent U-rich 

635 magmatic fluids and/or metamorphic fluids that interacted with sedimentary rocks prior to precipitating 

636 radiogenic pyrite and arsenopyrite. Hydrothermal fluids that interacted with sedimentary rocks, 

637 particularly organic-rich sediments that are likely present at Gordon as BIF and argillite, provide an 

638 alternative explanation for the Re-enrichment observed within the more radiogenic sulphide samples (Fig. 

639 10) (Kendall et al., 2009; Morelli et al., 2005; Selby et al., 2009). 

640

641 6 Discussion

642 6.1 Synorogenic sedimentary basins

643 Detrital zircon ages are an important record of orogenesis that can track the uplift, erosion, and 

644 paleogeography of evolving mountains systems (Cawood et al., 2012). In the LLGB, meta-arkose, 

645 -psammite, and -conglomerate comprising the Sickle Group unconformably overlie 1.90–1.87 Ga mafic 

646 meta-volcanic rocks of the Wasekwan Group and the 1.89–1.87 Ga Pool Lake igneous suite (Fig. 3) 

647 (Baldwin et al., 1987; Beaumont-Smith et al., 2006; Beaumont-Smith and Böhm, 2004, 2002; Milligan, 

648 1960; Norman, 1934). This unconformable depositional relationship, coupled with rare cross-bedded meta-

649 psammite, coarse meta-arkose, local hematite-colouring and boulder- to pebble-sized clasts of previously 

650 deformed quartzite and gneiss, suggest that the Sickle Group was deposited in a fluvial and/or alluvial 

651 environment (Fig. 4)(Gilbert et al., 1980; Zwanzig et al., 1999). Felsic to mafic dykes and plutons intrude 

652 the Sickle Group and provide minimum depositional ages, however, the precise timing of sedimentation 
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653 has proven difficult to constrain in practise because many of the contact relationships between the Sickle 

654 Group and adjoining plutons are tectonized (Ansdell and Norman, 1995; Beaumont-Smith et al., 2006; 

655 Beaumont-Smith and Böhm, 2004, 2002; Connors et al., 1999; Machado et al., 1999; Maxeiner et al., 2005; 

656 Maxeiner and Morelli, 2014). Because of the uncertainty over these faulted contacts and despite being based 

657 on relatively high-precision TIMS U-Pb zircon ages, previously published minimum depositional ages for 

658 the Sickle Group have ranged from 1.85–1.83 Ga (Beaumont-Smith et al., 2006; Beaumont-Smith and 

659 Böhm, 2004, 2002). The few available, and mostly unpublished, detrital zircon ages for the Sickle Group 

660 did not define a maximum depositional age because these studies did not conduct replicate analyses of the 

661 youngest detrital zircon in each sample (Beaumont-Smith et al., 2006).

662 Six replicate analyses of the youngest detrital zircon reported herein provide the first reproducible 

663 maximum depositional age for the Sickle Group at 1836 ± 15 Ma (Figs. 7–8). This age mostly post-dates 

664 the 1.86–1.85 Ga Burge Lake intrusive suite, which coupled with the 1.86 Ga detrital age mode(Fig 8), 

665 suggests that these intrusions can be considered to be part of the pre-Sickle Group suite of intrusions 

666 (Beaumont-Smith et al., 2006). Sedimentation of the Sickle Group also post-dates the “successor-arc” 

667 plutons that are common throughout the Reindeer Zone (Syme, 1988). New maximal depositional ages that 

668 post-date the ca. 1.85 Ga Burge Lake suite intrusions may further suggest that the Sickle Group was 

669 deposited on the amalgamated Wasekwan-Pool Lake basement after the LLGB was already stitched to the 

670 Hearne cratonic margin (Fig. 11–12). If correct, this places the depositional setting of the Sickle Group on 

671 the southern Hearne cratonic margin prior to continent-continent collision with the Superior and/or Sask 

672 cratons (Figs. 1, 12). However, other authors suggest that the LLGB was still situated in an oceanic setting 

673 during emplacement of the Wathaman Batholith (Maxeiner et al., 2005) and that the Burge Lake igneous 

674 suite is related to on-going intraoceanic arc magmatism. 

675 The new detrital zircon-based maximum depositional age overlaps within analytical uncertainty at 

676 2σ with the ages of the youngest syn- and post-metamorphic dykes and plutons in the LLGB (ca. 1.83–1.78 

677 Ga)(Beaumont-Smith and Böhm, 2004, 2002; Turek et al., 2000). Some of these intrusions, including the 

678 Fox Mine tonalite dated at 1831 ± 4 Ma (Turek et al., 2000) are interpreted to intrude the Sickle Group in 
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679 places (Beaumont-Smith and Böhm, 2004, 2002). If this intrusive contact relationship is correct, the Fox 

680 Mine tonalite provides a minimum depositional age to constrain the timing of Sickle Group sedimentation 

681 between 1836 ± 15 and 1831 ± 3 Ma (Figs., 2–3, 11–12). The Wasekwan and Sickle groups were 

682 metamorphosed to amphibolite facies by ca. 1814 Ma. 

683 The slightly older maximum depositional age (1857 ± 16 Ma) for what was previously mapped as 

684 the Ralph Lake conglomerate overlaps with the ca. 1.85 Ga Burge Lake igneous suite. New detrital zircon 

685 ages for this sample are thus broadly consistent with the previously interpreted intrusive contact relationship 

686 between these meta-sedimentary rocks and the Burge Lake pluton (1857 ± 16 Ma)(Beaumont-Smith et al., 

687 2006). If the interpretation of that intrusive contact is correct, the Ralph Lake conglomerate would be 

688 temporally distinct from the Sickle Group (1836 ± 15 to 1831 ± 4 Ma), suggesting at least two disparate 

689 meta-sedimentary packages (i.e., ≤ 1.86 and ≤ 1.84 Ga) and/or continuous sedimentation (i.e., 1.86–1.83 

690 Ga) overlying the 1.90–1.87 Ga Wasekwan-Pool lake suite. Continuous deposition of the Sickle Group 

691 during this time period would be similar to the timing of the Kisseynew Basin, although more precise 

692 maximum depositional age constraints are required to test this hypothesis further. However, multiple ca. 

693 1.85 Ga detrital zircons within all six dated samples instead suggest that 1.86–1.85 Ga plutons were eroding 

694 at the time of conglomerate and psammite sedimentation. If the Burge Lake pluton is in fact in faulted 

695 contact with the adjoining metasedimentary rocks, then rocks previously mapped as the Ralph Lake 

696 conglomerate and Zed Lake greywacke are more likely correlative with the Sickle Group (Fig. 2). 

697 The similar detrital zircon age peaks within all six sample samples tend to support a common 

698 provenance, and thus similar depositional setting for all six detrital zircon samples and that is the preferred 

699 interpretation presented herein (Fig. 8). The prominent 207Pb/206Pb detrital zircon age modes for each sample 

700 (ca. 1.86 Ga) suggests that most of the detritus was sourced locally from the underlying Wasekwan Group, 

701 and the Pool Lake and Burge Lake ntrusion suites. Older ca. 2.12, 2.39, 2.51, 2.73, 3.02, and 3.35 Ga zircons 

702 likely require significant sedimentary transport because the potential Paleoproterozoic and Archean sources 

703 of this detritus are currently not exposed in the LLGB (Fig. 1–2). Some of these Meso- to Neoarchean 

704 zircons were presumably sourced from at least one of the adjoining cratons to the THO (i.e., Hearne and/or 
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705 Sask), or, somewhat less likely, from rare inherited zircons hosted within the eroding Paleoproterozoic 

706 igneous intrusions (Fig. 1). The minor mode of detrital zircons at ca. 2.51 Ga (Fig. 8) are particularly 

707 intriguing as these ages are typical of the Kaminak igneous event and coeval rocks within the Sask craton, 

708 which today is mostly buried over a hundred kilometers south of the LLGB (Ashton et al., 1999).

709 Immediately west of the LLGB, polymictic conglomerate and coarse, feldspathic and cross-bedded 

710 clastic sedimentary successions bordering the La Ronge belt were formerly mapped as the McLennan 

711 Group (Lewry, 1983; Maxeiner, 1999; Maxeiner and Demmans, 2000). Detrital zircon age peaks for the 

712 McLennan Group reflect locally sourced detritus from the unconformably underlying volcano-plutonic arc 

713 basement (e.g., prominent mode at 1.85 Ga) with young detrital zircon ages (i.e., 1835 Ma)(Maxeiner and 

714 Demmans, 2000) that are virtually identical to the maximum depositional age of the Sickle Group reported 

715 herein. More recently, coarse clastic sedimentary rocks in the southwestern La Ronge belt in Saskatchewan 

716 have been re-interpreted as the Mullock Lake lithotectonic assemblage (Maxeiner and Kamber, 2011; 

717 Maxeiner and Morelli, 2014). Detrital zircon age results from this newly defined sedimentary-igneous rock 

718 assemblage yield modes at ca. 1.89 and 1.85 Ga, similar to the Sickle Group (Maxeiner and Kamber, 2011). 

719 South and east of the LLGB, meta-sedimentary rocks of similar age and provenance are known as 

720 the Missi and Grass River Groups, respectively (Ansdell et al., 1992; Bailes, 1980; Zwanzig, 1999). These 

721 coarse clastic meta-sedimentary rocks, along with amphibolite facies meta-sedimentary rocks of suspected 

722 marine origin within the intervening Kisseynew basin (e.g., alternating meta-greywacke and -mudstone 

723 deposits of the Burntwood Group), have been the subject of many previous studies (Ansdell et al., 1999, 

724 1995, 1992; Ansdell and Norman, 1995; Connors et al., 1999; Machado et al., 1999; Zwanzig and Bailes, 

725 2010; Zwanzig, 1999; Zwanzig et al., 2008). Around Flin Flon, Missi Group meta-psammite grades laterally 

726 into meta-greywacke of the Burntwood Group, suggesting that both meta-sedimentary packages were 

727 coeval (Zwanzig and Bailes, 2010; Zwanzig, 1999). The coeval timing of marine and clastic sedimentation 

728 is further supported by the youngest detrital zircon 207Pb/206Pb ages from the Missi (1837 ± 4 Ma) and 

729 Burntwood (1842 ± 2 Ma) groups, which overlap within analytical uncertainty at 2σ (Ansdell and Norman, 

730 1995; Machado et al., 1999). Despite similar detrital zircon-based maximum depositional age estimates for 
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731 these meta-sedimentary rock packages, marine sedimentation within the Kisseynew basin may be as old as 

732 ca. 1855 Ma (David et al., 1996) and likely pre-dates, at least locally, alluvial-fluvial sedimentation 

733 unconformably overlying the LLGB (Ansdell et al., 1995; David et al., 1996; Machado et al., 1999; Zwanzig 

734 and Bailes, 2010). 

735 Based on new and previously published results, a thin ribbon (10s of km) of broadly coeval, coarse 

736 clastic sedimentary clastic rocks of the Sickle Group and neighbouring correlative successions can be traced 

737 along strike across the Manitoba-Saskatchewan border and for 100s of km along the southern Hearne 

738 cratonic margin (Fig. 1). Interstratification of these alluvial-fluvial deposits with deep-water marine 

739 sedimentary facies were originally interpreted as rapid infilling of the Kisseynew basin at an active 

740 subduction margin (Ansdell et al., 1992; Connors et al., 1999; Zwanzig, 1999). If that interpretation is 

741 correct, the Sickle-Missi-Grass River-McLennan Groups and Mullock Lake assemblage would represent 

742 what were previously defined as molasse deposits in a foreland basin depositional setting (Ansdell et al., 

743 1992). However, arc-like plutons that intrude the Burntwood Group may instead suggest that the Kisseynew 

744 basin formed in a back-arc (Ansdell et al., 1995). Coarse clastic sedimentary successions (e.g., Sickle-

745 Missi-Grass River-McLennan Groups and Mullock Lake assemblage) that are coeval with the Burntwood 

746 Group and border the Kisseynew basin in that scenario would have been deposited on top of a previously 

747 deformed, but actively rifting oceanic setting (Ansdell et al., 1995). The geochemistry of plutons and dykes 

748 cross cutting the Sickle and Burntwood groups provide some of the few available constraints on the 

749 depositional setting of these synorogenic basins. 

750

751 6.2 Syn- to post-Sickle Group intrusive suite

752 Magmatic rocks intrude both the Kisseynew basin and the coarse clastic sedimentary packages 

753 (Sickle-Missi-Grass River-McLennan Groups/Mullock Lake assemblage) unconformably overlying the 

754 older 1.90–1.85 Ga volcano-plutonic assemblages along the Hearne-Superior-Sask cratonic margins (Fig. 

755 1). The composition and timing of these syn- to post-Burntwood and -Sickle Group intrusive suites provide 

756 critical constraints on the final assembly of the THO and have been the subject of extensive study (Bickford 
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757 et al., 2005; Hollings and Ansdell, 2002; Whalen et al., 1999; Zwanzig and Bailes, 2010). The oldest of 

758 these intrusive suites (1.84–1.83 Ga) yield a mixed, arc-like geochemical affinity (Fig. 12)(Hollings and 

759 Ansdell, 2002; Whalen et al., 1999; Zwanzig and Bailes, 2010). Because arc-like plutons (i.e., 1.84–1.83 

760 Ga “boundary intrusions”) (Ansdell et al., 1992; Machado et al., 1999) cut previously folded Missi Group 

761 rocks, fluvial-alluvial sedimentation continued after the initial stages of folding, faulting, and basin 

762 inversion (Fig. 12). Other syn- to post-Sickle Group intrusions (1.84–1.83 Ga) yield adakite- and/or 

763 sanukitoid-like to peraluminous compositions (Hollings and Ansdell, 2002; Whalen et al., 1999) that likely 

764 reflect different melt source regions during late-stage subduction and post-collisional magmatism. Some of 

765 the youngest detritus within the Sickle Group likely reflects erosion of these arc-like to post-collisional 

766 plutons. 

767 Younger igneous intrusions (i.e., ≤ 1.83 Ga) yield a markedly different composition. These post-

768 Sickle Group intrusive phases point to a significant shift in the evolution of the THO after basin inversion 

769 (Figs. 11–12)(Bickford et al., 2005; Hollings and Ansdell, 2002; Whalen et al., 1999; White, 2005; Zwanzig 

770 and Bailes, 2010). First, the unusual composition of the ultramafic to intermediate rocks of the 1830–1823 

771 Ma Touchbourne intrusive suite points to a modified lithospheric mantle source region that is unlike the 

772 nominally older 1.84–1.83 Ga arc-like granitic intrusions within and at the margins of the Kisseynew basin 

773 (Ashton et al., 1999; Gordon et al., 1990; Machado et al., 1999). Second, syenitic and carbonatite intrusions 

774 are notably absent prior to ca. 1.83 Ga (Chakhmouradian et al., 2008; Martins et al., 2011). Alkaline rocks 

775 of this age intrude south and east of the LLGB (i.e., Eden Lake; zircon-bearing syenite yield ages 1831–

776 1825 Ma; zircon-bearing carbonatite yield age at 1815 ± 8 Ma; Fig. 1)(Chakhmouradian et al., 2008; Elliott, 

777 2009; Mumin and Corriveau, 2004), along the Superior cratonic margin (Chakhmouradian et al., 2009), and 

778 within the Kisseynew basin (Martins et al., 2012, 2011). These young alkaline intrusions were likely 

779 focused into the crust by translithospheric structures, as suggested by the position of the Eden Lake complex 

780 along strike of a major step in the upper mantle (Figs. 1–3; 12)(White et al., 2000). Widespread ultrapotassic 

781 and alkaline magmatism (i.e., Christopher Island Formation, ca. 1.83 Ga)(Cousens et al., 2002) within the 

782 Archean hinterland of the THO occurred at essentially the same time. Third, weakly peraluminous ca. 1.78–
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783 1.77 Ga granite and pegmatite dykes document an increasing component of post-tectonic crustal melting 

784 after the burial of synorogenic basins (Figs. 11–12). Based on isotope studies, the crustal source regions of 

785 these pegmatite dykes must have included Archean basement or detritus, potentially after collision of the 

786 cratonic fragments bordering the THO (Bickford et al., 2005; White, 2005). These small, syn-to post-

787 deformation tonalitic and pegmatitic dykes are the youngest intrusions in the LLGB and elsewhere (1.81–

788 1.75 Ga)(Figs. 11–12). 

789

790 6.3 Timing of gold mineralization

791 New Re-Os arsenopyrite and pyrite ages reported as part of the current study yield complex age 

792 profiles that require careful interpretation (Fig. 9). Older Re-Os model dates (1.98–1.83 Ga) are of uncertain 

793 significance due to the large analytical uncertainty for these moderately radiogenic mineral separates and 

794 since some of these apparent ages are older than the host rocks (Fig. 9). Given that the VMS mineralization 

795 (e.g., Fox mine) is hosted by the Wasekwan Group, it is possible, even likely, that some stages of 

796 hydrothermal alteration were coeval with mafic volcanism (1.91–1.85 Ga). In fact, the Zn- and Ag-rich ore 

797 zones at the MacLellan deposit were previously interpreted as sub-economic VMS alteration that was 

798 overprinted by orogenic gold-style mineralization (Fedikow and Gale, 1982). Unfortunately, the available 

799 Re-Os data does not allow this idea to be tested further. The oldest Re-Os ages have also not been 

800 reproduced by hydrothermal monazite and xenotime dating at the MacLellan deposit or elsewhere (Lawley 

801 et al., 2019). 

802 The most robust age determinations correspond to Re-rich and highly radiogenic arsenopyrite 

803 and/or pyrite fractions with highly radiogenic Os isotopic compositions that are similar to data obtained 

804 from molybdenite (Stein et al., 2000). Unfortunately, only two arsenopyrite samples were sufficiently Re-

805 rich and radiogenic to calculate Re-Os model ages. These samples yield reproducible Re-Os model ages at 

806 1824 ± 12 Ma and 1782 ± 16 Ma, which represent the two preferred ages for the timing of sulphide 

807 deposition, and thus gold deposition at the MacLellan deposit (Figs. 9, 11–12). Critically, both Re-Os model 

808 ages also overlap with in situ U-Pb monazite and xenotime ages at the same deposit (Lawley et al., 2019). 
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809 Xenotime that occurs with native gold in a sulphide veinlet, which is isoclinally folded overgrown by garnet 

810 (Lawley et al., 2019), yield a weighted average 207Pb/206Pb age at 1827 ± 8 Ma (2σ; MSWD = 1.0; n = 15). 

811 The good agreement between monazite and arsenopyrite ages provides strong support for an early 

812 generation of auriferous fluids at the MacLellan deposit. This inferred 1824–1827 Ma hydrothermal and 

813 gold event immediately post-dates deposition of the Sickle Group, but pre-dates peak metamorphism in the 

814 LLGB at 1814–1801 Ma (Fig. 11)(Beaumont-Smith and Böhm, 2004, 2002). 

815 The other highly radiogenic arsenopyrite sample yields a reproducible Re-Os model age at 1782 ± 

816 16 Ma, which, coupled with coeval 207Pb/206Pb ages for monazite (1769 ± 2 Ma, MSWD = 0.9, n = 30) and 

817 xenotime (1807 ± 24 Ma, MSWD = 1.4, n = 13; 1796 ± 27 Ma, MSWD = 0.7, n = 4; 1791 ± 20 Ma, MSWD 

818 = 1.9, n = 20) at the same deposit, point to a punctuated hydrothermal and/or metamorphic history at the 

819 MacLellan deposit (Figs. 9, 11). The agreement between multiple geochronometers and minerals is 

820 important because it suggests that the younger generation of arsenopyrite at ca. 1.78 Ga is not related to an 

821 analytical artifact of the Re-Os method. The paragenesis of this sample is typical of the high grade ore zones 

822 and suggesting that multiple generations of arsenopyrite porphyroblasts and possibly gold are superimposed 

823 on the early auriferous veins. Replacement-style arsenopyrite- and gold-bearing mineralization is thus 

824 interpreted in some cases to overprint pre- to syn-D2 hosted gold mineralization during a significantly 

825 younger hydrothermal event. The timing of late-stage arsenopyrite post-dates peak metamorphism at 1814–

826 1801 Ma (Fig. 11), but is coeval with the pegmatitic to tonalitic dykes, the inferred timing of D3, and a 

827 major regional thermal pulse at 1.78 Ga. Pegmatitic dykes with post-tectonic ages have previously been 

828 interpreted to reflect peak crustal thickening and/or some other sub-crustal heat source (Bickford et al., 

829 1990). Late-stage arsenopyrite at the MacLellan deposit also immediately precedes the oldest biotite 

830 cooling ages at 1.77 Ga (O’Connor et al., 2019), suggesting that some auriferous veining occurred just prior 

831 to the LLGB cooling below peak amphibolite facies metamorphism. 

832 Whether the other dated xenotime and monazite samples (1.81 Ga, 1.80 Ga, 1.79 Ga, and 1.77 Ga) 

833 reflect metamorphic mineral growth and/or additional stages of hydrothermal alteration is not clear in the 

834 absence of sulphide ages during this time interval. However, xenotime dated at 1.81–1.79 Ga that are either 
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835 overgrown by pyrrhotite and/or are concentrated at its margins demonstrates at least some sulphide mobility 

836 during peak metamorphism. The geological significance of moderately radiogenic sulphide mineral 

837 separates that scatter to significantly younger Re-Os model ages (ca. 1.3 and 0.8 Ga) is also uncertain. 

838 The youngest xenotime at the MacLellan deposit (207Pb/206Pb age at 1746 ± 12 Ma, MSWD = 0.7, 

839 n = 4) corresponds to the inferred timing of D4. The few xenotime crystals of this age (ca. 1.75 Ga) post-

840 date the oldest biotite cooling ages (ca. 1.77 Ga) and are hosted within a chloritized biotite schist, suggesting 

841 that some overprinting occurred during cooling and post-peak metamorphism (Fig. 11). However, these 

842 young xenotime grains and associated chlorite alteration are also interesting because they are aligned with 

843 the S2 fabric at the MacLellan deposit and post-date both of the preferred arsenopyrite ages, suggesting that 

844 the D2 structures controlling gold mineralization were repeatedly reactivated for 10s of Myr. 

845

846 6.4 Sources of auriferous fluids

847 The Pb isotope signature of minerals with low to intermediate U/Pb ratios (e.g., arsenopyrite, pyrite 

848 and pyrrhotite) are a product of its initial composition and the in situ radiogenic decay of U. In the absence 

849 of precise age constraints, the Pb isotope composition of arsenopyrite and pyrite from ore samples have 

850 proven difficult to interpret. Herein we address that knowledge gap by integrating Re-Os, Pb isotope, and 

851 trace element chemistry for the same mineral separates (Fig. 10). Calculated Pb compositions at ca. 1.8 Ga 

852 are based on the intersection between secondary Pb isochrons for each sample with the primary 1.8 Ga 

853 isochron (Stacey and Kramers, 1975). 

854 Two possible trends are apparent from the age-corrected Pb isotope and trace element composition 

855 of mineral separates: (1) MacLellan arsenopyrite mineral separates scatter to more radiogenic initial Pb 

856 isotope compositions and are relatively Au-, Ag-, Bi-, and Te-rich; whereas pyrite from the same deposit 

857 tend to yield more primitive initial Pb isotope compositions (Fig. 10); and (2) pyrite from the Gordon 

858 deposit tends to be more radiogenic than sulphide mineral separates from the other deposits and are also 

859 relatively Bi-, Te-, and Mo-rich (Fig. 10). At the microscale, bismuthides, tellurides, and native metals (Bi 

860 and Au) occur as ultrafine crystals intergrown with or fracture-fills in chlorite, amphibole, pyrite, and/or 
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861 arsenopyrite (Fig. 6). The microtextural setting of this ultrafine mineral assemblage is typical of 

862 metamorphosed gold ores and may be related to element remobilization during the metamorphic transition 

863 of pyrite to pyrrhotite (Lawley et al., 2017). Elements with low melting-points (e.g., Bi, Te) form native 

864 metals and alloys in such settings and it is possible that syn-metamorphic polymetallic melts or 

865 hydrothermal fluids may be responsible for scavenging and upgrading gold from early-stage pyrite and 

866 arsenopyrite. If correct, the radiogenic signature of mineral separates with a greater abundance of these 

867 remobilized native metals and alloys may be due to a crust-like fluid and/or polymetallic melt that is distinct 

868 from the more primitive hydrothermal fluids that precipitated early-stage arsenopyrite and pyrite. The 

869 isotopic differences between sulphide generations at the Gordon deposit is partially supported by the few 

870 pyrite samples from pre- to syn-D2 veins that plots closer to veins of the same generation at the MacLellan 

871 and Burnt Timber deposits (Fig. 10). Unfortunately, some of the scatter around these inferred mixing lines 

872 is likely due to the heterogeneous distribution of alloys and native metals within the pressed powders. Future 

873 work should focus on producing finer and more homogenous mineral separate nanopowders, possibly 

874 through wet-milling methods and high-speed planetary ball mills (Lawley et al., 2020). 

875

876 6.5 Sedimentary basin controls on orogenic gold deposits

877 Sedimentary basins that develop during the last stages of mountain building are a common feature 

878 of greenstone belts of all geological ages. In the Neoarchean Abitibi greenstone belt, the type locality, these 

879 synorogenic sedimentary basins are referred to as Timiskaming-type (Bleeker, 2015, 2012; Corfu et al., 

880 1991; Hyde, 1980; Mueller and Donaldson, 1992). Some of the characteristic features of Timiskaming-type 

881 assemblages include: (1) deposition and/or preservation within long (i.e., discontinuous along strike for 

882 100s of km), narrow, and fault-bounded basins that unconformably overlie significantly older and 

883 previously deformed meta-volcanic and -plutonic rocks; (2) alternating meta-sandstone and -mudstone 

884 intervals that likely represent deep-water, turbidite-like deposits of possible marine origin; (3) coarse clastic 

885 sedimentary rocks, including meta-conglomerate and -sandstone, that likely represent alluvial and/or fluvial 

886 deposits; (4) coeval calc-alkaline to alkaline volcanic and plutonic rocks derived, in part, from previously 
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887 metasomatized lithospheric mantle; and (5) a close spatial and temporal relationship with orogenic gold 

888 deposits along the two main deformation corridors (i.e., Larder-Cadillac and Destor-Porcupine faults). 

889 Detailed structural analysis in the Timmins area suggests that the deep-water sedimentary facies of 

890 the Timiskaming assemblage was deposited during a synorogenic phase of extension (Bleeker, 2015, 2012). 

891 Deep penetrating faults that developed during this inferred extensional phase were interpreted by Bleeker 

892 (2012) as the ancestral structures that later focused auriferous fluids during the structural inversion of the 

893 Timiskaming-type basins (Fig. 12). Rapid burial by meta-conglomerate and -sandstone towards the 

894 stratigraphic tops of the Timiskaming-type basins was broadly coeval with the main stage of auriferous 

895 veining (De Souza et al., 2019). Continued shortening led to steepening of the basin-bounding structures 

896 and tectonic burial of the auriferous veins, which ultimately resulted in Timiskaming-type basins and gold 

897 deposits concentrated within the footwall of the two main gold-bearing deformation corridors (Fig. 12). 

898 According to this model, Timiskaming-type basins play an important genetic (i.e., fluid focusing along 

899 basin-bounding faults) and preservation control (i.e., rapid burial) on orogenic gold deposits (Bleeker, 2015, 

900 2012). The empirical association between Timiskaming-type basins and orogenic gold deposits of multiple 

901 geological ages further suggest a common evolutionary stage during mountain building that is particularly 

902 favourable for this style of gold mineralization (Bleeker, 2015, 2012; Cameron, 1993; Groves et al., 1998; 

903 Kerrich and Wyman, 1990; Krapež and Barley, 2008; Maxeiner and Morelli, 2014). 

904 Here we demonstrate that early-stage auriferous veins in the LLGB (1824 ± 12 and 1827 ± 8 Ma) 

905 immediately post-date the deposition of Sickle Group sediment (1836 ± 15 to 1831 ± 4 Ma). Turbidite-like 

906 rocks comprising the Burntwood Group (1855–1842 Ma) are locally interbedded with the Sickle Group, 

907 suggesting that these rocks are broadly coeval despite some older maximum depositional ages reported for 

908 the Kisseynew basin in some places (Zwanzig and Bailes, 2010). The close temporal relationship between 

909 marine turbidite-like deposits (i.e., Burntwood Group), alluvial-fluvial meta-sedimentary rocks (i.e., Sickle-

910 Missi-Grass River and Mullock Lake assemblage), and early-stage gold deposition developed as part of the 

911 current study share a number of similarities with Timiskaming-type basins (Fig. 12). First, the ca. 24 Myr 

912 period (1855–1831 Ma; Burntwood and Sickle Groups) of basin opening and closing in this part of the 
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913 THO is very similar to the ca. 18 Myr series of events that define Timiskaming-type basins in their type 

914 locality (2687–2672 Ma synorogenic phase of extension; 2672–2669 Ma basin-inversion and filling; gold 

915 is locally ca. 2660 Ma)(Bleeker, 2015). Second, deposition of the Sickle Group was immediately followed 

916 by the first appearance of alkaline magmatism. Third, the thin ribbon of alluvial-fluvial sedimentary rocks 

917 (Sickle-Missi-McLellan groups and Mullock Lake assemblage) extends along strike for 100s of km and 

918 separates the highly prospective older volcanic rock packages from the poorly mineralized Kisseynew basin 

919 (Fig. 1). Finally, Sickle Group rocks were being deposited during basin inversion (ca. 1.83 Ga) and then 

920 buried and metamorphosed to amphibolite facies by 1814–1801 Ma. Rapid burial of early-stage auriferous 

921 veins by synorogenic Sickle Group sediments may represent an important preservation control for orogenic 

922 gold deposits in the LLGB.

923 However, unlike the Timiskaming-type basins, none of the known gold deposits or alkaline 

924 intrusions in the LLGB are actually hosted by the Sickle Group. Instead, the largest gold deposits in the 

925 LLGB are hosted by the meta-volcanic and -sedimentary rocks comprising the older and underlying 

926 Wasekwan Group along two main gold-bearing faults (Fig. 2). The local geological setting for 

927 mineralization in the LLGB thus contrasts with the close spatial distribution between Timiskaming-type 

928 basins and gold deposits in the structural footwall of the two main auriferous faults in the Abitibi greenstone 

929 belt. Deep-water meta-sedimentary rocks, which, in the Timiskaming-type basins represent one of the 

930 supporting pieces of evidence for the synorogenic extensional phase (Bleeker, 2015), are also mostly absent 

931 from the LLGB (Fig. 2). Immediately south of the LLGB in the Kisseynew basin, turbidite-like deposits 

932 comprising the Burntwood Group are locally coeval with the Sickle Group, but are almost entirely devoid 

933 of gold occurrences (Fig. 1). 

934 The poor gold endowment of the Sickle and Burntwood Groups suggests that there is no special 

935 genetic relationship between orogenic gold and individual basin-bounding faults in the THO. Instead, 

936 deposition of the Sickle Group during inversion of a synorogenic extensional phase resulted in rapid 

937 infilling of the Kisseynew basin by coarse clastic sedimentary rocks of continental origin. The large number 

938 of gold occurrences that are associated with the thin ribbon (ca. 50 km wide) of meta-volcanic rocks and 
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939 synorogenic basin deposits at the margin of the Kisseynew basin are presumably related to repeated fluid 

940 focusing and favourable depositional traps within that large-scale geological setting (Fig. 1). The 

941 prospectivity of individual faults within this larger-scale geological setting may be unrelated to whether 

942 they were once basin-bounding structures.

943 The importance of large-scale architecture is further highlighted by the close temporal relationship 

944 between early-stage auriferous veins and the first appearance of alkaline magmatism. Although these 

945 syenite and carbonatite intrusions do not occur within the gold deposit stratigraphy (e.g., Eden Lake 

946 complex; Fig. 1), and are thus unlikely to have been the source of auriferous fluids, their timing points to 

947 an important shift in the magmatic history of the THO from arc- to lithospheric mantle- and/or crust-derived 

948 magmatism. Because early-stage auriferous veins pre-date most estimates for peak-metamorphism in the 

949 LLGB (1814–1801 Ma), upwelling asthenosphere and associated magmatism is the most likely driver for 

950 these hydrothermal fluids. 

951 Crustal thickening during continental collision between the Hearne, Sask, and/ Superior cratons 

952 ultimately led to post-tectonic pegmatite dykes and other crustally-derived magmas during a post-peak 

953 metamorphic phase of magmatism. Late-stage arsenopyrite and gold (1782 ± 16 Ma) significantly post-

954 dates peak metamorphism, but are coeval with this post-tectonic magmatic pulse and immediately preceded 

955 the onset of cooling. These pre- and post-peak metamorphic arsenopyrite ages are inconsistent with a local 

956 metamorphic-origin for auriferous fluids in the LLGB. However, the ultimate source(s) of gold and other 

957 ore components require further study. Whether monazite and xenotime ages sampled from the 

958 hydrothermally altered host rocks at the MacLellan deposit reflect additional hydrothermal, and possibly 

959 gold-bearing events, or a punctuated metamorphic mineral growth during a protracted period (1.81–1.75 

960 Ga) of elevated metamorphic temperatures and pressures also remains unclear. 

961

962 7 Conclusions

963 New U-Pb detrital zircon geochronology data constrain the depositional timing of the Sickle Group 

964 from 1836 ± 15 to 1831 ± 4 Ma. Early-stage auriferous veins (1824 ± 12 and 1827 ± 8 Ma) immediately 
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965 post-date closure and burial of these synorogenic basins. The close temporal relationships between 

966 deposition of the Sickle Group and auriferous veining is similar to the sequence of events established for 

967 Timiskaming-type sedimentary basins in the Abitibi greenstone belt, which points to a particular stage 

968 during mountain building that is highly prospective for orogenic gold deposits of all ages. However, the 

969 poor prospectivity of synorogenic basins themselves in the THO tends to suggest that individual basin-

970 bounding faults are unlikely to have any special genetic or preservation control on orogenic gold deposits 

971 in the LLGB. Instead, the thin ribbon (ca 50 km wide and 100s of km long) of synorogenic sedimentary 

972 basins and highly prospective greenstone belts at the edge of the Kisseynew basin is more likely to reflect 

973 the favourable lithospheric architecture, repeated fluid focusing, and depositional traps at a reworked 

974 cratonic margin. Because early-stage auriferous veins are coeval with the switch from arc- to lithospheric 

975 mantle-derived magmatism and pre-date peak amphibolite facies metamorphism (1814–1801 Ma), 

976 upwelling asthenosphere and associated magmatism was the most likely driver for hydrothermal fluids. 

977 Late-stage arsenopyrite (1782 ± 16 Ma) post-dates peak metamorphism. The driver of late-stage 

978 hydrothermal fluids may have been heating during crustal thickening, as suggested by crustally-derived 

979 pegmatite dykes of this age, or some other unrecognized sub-crustal heat source. The contributions of early- 

980 versus late-stage hydrothermal events to the overall gold endowment of the LLGB is difficult to assess with 

981 the few available ages. Whether undated auriferous veins occurred during peak metamorphism also remains 

982 unclear. Nevertheless, the multi-stage hydrothermal history of the orogenic gold deposits within the LLGB 

983 demonstrates that reworked cratonic margins represent preferred pathways and depositional settings for 

984 auriferous fluids throughout the lifespan of an orogen. 

985
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996  

997 Figure Captions

998 Figure 1

999 Regional geological map of Saskatchewan and Manitoba [Saskatchewan geology polygons from the 

1000 Saskatchewan Mining and Petroleum GeoAtlas; Manitoba geological polygons from Manitoba Mineral 

1001 Resources (2013)]. Volcanogenic massive sulphide (VMS)(Galley et al., 2007), nickel-copper-platinum 

1002 group-element (Eckstrand and Hulbert, 2007), gold deposits (Dubé and Gosselin, 2007), kimberlite 

1003 (Kim.)(Faure, 2010) and carbonatites (Carb.)(Woolley and Kjarsgaard, 2008) are shown for reference. Gold 

1004 occurrences are also shown for reference (data are commodity-filtered from the provincial mineral 

1005 occurrence databases).

1006

1007 Figure 2

1008 Local geology map of the Lynn Lake greenstone belt (Gilbert et al., 1980). Detrital zircon sample localities 

1009 (this study), volcanogenic massive sulphide (VMS)(Galley et al., 2007), nickel-platinum group element 

1010 (Eckstrand and Hulbert, 2007), and gold deposits (Dubé and Gosselin, 2007) are shown for reference.

1011

1012 Figure 3

1013 Schematic stratigraphic column summarizing the main supracrustal groups and plutonic suites comprising 

1014 the Lynn Lake greenstone belt. Ages are summarized from several sources (see text for further details). 

1015 Abbreviations: BIF – banded iron formation; VMS – volcanogenic massive sulphides.
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1016

1017 Figure 4

1018 Photos of meta-conglomerate comprising the Sickle Group (a–d). Cobble to pebble sized clasts are 

1019 generally well rounded and comprise previously deformed and metamorphosed volcanic and plutonic rocks. 

1020 The Ralph Lake conglomerate (e–f) north of the MacLellan deposit contains a higher proportion of clasts 

1021 of mafic to intermediate composition. 

1022

1023 Figure 5

1024 Core photo of veins and hydrothermal alteration from MacLellan (a–f), Burnt Timber (g–h), and Gordon 

1025 (i–j) deposits. Gold (a–b and i–j) is often intergrown with amphibolite, chlorite, and/or pyrite. Arsenopyrite 

1026 (c–d) is an important visual indicator of ore zones at the MacLellan deposit. Sulphidized (pyrite) biotite 

1027 schist and base metal veins are locally gold-bearing. Auriferous shallow-dipping veins and their 

1028 hydrothermal alteration halos at Gordon (j) are distinct from the other gold deposits in the LLGB. However, 

1029 auriferous pre- to syn-D2 veins also occur at Gordon (i). Gold ore zones at Burnt Timber are associated with 

1030 hydrothermally altered meta-volcanic and –sedimentary rocks (g) and felsic dykes (h). Abbreviations: 

1031 amphibole = Amph; arsenopyrite = Asp; biotite = Bt; calcite = Calc; chlorite = Chl; galena = Gn; pyrite = 

1032 Py; pyrrhotite = Po; sphalerite = Sl; and quartz = Qtz. 

1033

1034 Figure 6

1035 Scanning electron microscope (SEM) backscattered electron (BSE) images of gold ore zones at MacLellan 

1036 (a–b) and Gordon (c–f) deposits. Isoclinally folded and garnet-hosted sulphide veinlets (a) point to an early 

1037 generation of hydrothermal mineral assemblages that are pre- to syn-metamorphic at the MacLellan deposit. 

1038 Fine native gold are associated with early-stage hydrothermal alteration, but is often remobilized into low-

1039 strain micro-textural sites pre- to syn-S2 (b). At Gordon, gold is intergrown with amphibole, chlorite and 

1040 pyrite and often associated at the microscale with an unusual suite of Bi- and Te-bearing mineral phases. 

1041 Some of these minerals remain unidentified and require further study. Concentrations are semi-quantitative 
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1042 and based on energy dispersive spectrometry (EDS). Abbreviations: Amphibole = Amph; arsenopyrite = 

1043 Asp; biotite = Bt; =bismuthinite = Bis; calcite = Calc; garnet = Gt; ilmenite = Ilm; magnetite = Mt; pyrite 

1044 = Py; and quartz = Qtz.

1045

1046 Figure 7

1047 Scanning electron microscope (SEM) backscattered electron (BSE) images of detrital zircons. 

1048 Geochronology results are reported as weighted average 207Pb/206Pb ages for replicate analyses (i.e., 

1049 multiple spots on same grain or multiple analyses on same spot) of each zircon grain. The youngest 

1050 reproducible zircon from all six samples yield a weighted average 207Pb/206Pb age at 1836 ± 15 Ma (MSWD 

1051 = 1.3; n = 6). Detrital zircon numbers refer to their analytical ID in the supplementary material Table 1. 

1052

1053 Figure 8

1054 Density distribution function for concordant and near-concordant (equal to or less than 5% discordance) 

1055 207Pb/206Pb ages (Ma). Modes in the age profile were estimated based on the cumulative age distribution 

1056 from all six samples (vertical lines). The prominent mode at 1861 Ma likely reflects a mixture of locally 

1057 derived detritus from the Wasekwan Group and intrusive suites (Pool Lake and Wathaman suites). Older 

1058 detrital zircons require more distal zircon transport, possibly from the neighbouring cratons that border the 

1059 THO. The maximum depositional age for the Sickle Group (1836 ± 15 Ma) is based on the youngest detrital 

1060 zircon from all six samples.

1061

1062 Figure 9

1063 Re-Os model age results for arsenopyrite and pyrite from the MacLellan, Gordon and Burnt Timber 

1064 deposits. The most robust estimates for the timing of sulphidation in the LLGB are based on reproducible 

1065 model ages for two highly-radiogenic arsenopyrite samples from the MacLellan deposit (i.e., 1824 and 

1066 1782 Ma). Model ages for the other moderately radiogenic mineral separates with a greater proportion of 

1067 common Os are minimum ages and may not reflect the timing of hydrothermal fluids. The clustering of 
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1068 Meso- and Neoproterozoic Re-Os model ages for some samples is of uncertain geological significance. 

1069 These anomalously young ages could be geologically meaningless or reflect resetting during much younger 

1070 reactivation of the THO. 

1071

1072 Figure 10

1073 Sulphide Pb isotope and trace element results for the MacLellan, Gordon, Burnt Timber gold deposits and 

1074 one ore sample from the Lynn Lake Ni mine. Initial Pb isotope compositions were calculated based on an 

1075 assumed age of 1.8 Ga, which is partially supported by Re-Os dating of the same mineral separate suite. 

1076 With the exception of two anomalous samples, MacLellan and Burt Timber sulphide separates tend to yield 

1077 more primitive initial Pb isotope composition compared to late-stage pyrite and pyrrhotite replacement ore 

1078 zones at Gordon. Radiogenic mineral separates tend to be more Bi- and Te-rich despite significant scatter. 

1079 Part of the scatter is likely related to precious metal-rich minerals that were included with arsenopyrite and 

1080 pyrite during sample preparation. Incomplete homogenization of these mineral phases during pellet making 

1081 provide a possible explanation for the elevated concentrations of these elements for some samples. 

1082

1083

1084 Figure 11

1085 Compilation of previously reported and new ages for the Lynn Lake greenstone belt. Volcanic and plutonic 

1086 U-Pb ages are from Baldwin et al. (1987), Turek et al. (2000), Beaumont-Smith and Böhm (2004, 2002), 

1087 Beaumont-Smith et al. (2006), and Lawley et al. (2019). The inferred peak metamorphic age is based on 

1088 metamorphic zircon results reported in Beaumont-Smith and Böhm (2004, 2002). The scatter of syenite 

1089 and carbonatite ages are from Elliott (2009) and may reflect a combination of crystallization ages, 

1090 metamorphic resetting, and/or isotopic disturbance. Sickle Group (U-Pb detrital zircon maximum 

1091 depositional age) and hydrothermal/metamorphic ages (Re-Os sulphide and preliminary U-Pb monazite and 

1092 xenotime results) were collected as part of the current study and Lawley et al. (2019). Biotite cooling ages 

1093 are from O’Connor et al. (2019). 
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1094

1095 Figure 12

1096 Cartoon showing basin development and inversion [basin geometry is schematic and adapted from 

1097 (Scisciani et al., 2014)]. Deep-water sediments of the Kisseynew Basin (KB) were deposited in a back-arc 

1098 during a synorogenic phase of extension at 1.85–1.84 Ga (Ansdell et al., 1995; Zwanzig and Bailes, 2010). 

1099 Structural inversion of the back-arc was coeval with late-stage, arc-like granitic plutons and deposition of 

1100 the fluvial/alluvial Sickle Group (1.84–1.83 Ga). In the Abitibi greenstone belt (Ontario-Quebec), 

1101 Timiskaming-type basins and their extensional fault systems focus younger auriferous fluids from deep 

1102 sources and preserve orogenic gold deposits in their structural footwall during inversion (Bleeker, 2012, 

1103 2015). Terminal collision involving the Hearne craton, intraoceanic arc complexes, and Sask and Superior 

1104 cratons was coeval with peak metamorphism and steepening and folding of the inverted basin structural 

1105 architecture. The earliest generation of auriferous fluids immediately post-date the syn-orogenic extensional 

1106 phase, but are coeval with syenite and some late-stage dykes (tonalite and pegmatite). 

1107
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Figure 6
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Figure 10
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Figure 11
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Figure 12
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