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Abstract
We investigate nonlinear stability in a model for thermal convection in a saturated porous 
material using Brinkman theory, taking into account viscous dissipation effects. There are 
(at least) two models for viscous dissipation available, and we include a derivation of one 
of these by assuming that the flow in the porous medium may be described by a theory for 
a mixture of an elastic solid and a linearly viscous fluid. A fully nonlinear stability result 
is provided when either of the viscous dissipation functions is taken into account, and it 
is shown that from the nonlinear energy stability viewpoint both models are, in a sense, 
equivalent.

Keywords Nonlinear stability · Viscous dissipation · Thermal convection · Brinkman 
porous media

1 Introduction

There has been much very interesting recent work on non-isothermal flow in a clear fluid 
or in a saturated porous medium when viscous dissipation effects are taken into account, 
see, e.g., Al-Hadrami et al. (2003), Barletta (2008), Barletta et al. (2009a, b, 2010, 2011a, 
b), Barletta and Mulone (2020), Barletta and Nield (2010), Barletta and Nield (2011), 
Breugem and Rees (2006), Hooman and Gurgenci (2007), Magyari and Rees (2006), Nield 
(2000a,b, 2004, 2007), Nield and Barletta (2010), Nield and Bejan (2017), Sect.  2.2.2, 
Nield et al. (2004), Nield and Simmons (2019), Sect. 3.1, and Rees and Magyari (2017). 
Since the viscous dissipation effects add some strongly nonlinear terms to the governing 
partial differential equations, an understanding of this is vital to fully explore thermal con-
vection from a nonlinear point of view.

In the context of flow in a Brinkman porous medium, there is some controversy over the 
form the relevant nonlinear viscous dissipation terms should appear, see, e.g., Al-Hadrami 
et al. (2003), Barletta (2008), Barletta et al. (2011b), Breugem and Rees (2006), Hooman 
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and Gurgenci (2007), Magyari and Rees (2006) and Nield (2000a, b, 2004, 2007). It is not 
the purpose of this article to enter this controversy. We are interested in analyzing the fully 
nonlinear stability for the Brinkman theory, and so we allow both forms of nonlinear vis-
cous dissipation. In fact, we show that, in a sense, from the viewpoint of nonlinear energy 
stability theory both forms of the viscous dissipation lead to exactly the same result and so 
in this sense are equivalent.

In the next section, we include a derivation of the Brinkman equations for thermal con-
vection in a porous medium which is based on the theory for a mixture of an elastic solid 
and a viscous fluid. The viscous dissipation terms arise naturally and are essentially the 
same form as those of Al-Hadrami et  al. (2003). We point out that this form of viscous 
dissipation is also derived in the analysis of Breugem and Rees (2006), who perform a 
rigorous averaging procedure. The comments of Breugem and Rees (2006) on whether the 
form of the viscous dissipation is correct are very enlightening and are lucidly described on 
pages 1 and 2 of their article.

Our main goal is to derive a nonlinear energy stability analysis for thermal convection 
in a Brinkman porous material, and we employ both forms of viscous dissipation function. 
A recent very interesting development of Barletta and Mulone (2020) establishes an analo-
gous nonlinear energy stability analysis for thermal convection in a Darcy porous material 
when the relevant viscous dissipation term is present. A detailed analysis of thermal con-
vection in a Brinkman porous material neglecting viscous dissipation effects is contained 
in Rees (2002), and the validity of the Brinkman equations is discussed in Nield (2000b). 
We stress that even in the absence of viscous dissipation effects, the Darcy and Brinkman 
theories are very different. For example, Straughan (2016) shows that one may lead to sta-
tionary convection, whereas the other yields oscillatory convection for the same problem of 
resonant convection. Thus, the Brinkman and Darcy equations represent different physical 
phenomena.

2  Derivation of the Brinkman Equations from Mixture Theory

There are various approaches to presenting a theory for a mixture of an elastic solid and 
a viscous fluid. We here describe that of Eringen (1994, 2004). Actually, Eringen (1994, 
2004) develops his theory for a mixture of a fluid, a solid, and a gas. We restrict attention 
to only a fluid and a solid.

Throughout we employ standard indicial notation in conjunction with the Einstein sum-
mation convention. There are momentum equations for the fluid and for the solid, and let-
ting s denote solid while f denotes fluid, these are (see also Straughan 2015a, pp. 20–22),

where �, xi, tij, bi and pi denote the respective, density, particle position, Cauchy stress ten-
sor, body force, and interaction force for the fluid (f) and solid (s). The notation ′′ denotes 
the second derivative following the motion of the particular particle. In addition, the equa-
tion of energy balance is

(1)
�f ��x
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ij
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where �, qi, v
f

i
, vs

i
, h denote the internal energy, heat flux, fluid velocity, solid velocity, and 

externally supplied heat. The mixture density � = �f + �s . Eringen (1994, 2004) develops 
his theory in terms of the deformation gradient �xi∕�Xs

K
 , the temperature, the fluid density, 

the invariants of df
ij
= (v

f

i,j
+ v

f

j,i
)∕2 , the temperature gradient, and the difference of fluid 

and solid velocity vf
i
− vs

i
 . It is important to observe that vf

i
− vs

i
 is an objective quantity 

and so the velocity difference should enter the theory; from a mixture viewpoint, this term 
gives rise to the Darcy friction term.

The full equations for a deformed elastic body are given in Eringen (1994, 2004), see also 
Straughan (2015a, pp. 20–22). In this work, we are interested in flow through an undeformed 
skeleton which does not move; hence, vs

i
≡ 0 . Thus, we present a restricted constitutive theory 

to reflect this. The Cauchy stress ts
ij
≡ 0 and so we require

where pf  is the fluid pressure, �̂� , k and b̂ are here taken as constants, k being the thermal 
conductivity. The relevant fluid momentum equation now becomes

where v̇i is the material derivative, �0 is a reference density, and for an incompressible fluid 
the equation of continuity is

The energy equation now has form

Equations  (4) and (6) are reduced assuming a Boussinesq approximation, cf. Breugem 
and Rees (2006), Nield and Barletta (2010), Straughan (2015a,  pp. 16–21). We assume 
the acceleration may be neglected in (4), (cf. Barletta et al. 2011b), and now additionally 
omit the sub- or superscriptf. Adopting a Boussinesq approximation, Eqs. (4)–(6) may be 
reduced to, setting h = 0,

where g is gravity, � = (0, 0, 1) , Δ is the Laplacian, cp = ��∕�T  is the specific heat at con-
stant pressure, and the density is constant apart from the buoyancy term where we have 
written �f = �0(1 − �[T − T0]) with �0, T0 being reference density and temperature values, 
and � is the thermal expansion coefficient of the fluid. The term Ṫ  is the material derivative 
Ṫ = T,t + viT,i , and dij = (vi,j + vj,i)∕2.

(2)𝜌�̇� =
𝜕qi

𝜕xi
+ t
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(3)
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(5)v
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= 0.

(6)𝜌�̇� = qi,i + t
f

ij
v
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i,j
+ b̂v

f

i
v
f

i
+ 𝜌h.

(7)

0 = −p,i + �̂�Δvi − 𝜌0(1 − 𝛼[T − T0])gki − b̂vi,

vi,i = 0,

𝜌0cpṪ = kΔT + 2�̂�dijdij + b̂vivi,



 B. Straughan 

1 3

Equations (7) are the equations for thermal convection in a Brinkman theory incorporating 
viscous dissipation. Note that the b̂vivi term is already present in the Darcy theory, see, e.g., 
Barletta et al. (2009a), Barletta and Mulone (2020), Nield and Barletta (2010). Furthermore, 
observe that as �̂� → 0 we recover the equations of Darcy theory when viscous dissipation 
is present, whereas when b̂ → 0 the temperature equation assumes the correct form for non-
isothermal flow in a clear fluid taking into account viscous dissipation effects.

3  Thermal Convection Equations

Suppose the saturated porous material is contained between the horizontal planes z = 0 and 
z = d with the upper and lower temperatures retained at the constant values, T = TL

◦ K, z = 0 , 
and T = TU

◦ K, z = d , where TL > TU . Define the temperature gradient, � , by

Then, the steady (conduction) solution in whose stability we are interested is given by

where the steady pressure, p̄(z) , is a quadratic function derived from (7)1.
To analyze thermal convection, we develop a stability analysis for the solution to (7). Thus, 

let (ui, �, �) be a perturbation to the steady solution (v̄i, T̄ , p̄) , i.e., vi = v̄i + ui , T = T̄ + 𝜃 , 
p = p̄ + 𝜋 . Then, the nonlinear perturbation equations are given by

Note that �̂� is the Brinkman coefficient, whereas b̂ represents the Darcy coefficient. Equa-
tions (9) may be non-dimensionalized in a standard way, see Straughan (2008), p. 163, to 
derive a non-dimensional version in terms of the Rayleigh number

to obtain

where Eqs. (10) hold on the domain {(x, y) ∈ ℝ
2} × {z ∈ (0, 1)} × {t > 0} , and �,A,B are 

the non-dimensional forms of �̂� and the viscous dissipation coefficients.
In this work, we assume the surfaces z = 0, d are free from stress, and then, the boundary 

conditions are given by

� =
TL − TU

d
.

(8)v̄i ≡ 0, T̄ = −𝛽z + TL,

(9)

0 = −𝜋,i + �̂�Δui + 𝜌0𝛼gki𝜃 − b̂ui,

ui,i = 0,

𝜌0cp(𝜃,t + ui𝜃,i) = kΔ𝜃 + 𝜌0cp𝛽w + 2�̂�dijdij + b̂uiui .

Ra = R2 =
d2g𝜌0𝛼cp𝛽

b̂k
,

(10)

0 = −�,i + �Δui − ui + R�ki,

ui,i = 0,

�,t + ui�,i = Rw + Δ� + Buiui + Adijdij,

(11)u,z = v,z = w = � = 0, z = 0, 1,
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where � = (u, v,w) , and additionally the solution satisfies a plane tiling periodicity with 
a wave number a, Straughan (2004), p. 51, Straughan (2008), p. 152. The periodic cell so 
defined will be denoted by V. To exclude rigid motions, we require

4  Nonlinear Stability

Let (⋅, ⋅) and ‖ ⋅ ‖ be the inner product and norm on the Hilbert space L2(V).
To prove nonlinear stability, we multiply (10)1 by ui and integrate over V to find after 

using the boundary conditions (11)

where the arithmetic–geometric mean inequality has been employed. Select now � = 1∕R 
to obtain

Next, multiply (10)1 by −Δui and integrate over V to now obtain with the aid of (11),

Note that in deriving (13), the boundary term ∮
�V

� ΔwdA is encountered, where �V  is the 
boundary of V. This is where the boundary conditions (11) are necessary to ensure this is 
zero. Upon using the arithmetic–geometric mean inequality on (13), one may then derive

The next step involves multiplying (10)1 by ui , multiplying (10)3 by � , integrating each over 
V, and adding to obtain

where

and

From Eq. (15) one proceeds to

∫V

u dx = ∫V

v dx = 0.

‖�‖2 + �‖∇�‖2 =R(�,w)

≤ R

2�
‖�‖2 + R�

2
‖w‖2,

(12)1

2
‖�‖2 + �‖∇�‖2 ≤ R2

2
‖�‖2 .

(13)‖∇�‖2 + �‖Δ�‖2 = R(�,Δw).

(14)‖∇�‖2 + �

2
‖Δ�‖2 ≤ R2

2�
‖�‖2.

(15)
d

dt

1

2
‖�‖2 = RI − D + N,

(16)I = 2(�,w), D = ‖�‖2 + �‖∇�‖2 + ‖∇�‖2,

(17)N = A∫V

�dijdij dx + B∫V

�uiui dx.



 B. Straughan 

1 3

where

with H being the space of admissible solutions. The Euler–Lagrange equations are found 
from this, and one may show they are the same as the linearized version of (10). Then, the 
nonlinear critical Rayleigh number boundary is the same as the linear one, details may be 
found in, e.g., Straughan (2008, pp. 163–166).

To establish nonlinear stability, it remains to handle the nonlinear term N. To do this, 
we require the Poincaré inequality

the Wirtinger inequality

see Galdi and Straughan (1985), and the Sobolev inequalities

and

which may be established as in Galdi and Straughan (1985) and Payne and Straughan 
(2009), inequality (50), where c1 and c2 are constants. We also need the estimate, Galdi and 
Straughan (1985), inequality (5.27),

We now bound the term N in (17). Firstly, by the Cauchy–Schwarz inequality

Then,

We integrate by parts the last term in this expression and use the conditions (11) to find

To bound the last term, note

(18)
d

dt

1

2
‖�‖2 ≤ −D

�
1 −

R

RE

�
+ N,

(19)
1

RE

= max
H

I

D
,

(20)�‖�‖ ≤ ‖∇�‖,

(21)�‖�‖ ≤ ‖∇�‖,

(22)�V

���4dx ≤ c1‖�‖ ‖∇�‖3,

(23)�V

�∇��4dx ≤ c2‖∇�‖ ‖Δ�‖3,

(24)sup
V

��� ≤ c3 ‖Δ�‖.

(25)�V

�uiui dx ≤‖�‖
�
�V

���4dx
�1∕2

≤c1‖�‖ ‖�‖1∕2 ‖∇�‖3∕2.

∫V

�dijdij dx =
1

2 ∫V

�ui,jui,j dx +
1

2 ∫V

�ui,juj,i dx.

(26)∫V

�dijdij dx =
1

2 ∫V

�ui,jui,j dx −
1

2 ∫V

�,iui,juj dx.
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where the Cauchy–Schwarz inequality has also been used. Furthermore

where we have employed (23).
Utilizing (25)–(28), we may see that

Observe now from (12) and (14)

where �
√
2 = min{1, �−1} . Using the form for D in (16) together with (30) and inequality 

(20), we now derive

where

Suppose now R < RE so that a = 1 − R∕RE > 0 . Then, from (18) using (31) one derives

Require now ‖𝜃(0)‖ < a∕h . Then, by a continuity argument, see, e.g., Straughan (2004, pp. 
15, 16), from (32) we see that ‖�(t)‖ ≤ ‖�(0)‖ and so (32) may be replaced by

where b = a − h‖𝜃(0)‖ > 0 . From (32), we now show

and so ‖�(t)‖ decays exponentially. Using (30), it follows ‖�‖, ‖∇�(t)‖, and ‖Δ�(t)‖ also 
decay exponentially and we obtain nonlinear stability. In addition, using (24) we obtain 
decay of supV |�| and so the perturbation velocity decays pointwise in time.

The conditions for nonlinear stability are

(27)�V

�,iui,juj dx ≤ c3‖Δ�‖ ‖∇�‖ ‖∇�‖

(28)�V

�ui,jui,j dx ≤‖�‖
�
�V

(ui,jui,j)
2dx

�1∕2

≤c2‖�‖ ‖∇�‖1∕2 ‖Δ�‖3∕2,

(29)
N ≤A

2
(c3‖Δ�‖ ‖∇�‖ ‖∇�‖ + c2‖�‖ ‖∇�‖1∕2 ‖Δ�‖3∕2)

+ Bc1‖�‖ ‖�‖1∕2 ‖∇�‖3∕2.

(30)‖�‖ ≤ R‖�‖, ‖∇�‖ ≤ �R‖�‖, ‖Δ�‖ ≤ R

�
‖�‖,

(31)N ≤ hD‖�‖,

h =
A

2

( c3

�2
R +

c2R
3∕2

�3∕2�

)
+

Bc1

�3∕4
.

(32)
d

dt

1

2
‖�‖2 ≤ −D(a − h‖�‖).

(33)
d

dt

1

2
‖�‖2 ≤ −bD ≤ −b�2‖�‖2,

(34)‖�(t)‖2 ≤ ‖�(0)‖2 exp{−2b�2t},

(35)R < RE and ‖𝜃(0)‖ <
a

h
.
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The first, R < RE , corresponds to the linear instability threshold, cf. Straughan (2004, pp. 
163–166). The second places a restriction on the magnitude of the temperature perturba-
tion. Due to the severe nonlinearities of the viscous dissipation terms in (10)3 , we expect 
such a restriction.

Remark 1 A nonlinear energy stability analysis for the analogous problem for the Darcy 
equations has recently been provided by Barletta and Mulone (2020). The equations for the 
Darcy problem follow from (10) by setting � and B equal to zero, and there are no bound-
ary conditions on u,z, v,z in (11). Their analysis hinges on use of the Sobolev inequality in 
ℝ

3 and a bound for ∇� in terms of ∇�.
The bound in Barletta and Mulone (2020) involves employing the differential equation 

on the boundary in its derivation. We here include an alternative derivation. For the Darcy 
system, (10)1 is replaced by

where now we only have w = 0 on z = 0, 1 , but there is still periodicity in x and y. 
From (36), we take �∕�xj and then multiply by ui,j − uj,i to find, cf. Payne and Straughan 
(1996, pp. 230–232) and Straughan (2015b, pp. 117, 118),

since (ui,j − uj,i)�,ij = 0 . Then, we use the skewness of ui,j − uj,i to write

where in the last line the arithmetic–geometric mean inequality is used. Now take � = R to 
find

Expanding these expressions,

Note

since w = 0 on z = 0, 1 . Then,

This is the bound of Barletta and Mulone (2020). Note that we require more than this for 
the full system (10).

(36)ui = −�,i + R�ki,

1

2
(ui,j − uj,i, ui,j − uj,i) =(ui,j − uj,i, ui,j)

=R(ui,j − uj,i, ki�,j),

1

2
(ui,j − uj,i, ui,j − uj,i) =

R

2
(ui,j − uj,i, ki�,j − kj�,i),

≤ R

4�
(ui,j − uj,i, ui,j − uj,i) +

R�

4
(ki�,j − kj�,i, ki�,j − kj�,i),

(ui,j − uj,i, ui,j − uj,i) ≤ R2(ki�,j − kj�,i, ki�,j − kj�,i).

‖∇�‖2 − �V

ui,juj,i dx ≤ R2‖∇�‖2 − R2‖�z‖2.

−∫V

ui,juj,i dx = −∮
�V

w,iui dA = 0

‖∇�‖2 ≤ R2 �V

(�2
x
+ �2

y
)dx ≤ R2‖∇�‖2.
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Remark 2 Breugem and Rees (2006) note that the viscous dissipation term in the Darcy 
formula can yield very high temperatures. The possibility of thermal runaway is discussed. 
Without the Brinkman terms, the Darcy version of Eq. (7) may be written in non-dimen-
sional form as

cf. Barletta and Mulone (2020). It is to be expected high temperatures will be achieved due 
to the very strong forcing term Bvivi . Indeed, one should ask whether finite time blow-up 
could occur, since, for example, it is well known that such blow-up does occur for equa-
tions like

with suitable boundary conditions and C > 0 constant.
We present a heuristic one-dimensional model arising from (37) which suggests that 

while T might become very large, blow-up in finite time will not occur. Consider the one-
dimensional version of (37) without the pressure term

where Δ is now the second derivative with respect to x. Eliminate w and derive

Let this equation be defined on (0, 1) × {t > 0} with T(x, 0) given and T = 0 at x = 0, 1 . By 
using a weighted energy, Straughan (2004, pp. 16-19), shows that ‖T(t)‖2 remains bounded 
and T has a steep boundary layer near x = 1 . In fact,

where � = ARa , is the asymptotic behavior of T as t → ∞ . There is a trade-off between the 
convective term TTx and the viscous dissipation term BRa2T2 . In fact, the convective term 
is preventing the viscous dissipation from inducing the solution to blow-up in a finite time.

5  Nonlinear Stability Analysis, Alternative Viscous Dissipation

There is an alternative viscous dissipation function which replaces the dijdij term by one 
of the form −uiΔui , see Nield (2007), Barletta et al. (2011b). In this case, the perturba-
tion equations (10) are replaced by

(37)

p,i = RaTki − vi,

vi,i = 0,

Ṫ = ΔT + Bvivi,

�T

�t
= ΔT + CT2,

0 = Ra T − w,

�T

�t
+ w

�T

�x
= ΔT + Aw2,

(38)
�T

�t
+ RaT

�T

�x
= ΔT + BRa2T2 .

‖T(t)‖2 ≤ O(�3e3�)
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where the domain and boundary conditions are as in Sect. 4.
A nonlinear energy analysis proceeds exactly as in Sect. 4, and we arrive at Eq.  (15) 

excepting now

The B term is handled exactly as in Sect. 4. For the A term, we integrate by parts to find

Observe that the form of the right-hand side of (41) is very similar to the right-hand side 
of (26). Indeed, the right-hand side of (41) is bounded in the same way as (27) and (28) to 
then arrive at (31). Thus, the analysis of energy stability for the alternative viscous dissipa-
tion function turns out to lead to exactly the same nonlinear stability result. In this sense, 
the two formulations are equivalent, although the actual solutions (ui, �, �) may not be.

Remark 3 Hooman and Gurgenci (2007) suggest employing a viscous dissipation func-
tion which is essentially a combination of the forms in Sects. 4 and 5. In our notation, this 
would give rise to a set of nonlinear perturbation equations which replace (10) of form,

A nonlinear energy stability analysis may be worked out in a straightforward manner by 
following the techniques in Sects. 4 and 5. Again, the critical Rayleigh number found is the 
same as the one of linear instability theories.

6  Conclusions

We have analyzed the nonlinear stability for a solution to the Brinkman equations for ther-
mal convection in a porous material incorporating viscous dissipation terms. The viscous 
dissipation consists of a term which is present in the analogous problem employing Darcy 
theory. Additionally, there is a term in the energy balance equation which is due entirely 
to the presence of the Brinkman contribution in the momentum equation. Barletta and 
Mulone (2020) recently established a rigorous nonlinear stability result for the Darcy prob-
lem. We here extend the method to derive an analogous rigorous nonlinear stability result 
for the Brinkman theory. In both cases, the nonlinear stability threshold is shown to be 
exactly the same as the linear instability one. For both situations, the size of the initial tem-
perature field has to be suitably small to obtain rapid exponential decay in time. Given the 

(39)

0 = −�,i + �Δui − ui + R�ki,

ui,i = 0,

�,t + ui�,i = Rw + Δ� + Buiui − AuiΔui,

(40)N = B∫V

�uiui dx − A∫V

�uiΔui dx.

(41)−A∫V

�uiΔui dx = A∫V

�,juiui,j dx + A∫V

�ui,jui,j dx.

(42)

0 = −�,i + �Δui − ui + R�ki,

ui,i = 0,

�,t + ui�,i = Rw + Δ� + Buiui + Adijdij − CuiΔui .
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nature of the strongly nonlinear viscous dissipation terms, this is to be expected as is the 
case in partial differential equation theory.
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