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ABSTRACT
If properly calibrated, the shapes of galaxy clusters can be used to investigate many physical processes: from feedback and
quenching of star formation, to the nature of dark matter. Theorists frequently measure shapes using moments of inertia of
simulated particles’. We instead create mock (optical, X-ray, strong-, and weak-lensing) observations of the 22 most massive
(∼ 1014.7 M�) relaxed clusters in the BAHAMAS simulations. We find that observable measures of shape are rounder. Even
when moments of inertia are projected into 2D and evaluated at matched radius, they overestimate ellipticity by 56 per cent
(compared to observable strong lensing) and 430 per cent (compared to observable weak lensing). Therefore, we propose
matchable quantities and test them using observations of eight relaxed clusters from the Hubble Space Telescope (HST) and
Chandra X-Ray Observatory. We also release our HST data reduction and lensing analysis software to the community. In real
clusters, the ellipticity and orientation angle at all radii are strongly correlated. In simulated clusters, the ellipticity of inner
(<rvir/20) regions becomes decoupled: for example, with greater misalignment of the central cluster galaxy. This may indicate
overly efficient implementation of feedback from active galactic nuclei. Future exploitation of cluster shapes as a function of
radii will require better understanding of core baryonic processes. Exploitation of shapes on any scale will require calibration
on simulations extended all the way to mock observations.

Key words: gravitational lensing: strong – gravitational lensing: weak – galaxies: clusters: general – dark matter – X-rays:
galaxies: cluster.

1 IN T RO D U C T I O N

The Lambda cold dark matter (�CDM) concordant model of
cosmology assumes that we are living in a Universe dominated
by an unknown dark energy, accelerating the expansion of space–
time and permeated by a dominant gravitating mass that we do not
understand, dark matter (Parkinson et al. 2012; Kilbinger et al. 2013;
Planck Collaboration XVI 2014; Hildebrandt et al. 2017; Abbott
et al. 2018). In this framework, cosmological simulations predict that
structure should form hierarchially, with the smallest haloes forming
first (Springel et al. 2001; Sánchez et al. 2012; Vogelsberger et al.
2014; Schaye et al. 2015; McCarthy et al. 2017; Nelson et al. 2018).
The resulting distribution of matter is in the form of a ‘cosmic web’
whereby filaments and sheets of mass funnel mass towards massive
nodes or galaxy clusters.

Galaxy clusters are the largest known virialized structures in the
Universe. They are dominated by dark matter, harbouring a halo of
hot X-ray gas and in some cases thousands of galaxies (e.g. Smith
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et al. 2005; Postman et al. 2012; Lotz et al. 2017). As extreme peaks
in the density field, clusters of galaxies are ideal laboratories to study
dark matter (e.g. Kahlhoefer et al. 2014; Harvey et al. 2017a,b,
2019; Schwinn et al. 2017, 2018; Robertson et al. 2019; Banerjee
et al. 2020) and constrain cosmology (e.g. Kratochvil, Haiman &
May 2010; Marian et al. 2011; Cardone et al. 2013).

The mass of a galaxy cluster can exceed 1015 solar masses (e.g. von
der Linden et al. 2012; Diego et al. 2015; Jauzac et al. 2015a, 2018;
Merten et al. 2015; Zitrin et al. 2015). In these environments, space–
time is deformed causing the observed image of distant galaxies
that happen to align themselves with the cluster to be distorted. In
extreme cases, the images can be stretched into arcs and split into
multiple copies. Modelling strong gravitational lensing has become
common place when measuring the mass distribution in clusters
of galaxies (e.g. Merten et al. 2015; Zitrin et al. 2015; Jauzac
et al. 2016a). However, strong lensing has its limitations, with the
constraints limited to the core of the cluster, there is no information
on substructures and mass in its outer regions. Weak gravitational
lensing, where the effect of the cluster must be measured statistically,
grants access to this missing information (e.g. Ragozzine et al. 2012;
von der Linden et al. 2012). It is now normal to combine both weak
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and strong gravitational lensing to get a full picture of the cluster (e.g.
Cacciato et al. 2006; Diego et al. 2007; Merten et al. 2009; Merten
et al. 2015; Zitrin et al. 2015). For a full review of mass mapping in
clusters of galaxies, see Kneib & Natarajan (2011).

The exact form of galaxy clusters is still debated, however, it is
generally accepted that they are triaxial in their shape with X-ray
studies suggesting that roughly 70 per cent of all clusters tend to be
prolate (Sereno et al. 2006). With X-ray shapes prone to non-thermal
support, studies cited gravitational lensing as a more direct method
to measure the shape of clusters. Oguri et al. (2010) studied the
weak lensing properties of 25 clusters of galaxies, finding an average
ellipticity, 〈ε〉 = 0.46 ± 0.04. They interestingly found no correlation
between both the lensing ellipticity and position angle of the member
galaxies, suggesting no connection. More recently, Donahue et al.
(2016) carried out a study where they identified the connection
between the X-ray emission, the brightest cluster galaxy (BCG),
and lensing (strong and weak combined). They found that there was
a strong correlation between the position angle of the cluster at large
radial distances (r ∼ 500 kpc) and the BCG (inner 10 kpc), citing a
coupling between the cluster and galactic star formation properties.
Finally, a recent study of 20 relaxed and dynamically merging
clusters looked at the misalignment of morphologies between the
weak lensing and four probes, the Sunyaev–Zel’dovich effect, the
X-ray morphology, the strong lensing morphologies, and the BCG
(Umetsu et al. 2018).

Although many studies have measured the shapes of clusters, fewer
studies exist comparing the shapes to hydrodynamical simulations
(e.g. Umetsu et al. 2018). In these studies, it is normal to measure the
inertia tensor directly from the particle data. By taking eigenvectors
and eigenvalues, it is possible to extract directly the axial ratios and
position angles. However, the radii in which the particles are chosen
to measure this inertia tensor greatly impacts the inferred shape, and
as such it is not clear how this shape relates to the weak or strong
lensing (Velliscig et al. 2015).

In addition, sample matching is often overlooked. The majority
of clusters that have been observed with deep enough imaging
to measure strong lensing have extremely complicated selection
functions, and the clusters selected are often highly irregular. For
example, the Hubble Frontier Fields contain clusters that are incred-
ibly complicated, with some studies even suggesting that they are
in tension with �CDM (e.g. A2744; Jauzac et al. 2016b; Schwinn
et al. 2017). As such, it raises the question of the comparability of the
full sample of currently observed clusters with simulations. A recent
study compared the complete sample of CLASH, HFF, and RELICS
with simulations from the Horizon-AGN suite of simulations (Okabe
et al. 2020). An interesting study that found the observed clusters
appeared to have strong lensing regions significantly more elliptical
than the BCG. However, many of the clusters used are massive
merging clusters (for example, A2744, MACSJ0416, MACS1149.5)
that have huge structures in-falling, which will bias the results should
the simulations not reflect the identical sample.

In this paper, we study two key questions:

(i) Is the ellipticity calculated from the projected moment of inertia
derived directly from particle data in simulations a good estimator
of the shape derived from strong or weak lensing?

(ii) Is there any evidence for a radial dependent ellipticity in galaxy
clusters, potentially signalling different physics acting on different
regions of the cluster?

To answer these two questions, we carry out our investigation with
two key differences to previous studies. First, we derive observation-
ally matched products from the simulations so we can carry out a

parallel analysis and make a direct comparison to observations, and
secondly, we impose a strict selection cut on both the observed and
simulated sample of clusters to ensure that they are analogous.

The paper is structured as follows: In Section 2, we outline the
data that are used, including the reduction processes used and the
simulations that have been adopted. In Section 3, we briefly review
how we measure the ellipiticity from different probes (with a full
description in Appendix A). In Section 4, we show our results and
then in Section 5 we conclude.

2 DATA

2.1 N-body simulations of galaxy clusters

We use the BAHAMAS suite of simulations to compare the shapes of
the observed clusters to clusters in a �CDM universe (McCarthy et al.
2017, 2018). BAHAMAS is a fully hydrodynamical simulation, with
a baryonic feedback prescription based on the framework developed
in the Overwhelmingly Large Simulations project (Schaye et al.
2015), that includes realistic feedback from active galactic nuclei
(AGNs) and supernova, radiative cooling, star formation, chemody-
namics, and stellar evolution. McCarthy et al. (2017) showed that the
simulations can accurately reproduce the local stellar mass function
and the gas mass–halo mass relation of galaxy clusters. We use
fiducial resolution run of the BAHAMAS that simulated a large
box of 400 Mpc h−1 with a plummer equivalent softening length
of 4kpc h−1 with 10243 baryon and CDM particles in a WMAP9
cosmology (Bennett et al. 2013).

We use SUBFIND to find and extract the 40 largest galaxy clusters
(and the subhaloes within these clusters) at a redshift of z = 0.375,
cutting out boxes of 2 Mpc in the x − y direction, and δz = 10 Mpc in
projection. This depth is sufficient to encapsulate the additional mass
from the environment of the clusters that will impact the shape of the
cluster. Beyond this radius, the impact of line-of-sight structures will
be minimal (see Section 4). The X-ray luminosity maps are derived
according to section 5.1 of McCarthy et al. (2017). From these, we
measure the X-ray concentration ratio, � = S(< 100 kpc)/S(< 400
kpc) and cut at � > 0.2 to ensure we have only relaxed clusters (Rasia,
Meneghetti & Ettori 2013), leaving a total of 22 clusters. To derive
the lensing observables, we first project these into a two-dimensional
projected surface density and then carry out the following procedures:

(i) Simulated strong lensing observable: Our strong lensing
catalogues are made from sources placed on to seven discrete source
planes, equally spaced in redshift from zs = 1 to zs = 4. On each
source plane, we place a regular grid of 128 × 128 sources, covering
an area of 96 × 96 arcsec2, centred behind the centre of the lensing
cluster. Each source is modelled as an ellipse, with an area equal
to that of a circle with radius 0.5 pkpc, and with an axial ratio
drawn randomly from a uniform distribution between 0.5 and 1; a
random position angle is also drawn for each source. For each of
these sources, we calculate the locations and magnifications of all
images of this source as they would appear in the (observed) lens
plane, following the method in Robertson, Massey & Eke (2020).
The deflection angles due to the lens are calculated on a regular grid
in the lens plane from a pixelized map of the lensing convergence
(on the same regular grid) using discrete Fourier transforms (see
Robertson et al. 2019). Source-by-source, we find all points in the
lens–plane grid that when mapped to the relevant source plane are
enclosed by the boundary of the source. These points are split into
contiguous sets in the lens plane (with steps in redshift of δz = 0.5),
which are the individual lensed images. The magnification of an
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The shape of clusters 2629

Table 1. A summary of the galaxy cluster sample. Each cluster is confirmed relaxed from its X-ray observation. We show the following: Col 1. Name; Col 2.
Survey; Col 3. Redshift; Col 4. Total, cleaned effective time CXO time; Col 5. Number of HST available filters; Col 6. Filter used for the weak lensing; Col 7.
Exposure time for the weak lensing filter; Col 8. Total number of weak lensing sources available; Col 9. Number of strong lensing multiple images; Col 10.
The root mean square of the strong lensing fit; Col 11. The virial mass estimated from strong lensing; Col 12. The concentration parameter, cvir estimated from
strong lensing. Note that for all clusters that are part of the CLASH sample, the publicly available photometric redshift catalogues are used.

Cluster Survey z CXO (ks) NHST WL filter WL exp. (ks) NWL NI RMS M200(× 1014 M�) cvir

A383 CLASH 0.19 53.449 16 F814W 4.243 1351 26 0.75 16.6 ± 5.1 4.0 ± 1.4
A2261 CLASH 0.22 37.526 16 F814W 4.099 1283 32 0.68 6.9 ± 0.6 9.0 ± 0.5
A1703 LOCUSS 0.28 82.295 7 F850LP 17.800 1738 42 1.03 13.5 ± 0.9 4.6 ± 0.2
A1835 LOCUSS 0.25 23.0781 4 F814W 2.360 1110 18 1.20 28.7 ± 1.7 3.7 ± 0.2
MACS0744 CLASH 0.69 96.111 16 F814W 8.893 762 20 1.52 9.9 ± 1.4 4.7 ± 0.8
MACS1206 CLASH 0.44 25.289 16 F814W 4.240 834 35 1.62 15.0 ± 0.2 4.8 ± 0.1
MACS1720 CLASH 0.39 71.764 16 F814W 3.988 960 17 1.61 9.8 ± 0.7 5.2 ± 0.3
MACS1931 CLASH 0.35 116.841 16 F814W 2.991 596 23 0.91 9.7 ± 0.3 5.0 ± 0.1

image is given by the number of lens–plane grid points that map into
the source, divided by the expected number that would map into the
source in the absence of lensing. The position of the image is given
by the location of the lens–plane grid point that maps closest to the
centre of the source in the source plane. The grid spacing in the lens
plane is 0.02 arcsec.
With a regular grid of lensed sources at different x–y positions
and redshifts, we randomly select a source to enter the final
image catalogue. To do this, we first create a magnification-biased
luminosity function for each source position based on Oesch et al.
(2010). We then generate a random luminosity and calculate the
observed luminosity of all its respective images. Assuming a limiting
magnitude of m < 30, we then determine which images would be
observed. By adding the condition that we must observe counter
images, we have our final image catalogue.

(ii) Simulated weak lensing observable: Kaiser & Squires (1993)
showed that the normalized projected surface density (or conver-
gence), κ can be related to the weak lensing shear, γ via:

γ̃ e2iθ = l2
1 − l2

2 + i2l1l2

l2
1 + l2

2

κ̃, (1)

where the tildes denote Fourier transforms, l is the wavenumber,
and the shear is in the form of the complex number γ = γ 1 +
iγ 2. For more on the weak lensing shear and convergence, please
see Appendix B. We therefore take the Fourier transform of the
projected surface density and convert to a vector field. Then, by
assuming a background galaxy distribution that is uniform across
the sky, and a zsource = 1.0 and a density of ngal/arcmin2 = 100, we
interpolate the shear field to individual galaxy positions and derive
shear catalogues for each galaxy cluster. Since, we want to directly
compare the estimated shape from this probe (and not the expected
error bars), we assume a large background density and that each
source galaxy is intrinsically circular (i.e. no intrinsic ellipticity).

2.2 Observational data of massive clusters

We use data from the Advanced Camera for Surveys (ACS) onboard
the Hubble Space Telescope (HST) for both the strong and weak
lensing analysis, the shape of the distribution of cluster members,
and the shape of the BCG, and Chandra X-Ray Observatory data
(CXO) for the X-ray analysis. We use the sample of galaxy clusters
from Harvey et al. (2017b) consisting of 10 strong lensing clusters
from the Local Cluster Substructure Survey (LoCuSS; Richard et al.
2010) and the Cluster Lensing And Supernova survey with Hubble
(CLASH; Postman et al. 2012) that have at least 10 multiple images,
ensuring sufficient constraints to measure the lensing parameters

that govern the inner region of the cluster, and sufficient imaging by
ACS to make a robust weak lensing measurement (i.e. one orbit in
either F814W or F850LP). Furthermore, these 10 galaxy clusters are
required to be relaxed, with no signature of dynamical disturbance
as this could bias the shape of the clusters when trying to isolate the
impact of physics in the core. We quantify this by measuring their
X-ray isophotal concentration, S = �100 kpc/�400 kpc, where � is the
integrated X-ray flux within a given radius. We apply a strict criteria
that the cluster must have S > 0.2 (Rasia et al. 2013). Finally of the
10 clusters, Abell1413 does not have sufficient optical imaging in the
ACS on HST for the weak lensing and AS1063 catalogue is currently
in process from the BUFFALO survey (GO-15117; Steinhardt et al.
2020) and therefore will not be ready for another year. As such we
have a final sample of eight galaxy clusters. A summary of these
clusters can be found in Table 1.

2.2.1 Strong lensing image selection

For the strong lensing measurement, we adopt the published multiple
image catalogues of confirmed images from Zitrin et al. (2015),
Richard et al. (2010), and Limousin et al. (2008). The strong lensing
model requires knowledge of the redshift of the source. As such, for
those images that do not have spectroscopic redshifts we match the
sources to publicly available photometric redshift catalogues (Jouvel
et al. 2014) and add these source redshifts as parameters in the model
with the 1σ error in the photometric redshift as a Gaussian prior.

2.2.2 Cluster member selections

In order to select cluster members, we also adopt the cluster member
catalogues from Zitrin et al. (2015), Richard et al. (2010), and
Limousin et al. (2008), who had identified the red sequence in order
to classify the cluster members. For more, please see referenced
papers.

2.2.3 Weak lensing data reduction

We obtained raw images of each cluster with the associated reference
files and reanalyse the data. We first treat each individual exposure for
radiation damage due to cosmic rays inducing charge ‘traps’ in the
CCD. During read-out, the trapped charge is rereleased intermittently
causing flux to erroneously appear along the read-out axis of the
CCD. As a result, we must model this charge transfer inefficiency
(CTI) and post-process the image in order to redistribute the charge
(Anderson & Bedin 2010; Massey 2010; Massey et al. 2014).

MNRAS 500, 2627–2644 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/500/2/2627/5924462 by guest on 16 July 2021



2630 D. Harvey et al.

Following this, we used the publicly available CALACS package1

to recalibrate the individual raw images and then coadd them using
the ASTRODRIZZLE package (Koekemoer et al. 2003), accounting for
deformations induced by the telescope. During the drizzling process,
we use a square kernel and a final pixel scale of 0.03 arcsec per pixel
as recommended by Rhodes et al. (2007). For those exposures that
are misaligned and taken at different epochs, we use SEXTRACTOR to
extract sources from the image and then the TWEAKREG algorithm to
realign to a common reference frame. We also use ASTRODRIZZLE on
individual exposures to produce deformation free images required
by the shape measurement process, PYRRG. Finally, we measure the
shapes of all source galaxies using the publicly available code PYRRG

(see Appendix B).

2.2.4 CXO data reduction

We reprocess all the available raw ACIS-I and ACIS-S Chandra data
using the publicly available CIAO tools2 as in Harvey et al. (2015) and
the CHANDRA REPRO script, creating new‘evt2’ files (the raw photon
tables). This ensures that the data are cleaned with the most up-to-
date reference files. Following this, we extract a region of interest and
combine the exposures using the MERGE OBS script, which produces
an estimate of the spatially varying point spread function (PSF). We
use the wavelets source finder, WAVDETECT3 with a filter size of 1
and 2 pixels to find point sources within the field that are extremely
bright and not associated with the broad emission of the cluster halo.
We remove the detected point sources from the field and then verify
by eye, removing any residual point sources by hand. Finally, we
weight each pixel by the estimated exposure map constructed during
the MERGE OBS script. This provides a clean, exposure time weighted
flux map of the cluster.

2.3 Comparability of observations with simulations

The selection function of the CLASH and LoCUSS clusters, although
X-ray selected, is complicated. We select a subsample of these
clusters that are both relaxed and have a large number of multiple
images, as such their typicality can be questioned. Although, we try
to simplify the selection function by only choosing those clusters
that have concentrated X-ray isophotes (i.e. relaxed), the fact that
they have a larger number of multiple images may mean that they
are more concentrated than the average cluster and more massive.
Moreover, as Fig. 1 shows, the most relaxed massive clusters (solid
grey histogram) in the BAHAMAS simulations (at z = 0.375) are
less massive than the observed sample (red histogram) that may
result in biases in the results (where we show the total mass enclosed
within a radius at which the density is 200 times the critical density
of the universe at that redshift). This should be taken into account
when considering the generality of the conclusions (we also show
the distribution of unrelaxed cluster in the dashed histogram).

3 ME T H O D O L O G Y

In order to investigate our two primary questions, we analyse both
the 22 simulated clusters and the eight observed cluster with identical
pipelines. Appendix A gives a detailed account of how we measure
the shapes from each probe and how we calculate the associated

1https://acstools.readthedocs.io/en/latest/calacs hstcal.html
2http://cxc.harvard.edu/ciao/
3http://cxc.harvard.edu/ciao/threads/wavdetect/

Figure 1. The distribution of M200c of the observed clusters as estimated
by strong gravitational lensing (red histogram) and the most massive relaxed
(grey solid) and unrelaxed (grey dashed) simulated clusters in the BAHAMAS
simulations at a redshift of z = 0.375.

errors, here we give a brief outline. In all cases the ellipticity is
defined as

ε = a2 − b2

a2 + b2
= 1 − q2

1 + q2
, ε1 = ε cos(2θ ) & ε2 = ε sin(2θ ), (2)

where a and b are the semimajor and semiminor axes of the ellipse,
respectively, q = b/a is the axial ratio, θ is the angle of the major
axis of the ellipse northwards from west.

(i) Brightest cluster galaxy (BCG) (Appendix A1) :We iteratively
measure the flux weighted moment of inertia within a given cut
radius. At each iteration, we calculate the ellipticity and position
angle from all pixels within an ellipse defined by the previous
iteration (initializing at an ellipticity of zero). We set the minimum
radial cut to be rcut, min = 20 kpc to avoid reaching the plummer
softening length of the simulation of 4 h−1 kpc. Errors are calculated
analytically from the fourth-order moments.

(ii) Cluster member galaxies (Appendix A2) :Derived from the
mass weighted moments of the cluster member galaxies, we mea-
sure the shape using all cluster members with total stellar mass
log (M�/M�) > 1010, matching the mass resolution of the simulations.
Since the cluster members are selected by their red sequence, we also
select cluster members from the simulations that have no ongoing
star formation. Error bars are derived via Monte Carlo realizations
of the estimated shape through randomly distributing galaxy cluster
members with a Poisson distribution. We measure the shape as a
function of rcut, a cluster-centric radius within which we include
galaxies, and discard any bin with less than 10 cluster members.

(iii) X-ray isophote (Appendix A3): Similar to the BCG, we derive
the shape of the X-ray isophote iteratively from the flux weighted
image moments, measuring the ellipticity and position angle as
function from all X-ray photons within some radius cut. Error bars are
derived from 100 Monte Carlo realizations of the Poisson distributed
data.

(iv) Weak gravitational lensing (Appendix A4.1): We use the shape
measurement code PYRRG and mass mapping algorithm, LENSTOOL to
estimate the ellipticity of the cluster from weak gravitational lensing.
LENSTOOL is a parametric fitting procedure, whereby we fit Navarro,
Frenk, and White (Navarro, Frenk & White 1997) density profiles to
the data. The error bars are derived from the width of the posterior
during the MCMC fitting procedure.

(v) Strong gravitational lensing (Appendix A4.2): The shape of
the mass distribution as estimated from strong gravitational lensing
using the mass mapping tool LENSTOOL. We fit an NFW profile for
the cluster scale halo along with pseudo-isothermal elliptical mass
distriubtions (PIEMD) to each cluster member. We also assume that
the cluster members lie of the Fundamental Plane with a constant
mass-to-light ratio. Error bars are derived through 20 Monte Carlo
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The shape of clusters 2631

Figure 2. Impact of the cluster environment on the estimated ellipticity
and position angle. We project the simulated lensing mass maps to varying
depths and measure the weak lensing ellipticity (top panel) and position angle
(bottom panel) relative to the fiducial projection of dz = 10 Mpc. We find
that the shapes converge above at this fiducial value. We have multiplied the
y-axis of the top panel by 100 for clarity.

realizations of the estimated shape and the multiple image positions
(since the width of the posterior was found to be a biased estimator
of the error bar in Harvey et al. 2017b).

4 R ESULTS

Following the measurement of the ellipticity of each cluster in the
observed and simulated sample, we present our results. Before we
address our first question, we first test the environmental impact of
substructures on the weak lensing shape estimate of the clusters. To
do this, we project the extracted lensing maps from the simulation
box to varying depths, dz. We show in Fig. 2, the estimated ellipticity
relative to the fiducial depth of dz = 10 Mpc in the top panel and
the misalignment angle of the cluster relative to the estimate at the
fiducial projected depth of dz = 10 Mpc in the bottom panel. We
find that at small projected depths, the ellipticity is underestimated
and that the ellipticity estimates converge at the fiducial value of
dz = 10 Mpc and thus this encapsulates the total information in
the environment, and that the misalignment angles remain consistent
within the uncertainty.

Having justified the projection depth of our simulations, we begin
by addressing our first question: ‘Is the ellipticity calculated from the
projected moment of inertia derived directly from the particle data
in simulations a good estimator of the shape derived from strong
or weak lensing’. Fig. 3 shows the mass-binned results from all
40 clusters in the simulated sample, each point showing the median,
16 per cent and 84 per cent of the distribution, the solid spots represent
all those relaxed clusters that have an X-ray concentration � > 0.2
and the faded stars all unrelaxed clusters with � < 0.2. For more on
how we calculate the moment of inertia, please see Appendix A5.
The top panel shows the ellipticity from four estimators as a function
of mass, they include: (1) Pink, the 2D ellipticity calculated from the
projected moment of inertia (MI) measured on all particles within a
mean radius at which the mock strong lensing is measured, (2) Cyan,
the same ellipticity calculated from the moment of inertia using all
particles within the outer most radius at which the mock weak lensing
is measured (i.e. r < 0.4rvir), (3) Orange, the ellipticity of the cluster
scale halo estimated by mock strong lensing observations, and (4)

Figure 3. A direct comparison between the ellipticity (top panel) and position
angle of the major axis (bottom panel) estimated from the projected moment
of inertia (MI) calculated directly from the particle data at either the radius
of the strong lensing (the mean radial distance of the multiple images, pink)
or the weak lensing (the maximum distance of cluster members in the HST
image, cyan) and the strong (orange) and weak (blue) lensing via mock
observations. The solid spots represent the relaxed clusters with an X-ray
concentration of � > 0.2 (see text) and the faded stars represent unrelaxed
clusters with an X-ray concentration of � < 0.2. The bottom panel shows
the misalignment of the strong and weak lensing mock observation estimates
relative to the moment of inertia at the corresponding radius.

Blue, the ellipticity estimated by mock weak lensing observations.
The bottom panel shows the misalignment of the position angle of
the major axis between the two lensing estimates and the moment of
inertia calculated at their respective radii (i.e. θ strong − θMI, strong and
θweak − θMI, weak).

In general, we find that the ellipticity estimates from the strong
and weak lensing differ from the estimate derived directly from the
particle data, whereby the strong lensing and projected inertia tensor
differ by a factor of 〈εS/εS,MI〉 = 0.64+0.05

−0.04 and the weak lensing
underestimates the ellipticity by a factor of 〈εW/εW,MI〉 = 0.23+0.01

−0.01.
However, the strong lensing estimate for the disturbed clusters seem
to be more robust, with a smaller bias of 〈εS/εS,MI〉 = 0.8+0.2

−0.1 for the
entire unrelaxed sample. This is counterintuitive since it would be
easier to model a relaxed cluster yet they remain biased.

We find that the position angles in the bottom panel of the
respective observable are well aligned, with a mean misalign-
ment angle (in the relaxed sample) of 〈|θS − θS,MI|〉 = 8+13

−2 and
〈|θW − θW,MI|〉 = 4.5+2.0

−0.9 deg. However, the misalignment angle of
the strong lensing is dominated by the first low mass, should we
remove this we find that the strong lensing agrees much better with
a misalignment angle of 〈|θS − θS,MI|〉 = 5+2

−1 deg. We find that for
the unrelaxed sample, the strong lensing has a large misalignment
angle 〈|θS − θS,MI|〉 = 13+11

−3 deg whereas the weak lensing, even in
the unrelaxed sample is good agreement with the moment of inertia
〈|θW − θW,MI|〉 = 3.7+0.6

−0.9 deg. We verify by eye those clusters that
have a large difference in the angle and find that massive structures in
the core of the cluster can induce huge misalignments. For example,
Fig. 4 shows an example cluster from the BAHAMAS simulations
whereby the cluster scale dark matter halo as predicted by strong
lensing (red contours) is misaligned with the moment of inertia (green
dashed ellipse) by ∼80 deg, whereas the weak lensing (blue) is well
aligned. We find that this is due to the distribution of strong lensing
constraints (yellow stars) that do not fully probe the inner region, and
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2632 D. Harvey et al.

Figure 4. An example when the alignment of the cluster scale halo predicted
from the strong lensing model (red contours) is misaligned with the moment
of inertia (green dashed). In this cluster, the strong lensing constraints (yellow
stars) are aligned along the 45 deg angle and will have some perturbation from
the mass in the north-west of the strong lensing region, and while the model
includes the subhalo to the east (through a scaling relation), the constraints
are insensitive to this clump. As a result, the strong lensing predicts a dark
matter cluster halo angle of 18 deg, whereas the moment of inertia (from
the total matter) is closer to 100 deg resulting in an ∼80 deg misalignment.
However, the weak lensing model (blue) is aligned well with the broad mass
distribution, agreeing with the moment of inertia.

are likely perturbed by structures within the core. We see a halo in the
north-west of the inner region that is likely biasing the strong lensing
model, whereas the large halo to the east is outside the constraints
and therefore not sensitive to this (although this halo will be included
in the model through an assumed mass-to-light scaling relation). As
such, it is important that when comparing strong lensing estimates to
the moment of inertia, the entire distribution of mass must be taken
into account and not just the cluster scale halo.

Finally, we estimate the cut radius for which the moment of inertia
best matches the mock weak and strong lensing. To do this, we find
that effective radii of the moment of inertia at which the misalignment
angle with respect to the weak and strong lensing is the smallest, i.e.

reff = rcut[min{θ − θMI (r)}]. (3)

We find that the radius at which the alignment with respect to the
weak and strong lensing is a minimum, match the radius at which
the weak and strong lensing is measured. i.e. the moment of inertia
best matches the weak lensing when measured at the same radius as
the weak lensing (and same with the strong lensing).

Clearly in the real, observed case, the unrelaxed clusters would
be modelled by multihalo components, with each cluster carefully
studied. In this case, we have simply modelled each one with a single
cluster halo. However, these findings do still reinforce the need to
carry out complete end-to-end comparisons between observations
and data.

Following this investigation, we move to directly comparing the
observed sample with the simulated sample. As an example of both
pipelines, we show the results from a single cluster in each sample

in Fig. 5. The top row shows a simulated cluster and the bottom the
galaxy cluster A1703. The first column shows the estimated shape of
the BCG from the stellar mass map (first row) and the HST optical
image (second row). The second column shows the estimated shape
of the cluster member galaxies, once again from the stellar mass map
(first row) and the HST optical image (second row). The third column
shows the estimated shape of the X-ray isophote overlaid on the X-ray
emission map from the simulation (top) and the CXO (bottom), the
fourth column shows the best-fitting weak lensing estimate overlaid
on the total mass map (top) and the HST image (bottom), and the
fifth column shows the best-fitting strong lensing model overlaid on
the total mass map (top) and the HST image (bottom). Each panel
has the x–y axes orientated to the north-west and the scale is given
by the white bar. Each ellipse corresponds to a larger cut radius
(except for the strong lensing that does not have any cut). We see that
for these two examples, the halo shapes as measured from different
observational probes correlate with one another.

With these models, we address our second question: ‘Is there
any evidence for a radial dependent ellipticity in relaxed clusters?’
We start by showing Fig. 6, which presents the ellipticity of each
observational probe as a function of the radius cut (normalized to
the virial radius of each cluster). The top panel of each figure shows
each individually observed cluster (with the legend above the figure),
and then the median, 16 per cent and 84 per cent percentile of the
simulated sample in the grey shaded regions (with the dashed line
showing the median value). The bottom panel of each figure shows
the distributions of ellipticity that are relative to the individual cluster
at a specific (arbitrary) radii. This allows us to compare trends in
the changing shape of a cluster. The top of each panel denotes the
respective probe, with BCG in the top left, cluster members in the
top right, X-ray in the bottom left, and weak lensing in the bottom
right. We do not show strong lensing since it has no measured radial
dependence, plus the weak lensing and cluster member estimates for
each cluster are offset from one another for clarity. We find in general
that the ellipticities in the simulations match that of the observations,
however, we do find that the clusters MACSJ1206 and MACSJ1931
seem to be outliers with respect to both the observed and simulated
samples. Specifically, we find:

(i) BCG, top left of Fig. 6: The ellipticiites of the observed sample
matches that of the simulated, however, MACS1206 remains outside
the 64 per cent region of the simulations. The error bars of A383 and
A1835 are a result of the large amounts of substructure within the
BCG isophote. We also find that the central parts of the simulated
BCGs tend to be slightly more elliptical than the outer regions.

(ii) Cluster members, top right of Fig. 6: We find that the simulated
sample is on average consistent with the observed sample. Interest-
ingly A1703, which exhibits no strong ellipticity in other probes
has a elliptical distribution of cluster members, whereas MACS1206
shows the opposite with a circular distribution. The median of the
simulated haloes suggests that the centre of the cluster has a more
spherical distribution of cluster members.

(iii) X-ray, bottom left of Fig. 6: The third panel showing the
X-rays shows how inner regions of the two clusters, MACSJ1931
and MACSJ1206, are both inconsistent with the simulated haloes,
with MACS1206 showing a clear radial dependence not seen in the
simulations. We also find that the observed X-ray distribution exhibits
a stronger dependence on the cut radius than the simulated sample,
with a more elliptical core.

(iv) Weak lensing, bottom right of Fig. 6: Finally, we find that the
weak lensing shows a similar trend to that of the X-ray and BCG,
with the two clusters, MACJ1931 and MACSJ1206, showing a clear
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The shape of clusters 2633

Figure 5. An example of a simulated cluster from the BAHAMAS simulations (top row) and the observed cluster, A1703 (bottom row) and their best-fitting
ellipses. In each case, we show the estimated shape of the cluster for different radial cuts (decreasing shade of red). Each column shows the best-fitting shapes
of the BCG overlaid on the simulated stellar mass map (top) and HST image (bottom), the cluster members overlaid on the stellar mass map (top) and the HST
image (bottom), the X-ray shape overlaid on the X-ray emission map (top) and the CXO image (bottom), the weak lensing overlaid on the total mass map (top)
and the HST image (bottom), and the strong lensing overlaid on the total mass map (top), and the HST image (bottom), respectively. Each panel has the x–y axes
orientated to the north-west and the scale is given by the white bar.

upward trend towards to the inner regions of the halo and significant
outliers from the simulated sample. Moreover, three of the observed
cluster sample are more elliptical than the entire simulated sample.

Following the measurement of the individual probes as function
of radius, we collate each distribution and show the estimated radial
dependence of each probe in Fig. 7. The top two panels in the left-
hand column shows the ellipticities of the observed clusters and
the top two panels in the right-hand column, the ellipticities of the
simulated clusters. The top row shows the absolute distributions (i.e.
each top panel in the four figures of Fig. 6), with the addition of the
estimates from strong lensing (in orange) and the moment of inertia
derived from the particle data in black. The second row shows the
estimated shapes relative to the strong lensing estimate. The third
row shows the misalignment angle of each probe with the strong
lensing estimate.

In general, we find that the distributions of observed ellipticities
are consistent with one another, with no significant evidence for any
radial dependent change in the ellipticity. Moreover, we find that the
simulations and observations roughly agree with one another. Finally,
we find that the moment of inertia exhibits no radial dependence, with
a constant ellipticity over the entire range.

The second row showing the results relative to the strong lensing
shows that the observed ellipticities tend to be in agreement with
the strong lensing estimate, apart from the BCG, which seems to
be more elliptical for both the observed and simulated samples.
Interestingly, we find the X-ray and weak lensing estimates are both
more spherical than the strong lensing, while the cluster members,
BCG, and the moment of inertia are much more elliptical. This
is slightly inconsistent with Okabe et al. (2020), who found that the
probes all tended to be less elliptical than the strong lensing estimate.

The third row shows the alignment of each probe’s major axis
with respect to the strong lensing. The dashed line shows the 45
deg line representing to expected mean from random misalignment.
We find for both the observed and simulated clusters, all probes are
aligned with the dark matter with a misalignment angle of ∼20 deg

(depending on the cluster-centric radius). This is again consistent
with Okabe et al. (2020), who found a mean misalignment angle
of θ = 22.2 ± 3.9 deg. However, we do find that although the
simulations are consistent with the observations, they do suggest a
higher variance and random misalignments.

Finally, it would be interesting to study the correlation of each
probe with each other and other probes. As such, we carry out a
complete test of the correlation of all probes and radial cuts. We define
the correlation with the standard Pearson’s correlation coefficient

rxy =
∑

(xi − x̄)(yi − ȳ)√∑
(x − x̄)2

√∑
(y − ȳ)2

, (4)

where barred quantities refer to the mean of the x and y samples. Fig. 8
shows the correlation matrix for the ellipticity of each component
and radial bin. We divide the matrix along the diagonal between
observations (top left) and simulations (bottom right). We have used
solid black lines to denote each probe (i.e. X-ray, strong lensing,
weak lensing, BCG, and cluster members, or ‘gals’) and below the
figure the colour bar shows the correlation strength, with red showing
an anticorrelation and green a positive one. We also correlate the
moment of inertia, which is relevant only for the simulations, which
is why this has the extra 5 × 5 matrix in the top left.

The major difference between the two is that the cross-correlations
between each component are stronger in the observations than the
simulations. This could be due to the fact that observed clusters are
larger than the simulated ones and therefore any baryonic feedback
in the simulations that could disrupt any correlation would have a
larger (fractional) impact. Now specifically looking at each probe,
the key points to highlight are

(i) We find tentative evidence that the inner of regions of the
observed X-ray halo do not correlate with the outer regions. This is
mostly driven by the two cluster MACS1206 and MACS1931 and as
such requires a greater sample to confirm, whereas the simulations
show strong a correlation throughout. The cross-correlation with
other probes shows that the inner regions of the X-ray isophotes
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2634 D. Harvey et al.

Figure 6. We show the comparison between the observed data set and the BAHAMAS simulations of the ellipticity (ε = (1 − b2/a2)/(1 + b2/a2)) as a function
of the radius cut. Each figure shows a different probe of the galaxy cluster (clockwise from top left: BCG; cluster members; weak lensing, X-ray). Within each
figure, the top panel shows the absolute of individual clusters, with the legend for each cluster at the top of the main figure. The grey shaded region in each top
panel shows the median and the 16 per cent and 84 per cent of the simulated. The bottom panel in each case shows the distributions of each cluster relative to
some fixed radius.

correlate with the strong lensing and the smaller scales of the
weak lensing. This is interesting if you compare to the simulated
haloes, which exhibit the opposite effect, with strong and weak both
correlating better with the outer regions of the X-ray. This could be
caused by the fact that the outer regions in the observed sample have a
large amount of sky background, however, the galaxy member shapes
exhibit a strong correlation with the X-ray shapes at these scales,
suggesting that this is not the case. Moreover, the simulated X-rays
and galaxy distributions exhibit an anticorrelation. This could be due
to the fact that the haloes in the observed sample have a cooler core
than the simulations, with less thermal motions disrupting the halo or
a systematic of the lower of cluster members in these bins. We also
find that outer regions of the X-ray are well correlated with the cluster
members, something which we also observe in the simulated sample.

(ii) We find that the inner regions of the observed weak lensing
correlate strongly with the strong lensing and the BCG, whereas
the outer regions do not. This is intuitive since these are sensitive
only to the inner regions. We also find that the inner regions of the
weak lensing correlate better with the inner regions of the cluster
member shapes, however, this is only mild, whereas the simulated

weak lensing exhibits a stronger correlation with the cluster member
shapes, while a seemingly anticorrelation with the inner parts of the
BCG.

(iii) The observed strong lensing shapes unsurprisingly have a
strong correlation with the BCG at all scales (including the pre-
mentioned correlations with the inner regions of the weak lensing
and the X-rays). They are also mildly correlated with the dis-
tribution of cluster members. A similar trend is found with the
simulations, whereby the strong lensing correlates well with all
probes.

(iv) Other than the already mentioned correlations of the BCG
(where its strongest correlation is with the inner regions of the clus-
ters), we find that the outer regions of the observed BCG ellipticity
is anticorrelated with the X-ray distribution. We do see signs of this
anticorrelation with the inner regions of the simulated BCGs, with
the outer regions of the BCG consistent with no correlation. What
could drive this correlation is not clear and could be noise from the
low ellipticity of the cluster members.

(v) Finally, we also correlate the two-dimensional moment of
inertia (derived from the projected mass maps) with all simulated

MNRAS 500, 2627–2644 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/500/2/2627/5924462 by guest on 16 July 2021



The shape of clusters 2635

Figure 7. The left (right) hand columns of the top two figures show the median, 84 per cent, and 32 per cent distributions of the observed (simulated) ellipticity
from the five different probes. The top row shows absolute values, with grey showing the shape of the BCG, the orange showing the strong lensing (with the
width giving the range of virial radii this is measured at), the green shows the ellipticity derived from the cluster members, the blue gives the weak lensing shape,
red gives the shape of the X-ray isophote, and we show the moment of inertia derived from the particle data in black. The middle row shows the same probes,
except relative to the strong lensing ellipticity. The bottom panel shows the misalignment of each cluster relative to the strong lensing ellipticity estimate. The
dashed line at 45 deg represents a random alignment.

probes. We find that as expected, the outer regions of the weak lensing
and strong lensing do correlate well with inertia tensor. In addition,
we find the outer regions of the X-ray isophote also agree with the
moment of inertia. This could be evidence that the inner regions of
the hot gaseous halo are dominated by thermal motions, whereas
the outer regions do tend to correlate with the shape of the cluster.
We also find a mild correlation with the galaxy cluster members.
The cluster members being tracers for the underlying haloes should
indeed have a correlation, however, this is not as strong as we naively
expected.

5 D I S C U S S I O N A N D C O N C L U S I O N S

We have carried out an investigation into the shape of eight dy-
namically relaxed galaxy clusters using a combination the HST and

the CXO and compare them to the 22 most massive clusters in the
BAHAMAS simulations in a bid to answer two key questions: (1)
Is the ellipticity calculated from the projected moment of inertia
derived directly from the particle data in simulations a good estimator
of the shape derived from strong or weak lensing? and (2) Is there
any evidence for a radial dependent ellipticity in galaxy clusters,
potentially signalling physics at different scales?

To answer the first question, we create mock strong and weak
lensing observations from the BAHAMAS simulations and compare
the ellipticity estimates to the projected moment of inertia calculated
directly from the particle information. We find that in all cases, the
mock strong and weak lensing observations of the relaxed sample
underestimate the ellipticity with respect to the moment of inertia
(at the same effective radius) by a factor〈εS/εS,MI〉 = 0.64+0.05

−0.04 and
〈εW/εW,MI〉 = 0.23+0.01

−0.01, respectively. In addition, we find that the
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2636 D. Harvey et al.

Figure 8. The correlation between each probe and radial cut. The correlation is divided along the diagonal with the top left for the observed clusters and the
bottom right for the simulated. Each label shows the type of probe and the log of the radial cut normalized to the virial radius of the cluster. The colour bar based
at the bottom shows the correlation range, with red representing an anticorrelation and green a positive correlation. We note that ‘gals’ corresponds to the shape
derived from the distribution of cluster members and ‘inertia’ the projected ellipticity derived from moment of inertia of the particle data. We do not show the
observed moment of inertia as this is not a directly observed quantity.

position angle estimated from the mock weak lensing is well aligned
with the moment of inertia for both the relaxed and unrelaxed
sample, yet the strong lensing is sensitive to substructures outside
the critical curves, particularly for unrelaxed clusters, often induc-
ing large misalignments. These results highlight the importance
of deriving mock observations when comparing observations to
simulations.

Following this, we then use a combination of BCG, X-ray emis-
sion, distribution of galaxy members, weak gravitational lensing, and
strong gravitational lensing, creating parallel mock observations in
all cases to answer our second primary question.

Studying the radial dependence of the ellipticity for each probe, we
find that in general the broad distributions between the simulations
and observations match well. The main discrepancies we find is that
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The shape of clusters 2637

the inner regions of MACSJ1206 and MACSJ1931 are much more
elliptical than what is predicted by the simulations with the BCG,
X-ray isophote, and weak lensing observations, all outliers to the
expected distribution of the simulations.

Indeed, it is interesting that MACS1931 and MACS1206 are
discrepant with respect to both the rest of the observed clusters
and the simulated data set. This is particularly intriguing since
they exhibit no special X-ray luminosity. MACS1931 does have
a particularly disturbed BCG that could suggest ongoing feedback,
however, the BCG of MACS1206 is extremely regular. Having said
this, Caminha et al. (2017) found that despite MACS1206 being
relaxed, there was significant asymmetry in the total mass profile,
which again could suggest ongoing feedback that could impact the
shape. This question of the validity of the selection criteria when
determining whether a cluster is relaxed or merging and whether this
needs to be more sophisticated than just the X-ray concentration, or
(more importantly) it stresses the importance of matching selection
criteria between simulated and observed samples since there are
many microprocess in cluster that could be undetected, which have
macroimpacts.

We study the auto- and cross-correlation between each probe and
radial cut to understand how each probe relates to one another. We
find in general all five mass components of the observed clusters trace
the same underlying cluster shape, showing significant correlations
between one another. In particular, we find the ellipticity at similar
radial cuts strongly correlate. For example, the BCG ellipticity
correlates with the strong lensing and the inner regions of the weak
lensing, and the outer regions of the X-ray, galaxy members, and
weak lensing all correlate with one another.

Interestingly, we do not find the same correlation with the
simulated clusters, with trends differing from the observations. The
small scales of each probe in these clusters exhibit much weaker
correlations, with only the outer regions of the clusters showing
the strong correlation seen in the observed clusters. We note that
the cluster in the simulated sample is 0.5 dex less massive than the
observed sample, which could be a cause of the weaker correlation. In
these smaller haloes, the fractional impact of feedback may be larger,
disrupting the inner regions and weakening observed correlations.
We also find that the cluster member distribution correlates with the
X-ray. Finally, we correlate the two-dimensional moment of inertia
tensor derived from the projected particle data with each of the
simulated probes and find that the weak and strong lensing strongly
correlate and the X-ray emission in the outer regions also correlates.
We find that the cluster member shapes, although tracers of the
underlying structure, only mildly correlate with the shape of the
cluster from the projected moment of inertia.

We conclude that weak and strong lensing is a good proxy for the
moment of inertia derived from the particle data, however, they both
significantly underestimate the ellipticity. Therefore, going forward
whether weak and strong lensing studies of the shapes of clusters
are to be compared to simulations (in a bid to make statements on
the nature of dark matter or impact of baryons in clusters), mock
observations must be generated and analysed.

Understanding the impact of baryons on massive clusters will
be vital if we are to characterize how feedback alters the shape of
clusters. Analysis directly comparing data to mock observations like
this that probe different regions of the cluster will be important in this
effort. Moreover, studies like these where exotic physics or modified
gravity may change the shape of a cluster at all scales will also
provide important tests of dark matter and general relativity.

This work has been presented in parallel with the public release of
our shape measurement code PYRRG. Available to directly install

from PyPi via https://pypi.org/project/pyRRG/, this PYTHON 3.7
code based upon Rhodes, Refregier & Groth (2000) is specifically
designed for HST shape measurement. It is fitted with an automated
star–galaxy classifier and outputs scientifically useful products such
as catalogues for the mass reconstruction code LENSTOOL. For more,
see https://github.com/davidharvey1986/pyRRG.
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APPENDI X A : SHAPE MEASUREMENT OF
DI FFERENT OBSERVATI ONA L PRO BES IN
DATA

A1 The shape of the brightest cluster galaxy (BCG)

The shape of the BCG can be defined by its first-order image
moment,

I =
∫ R

0
d2θi(θ ), (A1)

and its normalized quadrupole image moment,

Jij = I−1
∫ R

0
d2θ θiθj i(θ ), (A2)

where i(θ ) is the flux at position θ , w(θ ). From this, the two
components of ellipticity of a galaxy, χ1 and χ2, are

χ1 = J11 − J22

J11 + J22
, χ2 = 2J21

J11 + J22
, (A3)

where χ = (A2 − B2)/(A2 + B2) =
√

(χ2
1 + χ2

2 ) and the size of the
object, d, is given by the combination of the quadrupole moments,

d =
√

1

2
(J11 + J22). (A4)

We then find that the error in χ1 and χ2,

σ 2
χ1

= σ 2
xx(1 − χ1)2 + σ 2

yy(1 + χ1)2 − 2(1 − χ2
1 )σxxyy

(Jxx + Jyy)2
(A5)

and

σ 2
χ2

= (σ 2
xx + σ 2

yy + 2σxxyy)χ2
2 + 4(σ 2

xy − χ2(σxxxy ∗ σxyyy))

(Jxx + Jyy)2
, (A6)

where σ ij is the error in the given second-order moment,

σij =
∫

d2θσ 2
i (θiθj − Jij )∫
d2θ i(θ )

, (A7)

and σ ijkl is the error in the fourth-order moment, Jijkl, where

Jijkl = I−1
∫

d2θ θiθj θkθli(θ ), (A8)

and

σijkl =
∫

d2θσ 2
i (θiθj − Jij ) ∗ (θkθl − Jkl)∫

d2θ i(θ )
, (A9)

and the error in i(θ ), σ i, is

σi(θ )2 = σ 2
sky + i(θ ) − b(θ )

texp
, (A10)

where σ sky is the estimated variance in the background and b(θ ) is the
estimated absolute background. To measure the radial dependence
of the shape of the BCG, we measure the total flux within some cut
radius. To avoid bias due to the aperture when measuring the shape,
we carry out an iterative method whereby we calculate an initial
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ellipticity and then moderate the radial distances of each pixel to
match the shape, such that

r ′ =
√

θ2
1 + θ2

2

(1 − χ )
. (A11)

We continue to iterate until the ellipticity converges to within a
1 per cent error. We limit the inner radius to a minimum of rcut > 20
kpc to avoid reaching the softening scale of the simulations (4h−1

kpc) in both the simulations and the observations, ensuring an equal
comparison.

A2 The shape of the distribution of cluster member galaxies

We follow a similar method to estimate the shape of the BCG whereby
we measure the intensity weighted image moment, however, with
two key differences. To probe the radial dependence, we measure the
cumulative number of galaxies inside an cluster-centric cut radius R,
and we measure the mass weighted moment similar to the moment
of inertia tensor, such that

I =
∫ R

0
d2θM∗(θ ), (A12)

and its normalized, weighted moment quadrupole mass weighted
moment,

Jij = I−1
∫ R

0
d2θ θiθjM∗(θ ), (A13)

where M∗(θ ) is the total stellar mass and R is the cluster-centric
radius. We then calculate the two components of ellipticity using
equation (A5). For the simulations M∗ = M∗(< 100kpc) M�, for the
observations where the complete spectral energy distribution (SED)
is well sampled, i.e. the CLASH clusters (Jouvel et al. 2013), we use
LePhare to estimate the stellar mass of cluster members (Arnouts &
Ilbert 2011). LePhare is photometric redshift estimator that uses a
SED fitting method. Here, we fix the redshift to that of the cluster and
constrain only the stellar mass and adopt a Calzetti extinction law
(Calzetti et al. 2000). We compare our stellar masses with publicly
available catalogues from the CLASH website and find in general
a tight correlation, however, due to spurious outliers (stellar masses
>1014), in the public catalogue we decide to use the derived masses
here. Where we do not have the spectral information for the cluster
members (a1703 and a1835), we fit an empirical absolute magnitude
(in the F814W band) – stellar mass relation and predict these. The
top panel of Fig. A1 shows this relation. We see that the six CLASH
clusters show a tight correlation and the black dashed line the fitted
correlation. The bottom panel shows a histogram of the estimated
stellar masses from the CLASH clusters. We see that they span below
the mass resolution of the simulations. Therefore, to match the shapes
in the simulations and observations, we only estimate the shape from
cluster members with log (M∗/M�) > 10. In addition, since we are
selecting cluster members from the red sequence, we select only
galaxies in the simulations that have negligible star formation.

We derive error bars empirically (since Poisson noise would
prevent an accurate estimate using analytical estimates using the
fourth-order moments). To do this, we measure the observed shape
and then populate a field with the same ellipticity and angle and
sample this randomly and remeasure the shape. We do this 100 times
and find the upper and lower 34 percentiles around the observed
estimate.

Finally, we note that the mass of the clusters in the observed
sample is larger than that of the simulated sample and as such we

Figure A1. We estimate the stellar mass from the CLASH photometric cat-
alogues (Jouvel et al. 2013) and the publicly available LePhare photometric-
redshift estimator in order to estimate the shape of the distribution of cluster
members using the moment of inertia tensor (top panel blue dots). For those
clusters without high-fidelity photometric catalogues, we fit an empirical
relation between F814W absolute magnitude and estimate the stellar mass
from their observed magnitudes (top panel dash line). The bottom panel
shows the distribution of cluster member stellar masses from observations in
blue and from simulations in red. We measure the moment of inertia tensor
only from those cluster members with a mass greater than the mass threshold
of the simulation (log (M∗/M�) > 10) in order to match the two samples.

would expect there to be a difference in the number density of cluster
members. We hypothesize that the result would be a biased estimator
of the shape of the distribution of cluster members in the event
there are not many cluster members. As such, we first measure the
difference in the subhalo mass functions of the two samples. The top
panel of Fig. A2 shows how the number of cluster members in the
observed sample is a factor of ∼4 greater than the simulated sample.
Moreover, close to the core of the cluster the number of members is
small. We test the impact this may have on estimation of the shape.
To do this, we carry out a Monte Carlo simulations of a mock sample
of cluster members. We distribute a sample of members assuming a
Gaussian distribution (with a mean of zero and width of 10 arcsec,
although this choice has no impact on the result), with an ellipticity
of ε = 0.4 and recalculate the ellipticity of the members for different
sample sizes. The bottom panel of Fig. A2 shows that below 100
galaxies the shape becomes biased, however, our relatively large
statistical error of ∼0.1, means that this does not become significant
until ∼10 galaxies. We therefore limit our ellipticity measurements
to bins that have at least 10 cluster members.

A3 The shape of the X-ray isophote

To measure the shape of the X-ray isophote, we adopt the same
technique as in the previous section for the galaxy shapes, however,
instead of weighting by the mass we weight by the exposure weighted
flux. To measure the shape as a function of radial distance, we follow
the method laid out in Lau et al. (2012). At each cumulative radial bin,
we iteratively estimate the ellipticity by including all pixels inside
the elliptical radius,

r ′ =
√

θ2
1 + θ2

2

(1 − χ )
. (A14)

MNRAS 500, 2627–2644 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/500/2/2627/5924462 by guest on 16 July 2021



2640 D. Harvey et al.

Figure A2. Top Panel: The radial distribution of subhaloes for each cluster
(coloured lines) and the simulations (grey region representing the 16 per cent
and 84 per cent distribution around the median value, dashed line). We find
that the number of subhaloes is a factor of ∼4 greater in the observed sample
than the simulated sample attributed to the difference in virial mass. Bottom
Panel: The bias on the measured ellipticity of the cluster member distribution.
We mock a simulated distribution of cluster members and re-estimate the
ellipticity. We show the difference between the input and estimated as a
function of the number of galaxy members available to measure the shape
off. We find that below 10, the systematic bias becomes larger than the
estimated, statistical bias of σ ε = 0.1 (green region). We therefore only select
bins where there are n > 10 galaxies.

At each iteration, we estimate the elliptcity and angle and then re-
estimate the shape including those pixels from the previous ellipticity
estimate. We stop iterating when the ellipticity converges within an
1 per cent error.

To estimate the error in the ellipticity, we Monte Carlo each cluster
image whereby we randomly resample each pixel assuming a Poisson
distribution around the true value. We then re-estimate the shape of
the cluster. We do this 100 times and take the 32 per cent percentiles
around the observed value.

A4 The shape of the cluster from gravitational lensing

We use the publicly available LENSTOOL software that is a mass
modelling algorithm that fits realistic parametric models to both
strong and weak lensing observables to constrain the properties of
the lensing potential (Jullo et al. 2007). It has become commonplace
to use LENSTOOL for combined strong and weak lensing analyses (e.g.
Jauzac et al. 2016a), however, here we want to analyse the difference
in ellipticity between the core and the outer regions of the cluster.
In this way, we treat the strong and weak lensing reconstructions
completely independently.

A4.1 Weak lensing mass mapping

To derive the weak lensing mass maps, we must first measure the
weak lensing shear of all the background source galaxies in the
cluster field. We do this via the publicly available code PYRRG (see
Section B). With the catalogues, we use LENSTOOL to estimate the
weak lensing parameters. It does this by first projecting the observed
ellipticities in the image plane to the source plane and then compares
the subsequent source plane ellipticities with that expected from a

Gaussian distribution with a width equal to the ellipticity dispersion
of the sample, i.e.

loss =
2∑

i=1

χ2
i,s

σε

, (A15)

where

χs = χ−2g + g2χ�

1 + |g|2 − 2R(gχ�)
, (A16)

where we have assumed that the ellipticity can be written as a
complex number in the form χ1 = χ + iχ2, as produced from
PYRRG, the subscript ’S’ denotes the ellipticity of the source and
the star denotes the complex conjugate. We also adopt the mass and
concentration from the strong lensing as a Gaussian prior on the
weak lensing mass reconstruction.

A4.2 Strong lensing mass mapping

We follow the same procedure as used in Harvey et al. (2017b)
whereby we choose to model the global total matter halo with a
Navarro, Frenk and White profile (Navarro et al. 1997) (and hence
do not explicitly model the intracluster gas) and model each member
galaxy, including the BCG as a PIEMD

ρNFW ∝ 1

xNFW(1 + xNFW)2
(A17)

and

ρPIEMD ∝ 1

(1 + x2
core)(1 + x2

cut)
, (A18)

where xNFW = r/rs, where rs = rvir/cvir, xcore = r/rcore, xcut = r/rcut and
r is the three-dimensional cluster centric radius. Indeed, LENSTOOL

models the two-dimensional NFW potential, 
 and not the mass
distribution, � and then assumes that ε� = 3ε
 . All ellipticities
we report here are ellipticities of the mass distribution. For more,
we direct the reader to Jullo et al. (2007). We also assume that
the member galaxies fall on the Fundamental Plane (including the
BCG) following a consistent mass-to-light ratio in order to reduce
the parameter space such that for the ith cluster member,

rcore,i = r�
core

(
L

L�

)1/2

, (A19)

and

rcut,i = r�
cut

(
L

L�

)1/2

, (A20)

and that the velocity dispersion of the galaxy is

σi = σ �

(
L

L�

)1/4

. (A21)

As is common amongst strong lensing reconstructions, we assume
r�

core = 0.15 kpc and we have a tight Gaussian prior of σ � = 158 ± 26
km s−1 and r�

cut = 45 ± 1 kpc. Following this, we have six free NFW
parameters from the main halo, and then two free parameters for
the galaxy members. In rare cases, we model individual galaxies as
not doing this has shown to potentially bias mass reconstructions
(Harvey, Kneib & Jauzac 2016).

A4.3 Ellipticity error validation

Harvey et al. (2017b) found that the error estimate from LENSTOOL on
the Cartesian position of a dark matter halo using strong gravitational
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Figure A3. Gravitational lensing error validation. We Monte Carlo the best-
fitting strong (left column) and weak (right column) lensing model 20 and
100 times respectively. We show the error from the estimated posterior on
the x-axis and the variance in the Monte Carlo on the y-axis for χ1 in the top
panel and χ2 in the bottom panel.

was underestimated by a minimum of an order of magnitude. In
order to quantify whether or not the error reported using the width
of the posterior distribution reasonably reflects the true error in
the ellipticity we carry out two tests; one for the strong lensing
observables and one for the weak lensing.

To do this, we follow the same method as Harvey et al. (2017b).
We mock up 20 simulations based on the true data. Using the source
positions from the data (for both weak and strong lensing), we use
the best-fitting mass model from the strong lensing reconstruction
and project the sources to image positions to give a catalogue of weak
and strong lensing image positions. In the case of the weak lensing,
we add noise through the random distribution of galaxy shapes,
modelled by a Gaussian, with a mean of zero and a width equal to
that of the true cluster. For the strong lensing, we randomly shift
the position, with the shift drawn from a Gaussian with a zero mean
and a width of 0.5 arcsec. We then reconstruct the mass distribution
using LENSTOOL. We Monte Carlo each cluster 100 times for the weak
lensing and 10 for the strong, since the strong lensing reconstructions
take significantly longer to converge.

We find that in the weak lensing case, the broad posterior is
biased when ellipticity is sampled in polar coordinates, as such
we sample the data in Cartesian coordinates; ε1 and ε2, where we
defined ε = (a2 − b2)/(a2 + b2) and a and b are the semimajor and
minor axes of the mass distribution, respectively. We then convert
the results back to polar coordinates to be consistent with other
probes. Fig. A3 shows the results of the strong and weak lensing
reconstructions. Each panel shows the estimate of the variance in the
Monte Carlo tests as a function of the direct estimate of the error
from the width of the posterior sampled during the MCMC of the
true data. The left (right) hand column shows the results from the
strong (weak) lensing. We find that the estimate of the error from
the posterior in the strong lensing significantly underestimates the
true error from the Monte Carlo tests, whereas the weak lensing
the posteriors slightly overestimates the error. As such during the
analysis we take the error in the strong lensing from the variance
in the Monte Carlo tests, and the weak lensing directly from the
posterior.

A5 Shape from the moment of inertia using simulated particle
data

Unlike some of our observational shape definitions, our moment
of inertia calculation does not iteratively fit for the centre of the
halo. Instead, the 2D centre of the halo is defined as the location
(in projection) of the particle with the most negative gravitational
potential energy, and this is kept fixed throughout the calculation. The
moment of inertia calculation is done in 2D, having first projected all
particles within 5 r200 of the cluster centre (in 3D) along the relevant
line of sight. For a given radius, rcut, we begin by finding all particles
in a circle of radius rcut. The inertia tensor

Iij ≡
∑

n

xi,n xj,n mn

/ ∑
n

mn (A22)

is calculated for this distribution of particles, where (x1, n, x2, n) are
the coordinates of the nth particle, which has mass mn. We label the
eigenvalues of Iij as a2 and b2 (with a ≥ b), and the corresponding
eigenvectors as e1 and e2. The axial ratio is q = b/a.

Our process is iterative, and in each iteration we calculate the
inertia tensor for the particles within an ellipse, where the axial ratio
of the ellipse is determined by q from the previous iteration, and
the major axis of the ellipse is along the e1 direction. The area of
the ellipse is kept constant, meaning that it has a semimajor axis of
length rcut/

√
q and a semiminor axis of length rcut

√
q. We continue

this iterative process until consecutive iterations agree on q to better
than 1 per cent.

APPENDI X B: SHAPE MEASUREMENT
A L G O R I T H M : PYRRG

In this section, we briefly outline the publicly available shape
measurement software, specifically designed for images from the
ACS on the HST. We begin by first outlining the theoretical basics.
For a review, please see Bartelmann & Schneider (2001), Massey,
Kitching & Richard (2010), Hoekstra & Jain (2008), and Refregier
(2003). For a review on strong and weak gravitational lensing, please
see (Bartelmann 2010).

Gravitational lensing is simply a distortion of a background source
at a position, β by foreground matter, inducing a shift of α̂ to the
observed position θ , i.e.

β = θ − DLS

DS
α̂ = θ − α, (B1)

where we have introduced the reduced deflection angle, α. This
deflection angle is related to the potential causing the deflection,
which is the projected three-dimensional Newtonian potential, �,

∇
 = α, (B2)

where


 = Ds

DLDS

2

c2

∫
�(DL, θ, z)dz. (B3)

From this we can derive the distortion matrix by examining how a
change in the source position effects the change in the image position,
i.e. ∂θ /∂β, also known as the lensing Jacobian,

Aij = ∂β

∂θ
= δij − ∂2


∂θiθj

= δij − 
ij , (B4)

where we have denoted the second derivative of 
 by the subscript,
i and j. The second derivative of the lensing potential gives the two
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Figure B1. An overview of the PYRRG algorithm. It requires the input science
image and associated weight file from the data reduction pipeline, plus all the
associated exposures. From this it chooses the ‘best’ PSF from the TinyTim
models and combines them to produce a PSF at the position of each galaxy in
the catalogue. It then corrects the galaxies, calculate the shears and outputs a
science catalogue. It then carries out post-processing procedures to create a
final ‘clean’ catalogue.

observables, the convergence, which is the trace of A,

κ = 1

2
(
11 + 
22), (B5)

and corresponds to a scalar increase or decrease in the size of a
distorted background source and the shear, γ is a two-component
vector field given by

γ1 = 1

2
(
11 − 
22) and γ2 = 
12 = 
21, (B6)

corresponding to a stretch along the x-axis for γ 1 and 45◦ for γ 2.
We now have a relation between the observable distortion and the
lensing potential. Here we limit the expansion of the Jacobian to first
order, and hence assume a weak lensing limit. Indeed the shear and
convergence are coupled and one cannot be observed without the
other, this is known as the reduced shear,

g = γ /(1 − κ). (B7)

B1 Shape measurement: PYRRG

The weak lensing shape measurement consists of six key sections.
An overview of the PYRRG algorithm can be found in Fig. B1.

(i) Source finding
(ii) Moment measuring
(iii) Star–galaxy classification
(iv) PSF estimation
(v) Shear estimation
(vi) Catalogue cleaning and masking

B2 Source finding

PYRRG employs the ‘hot and cold’ method that was originally
developed in Leauthaud et al. (2007) to extract sources from the
image and then extended to studies used in Jauzac et al. (2012, 2015b,

2016a, 2018) and Harvey & Courbin (2015). Using the open source
program SEXTRACTOR (Bertin & Arnouts 1996), PYRRG carries out
two scans of the image. The first, ‘hot’ scan, uses a smaller minimum
number of pixels to count as a source, thus finding smaller objects.
The second, ‘cold’ scan, uses a larger number of pixels to classify
a source. We then use the publicly available STILTS4 software to
combine the two catalogues in to one final catalogue.

B3 Moment measurement

Following the source detection, PYRRG measures the weighted
multipole moments of each object in order to characterize the shape.
For a full description please see Rhodes et al. (2000), however here
we outline the basics. We define the zeroth order multiple moment
of a two-dimensional image in θ , with an intensity distribution i,

I =
∫

d2θw(θ )i(θ ), (B8)

then the quadruple normalized, weighted moment is

Jij = I−1
∫

d2θ θiθjw(θ )i(θ ), (B9)

followed by the fourth order,

Jijk = I−1
∫

d2θ θiθj θkw(θ )i(θ ), (B10)

where the weight is simply a Gaussian with a width w, where w =√
(ASEXBSEX/π ), AND A and B are the semimajor and semiminor

axes as estimated by SEXTRACTOR. From this we can define the two
components of ellipticity of a galaxy, χ1 and χ2, as

χ1 = J11 − J22

J11 + J22
, χ2 = 2J21

J11 + J22
, (B11)

and the size of the object, d, is given by the combination of the
quadrupole moments,

d =
√

1

2
(J11 + J22). (B12)

B4 Star–galaxy classification: random forest

Following the measurement of the normalized image moments, we
classify objects in to three distinct categories, stars (both saturated
and not), galaxies and noise. Given that it is a simple classifying
problem, we adopt a Random Forest to automatically classify this.

A Random Forest is a supervized machine learning tool that
generates an ensemble of decision trees that are then trained on
known data to produce predictions for unknown data (Breiman
2001). It generates a single tree by randomly subsampling the data
and carrying out simple regression to create an estimator for the
subsample of data. It then resamples randomly with replacement
to generate another tree. Given that each tree is a poor unbiased
estimator of the truth, the aggregated estimator should be the correct
one. The number of trees defines how good the overall estimator is,
but also how long it takes to train and how large the classifier is.

We generate a range of data to train the Random Forest. We use
data from HST including a sample of 21 SLACS galaxies, 29 galaxy
clusters, all at a range of depths. This way we try to span the entire
range of parameter space including, object magnitudes, environment,
and signal to noise. We generate the ground truth by manually

4http://www.star.bris.ac.uk/∼mbt/stilts/
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Figure B2. Results of the automated star–galaxy classifier. We use a Random
Forest trained on data from the HST to predict the classification of each object.
The main panel shows the relative importance of each feature in the classifier,
the inset shows the results of classifying objects for the object HST field with
GAL-0364-52000-084. We find that the Random Forest has a 93 per cent
rate of correctly classifying stars, 99 per cent rate of classifying galaxies and
83 per cent of characterizing noise (including saturated stars).

classifying stars and galaxies from their magnitudes, μmax, and size
for individual exposures. We then aggregate this data and parse
through the Random Forest all information regarding these objects
including the object magnitude, the size of the object, the brightest
pixel in the object (μmax), the second and fourth order moments, the
uncorrected ellipticities, the median sky background and the variance
around this, and finally the exposure time of the image. The main
panel of Fig. B2 shows the relative importance of each feature in
the classifier, where relative importance is a unit-less coefficient that
defines the importance of each feature in discriminating between
classifiers, i.e. when the data are subsampled, each decision tree will
define the most important classifier for that subsample. Over the
entire ensemble of decision trees, this importance reflects at which
level in the decision tree this feature lies. The inset shows the result on
a blind test galaxy, GAL-0364-52000-084. We find that the Random
Forest has a 93 per cent rate of correctly classifying stars, 99 per cent
rate of classifying galaxies and 83 per cent of characterizing noise
(including saturated stars).5

B5 Point spread function measurement

Having classified the stars, PYRRG then estimates the impact of the
telescope on the image, i.e. the PSF. HST warms up and cools down
due to the heating of the Sun and therefore the focus of the telescope
changes over time. We therefore estimate the impact of this by

(i) Taking the known positions of stars from the drizzled science
image and finding the corresponding position in the individual
exposures that make up that image.

(ii) Measuring the second and fourth order moments of the stars
in each of the individual exposures

5PYRRG allows manual selection of galaxies through an interactive region
selecting scheme, however, the default and what is used for this work is the
Random Forest.

(iii) Having measured the moments, we compare to the various
Tiny Tim models of the PSF (Krist, Hook & Stoehr 2011). We then
interpolate this model to the known positions of the galaxies.

(iv) Combining the PSFs from each individual exposure at the
position of the galaxy by rotating each PSF moment through an
angle φ to the same reference frame as the drizzled science image in
order to find the new rotated moment, J

′
, (Teague 1980),

J ′
jk =

j∑
r=0

k∑
s=0

(−1)k−s

(
j

k

)(
k

s

)
(B13)

×(cos φ)j−r+s(sin φ)k+r−s(Jj+k−r−s,r+s),

and then summing the moments for a given position of the galaxy to
acquire the final PSF.

B6 Shear estimation

Following the estimation of the PSF, we then correct the galaxy
moments and calculate the shear. As shown in Rhodes et al. (2000),
the final estimated shear is given by

γi = 〈χi〉/G, (B14)

where χ i is given by equation (A3) and with

G = 2 − 〈χ2〉 − 1

2
〈λ〉 − 1

2
〈χ · μ〉, (B15)

where 〈χ · μ〉 = χ1μ1 + χ2μ2,

λ = (J1111 + 2J1122 + J2222)/(2d2w2), (B16)

and the two components of the spinor, μ,

μ1 = (−J1111 + J2222)/(2d2w2),

μ2 = −2(J1112 + J1222)/(2d2w2), (B17)

where w is the size of the weight function w(θ ) in equation (B8).
From this we have a final estimator of the shear, γ .

B7 Catalogue cleaning and masking

Having measured the shear we go through a series of cleaning
operations including,

(i) Automatic masking: Using the known position of stars and
saturated stars, we generate polygons that have the same size as stars
and mask any object that lies within these polygons,

(ii) Removal of double detections: We remove double detections
whereby removing objects that lie within the isophote of a larger
object.

(iii) Creation of a LENSTOOLcatalogue: Creates a catalogue to be
parsed in to the mass mapping algorithm LENSTOOL.

Finally we match the catalogues with the CLASH catalogues,
which have accurate photometric redshifts (Jouvel et al. 2013) in
order to remove contaminations. This includes cluster members and
sources that are in the strong lensing regime (and hence cannot be
used for the weak lensing estimates).

We first remove all galaxies that lie within the cluster. To do this
we remove all galaxies that lie at z > zcl + δz. The value of δz

depends on the cluster, Umetsu et al. (2019) used a value of δz = 0.2.
Here we test the impact of this cut on our sample and cluster shapes.
Fig. B3 shows the estimated ε1 (ε2) shown in the top (bottom) panel
relative to the estimated shape with a cut of δz = 0.05. We find that in
general the clusters are not sensitive to this cut except MACSJ1206,
which exhibits significant sensitivity. We find that a small cluster of
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Figure B3. The dependence of estimate of the cluster shape from weak
lensing on the source galaxy redshift cut. We cut the galaxy such that only
those galaxies in the catalog are zs > zcluster + δz. The top panel shows the
first component of ellipticity ε1 and the bottom panel ε2. We show for each
cluster (different colours) with respect to the shape estimate for δz = 0.05.
We offset the clusters at each cut value for clarity. We find that the only
cluster that is sensitive to this choice is MACSJ1206, where a small cluster
in redshift space at ∼0.7 drives the fit.

galaxies at z ∼ 0.7 is pushing the fit to negative ε1. We therefore
select a cut of δz = 0.05 for clusters except MACSJ1206 where
we choose δz = 0.35. We then remove all source galaxies that are
within the strong lensing region. Massey & Goldberg (2008) found
that moment based methods such as RRG are accurate to within
7 per cent beyond the Einstein radius of the cluster at which point by
galaxies being to be strongly lensed and weak lensing assumptions
break down. We therefore conservatively extract all galaxies up to
10 per cent beyond the estimated Einstein radius of the cluster to
ensure we are not including arcs and flexed galaxies.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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