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Abstract 

We examined the role of the hippocampus (HPC) and the dorsolateral striatum (DLS) in the 

representation of environmental geometry using a spontaneous object recognition 

procedure. Following Poulter et al. (2013; Experiment 2), rats were placed in a kite-shaped 

arena and allowed to explore two distinctive objects in each of the right-angled corners. In a 

different room, rats were then placed into a rectangular arena with two identical copies of 

one of the two objects from the exploration phase, one in each of the two adjacent right-

angled corners that were separated by a long wall. Time spent exploring these two objects 

was recorded as a measure of recognition memory. Since both objects were in different 

locations with respect to the room (different between exploration and test phases) and the 

global geometry (also different between exploration and test phases), differential 

exploration of the objects must be a result of initial habituation to the object relative to its 

local geometric context. The results indicated an impairment in processing the local 

geometric features of the environment for both HPC and DLS lesioned rats compared with 

sham-operated controls, though a control experiment showed these rats were unimpaired 

in a standard object recognition task. The DLS has previously been implicated in egocentric 

route-learning, but the results indicate an unexpected role for the DLS in processing the 

spatial layout of the environment. The results provide the first evidence that lesions to the 

HPC and DLS impair spontaneous encoding of local environmental geometric features.  

 

  



Introduction 

The hippocampus is often said to support a cognitive map of the environment 

(O’Keefe and Nadel, 1978; Poulter et al., 2018) but what exactly is meant by a cognitive map 

is more equivocal (Bennett, 1996; Mackintosh, 2002). If a cognitive map is a representation 

of the inter-relations among stimuli in the environment (Leonard and McNaughton, 1990), 

an animal that possessed one could represent the global layout of the environment. This 

notion is captured in the interpretation that when animals navigate relative to 

environmental geometry, they do so based on a configural representation of the shape of 

the environment, abstracted from the elements creating it (Cheng and Spetch, 1998; 

Gallistel, 1990). 

 To test whether animals form a representation of macroscopic geometric relations 

animals trained in one environment are tested in another, which shares some of its 

geometric features with that of the training environment. Crucially, the test environment 

differs in its global shape to the training environment, so non-random search at test 

indicates that animals did not rely solely on a global representation of space in the initial 

exposure to the training environment, but instead were guided by local spatial features that 

the two environments shared (McGregor et al., 2006; Pearce et al., 2004; Tommasi and Polli, 

2004).  Pearce et al. (2004) and subsequently Jones et al. (2007) demonstrated that lesions 

to the hippocampus impaired navigation based on these local geometric properties of 

space.  

However, there is evidence of both global and local geometry controlling spatial 

behaviour in pigeons (Bingman et al., 2006), chicks (Kelly et al., 2011) and humans (Lew et 

al., 2014; Sturz et al., 2012). Sotelo et al., (2019), based on Pearce et al. (2004), trained 

pigeons to locate a reinforcer in one corner of a rectangular arena before transferring them 



to a kite shape, in which two corners shared the same local geometric properties as the 

corners in the rectangle. Unlike Pearce et al. (2004), who found transfer of rats’ search 

between environments, there was no evidence that pigeons recognized the matching local 

geometry between the two arenas, despite learning the correct location within the 

rectangle. Furthermore, immediate early gene analysis of hippocampal c-Fos activation was 

higher for pigeons exposed to the familiar rectangle compared with others exposed to an 

unfamiliar trapezoid, suggesting that they recognized the overall shape of the rectangle but 

not of the trapezoid, and that this recognition was associated with hippocampal activity.  

Therefore, the role of the hippocampus in learning based on local or global geometry 

remains uncertain. One difference between Pearce et al. (2004) and Sotelo et al. (2018), 

other than the species tested, was the use of appetitive and aversive procedures, which 

could have altered the way the animals behaved (Golob and Taube, 2002). To remove the 

confound of motivational reinforcer, we employed a spontaneous object recognition (SOR) 

version of a geometry learning task (Experiment 1). We tested three groups – one with 

lesions to the hippocampus (HPC), a sham-operated control group, and one with lesions to 

the dorsolateral striatum (DLS).  The DLS group was included because there is little 

information on the effect of DLS lesions on object recognition.  Korol et al. (2019) recently 

examined the role of the DLS in SOR, and found no evidence for its involvement in object 

location memory, so inclusion of this group acts as a positive control. However, Kosaki et al. 

(2015) found that DLS lesions significantly facilitated place learning in a swimming pool, so 

one possibility was that we would see a similar facilitation in the current study. 

 

Experiment 1 

Method 



Subjects 

The subjects were 32 male Lister hooded rats (Rattus norvegicus) supplied by Charles River 

(UK). They were approximately 3 months of age when surgery was performed, and 5 

months old when testing on the current experiment was carried out. They had been 

previously used in an unrelated water maze task.  The rats were housed in pairs in a light-

proof, temperature-controlled room (20oC), with the lights turned on at 0700 hours and off 

at 2100. Testing was conducted when the lights were turned on in the home room. All 

animals were provided with ad libitum access to food and water. 12 rats received lesions to 

the hippocampus (HPC), 12 received lesions to the dorsolateral striatum (DLS), and 8 were 

sham-operated controls. The experiment was conducted in accordance with the Animals 

(Scientific Procedures) Act 1986 and Home Office and institutional guidelines.   

 

Surgical Procedure 

Each rat was deeply anaesthetised with a mixture of isoflurane (5%) and oxygen (2 

L/min), and its scalp was shaved. It was then secured into a stereotaxic frame (Kopf 

Instruments, Tujunga, CA, USA), with the incisor bar set at -3.3 mm. The anaesthetic was 

reduced to a maintenance concentration (1-2% isoflurane at 0.8 L/min) and the animal’s 

heart rate and reflexes were closely monitored throughout to make certain the rat 

remained at the appropriate level of anaesthesia. An incision was made along the midline of 

the scalp and the bone covering the neocortex was removed using a dental burr. An arm 

was mounted on to the stereotaxic frame to which was attached a 2-µl Hamilton syringe 

attached to an electronic microdrive (model KDS 310, KD Scientific, New Hope, PA). The 

microdrive controlled the quantity (.05 - .25 µl) and rate (.03 µl/min) of excitotoxin. Ibotenic 

acid (Tocris Bioscience, Bristol, UK), dissolved in phosphate-buffered saline (pH 7.4) to 



produce a 63-mM solution was infused in 28 and 12 injection sites for each bilateral 

hippocampal and dorsolateral lesion, respectively. The infusion coordinates for the 

hippocampal lesions are reported in Coutureau et al. (1999) and the dorsolateral striatum 

lesions in Kosaki et al. (2015). The needle was left in place for 2 minutes following each 

infusion to permit diffusion of the ibotenic acid into surrounding tissue. Sham-operated 

controls underwent similar surgical procedures as for the HPC and DLS rats, with incision of 

the skin, neocortex exposed, and dura perforated using a needle, but no infusions were 

made. The incision was sutured at the end of the procedure and the rat was placed into a 

warm chamber to recover. Each rat was administered subcuticular Buprenorphine (.01 

mg/kg) pre- and post-procedure to provide analgesia, and a post-procedure subcuticular 10-

ml saline and glucose solution to aid rehydration. Once sufficiently recovered, the rat was 

transferred back to its home cage. A minimum of 14 days postoperative recovery were 

allowed before behavioural testing began. 

At the end of the experiment, rats were deeply anaesthetised with sodium 

pentobarbitone (200 mg/kg) and perfused transcardially with 0.9% saline followed by 4% 

paraformaldehyde solution (0.1M phosphate-buffered). Brains were removed and stored in 

4% paraformaldehyde solution (0.1M phosphate-buffered) for several days before being 

transferred to 25% sucrose (in 0.1M phosphate buffered saline) for 24 – 48 hr before being 

sectioned (40 µm), mounted on slides, and stained with cresyl violet. 

 

Apparatus 

 The apparatus was identical to that reported by Poulter et al. (2013). Briefly, a kite-

shaped arena occupied one testing room, and a rectangular arena occupied another. The 

testing rooms had similar dimensions (approximately 290 x 185 x 260 cm high) and each had 



a speaker mounted on the wall to provide white noise, together with a table in the corner 

on which rats were held. Each room was lit by a lamp that was placed on the floor with an 

11-W bulb, and was positioned such that shadows were not cast into the arena. A camera 

was attached to a rail above each arena, and images were transmitted to a monitor and 

recorder that were located in an adjacent room. The arenas were made from MDF and were 

painted light grey. Each arena was made up of two long walls (100 x 50 cm high) and two 

short walls (50 x 50 cm high). The walls in the kite were arranged such that the corners 

where the long and short corners met were at an angle of 90o, so that they were 

geometrically identical to the corners in the rectangle (see Figure 2). The arenas were 

located on the floors of the testing rooms and could be rotated to occupy four different 

positions along a north-south or east-west axis.  

 Junk objects, including bottles, metal clips, ceramic ornaments and small toys, 

occupied the corners of the arenas. Objects were chosen to be similar in terms of materials 

and dimensions within a trial. They were affixed to the arena floor using Velcro. Multiple 

versions of the same objects were created so that different versions of the same object 

were presented in different arenas during the sample and test phases. 

 

Procedure 

Rats were transported into the test laboratory, four at a time, in a holding cage 

comprising of a Perspex bottom and wire top. Whilst transporting animals to and from the 

testing rooms a fleece cover was placed over the cage to minimise the stress caused by this 

movement. Throughout behavioural procedures, the holding cage and rats, when not being 

tested, were placed on a table in the corner of the room. Each trial commenced with the 

experimenter, always approaching the arena from the same southerly direction, placing the 



rat gently into the centre of the arena. After the trial commenced the experimenter left the 

testing room and waited in an adjacent room until the trial ended. Upon completion of the 

trial, the animal was removed from the arena and placed back into the holding cage. 

Rats received five sessions of habituation prior to beginning the experimental stage 

of the experiment. The first session of habituation consisted of pairs of animals being placed 

into the rectangular arena, then into the kite, for five minutes in each. Sessions two to five 

of habituation followed the same procedure as session 1 with the exception that animals 

were now allowed to explore each arena individually. Between each session of habituation 

each arena was rotated 90⁰ anti-clockwise to ensure all rats explored the empty arenas in 

each of the four possible orientations. Each session of habituation took place on a separate 

day and animals were run in the same order throughout. The arenas were wiped down with 

dry paper towelling prior to each animal or pair of animals beginning exploration. At the end 

of each testing day both arenas were cleaned with alcohol wipes.   

Following habituation the experimental stage began, in which animals received one 

object recognition trial per day for four days. In the sample phase, each rat was exposed to 

two different objects, A and B, in corners E and G of the kite, for two minutes (see Figure 2). 

After a squad of four rats had completed the sample phase they were then transported to 

the adjacent testing room for the test phase. In the test phase, which lasted for a further 

two minutes, each rat was placed in the rectangle arena in which two identical copies of one 

of one the objects were presented in the right-angled corners J and K. The retention interval 

between the sample and test phase for each rat was approximately 8 minutes. The 

orientation of the rectangle changed between days but remained constant for all animals on 

the same day. Only two of the four possible kite orientations were used on any given day, 

although it was ensured that each orientation was counterbalanced equally between all 



animals. For the test phase, animals were split into equal groups so that half received object 

A at test and the remainder object B, and, in so doing, ensured that the novel location 

(corner J or K of the rectangle) was also assigned equally between animals. Thus, for each 

individual rat, the novel object-location corner changed daily. Therefore, any preference for 

exploration of one object over another could not be explained by the positions of the 

objects with respect to generalization between extramaze cues or by a preference for one 

right-angled corner over another. Upon completion of a trial by an animal and prior to the 

next animal beginning their trial, each object was thoroughly cleaned with alcohol wipes 

and the arena was wiped down with dry paper towelling. At the end of each testing day 

both arenas were cleaned with alcohol wipes. 

Ethovision (version 3.1) software was used to track the movement of each animal in 

the test phase. For each 120 s test phase, the time a rat spent within a circular zone centred 

on each of the objects was recorded. There was a gap of approximately 5 cm between the 

edge of the object and the perimeter boundary of the zone. Thus, the time an animal spent 

within an area 5 cm from the object was recorded. To ensure tracking indexed exploration 

only, time spent in the zone was only recorded if the rat’s head entered either of these 

circular zones. This was automated by the Ethovision software. It was also possible for the 

software to record when the rat was not actively exploring, but instead engaged in other 

activities such as grooming. However, the tracking system stopped tracking when contrast 

was lost between the arena floor and the rat’s head, which occurred if the rat was rearing. 

While we are confident that the automated tracking captured active exploration, it may be 

that what we term ‘exploration’ may include other behaviours.  

 

Statistical analysis 



 The time rats spent in the vicinity of each object was recorded for each of the four 

120-s test phases. Mean time spent in the vicinity of each object over the four test phases is 

reported.  There was no minimum object exploration criterion applied for each trial, but 

mean individual exploration across days varied between 15.3% and 33.1% of the test phase 

duration. All data were analysed using two-way analysis of variance (ANOVA). For 

experiment 1 we predicted a group x object interaction. Interactions were analysed using 

simple main effects analysis using the pooled error term from the original ANOVA.   

 

Results 

Figure 1 depicts reconstructions of the minimum (black shading) and maximum (grey 

shading) extent of hippocampal (A: left-hand panel) and dorsolateral striatum (B: right-hand 

panel) lesions on a series of coronal sections. Rats in group HPC all sustained bilateral 

damage to the dorsal and ventral hippocampus (CA fields 1-4), the dentate gyrus and the 

subicular cortices. The main sparing of hippocampal tissue was observed in the most medial 

areas of the dorsal hippocampus. One rat received lateral damage in both hemispheres that 

extended into the lateral entorhinal and perirhinal cortices, so this animal was excluded 

from the analysis. In the majority of the remaining 11 rats there was damage to the cortical 

area overlying the dorsal hippocampus. This typically included partial damage to motor, 

visual, somatosensory, parietal and retrosplenial agranular cortices (for reports of similar 

extrahippocampal damage in hippocamptomized rats see: Albasser et al., 2012; Iordanova 

et al., 2009). Similar to Albasser et al. (2012), the partial cortical damage described above 

left plenty of sparing in each of these areas. For rats in group DLS visible widening of the 

lateral ventricles was observed in all cases owing to tissue shrinkage caused by the lesion. 

Inspection of the stained tissue revealed that the intended lesion site was off target in three 



rats. In these cases, which were excluded from subsequent analysis, there was significant 

extrastriatal damage to cortical areas adjacent to the DLS. In the remaining rats, cell loss and 

modest gliosis was found in the targeted area. Thus, there were 11, 9 and 8 rats included in 

the behavioural analyses for group HPC, DLS and Sham respectively.  

 
 

 

Figure 1. Coronal sections displaying the extent of hippocampal damage (A) and dorsolateral striatum damage 

(B). The case with the largest (grey shading) and smallest (black shading) amount of tissue loss is represented 

for each lesion group. The numbers refer to the distance anterior or posterior to bregma for each section, 

according to Paxinos and Watson, 2007. 

 



To simplify the account of the behavioural results, it will be assumed, as shown in 

the upper panel of Figure 2, that rats were exposed to objects A and B in corners E and G of 

the kite, before being presented with two copies of object A in corners J and K of the 

rectangle. In fact, however, the locations of objects A and B in the sample phase, and the 

identity of the object (A or B) at test was counterbalanced. With reference to Figure 2, 

corner E of the kite is the geometric equivalent of corner K in the rectangle, because in both 

corners the long wall is to the left of a short wall. Thus, it was expected that that object A in 

corner J of the rectangle would be explored more than object A in corner K, as it was in a 

novel location relative to the local geometric cues provided by the arena, whereas object A 

in corner J was in a familiar location.  

 
 
 



Figure 2. The upper panel shows a schematic diagram showing the design of Experiment 1. Objects A and B are 

represented by circular and square symbols, respectively. Preferential exploration of object A in corner J of the 

rectangle over the identical object in corner K indicates the animal’s detection of its novel location despite the 

fact both of the objects were placed in a differently shaped arena in a different room. The lower panel shows 

the mean exploration times of each of the two test objects for each of the three groups. The error bars show 

the 95% confidence interval for the mean within-group difference between exploration times for the two 

objects, based on the pooled error term.  

 

The mean times that rats in each group spent in the vicinity of objects in the novel 

and familiar locations in the test phase are shown in the lower panel of Figure 2. Overall, 

exploration was similar between groups, but the Sham group appeared to spend more time 

in the vicinity of the object in the novel location compared with the familiar location. 

Neither the HPC or DLS groups appeared to discriminate locations. A two-way ANOVA of 

mean object exploration times over the four test trials, with group (Sham, HPC, and DLS) 

and object location (novel, familiar) as factors, failed to reveal a significant group x object 

location interaction, F(2, 25) = 3.36, p =.051, but as there was an a priori prediction that the 

groups would differ, planned comparisons were used to examine group differences. Analysis 

of simple main effects using the pooled error term revealed that group Sham spent more 

time near the object in the novel than the familiar location, F(1, 25) = 4.44, p = .045, but that 

groups HPC, F(1, 25) = 2.06, p = .16, and DLS, F(1, 25) = .21, p = .65, did not. These 

differences are illustrated more clearly in the lower panel of Figure 2, which shows group 

means for time spent near the object in the novel and familiar location, along with the 95% 

confidence interval for the mean difference between the exploration times, shown 

arbitrarily on the novel object mean bar. The main effects of object location, F(1, 25)  = .08, 

p = .79, and group, F(2, 25) = 1.83, p = .18, were not significant.   



The results indicate an impairment for both HPC and DLS groups, compared with 

group Sham. Before discussing the results further, we report Experiment 2, designed as a 

control to ensure that the lesions did not impair discrimination based on a non-spatial 

version of the procedure. 

 

Experiment 2 

Method 

The subjects and apparatus were identical to experiment 1. The procedure was identical to 

experiment 1 with the following exceptions. First, instead of undergoing the same 

habituation phase as in experiment 1, rats were given a single refresher habituation session, 

which involved them spending five minutes in their holding case in each testing room. 

Second, for the experimental stage, instead of being presented with two different objects in 

the right-angled corners of the kite, in Experiment 2 rats were presented with two copies of 

object A in corners E and G of the kite, followed by object A and object B in corners J and K 

of the rectangle. In essence, this procedure emulates a standard object recognition 

procedure, but with the equivalent changes in global and local context that were 

encountered by rats in experiment 1. A schematic representation of the design of 

experiment 2 is shown in the upper panel of Figure 3.  

 

Results 

The mean times spent in the vicinity of the novel and familiar objects by each group in the 

test phase are shown in the lower panel of Figure 3. A two-way ANOVA of mean exploration 

times over the four test trials, with group and object as factors, showed significant main 

effects of object, F(1, 25) = 22.98, p < .001. Post-hoc pairwise comparisons showed that 



each group discriminated the novel from the familiar object, ps < .05. There was also a main 

effect of group, F(2, 25) = 14.31, p < .001, but no object x lesion interaction, F(2, 25) = .24, p 

= .79. For the main effect of group, pairwise comparisons showed that group HPC spent 

more time exploring objects overall than groups Sham and DLS, ps < .001, though groups 

Sham and DLS did not differ, p > .5.  

 
 
 
Figure 3. The upper panel shows a schematic diagram showing the design of Experiment 2. Objects A and B are 

represented by circular and square symbols, respectively. Preferential exploration of object B over object A 

indicates the animal’s detection of its novelty. The positions of objects A and B varied over trials and between 

rats so the positions of the objects relative to the local geometric features of the rectangle were irrelevant for 

successful performance. The lower panel shows the mean exploration times of each of the two test objects for 

each of the three groups. The error bars show the 95% confidence interval for the mean within-group 

difference between exploration times for the two objects, based on the pooled error term.  



 

 

Discussion 

Several rodent studies have shown that the hippocampus is necessary for 

spontaneous object recognition in which an animal must integrate object identity with 

spatial (Aggleton and Nelson, 2019; Bussey et al., 2000; Good et al., 2007; Save, Poucet, 

Foreman, and Buhot, 1992), featural (Good et al., 2007; Mumby et al., 2002), or temporal 

(Good et al., 2007) information. Conversely, numerous studies have demonstrated that 

rodents with hippocampal lesions are not impaired in standard object recognition (Ainge et 

al., 2006; Mumby et al., 2002).  The results of Experiment 1 add to the body of evidence 

implicating the HPC in object location memory, whilst extending our knowledge of how 

location is represented. The results of Experiment 2 confirmed that the lesions did not affect 

standard object recognition memory, whilst equating some of the procedural and 

contextual changes encountered by rats in Experiment 1.  

As predicted, group Sham discriminated locations with reference to the local 

geometric context in which an object was first encountered. The result replicates the 

findings of Poulter et al. (2013), though it should be noted that the current study had a 

substantially smaller sample size, so statistical power was weaker. One way to ensure that 

the results in the current study replicated those of Poulter et al. (2013) is to calculate the 

replication Bayes factor (BF), as described by Ly et al. (2019). The sham group in Experiment 

1 is a direct replication of Poulter et al.’s (2013) experiment 2. Therefore, taking a single 

measure of discrimination, the d2 score (novel-familiar/novel+familiar), from both Poulter 

et al.’s (2013) study and the sham data from the current study, we calculated the replication 

BF10. This was done by calculating the BF10 of the combined original and current d2 scores,  



compared to a chance level of zero. Following Ly et al. (2019), this combined BF10, BF10 = 

17.586, was divided by the BF10 of the original d2 scores, also compared to chance, BF10 = 

5.759. The result, BF10 = 3.05, is the replication BF10 and indicates that the sham data 

provides evidence for replication three times greater (precisely, 3.05 times greater) than for 

the alternative of no replication. We are therefore confident that the sham results reflect a 

genuine effect. 

In terms of recognition memory for object location, the results are important in 

understanding the cues necessary to define a spatial location in recognition memory. In 

previous object-location recognition memory procedures, the location of a familiar object is 

often swapped with that of another or simply displaced (e.g., Dix and Aggleton, 1999; Good 

et al., 2007), meaning that both the relative positions of the objects, with reference to other 

objects in the array, and the absolute positions of the objects, with reference to room cues, 

could be used to define spatial location (see also Langston and Wood, 2009; Wilson et al., 

2013, for evidence that egocentric strategies may underlie some object-location memory). 

Our results demonstrate that the local geometric context in which the object was 

encountered is sufficient for object-location recognition memory, since both the absolute 

and relative positions of the objects changed between the exploration and test phases. It 

should be noted that we did not record exploration of objects during the sample phase. It 

might be argued that differential group exploration during the sample phase might have 

caused differences in the results that are not due purely to the effects of the lesions on the 

representation of geometry.   However, had the lesions produced a systematic change to 

the way the lesion groups explored objects, we would have expected a difference between 

the groups in Experiment 2 as well, which served as a control condition. In addition, a 

number of other studies (e.g., Ennaceur, Neave, and Aggleton, 1997; Mumby et al., 2002) 



suggest that lesions to the hippocampus do not affect exploration of objects in the sample 

phase of a SOR task. Also, Gaskin, Tardif, Cole, Piterkin, Kayello, and Mumby (2010) show 

that sample exploration does not predict test phase performance in SOR tasks. 

One of the reasons for conducting our study was the conflicting evidence over the 

role of the hippocampus in representing environmental geometry. Whilst experiments with 

rats seemed to indicate that the hippocampus was necessary for representing local 

geometric features, such as the configuration of long and short walls in a particular corner 

(e.g., Jones et al., 2007; McGregor et al., 2004; Pearce et al., 2004), recent research in 

pigeons (Sotelo et al., 2019) cast doubt on this conclusion because pigeons showed no 

transfer between environments based on local geometry, but hippocampal c-Fos analysis 

indicated hippocampal activity when pigeons experienced transfer to a familiar overall 

shape.  Importantly, the SOR procedure used in our experiments removes the confound of 

the nature of the motivational demands of the procedure, since the pigeon study used an 

appetitive procedure, while the rat studies used an aversive motivation. The SOR procedure 

also removes the possibility that the previously reported effects of HPC lesions on learning 

based on local geometry were because of disruption to the formation of stimulus-response 

habits in the swimming pool, which were reported by Jones et al. (2007). Our finding that 

lesions to the hippocampus disrupted the use of local geometric context for object location 

in an untrained, nonaversive procedure provides renewed evidence for the role of the 

hippocampus in learning based on local geometry (Pearce et al., 2004). It also corresponds 

with recent evidence from the electrophysiological literature that changing environmental 

geometry alters the local firing patterns of entorhinal grid cells, which are part of the 

hippocampal cognitive mapping system, but that more distant grid fields are unaffected by 

changes to environmental geometry (Krupic et al., 2018). 



However, our results also raise the question of why Sotelo et al. (2019) were unable 

to replicate Pearce et al.’s (2004) findings, but still found c-Fos activation in the 

hippocampus. In terms of the use of local geometry, the use of an appetitive task may have 

had an effect. Golob and Taube (2002) reported rats relying more on a non-geometric 

landmark than on environmental geometry when motivated by escape from water than 

when motivated by a food reinforcer: Cheng’s (1986) original finding that rats preferentially 

relied on geometry over non-geometric features was also based on an appetitive task (but 

see Lee et al., 2020 for evidence that rats in an appetitive reorientation task also coded the 

non-geometric features of the environment). The differential effect of motivation has been 

also observed in the use of spatial strategies: Asem and Holland (2013) showed that rats in a 

water-submerged plus-maze relied on an egocentric response strategy early in training, 

switching to an allocentric place strategy later, but found the opposite pattern of results 

when the maze was drained and the escape platform replaced by the opportunity to find 

food. Turning to Sotelo et al.’s (2019) report of hippocampal c-Fos activation when pigeons 

encountered transfer from a rectangle to another rectangle, but no activation when they 

transferred from a rectangle to a trapezoid, we are only in a position to speculate a reason. 

One argument is that our lesion study provides stronger evidence of a causal link between 

the hippocampus and object-location memory than the correlational nature of IEG 

activation (Sotelo et al., 2019), though Bingman et al. (2006) showed that hippocampal 

lesions impaired pigeons’ reliance on geometric cues. Another possibility is that there was a 

discrepancy between the sensitivity of the behavioural task and that of the neural 

activation, meaning it was easier to detect changes to IEG expression than it was for 

behaviour. The possibility also remains that there is a fundamental difference between 

species in their local and global representations of space. This possibility seems less likely, 



however, in light of Tommasi and Polli’s (2004) conclusion that chicks represent local 

geometric features rather than global geometry. Nevertheless, Sotelo et al. (2020) have 

recently found that the terrestrial toad, Rhinella arenarum, also fails to transfer between a 

rectangle and kite, and Sotelo et al. (2016) showed that c-Fos activation in the medial 

pallium of the same species, a putative homologue of the mammalian hippocampus, 

increased as a result of exposure to environmental geometry. The possibility of between 

species differences therefore remains. This possibility is made greater by the finding that 

humans are able to use both local and global representations of space (e.g., Buckley et al., 

2016, 2019a, 2019b; Lew et al., 2014; Sturz et al., 2012, 2018), though it should be noted 

that the role of the hippocampus in these representations has not been investigated. 

In terms of understanding the nature of the impairments to both the HPC and DLS 

groups in Experiment 1 it is necessary to consider how normal rats represented local 

geometry. Jones et al. (2007) showed that lesions to the hippocampus impaired rats’ ability 

to use the direct metric information provided by wall length. Our results for the HPC group 

are consistent with this finding, and suggest that sham animals retained their ability to 

represent the different lengths of walls in the two environments. However, unlike in Jones 

et al. (2007) our use of an untrained procedure prevented sham animals from developing 

turning habits that seemed to underlie at least some level of successful performance during 

training. In Experiment 2 there was no impairment in a standard object recognition task, 

albeit adapted to control for the context change encountered by rats in Experiment 1. 

Relevant to the results of Experiment 2, O’Brien et al. (2006) and Piterkin et al. (2008) found 

that HPC lesions impaired the ability of rats to recognise previously encountered objects 

when the test context was different from the sample context, which we did not find. In light 

of these findings, our hypothesis about rats coding the local rather than the global 



geometric properties of the environment is lent more weight as our HPC rats seemed not to 

detect the change in context, as would be expected if they only coded the local features of 

corners in which objects were encountered, which were the same across the exploration 

and test phases. 

Turning to the results for the DLS group, we included this group as a positive control, 

since lesions or inactivation of the DLS have tended to impair the formation of habits in 

spatial memory (Packard and McGaugh, 1996) or the reliance on visual cues in the 

environment over locations (Devan and White, 1999). In both of these roles, we expected 

the DLS lesions to have no effect on object location memory. However, in each of these 

cases, DLS lesions are thought to impair egocentric coding (White, 2008). It is possible that 

sham animals in our study constructed the ‘local geometry’ of the environment by means of 

an egocentric representation. For example, the position of object A in the kite may have 

been encoded by remembering that it was to the rat’s left in one right-angled corner, 

relative to a salient feature such as the end of a long wall, while object B was remembered 

to the rat’s right in the right-angled corner, relative to the end of the long wall. At test, the 

unexpected position of object A to the rat’s right at the end of the long wall would have 

caused dishabituation and renewed exploration, but only if the rat was capable of such an 

egocentric representation. A number of possible permutations for this kind of egocentric 

encoding are possible, but if this is the case then successful object-location memory may 

depend not only on disambiguating long and short walls, involving the HPC, but also coding 

the object locations with reference to the positions of long and short walls relative to the 

rats’ own bodies. To our knowledge, only Korol et al. (2019) have explored the role of the 

DLS in a SOR procedure. They reported that inactivation of the DLS impaired rats’ memory 

for the identities of previously encountered objects, but not their locations. However, their 



object-location procedure involved shifting the positions of two previously encountered 

objects from 40 cm apart to 10 cm apart in an otherwise featureless plexiglass arena. 

Because objects in our experiment shifted in absolute and relative positions, only the local 

geometric context could be used to disambiguate objects, which is considerably different 

from Korol et al.’s procedure. 

While our results with DLS lesions are novel, their interpretation does require some 

speculation which requires further research. Nevertheless, the results of our experiments 

provide further evidence that animals represent the local geometric features of their 

environment, and that this encoding is automatic, being evident from recognition memory. 

This local representation is impaired by lesions to the hippocampus, which provides further 

support for the argument that hippocampus-dependent cognitive maps of the environment 

are based on local representations of space. 
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