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ABSTRACT 

Chromium(VI) contamination of drinking water arises from industrial activity wherever 

there is a lack of environmental legislation enforcement regarding the removal of 

such pollutants. Whilst it is possible to remove such harmful metal ions from drinking 

water through large scale facilities, there currently exists no safe and simple way to 

filter chromium(VI) oxoanions at point-of-use (which is potentially safer and 

necessary in remote locations or humanitarian scenarios). High surface area cloth 

substrates have been functionalized with calixarene molecules for the selective 

capture of aqueous chromium(VI) oxoanions in the presence of structurally similar 

anions. This is accomplished by pulsed plasmachemical deposition of a linker layer 

and subsequent functionalization with dimethylaminomethyl-calixarene (5,11,17,23-

tetrakis[(dimethylamino)methyl]-25,26,27,28-tetrahydroxycalix[4]arene, DMAM-

calixarene). Chromium(VI) oxoanions are captured by simply passing polluted water 

through the functionalised cloth, whilst other ions not harmful / beneficial to human 

health remain in the water. These cloth filters are simple to use, highly selective, and 

easily recyclable—thus making them attractive for point-of-use application in 

geographic regions lacking appropriate wastewater treatment plants or flawed 

environmental monitoring systems.  Chromium(VI) pollutants have been successfully 

removed from real-world contaminated industrial wastewater streams using the 

dimethylaminomethyl-calixarene functionalised cloths.  
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1. INTRODUCTION 

Water pollution is a major threat to human health around the world and is recognised 

as a major global sustainable development challenge. Particularly in some 

developing countries, where large amounts of industrial wastes can sometimes drain 

into rivers without there being adequate remediation—leading to contaminated 

human drinking supplies.1 According to the United Nations, each year more people 

die from unsafe water than from all forms of violence put together (including war).2 In 

contrast, for example in the European Union, strict environmental regulations are 

enforced.3,4,5 

Conventional large scale removal of toxic heavy metal ion pollutants from 

drinking water relies on methods such as reverse osmosis, electrodialysis, ion 

exchange resins, or ultrafiltration; these techniques can be expensive or require a 

constant energy supply, and are therefore often not installed in countries with low 

gross domestic product (GDP).6  Point-of-use water purification systems offer a safer 

alternative in poorly regulated jurisdictions. Despite there being a wide range of 

techniques available employing mechanisms such as heat7, UV light8,9, antibacterial 

agents10,11, and ultrafiltration through small pores12,13, most of these methods only 

address bacterial contamination, and are entirely ineffective against dissolved 

contaminants (such as toxic heavy metal ions).14 Hence there exists a need for the 

development of point-of-use methods targeting the removal of dissolved harmful 

contaminants from drinking water supplies.15,16,17,18 

A common class of toxic heavy metal water pollutants are aqueous hexavalent 

chromium compounds based on Cr(VI) oxoanions (chromate (CrO4
2–), hydrogen 

chromate (HCrO4
–), and dichromate (Cr2O7

2–)). These chemicals have been widely 

utilized by industry since the 19th Century for pigments, leather tanning, metallurgy, 

chrome-plating, corrosion inhibitors, and numerous other applications. 19 , 20 , 21 

However, there are significant dangers associated with their usage towards human 

health—skin contact leads to sores,22  inhalation causes perforation of the nasal 

septum,23 whilst animal testing has shown that injection and ingestion give rise to 

cancer.24,25,26 Such high levels of toxicity associated with Cr(VI) oxoanions (such as 

chromate) are attributed to structural similarities with phosphate and sulphate 

anions—which are known to be easily transported into biological cells acting as 

nutrients (whereas chromate causes cell damage). 27,28  In vitro studies have shown 
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that within a biological cell, hexavalent chromium species can be reduced to stable 

trivalent chromium compounds by ascorbate and different thiol-containing molecules 

(such as glutathione and the amino acid cysteine).29 During this reduction of Cr(VI) 

oxoanions, oxygen radicals and intermediate chromium oxidation states are formed 

which react with and damage different parts of the biological cell—for example 

cleavage of DNA strands.30  The resultant trivalent chromium ions are able to form 

complexes with amino acids and the phosphate groups of DNA present within the 

cell.31 These stable Cr(III) complexes are difficult to break up and therefore impair 

the functions of the cell—causing cancer and other health issues.28  In contrast, 

trivalent chromium species found in the environment are relatively harmless because 

they are unable to easily permeate biological cell walls.27 Given the aforementioned 

toxicity of hexavalent chromium (even when ingested at very low concentrations over 

an extended period of time), strict legal limits have been set by government 

regulatory bodies limiting the maximum permitted chromium concentration in drinking 

water (for the European Union, the current legal limit of 50 µg L−1, will shortly be 

lowered to 25 µg L−1—agreed by the European Commission in December 2019).3,4,5 

However, elevated concentrations of Cr(VI) oxoanions are often detected in ground 

and drinking water supplies across many other parts of the world.32,33,34 

Point-of-use water purification systems for chromium oxoanion containing 

effluents potentially offer a cheaper and more targeted approach compared to larger 

scale upstream installations which are susceptible to mismanagement due to lack of 

legal enforcement of safe pollutant drinking levels within some developing countries.  

Earlier attempts to use ion-exchange materials have offered limited practical use due 

to their requirement for low pH values in order to achieve effective pollutant 

capture.35,36 To overcome the challenges outlined above, we have devised a system 

based on the attachment of a layer of highly selective calixarene molecules to 

commercially available cloths using a combination of plasmachemical surface 

functionalisation and robust chemical coupling of calixarene molecules. In contrast to 

anion exchange resins, calixarenes provide higher selectivity due to multidentate 

complex formation with aqueous chromium ion pollutant species. This has facilitated 

efficient removal of hexavalent chromium oxoanions from water at pollutant levels 

found in real-world scenarios. Specifically, pieces of a high surface area cloth 

functionalised with tertiary amine terminated calixarene (5,11,17,23-

tetrakis[(dimethylamino)methyl]-25,26,27,28-tetrahydroxycalix[4]arene, DMAM-
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calixarene) has been shown to capture Cr(VI) oxoanions from polluted industrial 

wastewater, Scheme 1. This encompasses pulsed plasma deposition of 

poly(vinylbenzyl chloride) onto the cloth substrate to provide benzylchloride groups 

for reaction with the calixarene lower rim hydroxyl groups via a nucleophilic 

substitution mechanism.37  DMAM-calixarene was chosen because of its promising 

capability to capture Cr(VI) oxoanions (although unknown selectivity). 38  Previous 

studies utilising calixarenes for Cr(VI) oxanion removal have utilised solution phase 

separation which is impractical in terms of real-world applications given that the most 

practical approach for the end-user is simply to pour water through a filtration 

medium. Non-woven polypropylene is employed as the cloth substrate because it is 

readily available and less prone to fungal growth compared to natural materials 

(such as cotton). 39 Also it is flexible enough to be easily inserted into cartridges of 

any size and geometry without leaving any gaps through which the water flow could 

circumvent the filtration media. Cr(VI) oxoanions are removed with high efficiency 

from water by simply filtering the pollutant solution through the functionalized cloth. It 

is shown that DMAM-calixarene functionalized cloth completely removes hexavalent 

chromium oxoanions from water at pollutant levels comparable to real-world 

scenarios (up to 100−260 µg L−1 ).33, 40,41  Furthermore, high ion selectivity towards 

Cr(VI) oxoanion capture is demonstrated for real-world polluted wastewater, as well 

as multiple-use recyclability. 
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Scheme 1: Pulsed plasma poly(vinylbenzyl chloride) deposition onto a cloth substrate, 
followed by tethering of calixarenes containing either tertiary amine groups (5,11,17,23-
tetrakis[(dimethylamino)methyl]-25,26,27,28-tetrahydroxycalix[4]arene, DMAM-calixarene) or 
tert-butyl groups on the upper rim (5,11,17,23-tetra-tert-butyl-25,26,27,28-
tetrahydroxycalix[4]arene, t-Bu-calixarene), or alternatively with a phenol derivative 
containing a tertiary amine group (2,6-di-tert-butyl-4-(dimethylaminomethyl)phenol, DMAM-
phenol). 
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2. EXPERIMENTAL 

2.1 Preparation of Functionalized Cloth 

Non-woven polypropylene cloth was used as the high surface area substrate (taken 

from the middle layer of disposable surgical masks, 80 µm thickness, 5.0 ± 1.5 µm 

fibre diameter, SD Medical Ltd.). The fabric was rinsed with ethanol and thoroughly 

dried in air prior to plasmachemical surface functionalization.  

Pulsed plasma deposition using vinylbenzyl chloride precursor (+97% mixture 

of 3- and 4-isomers, Sigma Aldrich Ltd.) was conducted in a cylindrical glass 

chamber (5 cm diameter, 470 cm3 volume, base pressure less than 3 x 10−3 mbar, 

and a leak rate better than 2 x 10−9 mol s−1) enclosed in a Faraday cage.42,43 The 

chamber was connected to a 30 L min−1 two-stage rotary pump (E2M2, Edwards 

Vacuum Ltd.) via a liquid nitrogen cold trap. An inductor−capacitor impedance 

matching network was used to minimize the standing-wave ratio for power 

transmission from a 13.56 MHz radio frequency (RF) power generator to a copper 

coil (10 turns, spanning 8 cm) externally wound around the glass chamber. For 

pulsed plasma deposition, a signal generator (model TH503, Thurlby Thandar 

Instruments Ltd.) was used to trigger the RF power supply, and the corresponding 

pulse shape was monitored with an oscilloscope (model V-252, Hitachi Ltd.). Prior to 

each plasma deposition, the reactor was scrubbed with detergent, rinsed with 

acetone, and oven dried at 200 °C. Next, a continuous wave air plasma was run at 

0.2 mbar pressure and 50 W for a total of at least 30 min to remove any remaining 

contaminants from the chamber walls. Non-woven polypropylene cloth sheets 

(120 mm x 150 mm) were rolled against the interior chamber walls avoiding any 

overlap. Following evacuation to the system base pressure, vinylbenzyl chloride 

monomer (purified using at least five freeze−pump−thaw cycles) vapour was 

admitted into the chamber at 0.15 mbar pressure for 15 min. Next, the electrical 

discharge was ignited with a pulse duty cycle on-period of 100 µs and off-period of 

4 ms, in conjunction with 30 W peak power for a duration of 20 min. Upon extinction 

of the plasma, the chamber was purged with monomer vapour for an additional 

15 min. Finally, the system was evacuated to base pressure, and vented to the 

atmosphere. Following coating of one side of the non-woven polypropylene cloth, it 

was removed from the chamber, flipped over, placed into a clean chamber, and the 

process repeated for uniform coating of the other side. Subsequently, the pulsed 
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plasma poly(vinylbenzyl chloride) functionalized fabric was cut into four pieces each 

measuring about 60 mm x 70 mm for further surface functionalisation, and the 

remaining 120 mm x 10 mm strip used for analysis at this stage.  

Each cloth piece was placed into a separate glass vial (28 mL volume) 

containing 15.2 mg potassium carbonate (Sigma Aldrich Ltd.). Subsequently, 

27.5 mL of a 8 mmol L−1 sodium iodide acetone solution (Fisher Scientific UK Ltd.) 

and either 0.4 mmol L−1 of the desired calixarene or 1.6 mmol L−1 2,6-di-tert-butyl-4-

(dimethylaminomethyl)phenol (DMAM-phenol; Tokyo Chemical Industry UK Ltd.) 

were added into each vial. The calixarenes used were either 5,11,17,23-

tetrakis[(dimethylamino)methyl]-25,26,27,28-tetrahydroxycalix[4]arene (DMAM-

calixarene; synthesized according to earlier literature38,44) or 5,11,17,23-tetra-tert-

butyl-25,26,27,28-tetrahydroxycalix[4]arene (tBu-calixarene; 99%, Acros Organics 

B.V.B.A). The vials were sealed and rotated at 40 rpm for about 70 h. Subsequently 

the functionalized cloth pieces were removed from the vials, rinsed with acetone, 

followed by water, and finally air dried. 

 

2.2 Characterisation 

Thickness of pulsed plasma poly(vinylbenzyl chloride) coatings deposited onto 

silicon wafers (Silicon Valley Microelectronics Inc.) placed at each end of the cloth 

were measured using a spectrophotometer (NKD-6000, Aquila Instruments Ltd.). 

Transmittance−reflectance curves (350−1000 nm wavelength) were acquired using a 

parallel p-polarised light source at 30° incident angle to the substrate. These curves 

were fitted to a Cauchy model for dielectric materials 45  using a modified 

Levenberg−Marquardt algorithm (version 2.2 Pro-Optix software, Aquila Instruments 

Ltd.).46 

Infrared spectra of the functionalized cloth were recorded using a FT-IR 

spectrometer (model Frontier IR, Perkin Elmer Inc.) equipped with a universal 

attenuated total reflectance (ATR) accessory (DiCompTM crystal with diamond 

surface (refractive index 2.4) in direct contact with a zinc selenide focusing element, 

Perkin Elmer Inc.) providing a penetration depth in the range of a few µm.47 Samples 

were pressed against the ATR accessory crystal with a force of 110 N using the 

instrument software. Acquired spectra were averaged over 20 scans at 2 cm−1 

resolution across the 380–4000 cm−1 wavenumber range. 
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X-ray photoelectron spectroscopy (XPS) was carried out using an electron 

spectrometer (ESCALAB II, VG Scientific Ltd.) fitted with an unmonochromatised Mg 

Kα X-ray source (1253.6 eV) and a concentric hemispherical analyser. Photoemitted 

electrons were collected at a take-off angle of 20° from the substrate normal with 

electron detection in the constant analyser energy mode (CAE mode pass energy = 

20 eV). Experimentally determined instrument sensitivity (multiplication) factors were 

C(1s):O(1s):N(1s):Cl(2p) = 1.00:0.35:0.70:0.37 respectively. A linear background 

was subtracted from core level spectra and then fitted using Gaussian peak shapes 

with a constant full-width-half-maximum (FWHM).48 

For scanning electron microscopy (SEM), non-woven polypropylene cloth 

samples were mounted onto carbon disks supported on aluminium stubs, and then 

coated with a thin gold layer (5–10 nm, Polaron SEM Coating Unit, Quorum 

Technologies Ltd.). Surface topography images were acquired using a scanning 

electron microscope (model Vega 3LMU, Tescan Orsay Holdings a.s.) operating in 

secondary electron detection mode, in conjunction with an 8 kV accelerating voltage, 

and a working distance of 8–11 mm. 

Cr(VI) oxoanion aqueous solution concentrations and changes thereof were 

measured using a UV–Vis–NIR spectrophotometer (Cary 5000, Agilent Technologies 

Inc.) in conjunction with a quartz cell (10 mm light path length, SUPRASIL® high 

precision quartz 300, Hellma Analytics GmbH & Co. KG).49 The previously reported 

isosbestic point for the light absorbance of Cr(VI) oxoanion solutions at 339 nm was 

verified by acquiring UV–Vis spectra of fixed concentration potassium dichromate 

solutions at six different pH values ranging between pH 2.25–10.11. Subsequently, a 

calibration curve was created by measuring the absorbance at 339 nm for ten 

different potassium dichromate solutions spanning a hexavalent chromium 

concentration range of three orders of magnitude from 70 µg L−1 (70 ppb) to 

70 mg L−1 (70 ppm). For each solution, division of the measured absorbance at 

339 nm by the respective Cr(VI) concentration and light path length (Beer−Lambert 

Law 50 ) yielded the mean molar extinction coefficient value (ε = (1.47 ± 0.04) x 

103 M−1 cm−1—which is in agreement with the literature).49 Unknown concentrations 

of Cr(VI) oxoanion solutions collected following water filtration experiments were 

subsequently calculated by measuring their absorbance at 339 nm in conjunction 

with the aforementioned experimentally determined molar extinction coefficient (ε). 
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2.3 Chromium Solution Filtration 

Cr(VI) oxoanion solutions were prepared by dissolving potassium dichromate 

(>99.0%, Sigma Aldrich Ltd.) in ultra-high purity water (18.2 M cm, SELECT 

Neptune Analytical water polishing unit, Purite Ltd.) and subsequent dilution to the 

desired concentrations for water purification testing.  

Static Cr(VI) oxoanion uptake measurements were made by immersing each of 

four pieces of 30 mm x 35 mm DMAM-calixarene functionalized cloth obtained from 

different batches (quarters of the initial 60 mm x 70 mm pieces) into 13 mL of 

aqueous potassium dichromate solution containing 20 mg L−1 Cr(VI) concentration. 

The sealed vials were rotated at 40 rpm for 4 h. Subsequently, the Cr(VI) 

concentrations in the initial and set of four purified solutions were measured. 

Flow-through water filtration testing entailed inserting 30 mm x 35 mm pieces of 

functionalized non-woven polypropylene cloth into glass Pasteur pipettes 

(Fisherbrand, 15 cm length, inner diameter 5.6 mm, Fisher Scientific UK Ltd.). 

Potassium dichromate solutions and real-world water samples were passed through 

the cloth loaded Pasteur pipette in the absence of any externally applied pressure 

(this filtration typically took about 8–15 min for 10 mL volumes of liquid). By 

measuring the Cr(VI) concentration in each of the filtrates, the amount of chromium 

captured in the cloth following each filtration step could be calculated. All 

measurements were repeated at least twice. 

For cloth recycling, the release of Cr(VI) oxoanions captured by DMAM-

calixarene fabrics back into solution was done by deprotonation of the calixarene 

amine groups by adding base in conjunction with displacement of the captured Cr(VI) 

oxoanions using high concentrations of sodium chloride (ion exchange).51 A range of 

regeneration solutions were screened using sodium hydroxide (analytic reagent 

grade pellets, Fisher Scientific UK Ltd.), sodium bicarbonate (+99%, Acros Organics 

B.V.B.A.), and sodium chloride (+99.5%, Sigma Aldrich Ltd.). For each regeneration 

experiment, first 10 mL of a 6 mg L−1 Cr(VI) oxoanion solution was filtered through 

the DMAM-calixarene functionalized cloth, then 5 mL deionized water was filtered 

through to rinse out any chromium(VI) solution trapped by capillary forces, followed 

by passing 5 mL of one of the prepared regeneration solutions through the 

hexavalent chromium oxoanion loaded cloth. By measuring the Cr(VI) concentration 

released into each of the filtrates via UV–Vis spectroscopy, the amount of Cr(VI) 
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remaining in the cloth could be calculated. The quantity of chromium(VI) released 

during each solution regeneration was divided by the initial filtrate chromium(VI) 

uptake by the cloth to determine the release efficiency (percentage) for each recycle.   

In order to test the selectivity of functionalized cloth for chromium(VI) oxoanion 

capture in the presence of competitive aqueous anions, model solutions were 

prepared using sodium chloride (+99.5%, Sigma Aldrich Ltd.), monosodium 

phosphate (Sigma Aldrich Ltd.), sodium sulfate (+99% anhydrous, Fisher Scientific 

UK Ltd.), and sodium nitrate (99%, Acros Organics B.V.B.A.).  

Water collected from a vegetated rainwater pond (Durham University, UK) was 

used to simulate real-world water containing a natural mixture of ions. The water was 

collected directly from the pond and filtered using a membrane filter (Whatman 

Polydisc GW In-Line polyamide filter with 0.45 µm pore size, GE Healthcare Inc.) to 

remove particulate matter (as stipulated for dissolved chromium analysis by the 

United States Environmental Protection Agency52). Following removal of particulate 

matter, the pond water was spiked with potassium dichromate solution at known 

concentrations. Duplicate untreated pond water samples were analysed to determine 

the concentration of common naturally occurring anions that may compete with 

chromate, namely chloride, phosphate, sulfate, and nitrate (UKAS / ISO17025 

accredited, ALS Environmental Ltd.), Supporting Information Table S 1. All filtration 

experiments with pond water were conducted within 3 h of collection. 

Real-world industrial wastewater samples were collected in polypropylene 

bottles (Azlon 30 mL round wide neck bottles, SciLab Ltd.) from 2 different locations 

(A and B) in an industrial zone near Jalandhar, India.  Filtration experiments and 

analyses were performed within a week of water sample collection. Particulate 

matter was removed using a membrane filter (Whatman Polydisc GW In-Line 

polyamide filter with 0.45 µm pore size, GE Healthcare Inc.) as stipulated for 

dissolved chromium analysis by the United States Environmental Protection 

Agency52.  The total chromium content was measured using inductively coupled 

plasma optical emission spectroscopy (iCAP 6500, Thermo Fisher Scientific Inc.).  

Calibration standards were prepared by serial dilution of a 1000 mg L−1 Cr(NO3)3 

reference solution (Romil Ltd.).  Each sample analysis consisted of 3 replicate 

measurements for 13 characteristic chromium wavelengths to ensure the complex 

environmental matrix was not causing spectral interferences. 
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3. RESULTS 

3.1 DMAM-Calixarene Functionalized Cloths 

The deposition rate for pulsed plasma poly(vinylbenzyl chloride) films coated onto 

silicon wafers was measured to be 43.6 ± 3.6 nm min−1. All of the non-woven cloth 

filters were uniformly coated.53 

The ATR-infrared spectrum of the uncoated non-woven polypropylene cloth 

displays features characteristic for polypropylene, such as broad and intense C-H 

stretches in the 2830−2970 cm−1 region and two intense bands at 1454 cm−1 and 

1377 cm−1 corresponding to the methylene CH2 and methyl CH3 bending vibrations 

respectively.54,55 Given the thin nature of the plasma deposited coatings, spectral 

features from the underlying non-woven polypropylene cloth were also within the 

ATR-FTIR technique sampling depth (few μm)47, Figure 1. Fingerprint peaks of the 

pulsed plasma poly(vinylbenzyl chloride) layer present on the cloth include a 

characteristic C−Cl stretch absorbance at 708 cm−1 (III) and a −CH2Cl group C−H 

wag absorbance at 1263 cm−1 (II).37,53, 55 , 56  These features became attenuated 

following reaction with DMAM-calixarene. The absorbance peak associated with the 

calixarene tertiary amine group C−N stretch (1020−1250 cm−1) is difficult to assign 

unambiguously due to overlap with the underlying polypropylene cloth spectral 

features.47,55 However, a broad O−H stretch band at 3406 cm−1 (I) associated with 

the unreacted hydroxyl groups on the lower rim of the DMAM-calixarene molecules 

is clearly visible.55   
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Figure 1: ATR-infrared spectra of: (a) uncoated non-woven polypropylene cloth; (b) pulsed 
plasma poly(vinylbenzyl chloride) coated cloth; and (c) following functionalization of (b) with 
DMAM-calixarene. Dashed lines indicate characteristic vibrations: (I) O−H stretch, (II) C−H 
wag of the −CH2Cl group, and (III) C−Cl stretch. 

 

XPS analysis of the pulsed plasma poly(vinylbenzyl chloride) functionalized 

cloth prior to reaction with DMAM-calixarene gave surface elemental compositions in 

good agreement with expected theoretical values, Table 1.43,53,56,57 This confirms 

conformal coating of the non-woven polypropylene fibres.  A small amount of aerial 

oxidation was evident due to the reaction of trapped free radicals within the 

deposited plasma polymer film.58,59,60  

 

 

 

 

 

  



   

23/10/2020 12:28:00 15 

Table 1: XPS compositions for: vinylbenzyl chloride (VBC, theoretical); pulsed plasma 
deposited poly(vinylbenzyl chloride) (pp-VBC); one unit of vinylbenzyl chloride reacted with 
one DMAM-calixarene molecule (theoretical see Scheme 1); and pulsed plasma deposited 
poly(vinylbenzyl chloride) subsequently functionalized with DMAM-calixarene. 

 

Surface Composition / Atom % 

C O N Cl 

VBC (theoretical) 90.0 0.0 0.0 10.0 

pp-VBC 89.4 ± 1.6 1.0 ± 1.1 0.0 ± 0.0 9.5 ± 0.4 

VBC + DMAM-Calix 
(theoretical) 

86.0 7.0 7.0 0.0 

pp-VBC + DMAM-Calix 85.7 ± 1.0 8.3 ± 1.0 3.5 ± 0.4 2.4 ± 0.3 

 

XPS surface elemental composition following DMAM-calixarene 

functionalisation is consistent with predicted theoretical values, Table 1. The 

detection of 2.4 at.% chloride following DMAM-calixarene reaction is either due to 

not all surface chloride groups of the pulsed plasma poly(vinylbenzyl chloride) 

undergoing reaction or the presence of unreacted sub-surface chloride groups within 

the XPS technique sampling depth (0.2−5 nm)61,62. This would also explain why the 

measured nitrogen content of the DMAM-calixarene functionalized cloth is lower than 

the theoretically expected value for the model reaction mechanism corresponding to 

each vinylbenzyl chloride repeat unit reacting with one DMAM-calixarene molecule, 

Scheme 1. 

Scanning electron microscopy (SEM) showed that there was no significant 

swelling of the pulsed plasma poly(vinylbenzyl chloride) films following DMAM-

calixarene functionalisation, Supporting Information Figure S 1.   

 

3.2 Cr(VI) Oxoanion Pollutant Capture  

Static immersion of DMAM-calixarene functionalized cloth pieces into 13 mL of 

2 mg L−1 Cr(VI) solution (approximately ten times greater concentration compared to 

typical real-world pollution levels33, 40,41) for 4 h removed at least 99% of chromium(VI) 

oxoanions from solution (concentration dropped to below the UV−Vis instrument 

detection limit of 20 µg L−1)—meaning any residual pollutant level met the 
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forthcoming stricter European Union drinking water standards (< 25 µg L−1).3 For an 

even higher starting chromium(VI) concentration of 20 mg L−1, 70 ± 4% of the 

chromium(VI) oxoanions (6.6 ± 0.4 mgCr(VI) gCloth
−1) could be captured by the DMAM-

calixarene cloth following an immersion time of 4 h, thereby demonstrating the high 

overall pollutant capture capacity. 

Dynamic flow-through filtration testing of DMAM-calixarene functionalized 

cloths utilised a range of different concentration aqueous potassium dichromate 

solutions, Figure 2. Virtually all chromium(VI) oxoanion content was removed for 

starting Cr(VI) concentrations below 1 mg L−1 (i.e. applicable to real-world scenario 

pollution concentrations which are reported to be up to 100−260 µg L−1 33,40,41). Even 

for significantly higher Cr(VI) concentrations (20 mg L−1), 78 ± 9% of the aqueous 

chromium(VI) oxoanion species could be captured in a single pass (corresponds to 

2.7 ± 0.4 mgCr(VI) gCloth
−1).  Variation of the pulsed plasma poly(vinylbenzyl chloride) 

layer thickness was found to have negligible effect on the chromium(VI) capture 

efficiency. 

 

Figure 2: Flow-through Cr(VI) oxoanion capture using DMAM-calixarene functionalized non-
woven polypropylene cloth as a function of starting pollutant concentration. 5 mL of 
potassium dichromate solution was used for each filtration and repeated 5 times using fresh 
pieces of functional cloth. Three different batches of DMAM-calixarene functionalized cloths 
were tested. Typical real-world pollution levels correspond to about 0.2 mg L−1.33,40,41 
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Control Cr(VI) oxoanion filtration experiments were conducted using pulsed 

plasma poly(vinylbenzyl chloride) coated non-woven polypropylene cloth, as well as 

following functionalisation with either a calixarene containing tert-butyl groups 

instead of dimethylaminomethyl groups (tBu-calixarene) or 2,6-di-tert-butyl-4-

(dimethylaminomethyl)phenol (DMAM-phenol—equivalent to the repeat building 

block for DMAM-calixarene), Scheme 1 and Figure 3. Virtually no chromium(VI) 

oxoanion capture was measured for t-Bu-calixarene cloth, whereas DMAM-phenol 

cloth showed similar levels of removal efficiency as found for DMAM-calixarene 

cloth—thereby confirming the role of dimethylaminomethyl groups for Cr(VI) 

oxoanion capture. Notable advantages of DMAM-calixarene compared to DMAM-

phenol functionalized cloths were found with respect to better Cr(VI) oxoanion 

capture selectivity in the presence of other water-borne pollutants (as described later 

in Section 3.3). 

 

Figure 3: Flow-through Cr(VI) oxoanion capture efficiencies for pulsed plasma 
poly(vinylbenzyl chloride) functionalized non-woven polypropylene cloth pieces (pp-VBC), 
and following subsequent reaction with dimethylaminomethyl (DMAM) calixarene, DMAM-
phenol, or tert-butyl (t-Bu) calixarene, Scheme 1. 5 mL potassium dichromate solutions were 
used with starting Cr(VI) concentrations of 2 mg L−1 and 6 mg L−1.  
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3.3 Cr(VI) Oxoanion Filtration Selectivity 

Flow-through filtration tests were conducted with solutions containing commonly 

occurring real-world competitive aqueous anions in order to compare the selectivities 

between the DMAM-calixarene versus DMAM-phenol functionalized cloths for 

chromium(VI) oxoanion removal, Scheme 1. The competitive anions chosen were 

chloride (due to its ubiquitous presence in water), phosphate, sulfate, and nitrate 

(these three because of their structural similarity to chromate CrO4
2−). In order to 

allow for a direct comparison to be made against earlier reported studies38, solutions 

were prepared with similar molar chromium(VI) oxoanion to competitive anion ratios 

as those employed previously (1:10 and 1:100), Figure 4. The presence of chloride, 

phosphate, or sulfate ions did not have any significant impact on the chromium(VI) 

oxoanion removal efficiency for the DMAM-calixarene and DMAM-phenol 

functionalized cloths. Whereas, the chromium(VI) pollutant removal efficiency in the 

presence of nitrate anions was reduced significantly more for the case of DMAM-

phenol compared to DMAM-calixarene functionalised cloths. The Cr(VI) oxoanion 

pollutant capture efficiency of DMAM-calixarene cloth remains high (88% ± 5%) at 

Cr(VI):Nitrate ratio of 1:10 (containing about 24 mg L−1 nitrate—which is similar to 

18−20 mg L−1 nitrate concentration commonly found in real world scenarios 63 ). 

Hence, the multidentate calixarene macrocycle is key for Cr(VI) oxoanion capture in 

the presence of other water-borne anions. 
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Figure 4: Flow-through Cr(VI) oxoanion capture efficiencies for pulsed plasma 
poly(vinylbenzyl chloride) coated non-woven polypropylene cloth functionalized with DMAM-
calixarene or DMAM-phenol. 10 mL solutions were used, each containing 2 mg L−1 Cr(VI) 
and either a 1:10 or 1:100 molar ratio of competitive anions (chloride, phosphate, sulfate, or 
nitrate). 

 

3.4 Model Real-World Contaminated Wastewater 

In order to further model chromium(VI) oxoanion removal for real-world applications, 

a water sample was collected from a vegetated rainwater pond. The slightly opaque 

and greenish pond water was filtered through a 0.45 µm membrane filter to remove 

particulate matter. Chemical analysis gave anion concentrations: 

chloride = 4.0 mg L−1, P (phosphate) < 0.120 mg L−1, sulfate < 4.4 mg L−1, N (nitrate) 

< 0.7 mg L−1, Supporting Information Table S 1. The pond water was subsequently 

spiked with potassium dichromate to give a Cr(VI) concentration of 2 mg L−1, Figure 

5. Compared to the earlier flow-through filtration experiments performed with ultra-

high purity (UHP) water, both DMAM-calixarene and DMAM-phenol functionalized 

cloths captured slightly less Cr(VI) oxoanions from the spiked pond water. However, 

both functionalised cloth types still managed to remove more than 80% of the 

chromium(VI) oxoanions from pond water—highlighting the selectivity of the tertiary 
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amine groups in real-world scenarios. The much lower measured real-world nitrate 

concentration (< 0.7 mg L−1 N) compared to the earlier modelling studies (Section 

3.3) means that the DMAM-phenol functionalised cloths also display good Cr(VI) 

oxoanion capture efficiency, Figure 4 and Figure 5. 

 

 

Figure 5: Flow-through filtration of 2 mg L−1 Cr(VI) solution using DMAM-calixarene and 
DMAM-phenol functionalized cloths. Cr(VI) oxoanion solutions were prepared using either 
ultra-high purity (UHP) water or filtered pond water: (a) filtration efficiency; (b) untreated 
pond water appearing slightly coloured and opaque; and (c) after filtration of particulate 
matter through 0.45 µm membrane filter showing clarity (prior to spiking with Cr(VI) oxoanion 
solution). 

 

3.5 Real-World Polluted Industrial Wastewater 

Drainage wastewater containing chromium pollutants was collected from an 

industrial zone in India. After removal of sludge by filtration through 0.45 µm 

membrane filters, the water was passed through DMAM-calixarene functionalized 

cloth and analysed for total chromium content via inductively coupled plasma optical 

emission spectroscopy. Compared to the Cr(VI) oxoanion test solutions employed in 

the laboratory, the real-world wastewater samples had a fairly low chromium 
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concentration, Figure 6.  The chromium concentration for location A was however 

well above the World Health Organisation (WHO) recommended limit of 50 µg L−1 

and the concentration for location B was higher than the forthcoming EU limit of 

25 µg L−1 (provisionally agreed by the European Commission4). This indicates that 

water from both sources could be harmful to the population living nearby if they are 

exposed to it for a long time. Following passage through the DMAM-calixarene cloth, 

the chromium concentration in both elutes was lower than 20 µg L−1, confirming that 

sufficient chromium was successfully removed to make the water safe for human 

consumption (in compliance with EU regulations).  Any remaining chromium 

following filtration for location B samples is most likely to be the much less toxic 

cationic Cr(III) species which can also be present in industrial wastewaters.64 

 

 

Figure 6: Chromium concentration of real-world water samples before and after filtration 
through DMAM-calixarene cloth for industrial zone locations A and B in India. 10 mL of 
collected wastewater was used for each filtration.   
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3.6 Cloth Recycling 

Cloth regeneration using different permutations of aqueous solutions (NaCl(aq) for 

anion exchange, and either a weak base (NaHCO3(aq)) or a strong base (NaOH(aq)) 

for deprotonation of DMAM-calixarene amine groups) showed that combined salt 

and base mixtures are the most efficient, Figure 7.  Almost 80% Cr(VI) oxoanion 

release from DMAM-calixarene cloths could be achieved for an aqueous 

regeneration solution comprising a mixture of 2 M NaCl and 0.5 M NaOH.  

 

 

Figure 7: Cr(VI) release into solution (filtrate) from Cr(VI) oxoanion loaded DMAM-calixarene 
cloth using 5 mL of different aqueous regeneration solutions. The cloths were pre-loaded 
using 10 mL of a 6 mg L−1 Cr(VI) solution followed by rinsing with 5 mL of ultra-high purity 
water (to give an average cloth loading of 1.8 mgCr(VI) gCloth

−1). 

 

In order to demonstrate the scope for repeat usage (recycling) of DMAM-

calixarene cloths, the 2 M NaCl and 0.5 M NaOH mixture regeneration solution was 

used following consecutive Cr(VI) oxoanion capture cycles, Figure 8.  Multiple 

recycling of the functionalized cloth did not lead to any deterioration in Cr(VI) 

oxoanion capture capacity. In fact, the recycled cloth showed a slightly improved 
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hexavalent chromium oxoanion uptake during the second and third cycles compared 

to the first cycle. 

 

 

 

Figure 8: Recycling of DMAM-calixarene functionalized cloth for Cr(VI) oxoanion capture by 
alternate passage through the cloth of 10 mL of 6 mg L−1 Cr(VI) pollutant solution and 5 mL 
of 0.5 M NaOH + 2 M NaCl regeneration solution, interjected with 5 mL water rinsing steps. 

 

4. DISCUSSION  

For real-world scenarios, point-of-use filtration is a straightforward and instantaneous, 

water purification technique. Non-woven polypropylene cloth functionalized with 

DMAM-calixarene has been shown to effectively capture chromium(VI) oxoanion 

species from polluted water. Previously reported chromium pollutant capture studies 

using amine functionalized materials were predominantly performed at low pH 

values—conditions that are unrealistic in terms of real-world water purification 

applications as well as being unfit for human consumption.26,35,38,65  Effectively, such 

low pH values promote the capture of Cr(VI) oxoanions through protonated 

(positively charged) amine groups. 66 , 67  Literature pKa values for tertiary amine 
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groups indicate that they remain charged due to protonation of the Brønsted acidic 

amine under all but the most alkaline conditions (and certainly at the near neutral 

conditions employed in the present investigation). 68 , 69  The efficient capture of 

chromium(VI) oxoanions by both DMAM-calixarene and DMAM-phenol 

functionalized cloths indicates that there is sufficient positive charge on the amine 

groups to facilitate the removal of pollutant Cr(VI) oxoanions by filtration without 

requiring any alteration to the water pH (through usage of chemical additives), Figure 

2. Without any alteration of the pH, a very high capture efficiency is attained with up 

to 100% chromium removal. For a Cr(VI) concentration of 200 µg L−1 (a value 

comparable to real-world chromium pollution levels33,40,41), the DMAM-calixarene 

cloth removes all of the chromium from solution (UV−Vis instrument detection limit 

for quantification is about 20 µg L−1), thus rendering the water safe to drink 

(European Union limit for chromium in drinking water is 50 µg L−1, to be lowered to 

25 µg L−1 in the near future,4,5). 

In order to obtain a lower estimate of Cr(VI) capture capacity, static immersion 

of DMAM-calixarene functionalized pieces of cloth into 13 mL of much higher 

concentration Cr(VI) solutions (20 mg L−1) for 4 h gave rise to 70% ± 4% removal of 

chromium(VI) oxoanion species (6.6 ± 0.4 mgCr(VI) gCloth
−1). Given that the actual 

chromium capture coatings supported onto the non-woven polypropylene fibres are 

very thin, the inherent chromium capture capacity of the present system is very high 

compared to earlier studies65. For an upper limit, if one assumes that all of the 

DMAM-calixarene molecules present in solution during cloth functionalisation 

become tethered to the pulsed plasma poly(vinylbenzyl chloride) coating, then the 

experimentally measured maximum Cr(VI) uptake value correlates to each 

calixarene molecule capturing 1.3 ± 0.1 chromium atoms belonging to Cr(VI) 

oxoanions (Supporting Information Calculation). Given that there exists a 

concentration- and pH-dependent equilibrium between Cr2O7
2−, HCrO4

−, and CrO4
2− 

oxoanion species in solution, it is feasible to envisage the surface tethered 

calixarene macrocycles capturing a combination of chromate and dichromate 

anions—thus accounting for the estimated chromium to calixarene ratio exceeding 

1:1. On this premise, the use of higher surface area support cloths and larger 

densities of tethered calixarene could provide even greater Cr(VI) oxoanion removal 

capacities. 
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Whilst a variety of molecules containing amine groups are capable of capturing 

Cr(VI) oxoanions, the comparison between DMAM-calixarene and DMAM-phenol 

functionalized cloths illustrates that the macrocycle cavity shape of calixarenes 

underpins the higher chromium(VI) oxoanion capture selectivity in the presence of 

other water pollutants (particularly high concentrations of nitrate), Figure 4. In the 

European Union, the legal limit for nitrate in drinking water is 50 mg L−1.3 

Groundwaters in the European Union contained an average of about 18−20 mg L−1 

of nitrate in the years 1992–2012.63 The Cr(VI) : Nitrate 1:10 solution used in the 

present study corresponds to a nitrate concentration of about 24 mg L−1. At these 

nitrate concentrations, DMAM-calixarene functionalized cloth readily captures 88% of 

Cr(VI) from solution in a single filtration pass (whereas the chromium capture 

efficiency for DMAM-phenol cloth is much lower at about 57%). This greater capture 

efficiency of DMAM-calixarene compared to DMAM-phenol can be explained by the 

concerted orientation of coordinating tertiary amine groups associated with each 

calixarene cup. The calixarene cavity shape enhances the chelating effect between 

the tertiary amine groups and the Cr(VI) oxoanions.44 Experiments with spiked pond 

water and polluted industrial wastewater samples taken from India have shown that 

DMAM-calixarene cloth is effective at lowering the chromium concentration in real-

world complex water mixtures to levels considered safe for human consumption (in 

accordance with forthcoming lower European Union drinking water standards 

< 25 µg L−1).3 

Recyclability for multiple usage is a crucial factor for real-world applications in 

relation to remote locations and environmental sustainability. DMAM-calixarene 

cloths can be used multiple times by rinsing with small quantities of an aqueous 

solution containing widely available salt (NaCl) for Cr(VI) oxoanion exchange and 

base (NaOH) for deprotonation of DMAM-calixarene amine groups, Figure 8.  In 

earlier studies, the regeneration of amine groups employed for the capture of Cr(VI) 

oxoanions was often performed using pure base solutions (following the logic that 

higher pH values eliminate the protonation of the amine groups).51,70 In the present 

investigation, the regeneration efficiency has been further improved by sodium 

chloride addition to the base solution. As well as the base-assisted deprotonation of 

the surface tethered DMAM-calixarene amine groups, the chloride anions displace 

Cr(VI) oxoanions being held by the positively charged amine coordination sites in the 
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aqueous phase.71 Such Cr(VI) oxoanion exchange is realistic given the significantly 

higher concentration of chloride anions present in solution compared to chromium(VI) 

oxoanions during the functional cloth regeneration step.  

 

5. CONCLUSIONS 

5,11,17,23-tetrakis[(dimethylamino)methyl]-25,26,27,28-tetrahydroxycalix[4]arene 

(DMAM-calixarene) macrocycles can be tethered to pulsed plasma poly(vinylbenzyl 

chloride) coated non-woven polypropylene cloths. These functional cloths provide a 

high surface area filtration medium for flow-through water purification.  Toxic 

chromium(VI) oxoanions can be captured from water with high efficiencies (up to 100% 

at typical real-world industrial pollution levels). Unlike most other Cr(VI) oxoanion 

filtration materials, there is complete Cr(VI) oxoanion removal from water (even at 

low pollutant concentrations) without the need to artificially decrease the pH value. 

Selectivity remains high in the presence of other common anions found in 

wastewater, including chloride and those that are structurally similar to chromates 

(phosphate, sulfate, and nitrate). Furthermore, the captured chromium(VI) oxoanion 

species can be easily released by rinsing the cloth with a small amount of a NaCl 

and NaOH mixture solution—thereby providing scope for multiple time re-use of the 

DMAM-calixarene functionalized cloths.  Removal of toxic chromium(VI) species 

from real-world polluted industrial wastewaters to meet safe drinking water standards 

has been demonstrated. 
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1. FIGURE 

 

   
 

   
 

   
 

Uncoated pp-VBC  pp-VBC–DMAM-
calixarene  

 

Figure S 1: SEM micrographs of: uncoated non-woven polypropylene cloth; pulsed plasma 
poly(vinylbenzyl chloride) functionalized non-woven polypropylene cloth (pp-VBC); and 
following subsequent reaction with dimethylaminomethyl (DMAM) calixarene, 
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2. TABLE 

 

 

Table S 1: Pond water sample anion concentrations. 

 

Analyte Technique Conc. / mg L−1 

Chloride as Cl Spectrophotometry 4.0 ± 0.1 

Phosphate as P ICP-OES <0.120 

Sulfate as SO4
2− Spectrophotometry <4.4 

Nitrate as N Spectrophotometry <0.7 
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3. CALCULATION: CHROMIUM CAPTURED PER DMAM-CALIXARENE 

 For DMAM-calixrene tethering to pulsed plasma poly(vinylbenzyl chloride) coated 

cloth, 31.3 mg or 47.9 µmol of DMAM-calixarene (M = 652.9 g mol−1) was 

dissolved in 120 ml of acetone. 110 ml of this solution was split up into four vials 

(each containing 27.5 ml solution) and each containing one quarter (60 

mm x 70 mm) of the full cloth (120 mm x 140 mm).  

 

 For example, in the case of 47.9 µmol of DMAM-calixarene, the amount of 

calixarene coming into contact with the full cloth (120 mm x 140 mm) is: 

𝑛௫  ଵଵ  ൌ 47.9 µ𝑚𝑜𝑙 ൈ  110 120⁄ ൌ 43.9 µ𝑚𝑜𝑙 DMAM-calixarene 

 

 Each full cloth (120 mm x 140 mm) eventually ends up being cut into 16 pieces 

(30 mm x 35 mm) with which the uptake and filtration experiments were performed.  

 

 If all of the DMAM-calixarene molecules are assumed to react with the pulsed 

plasma poly(vinylbenzyl chloride) coated cloth, and are evenly distributed across 

the cloth, then each 30 mm x 35 mm piece contains: 

𝑛௫  ௧ ൌ  43.9 µ𝑚𝑜𝑙 16⁄ ൌ  2.7 µ𝑚𝑜𝑙 DMAM-calixarene 

 

 Uptake experiments showed that each 30 mm x 35 mm piece of DMAM-

calixarene functionalized cloth captures an average of 188 ± 11 µg Cr(VI) (or 

given that each cloth piece weighs on average 28.5 ± 2.5 mg, equivalent to 

6.6 ± 0.4 mgCr(VI) gCloth
−1). 188 µg of Cr(VI) corresponds to 3.6 µmol Cr(VI). 

 

 Therefore the amount of Cr(VI) captured per tethered DMAM-calixarene molecule 

is equal to 1.3 Cr(VI) molecules per DMAM-calixarene molecule: 

3.6 µ𝑚𝑜𝑙 𝐶𝑟ሺ𝑉𝐼ሻ 2.7 µ𝑚𝑜𝑙 𝐶𝑎𝑙𝑖𝑥⁄ ൌ 1.3 𝐶𝑟ሺ𝑉𝐼ሻ 𝐶𝑎𝑙𝑖𝑥⁄  

 


