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Abstract
Hölder continuous dependence of solutions upon the initial data is established for the linear
theory of Kelvin–Voigt poroelasticity requiring only symmetry conditions upon the elastic
coefficients. A novel functional is introduced to which a logarithmic convexity technique is
employed.
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1 Introduction

Improperly posed and related problems for partial differential equations have been investi-
gated by many mathematicians, both in the past and relatively recently, e.g. Agmon [1],
Agmon and Nirenberg [2], Ames and Epperson [3], Ames and Hughes [4], Ames and
Straughan [5], Benrabah et al. [6], Caflisch et al. [7], Carasso [8–10], Chirita [11], Chirita
and Zampoli [12], Fury [13], Fury and Hughes [14], Harfash [15], Hetrick and Hughes [16],
Knops and Payne [17], Payne and Straughan [18–20], Straughan [21], Yang and Deng [22].
Such improperly posed problems are important in many real life applications. For example,
Carasso [8,23,24], gives examples in the fields of indentification of groundwater pollution
by reconstructing the contaminant plume history, or in deblurring an image in astrophysics
or magnetic resonance imaging in brain scans.

In the field of classical linear elastodynamicsKnops andPayne [17] established continuous
dependence upon the initial data without requiring any definiteness conditions on the elastic
coefficients, imposing instead only symmetry. In the modern literature it is recognised that
for some bodies positive definiteness of the elastic coefficients is too restrictive. For example,
in auxetic materials Poisson’s ratio may be negative, see Xinchun and Lakes [25], and then
the results of Knops and Payne [17], assume relevance due to their lack of definiteness
requirement.

Many continuous bodies exhibit elastic behaviour but simultaneously demonstrate fluid
like behaviour. In general, these are classed as viscoelastic materials. A particular subclass
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of such materials are the so called Kelvin–Voigt materials, cf. Chirita et al. [26], Chirita and
Zampoli [12], Gal and Medjo [27], Su and Qin [28]. In the linear case these add a dissipation
term to the equations of linear elasticity, see e.g. Chirita et al. [26], Chirita and Zampoli
[12]. It is important to observe that Kelvin–Voigt theory is being used in various industrial
applications to anayse real materials. For example, Gidde and Pawar [29] study viscoelastic
properties of polydimethylsiloxane in a micropump by means of a Kelvin–Voigt model,
Jayabal et al. [30] use the theory for computational skin modelling in the cosmetics industry,
and Jozwiak et al. [31] use this theory to describe the dynamic behaviour of biopolymer
materials.

The goal of this work is to establish a stability estimate and prove uniqueness for a
solution to equations which describe a porous elastic body of Kelvin–Voigt type. We require
only symmetry of the elastic coefficients and impose no definiteness whatsoever. In order to
achieve this we introduce a novel functional and work with a logarithmic convexity method.
The equations of poroelasticity couple the elastic displacement to the pressure field in the
pores and are described by a second order in time system coupled to a first order one. Analysis
of stability for this coupled system of partial differential equations necessarily requires a very
different procedure to that which suffices in classical elastodynamics.

2 Governing equations

The governing equations for a multi-porosity elastic body are described by Svanadze [32] or
by Straughan [33]. For a single porosity anisotropic elastic body of Kelvin–Voigt type the
equations are, cf. Chirita and Zampoli [12], Straughan [33], p. 72,

ρüi = (ai jkhuk,h), j + (bi jkh u̇k,h), j − (βi j p), j + ρ fi ,

α ṗ = (ki j p, j ),i − βi j u̇i, j + ρs,
(1)

where ρ, ui , p, fi , α, s are the density, elastic displacement, pressure field in the pores,
externally supplied body force, the inertia coefficient for the pressure, and the externally
supplied heat source. The terms ai jkh and bi jkh are the elastic coefficients and the Kelvin–
Voigt coefficients, respectively, βi j is a coupling tensor, and ki j is a pressure diffusion tensor.
A superposed dot denotes partial time differentiation, partial differentiation with respect to
xi is written as ,i ≡ ∂/∂xi , and standard indicial notation is employed in conjunction with
the Einstein summation convention.

Equation (1) hold on � × (0, T ], where � ⊂ R
3 is a bounded domain with boundary

� sufficiently smooth to allow applications of the divergence theorem, and T < ∞ is a
constant.

The solution (ui , p) is subject to the following boundary conditions

ui (x, t) = hi (x, t), p(x, t) = q(x, t), x ∈ �, t ∈ (0, T ], (2)

where hi and q are prescribed functions. The initial conditions are

ui (x, 0) = u0i (x), u̇i (x, 0) = vi (x), p(x, 0) = r(x), x ∈ �, (3)

where u0i , vi and r are prescribed functions.
The boundary-initial value problem comprising (1)–(3) is denoted by P .
The coefficient α satisfies the restriction

0 ≤ α(x) ≤ αU < ∞, (4)
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for a constant αU and for all x ∈ �. In addition, the coefficients ai jkh, bi jkh, βi j , ki j satisfy
the symmetries

ai jkh = akhi j = a jikh,

bi jkh = bkhi j = b jikh,

βi j = β j i , ki j = k ji ,

(5)

whilst bi jkh and ki j satisfy the definiteness conditions

bi jkhhi j hkh ≥ b hi j hi j , ∀ hi j ,

ki j qi qi ≥ k qiqi , ∀ qi ,
(6)

for constants b, k > 0. In addition we suppose the elastic coefficients are bounded above in
the sense that

max
x∈�̄

|ai jkh | = A (7)

for a constant A.

3 Uniqueness

To establish uniqueness for a soluition to P we let (u1i , p
1) and (u2i , p

2) be two solutions to
P for the same boundary and initial data functions hi , q, u0i , vi and r . Define the difference
(ui , p) by

ui = u1i − u2i , p = p1 − p2.

Upon inspection one sees that (ui , p) satisfies the boundary - initial value problem

ρüi = (ai jkhuk,h), j + (bi jkh u̇k,h), j − (βi j p), j

α ṗ = (ki j p, j ),i − βi j u̇i, j
(8)

on � × (0, T ] together with the boundary conditions

ui (x, t) = 0, p(x, t) = 0, x ∈ �, t ∈ (0, T ], (9)

and the initial conditions

ui (x, 0) = 0, u̇i (x, 0) = 0, p(x, 0) = 0, x ∈ �. (10)

For vector functions u, v and scalar functions φ,ψ we define the notation

(u, Bv) =
∫

�

bi jkhui, jvk,hdx

(φ, Kψ) =
∫

�

ki jφ,iψ, j dx .
(11)

Let (·, ·) and ‖ · ‖ denote the norm and inner product on L2(�).
The first relation we require is obtained by multiplying (8)1 by u̇i , by multiplying (8)2 by

p and integrating each over �. After use of the boundary conditions and an integration in
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time we find

1

2
(ρu̇i , u̇i ) + 1

2
(ai jkhui, j , uk,h) + 1

2
(α p, p)

+
∫ t

0
(u̇, Bu̇)ds +

∫ t

0
(p, Kp)ds = 0.

(12)

To establish uniqueness we introduce a new logarithmic convexity functional. Let

η(x, t) =
∫ t

0
p(x, s)ds.

Then define F(t) by

F(t) = (ρui , ui ) +
∫ t

0
(u, Bu)ds +

∫ t

0
(η, Kη)ds. (13)

The first term in F is the weighted L2 integral of the displacement which appears in clas-
sical linear elastodynamics. The second term involving (u, Bu) is necessary to handle the
dissipation in (8)1. Finally, the term in the gradient of the integrated pressure is introduced
to deal with the first order in time equation (8)2.

By differentiation

F ′(t) = 2(ρu̇i , ui ) + 2
∫ t

0
(u̇, Bu)ds + 2

∫ t

0
(η, Kp)ds.

A further differentiation shows

F ′′(t) = 2(ρüi , ui ) + 2(ρu̇i , u̇i ) + 2(u̇, Bu) + 2(η, Kp). (14)

We integrate by parts on the last two terms in (14) to obtain

(u̇, Bu) + (η, Kp) = (ui , (bi jkh u̇k,h), j ) − (p, (ki jη, j ),i ). (15)

Next integrate equation (8)2 in time to see that

α p = (ki jη, j ),i − βi j ui, j . (16)

The next step uses (8)1 to substitute for ρüi in (14), we then employ (15) in (14), and further
utilize (16) to obtain

F ′′(t) = 2(ρu̇i , u̇i ) − 2(ai jkhui, j , uk,h) − 2(α p, p). (17)

Now, substitute for the last two terms in (17) from (12) to derive

F ′′(t) = 4(ρu̇i , u̇i ) + 4
∫ t

0
(u̇, Bu̇)ds + 4

∫ t

0
(p, Kp)ds. (18)

Now form the combination FF ′′ − (F ′)2, to obtain

FF ′′ − (F ′)2 = 4S2,
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where

S2 =
[
(ρui , ui ) +

∫ t

0
(u, Bu)ds +

∫ t

0
(η, Kη)ds

]

×
[
(ρu̇i , u̇i ) +

∫ t

0
(u̇, Bu̇)ds +

∫ t

0
(p, Kp)ds

]

−
[
(ρui , u̇i ) +

∫ t

0
(u, Bu̇)ds +

∫ t

0
(p, Kη)ds

]2

and note S2 ≥ 0 by virtue of the Cauchy-Schwarz inequality. Thus,

FF ′′ − (F ′)2 ≥ 0. (19)

To establish uniqueness from inequality (19)we employ a contradiction argument. The details
are similar to those on p.21 of Straughan [33] to demonstrate F ≡ 0. Whence, ui ≡ 0. Once
ui ≡ 0, p is given by equation (8)2, and since this is a diffusion equation it follows in the
usual way that p ≡ 0. Hence the solution to P is unique.

4 Hölder stability, when E(0) ≤ 0

To analyse stability for a solution to equations (1) under conditions (2)–(7)we let (u1i , p
1) and

(u2i , p
2) be two solutions to (1) which satisfy (2) for the same functions hi and q but satisfy

(3) for different initial data functions u1i = u10i , u̇1i = v1i , p
1 = r1, u2i = u20i , u̇2i = v2i ,

p2 = r2. Define ui = u1i −u2i , p = p1− p2, andmi = u10i −u20i , vi = v1i −v2i , r = r1−r2.
Then the difference solution satisfies the equations (8) together with the boundary conditions
(9), although the initial conditions are now

ui (x, 0) = mi (x), u̇i (x, 0) = vi (x), p(x, 0) = r(x), x ∈ �. (20)

We commence by deriving the energy equation using the procedure to arrive at (12), but
now we derive

E(t) +
∫ t

0
(u̇(s), Bu̇(s))ds +

∫ t

0
(p(s), Kp(s))ds = E(0), (21)

where

E(t) = 1

2
(ρu̇i , u̇i ) + 1

2
(α p, p) + 1

2
(ai jkhui, j , uk,h) . (22)

We again let η = ∫ t
0 p ds and integrate (8)2 in time to obtain

α p = (ki jη, j ),i − βi j ui, j + αr(x) + βi jmi, j (x). (23)

Now define P to be a solution to the equation

(ki j P, j ),i = αr(x) + βi jmi, j (x), (24)

on �, with P = 0 on �. Define now the function μ(x, t) by

μ(x, t) = η(x, t) + P(x). (25)

Observe from (23) and (24) that

α p = (ki jμ, j ),i − βi j ui, j . (26)
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In this section we define the function F(t) by

F(t) =(ρui , ui ) +
∫ t

0
(u, Bu)ds

+
∫ t

0
(μ, Kμ)ds + (T − t)

[
(v, Bv) + (P, K P)

]
.

(27)

This is the function we manipulate with the logarithmic convexity arguments.
By differentiation,

F ′(t) = 2(ρu̇i , ui ) + 2
∫ t

0
(u, Bu̇)ds + 2

∫ t

0
(p, Kμ)ds. (28)

We differentiate again to find

F ′′(t) = 2(ρüi , ui ) + 2(ρu̇i , u̇i ) + 2(u, Bu̇) + 2(p, Kμ). (29)

Next, substitute for ρüi from equation (8)1 to obtain after integration by parts and use of the
boundary conditions

F ′′(t) =4(ρu̇i , u̇i ) − 2(ai jkhuk,h, ui, j )

+ 2(p, βi j ui, j ) + 2(ki jμ, j , p,i ).
(30)

Upon substitution for the ai jkh term from (21) we may obtain from (30) after further inte-
gration by parts,

F ′′(t) =4(ρu̇i , u̇i ) + 4
∫ t

0
(u̇, Bu̇)ds

+ 4
∫ t

0
(p, Kp)ds − 4E(0).

(31)

One now forms the combination FF ′′ − (F ′)2 using (31), (28) and (27), and after some
manipulation one may arrive at the equation

FF ′′ − (F ′)2 =4S2 − 4E(0)F

+ 4(T − t)
[
(v, Bv) + (P, K P)

]

× [
(ρu̇i , u̇i ) +

∫ t

0
(u̇, Bu̇)ds +

∫ t

0
(p, Kp)ds

] (32)

where S2, which is non-negative by virtue of the Cauchy - Schwarz inequality, is given by

S2 =[
(ρu̇i , u̇i ) +

∫ t

0
(u̇, Bu̇)ds +

∫ t

0
(p, Kp)ds

]

× [
(ρui , ui ) +

∫ t

0
(u, Bu)ds +

∫ t

0
(μ, Kμ)ds

]

− [
(ρui , u̇i ) +

∫ t

0
(u̇, Bu)ds +

∫ t

0
(p, Kμ)ds

]2
.

Thus, from (32), when E(0) ≤ 0,

FF ′′ − (F ′)2 ≥ 0

and so

(log F)′′ ≥ 0.
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Then one may deduce that

F(t) ≤ [F(0)]1−δ[F(T )]δ, t ∈ [0, T ), (33)

where δ = t/T , cf. Ames and Straughan [5], p. 17.
We now require the solution to P to belong to a constraint set such that

F(T ) ≤ M,

for a known constant M . This constraint is expected in an improperly posed problem, see
e.g. Ames and Straughan [5], Carasso [24]. Estimate (33) then yields Hölder continuous
dependence of the solution to P on compact subintervals of [0, T ) in the displacement
measure of form

(ρui , ui ) +
∫ t

0
(u, Bu)ds ≤ Mδ[F(0)]1−δ, t ∈ [0, T ). (34)

To establish Hölder continuous dependence in a measure of the pressure difference p we
note from the energy equation (21) that

1

2
(ρu̇i , u̇i ) + 1

2
(α p, p) +

∫ t

0
(u̇, Bu̇)ds

+
∫ t

0
(p, Kp)ds = E(0) − 1

2
(ai jkhui, j , uk,h).

(35)

We now utilize conditions (6), (7) and (4), and Poincaré’s inequality, to derive from (35)

(α p, p) + μ

∫ t

0
(α p, p)ds ≤ 2E(0) + A‖∇u‖2, (36)

where γ = 2kλ1/αU , with λ1 being the first eigenvaluen in the membrane problem for �.
Inequality (36) may be integrated with an integrating factor to obtain

∫ t

0
(α p, p)ds ≤ 2E(0)

γ
+ 2A

∫ t

0
e−γ (t−s)‖∇u‖2ds. (37)

If we now use (6) on the bi jkh term in (34) we obtain a Hölder continuous dependence
estimate for p in the sense that

∫ t

0
(α p, p)ds ≤ 2E(0)

γ
+ 2A

b
Mδ[F(0)]1−δ, t ∈ [0, T ). (38)

Together, the bounds (34) and (38) establish Hölder continuous dependence of a solution
to P on compact subintervals of [0, T ).

Remark The results established here for a single porosity Kelvin–Voigt material may be
extended to the equivalent theory for double or triple porosity. Such materials are attracting
increasing attention, see e.g. Chirita [34], Svanadze [35], Svanadze [36], Svanadze [37],
Svanadze [38]. Indeed double and triple porosity materials are being increasingly recognised
as important in real life, see e.g. Durif et al. [39] where man made silicon carbide porous
foams exhibiting double or triple porosity structure are analysed, or Navarro et al. [40] who
employ a triple porosity model to an MX-80 betonite pellet mixture, and further examples
may be found in Straughan [33].
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5 Hölder stability, when E(0) > 0

When the initial energy satisfies E(0) > 0 the analysis leading to (32) still holds. However,
we cannot immediately obtain an inequality like (33). Instead we employ an approach used
in classical linear isothermal elastodynamics by Knops and Payne [17], cf. Straughan [33],
pp. 28-29, where convexity is proved not of the basic functional F , but by modifying it to
incorporate E(0) in such a way as to still achieve continuous dependence. The functional
F chosen here is of necessity very different from that used in classical elastodynamics by
Knops and Payne [17].

Define the function G(t) by

G(t) = log
[
F(t) + 2E(0)

] + t2. (39)

Then one may show

[
F + 2E(0)

]2
G ′′ =[

F + 2E(0)
]
F ′′ − (F ′)2

+ 2
[
F + 2E(0)

]2
.

(40)

We now substitute for FF ′′ − (F ′)2 from (32) in (40) and may then show

[
F + 2E(0)

]2
G ′′ = 4S2 + 2F2 + 4FE(0)

+ 4
{
(T − t)

[
(v, Bv) + (P, K P)

] + 2E(0)
}

× [
(ρu̇i , u̇i ) +

∫ t

0
(u̇, Bu̇)ds +

∫ t

0
(p, Kp)ds

]
.

(41)

Now since E(0) > 0 it follows that G ′′ ≥ 0 and hence G is a convex function of t . Then one
finds F satisfies the estimate

F(t) + 2E(0) ≤ K
[
F(0) + 2E(0)

]ξ
, (42)

for t in a compact subinterval of [0, T ), with 0 < ξ < 1 − t/T < 1, and with

K = [
M + 2E(0)

]t/T exp
[
t(T − t)

]
,

see Knops and Payne [17], or Straughan [33], p. 29.
Estimate (42) establishes Hölder continuous dependence in the measure (ρui , ui ). One

may now appeal to inequality (38) to establish Hölder continuous dependence in the p
measure

∫ t
0 (α p, p)ds.
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