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We study theoretically the yielding of sheared amorphous materials as a function of increasing levels of
initial sample annealing prior to shear, in three widely used constitutive models and three widely studied
annealing protocols. In thermal systems we find a gradual progression, with increasing annealing, from
smoothly “ductile” yielding, in which the sample remains homogeneous, to abruptly “brittle” yielding, in
which it becomes strongly shear banded. This progression arises from an increase with annealing in the size
of an overshoot in the underlying stress-strain curve for homogeneous shear, which causes a shear banding
instability that becomes more severe with increasing annealing. Ductile and brittle yielding thereby emerge
as two limiting cases of a continuum of yielding transitions, from gradual to catastrophic. In contrast,
athermal systems with a stress overshoot always show brittle yielding at low shear rates, however small the
overshoot.
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Amorphous materials include soft glasses such as dense
colloids, emulsions, foams, and microgels [1–5], as well as
hard molecular and metallic glasses [6,7]. Under low loads
or small deformations, such materials show solidlike behav-
ior. Under higher loads or larger deformations, they yield
plastically. For some systems, the dynamical process
whereby an initially solidlike sample yields to give a finally
fluidized flow is smooth and gradual [8–16]. Others
yield abruptly, showing catastrophic failure [17]. For both
“ductile”materials, which yield smoothly and gradually, and
“brittle”materials, which yield abruptly and catastrophically,
understanding the statistical physics of yielding is the focus
of intense interest. Theories have been put forward based on
a first order transition in a replica theory [18,19]; a critical
point [20,21]; a directed percolation transition [22,23]; and a
spinodal [24–28]. Microscopic precursors to yielding have
recently been observed in soft materials [29–31].
Recent mean field calculations [32,33] have suggested

that the underlying stress-strain relation ΣðγÞ for an
athermal amorphous material undergoing quasistatic shear
displays a qualitative change in form from the lower to the
upper curve in Fig. 1(a) as the degree to which a sample is
annealed prior to shear increases. Poorly annealed samples
(lower curve) then yield in a smoothly ductile way. Well
annealed samples (upper curve) instead show catastrophic
brittle yielding, as the stress drops precipitously once the
overhang is reached. In this scenario, ductile and brittle

yielding are separated by a random critical point, at which
the stress-strain curve switches between two qualitatively
different shapes with increasing annealing. Particle simu-
lations were argued to agree with this scenario [32].
Here, we propose an alternative scenario, in which the

underlying stress-strain curve for homogeneous shear has
an overshoot, not an overhang, followed by a regime of
negative slope ∂γΣ < 0. In thermal systems such as
colloidal glasses, where kBT is important compared to
barriers for particle rearrangements, a state of initially
homogeneous shear becomes linearly unstable to the
formation of shear bands in this negatively sloping regime
[34–36], with the severity of banding (defined below) after
an (adimensionalized) stress drop of magnitude ΔΣ from
the stress maximum scaling as expðΔΣÞ. A large stress drop
(strong annealing) thus causes severe banding and brittle
failure, whereas a small stress drop (weak annealing)
causes only weak banding, and failure remains ductile;
Fig. 1(b). In slowly sheared athermal systems, in contrast,

FIG. 1. Schematic shear stress vs strain in different possible
scenarios for ductile and brittle yielding: as suggested (a) in
Refs. [32,33], and here for (b) thermal and (c) athermal systems.
In each case the upper (lower) curve is for a better (less well)
annealed sample. Dashed lines: theoretical curve with homo-
geneous shear artificially enforced. Solid lines: precipitous drop
from (a) stress overhang, or (b),(c) from homogenous curve due
to shear banding, giving brittle yielding.
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the severity of banding diverges (at the level of a linear
instability calculation) as the overshoot is approached as
1=∂γΣ, giving brittle failure for any sized stress drop,
however small; Fig. 1(c). We substantiate these scenarios
both analytically and numerically in a thermal fluidity
model [37] and an athermal elastoplastic model [38]; and
numerically [39] in the soft glassy rheology model [40] in
both thermal and athermal regimes. Crucially, in neither
thermal nor athermal scenario does a critical point of the
kind in Fig. 1(a) separate ductile and brittle yielding.
For consistency with the vocabulary of Ref. [32], we use

the term brittle to characterize abrupt yielding in which the
rate of failure is much larger than the rate of the imposed
deformation, and in which the strain becomes strongly
localized within the sample, but with a caveat that we quote
from [32]: “Although this phenomenon is not accompanied
by the formation of regions of vacuum, as it happens in the
fracture of brittle materials, the macroscopic avalanche
taking place at the discontinuous yielding transition does
resemble a crack induced by a brittle fracture.” Indeed, our
calculations and those of Ref. [32] are performed at fixed
volume, disallowing the opening of an air gap. We suggest,
however, that the formation of a severe high shear band in
abrupt yielding will, in studies at fixed pressure, indeed
lead to the rapid opening of an air gap.
We consider a sample prepared by time t ¼ 0 with some

level of annealing (defined below) then sheared for all t > 0
between infinite flat parallel plates at y ¼ 0, Ly by moving
the top plate at velocity _̄γLyx̂. The shear is assumed
incompressible and inertialess. As is standard practice, we
restrict all velocities vðy; tÞ to the main flow direction x̂, and
gradients to ŷ. The local shear rate _γðy; tÞ ¼ ∂yvðy; tÞ may
vary across y due to shear banding. The spatially average

imposed shear rate _̄γ ¼ R Ly

0 dy_γðy; tÞ=Ly. We track only the
shear component of the stress, ΣxyðtÞ ¼ σxyðy; tÞ þ η_γðy; tÞ,
with an elastoplastic contribution σxyðy; tÞ and a Newtonian
solvent contribution of viscosity η. Force balance requires
∂yΣxy ¼ 0. Hereafter, we drop the xy subscript for clarity.
For the dynamics of the elastoplastic stress σ, we consider
three different constitutive models: a thermal continuum
fluiditymodel [37], an athermal elastoplasticmodel [38], and
the soft glassy rheology model [40], separately in thermal
and athermal regimes [39].
Thermal systems.—As a simple model of thermal sys-

tems we consider a continuum fluidity model [37], which
supposes a Maxwell-type constitutive equation:

∂tσðy; tÞ ¼ G_γ − σ=τ: ð1Þ

Here, G is a constant modulus and τ is a stress relaxation
time, which has its own dynamics:

∂tτðy; tÞ ¼ 1 −
j_γjτ

1þ j_γjτ0
þ l2o
τ0
∂2
yτ: ð2Þ

The first term on the rhs captures aging, in which the
timescale for stress relaxation increases linearly with the
time tw for which a sample is aged before deformation
commences. The second term captures rejuvenation by
deformation, with τ0 a microscopic timescale that sets the
limiting value for τ as _γ → ∞. The mesoscopic length lo
describes the tendency for the relaxation time of a meso-
scopic region to equalize with its neighbors.
We consider a sample aged (annealed) for a time tw before

shear commences at time t ¼ 0, such that τðy; t ¼ 0Þ ¼ tw.
To seed heterogeneity, we add noise in each numerical time
step Dt as σðy; tþDtÞ ¼ σðy; tÞ þ rδ

ffiffiffiffiffiffi
Dt

p
cosðπy=LyÞ,

with r chosen from a top hat distribution between −0.5
and þ0.5, and δ small. In both this model and the athermal
one below, we rescale stress, time, and length so that
G ¼ τ0 ¼ Ly ¼ 1. The solvent viscosity η ≪ Gτ0 ¼ 1 is
unimportant to the physics we describe. We use typical
values η ¼ 0.01− 0.05, but find no changes to our results on
reducing η further.
Figure 2(a) shows as dashed lines the stress Σðγ̄Þ as a

function of the accumulating strain γ̄ ¼ _̄γt, calculated by
imposing that the shear must remain homogeneous across
the sample, for several values of the sample age tw at a
single value of the imposed shear rate _̄γ. Each curve shows
an initially solidlike elastic regime in which the stress

0 5 10 15 20 25 30
��

0

5

10

15

20

�

10
6

10
8

10
10

10
12

t
w

10
0

10
1

10
2

10
3

S
max

10
-4

10
-2

10
0

B
max

0 5 10 15 20 25 30
��

0

5

10

15

20

�

0 5 10 15 20 25 30
��

0

5

10

15

20

�

(b)(a)

(c) (d)

FIG. 2. (a) Stress vs strain in thermal fluidity model with
homogeneous flow enforced (dashed lines) and shear banding
allowed (solid lines). Imposed shear rate _̄γ ¼ 10−3, waiting times
tw ¼ 105; 106;…; 1012 in curves left to right. (b) Left vertical
axis: steepest negative slope in stress-strain curve with homo-
geneous flow enforced (open circles) and allowing banding
(closed black circles) vs sample age tw, for fixed _̄γ ¼ 10−3.
Right vertical axis: corresponding maximum degree of shear
banding. (Smax and Bmax each averaged over 10–60 runs at each
tw.) (c) and (d) show curves in the same format as (a), but now for
a fixed large stress peak Σmax ¼ 17.0 (c) or small stress peak
Σmax ¼ 5.0 (d), for imposed _̄γ ¼ 10−5; 10−4;…; 10−1. Steeper
stress drop for smaller _̄γ in (c). η ¼ 0.05, δ ¼ 0.01_̄γ, l0 ¼ 10−3,
Dt ¼ 0.01, Dy ¼ 1=3000.
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increases linearly with strain. At late times (large strains),
the sample flows plastically with a constant value of the
shear stress. For intermediate strains, the stress shows an
overshoot that increases in amplitude with an increasing
degree of annealing prior to shear (increasing tw): an older
sample shows a larger initial regime of elastic response
before yielding.
We then performed separate calculations in which shear

bands are allowed to form; see the solid lines in Fig. 2(a). For
poorly annealed samples, each stress-strain curve still fol-
lows that of the corresponding homogeneous calculation, to
good approximation: the shear field remains (nearly) homo-
geneous, and yielding occurs in a smoothly gradual (ductile)
way. For well annealed samples, in contrast, the stress-strain
curve of the heterogeneous calculation only follows that of
the homogeneous one until just after the stress overshoot. It
then drops precipitously as the sample becomes strongly
shear banded, causing abrupt (brittle) yielding.
For each deformation simulation, defined by the values

of ð _̄γ; twÞ, we quantify the abruptness of the stress drop
during yielding by Smax ¼ max ½−∂γΣ�, and the severity of
shear banding during yielding by Bmax ¼ max ½Bðγ̄Þ� with
the maximization performed over all times during the
deformation. [At any time t, or strain γ̄ðtÞ, we define the
degree of shear banding Bðγ̄Þ as the maximum minus
minimum local strain rate across the sample, normalized by
_̄γ.] These quantities are plotted as a function of sample age
in Fig. 2(b), for a fixed _̄γ. A regime of gradual yielding (low
Smax) and near homogeneous deformation (low Bmax) for
poorly annealed samples (low tw) crosses over into a regime
of precipitous yielding (high Smax) and strong banding
(high Bmax) at high tw. This crossover is explored in the full
plane of _̄γ, tw in Fig. 3. For _̄γ ≪ 1 it occurs at _̄γ ≈ 10m=tw,
with m ≈ 4.5. Deviations from this scaling at higher _̄γ

should be disregarded, because the model is itself only
valid for _̄γ ≪ 1. Increasing strain localization [36] and
decreasing notch fracture toughness [41,42] with decreas-
ing initial “effective temperature” have been seen in the
shear transformation zone (STZ) model.
To understand these results, we perform a linear stability

analysis for how strongly shear bands will form during any
deformation, by writing the system’s state as the sum of a
time-dependent homogeneous base state (as would pertain
in a theoretically idealized deformation with banding
prohibited), plus an initially small heterogeneous precursor
to any shear bands: _γðy; tÞ ¼ _̄γ þ δ_γðtÞ expðikyÞ, σðy; tÞ ¼
σ̄ðtÞ þ δσðtÞ expðikyÞ, τðy; tÞ ¼ τ̄ðtÞ þ δτðtÞ expðikyÞ.
Substituting these into the model equations and expanding
to first order in ðδ_γ; δσ; δτÞ, we find [39] the degree of shear
banding δ_γðtÞ= _̄γ after a stress drop of magnitude ΔΣ from
the stress overshoot to scale as ðδ_γ0= _̄γÞ expðΔΣÞ in the limit
_̄γ → 0, with δ_γ0= _̄γ the small initial heterogeneity due to
noise. We further find the height of the stress overshoot to
scale as an increasing function of _̄γtw for low _̄γ (contours in
Fig. 3). Weakly annealed systems, which have a small
stress overshoot, thus remain almost homogeneous and
show ductile yielding [Fig. 2(d) and dark blue regions in
Figs. 3]. Strongly annealed systems, which have a large
stress overshoot, show strong shear banding and brittle
failure in slow shear [red region in Fig. 3 and low _̄γ curves
in Fig. 2(c)]. Ductile and brittle yielding thus emerge as
limiting cases of a continuum of yielding behaviors in
thermal systems.
In Ref. [39], we show the same smooth crossover

from ductile to brittle yielding in the soft glassy rheology
model in its thermal regime, with each panel (a)–(d) in
Fig. 1 of [39] strikingly analogous to its counterpart
in Fig. 1.
Athermal systems.—As a simple model of an athermal

amorphous material we consider an ensemble of elasto-
plastic elements, each corresponding to a local mesoscopic
region of material [38]. In shear of rate _γ, each element
builds up a local elastic shear strain l as _l ¼ _γ, giving a local
shear stress Gl, with G a constant modulus. This stress is
intermittently released by local plastic yielding events,
which occur stochastically with rate rðlÞ ¼ τ−10 when a
local energy barrier E is exceeded, 1

2
Gl2 > E, and rðlÞ ¼ 0

otherwise, with E ¼ 1 (in our units), and τ0 ¼ 1 a micro-
scopic attempt time. Upon yielding, any element resets its
local stress to zero. The probability distribution Pðl; tÞ of
local strains obeys

_Pðl; tÞ þ _γ∂lP ¼ −rðlÞPþ YðtÞδðlÞ: ð3Þ

Here, YðtÞ ¼ R
dl rðlÞPðl; tÞ is the ensemble average yield-

ing rate and δðlÞ is the Dirac delta function. The total
elastoplastic stress σðtÞ ¼ G

R
dl lPðl; tÞ.

FIG. 3. Color scale showing in thermal fluidity model (left)
steepest negative slope of stress versus strain Smax and (right)
maximum degree of shear banding Bmax during deformation.
Each coordinate pair in the plane represents an average over
10–60 deformation simulations, each with an initial sample age
tw and imposed shear rate _̄γ. Contour lines show size of stress
overshoot (peak minus steady state stress) 2; 4; 6;…; 40 (bottom
left to top right). η ¼ 0.05, δ ¼ 0.01_̄γ, l0 ¼ 10−3, Dt ¼ 0.01,
Dy ¼ 1=3000.
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So far, we have assumed homogeneous flow in
this elastoplastic model. To account for nonuniform shear,
we now take n ¼ 1;…; N streamlines at discretized flow-
gradient positions y ¼ 0;…; Ly, with periodic boundary
conditions. The distribution Pðl; y; tÞ on any streamline
then obeys Eq. (3) with Pðl; tÞ → Pðl; y; tÞ, _γ → _γðy; tÞ,
and YðtÞ → Yðy; tÞ. The streamline yielding rate Yðy; tÞ ¼R
dl rðlÞPðl; y; tÞ and elastoplastic stress σðy; tÞ ¼

G
R
dl lPðl; y; tÞ. Given an imposed average shear rate _̄γ

across the sample as awhole, the shear rate on each streamline
follows by imposing force balance:ΣðtÞ¼σðy;tÞþη_γðy;tÞ¼
σ̄ðtÞþη _̄γ, with σ̄ðtÞ ¼ ð1=LyÞ

R Ly

0 dyσðy; tÞ. On a timescale
η=G after any local yielding event, this recovers the 1D
projection of the Eshelby stress propagator of 2D lattice
elastoplastic models [38].
We simulate M ¼ 80 000 elastoplastic elements on

each of N ¼ 20 streamlines, with force balance across
streamlines as described. Adjacent streamlines are further
weakly coupled by adjusting the stress of three randomly
chosen elements on each adjacent streamline an amount
wlð−1;þ2;−1Þ following any yielding event of size l, with
w a small parameter, mimicking the stress diffusion term in
Eq. (2) above. Before shear commences at time t ¼ 0 we
assign each element an initial local strain from a Gaussian,
P0ðlÞ ¼ expð−l2=2l̃2Þ= ffiffiffiffiffiffi

2π
p

l̃, with smaller l̃ corresponding
to better annealed samples.
Figure 4(a) shows as dashed lines the stress Σðγ̄Þ as a

function of strain γ̄ ¼ _̄γt, calculated by imposing that the
shear must remain homogeneous, for several levels of
annealing prior to shear 1=l̃ at a single imposed _̄γ. Each
curve shows an initially solidlike elastic regime in which
the stress increases linearly with strain, before the stress
declines as plastic yielding sets in. More strongly annealed
samples show a stronger stress overshoot. (The stress later
shows a persistent oscillation known to arise in simplified
homogeneous elastoplastic models [38].)
We then performed separate calculations in which shear

bands can form: see the solid lines in Fig. 4(a). As the stress
overshoot is reached, shear bands indeed form and the
stress falls precipitously, causing brittle failure. By com-
paring each of Figs. 4(a), 4(c), and 4(d) with their counter-
parts in Fig. 2, we see an important difference between
thermal and athermal systems. For thermal systems, a large
enough stress overshoot is required to see brittle failure. In
contrast, slowly sheared athermal systems show brittle
failure however small the overshoot. (Very poorly annealed
samples have no stress drop, and so show ductile defor-
mation.) The trend to increasingly sharp failure with
decreasing shear rate was seen in particle simulations of
a stable glass [43].
To explore this further, Fig. 5 shows color maps of the

steepness of the stress drop Smax and severity of shear
banding [44] Bmax as a function of the degree of annealing
1=l̃ and imposed shear rate _̄γ. Increasing overshoot heights

are shown by contours left to right. In this athermal case, even
for the smallest accessible overshoot height, Bmax and Smax

increase without bound as _̄γ → 0, giving brittle yielding.
To understand these numerical results, we performed

[39] a linear stability analysis showing that, in slow shear,
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FIG. 4. (a) Stress vs strain in athermal elastoplastic model with
homogeneous flow enforced (dashed lines) and shear banding
allowed (solid lines). Shear rate _̄γ ¼ 10−4. Annealing increases
with decreasing l̃ ¼ 0.562, 0.421, 0.316, 0.237, 0.177, 0.133, 0.1,
0.0749, 0.0562 in curves left to right. (b) Left vertical axis:
steepest negative slope in stress-strain curve with homogeneous
flow enforced (open symbols) and allowing banding (closed
black symbols) vs l̃, for fixed _̄γ ¼ 10−4. Right vertical axis:
corresponding maximum degree of shear banding. (c),(d) curves
in same format as (a), but now for fixed strong annealing
l̃ ¼ 0.0562 (c) or weak annealing l̃ ¼ 0.421 (d) for imposed
_̄γ ¼ 10−n with n ¼ 2.00; 2.25;…; 4.00; steeper stress drop for
smaller _̄γ:η ¼ 0.05, w ¼ 0.05, N ¼ 20, M ¼ 80 000, Dt ¼ 0.05.

FIG. 5. Color scale showing in athermal elastoplastic model
(left) steepest negative slope of stress versus strain Smax and
(right) maximum degree of shear banding Bmax during deforma-
tion. Each coordinate pair represents a deformation simulation
with annealing parameter 1=l̃ and imposed shear rate _̄γ. Contour
lines show size of stress overshoot (peak minus steady state
stress) 0.05; 0.10;…; 0.55 from left to right. η ¼ 0.05, w ¼ 0.05,
N ¼ 20, M ¼ 80 000, Dt ¼ 0.05.
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_̄γ → 0, the severity of shear strain banding δγðtÞ diverges as
δγð0Þ=∂γΣ on approach to the stress overshoot, ∂γΣ ¼ 0,
indeed giving brittle failure, however small the stress
overshoot, in this athermal case.
In Figs. 2 and 3 of [39], we explore yielding in the soft

glassy rheology model in two different athermal protocols,
finding the same scenario as in Fig. 4, with brittle yielding
as _̄γ → 0, however small the stress overshoot.
In this Letter, we have studied the yielding of amorphous

materials as a function of initial sample annealing prior to
shear. We have shown thermal systems to display a continu-
ous progression, with increasing annealing, from ductile
yielding, in which the sample remains homogeneous, to
brittle yielding, in which it becomes strongly shear banded.
This progressionarises froman increasewith annealing in the
size of an overshoot in the underlying stress-strain curve for
homogeneous shear,which causes a shear banding instability
that becomes more severe with increasing annealing. In
contrast, slowly sheared athermal systems with a stress
overshoot always show brittle yielding, however small the
overshoot. How the thermal scenario crosses over to the
athermal one at low temperatures remains an open question.
The scenarios put forward here differ notably from that

proposed in mean field [32,33], in which ductile and brittle
yielding are separated by a critical point, at which the
underlying stress-strain curve for homogeneous shear
undergoes a qualitative change in shape, as sketched in
Fig. 1(a). To discriminate between the scenario proposed
here and that in Refs. [32,33], it would be interesting to
perform particle simulations that disallow banding, to
access the shape of the underlying stress-strain curve for
homogeneous shear. Indeed, simulations for small numbers
of particles in Fig. 2D of Ref. [32] give an indication that
the homogeneous stress-strain curve has the form sketched
in Figs. 1(b) and 1(c). It further suggests that the smooth
athermal yielding seen for modest stress overshoots in [32]
may stem from finite size effects, or some difference
between particle-elastoplastic-continuum models yet to
be uncovered.
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