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ABSTRACT
We test a non-parametric higher order Jeans analysis method, GravSphere, on 32 simulated dwarf galaxies comparable to
classical Local Group dwarfs like Fornax. The galaxies are selected from A Project Of Simulating The Local Environment
(APOSTLE) suite of cosmological hydrodynamics simulations with cold dark matter (CDM) and self-interacting dark matter
(SIDM) models, allowing us to investigate cusps and cores in density distributions. We find that, for CDM dwarfs, the recovered
enclosed mass profiles have a bias of no more than 10 per cent, with a 50 per cent scatter in the inner regions and a 20 per cent
scatter near the half-light radius, consistent with standard mass estimators. The density profiles are also recovered with a bias
of no more than 10 per cent and a scatter of 30 per cent in the inner regions. For SIDM dwarfs, the mass and density profiles
are recovered within our 95 per cent confidence intervals but are biased towards cuspy dark matter distributions. This is mainly
due to a lack of sufficient constraints from the data. We explore the sources of scatter in the accuracy of the recovered profiles
and suggest a χ2 statistic to separate successful models from biased ones. Finally, we show that the uncertainties on the mass
profiles obtained with GravSphere are smaller than those for comparable Jeans methods and that they can be further improved
if stronger priors, motivated by cosmological simulations, are placed on the velocity anisotropy. We conclude that GravSphere
is a promising Jeans-based approach for modelling dark matter distributions in dwarf galaxies.
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1 IN T RO D U C T I O N

Dark matter makes up ∼85 per cent of the matter density of the
Universe (e.g. Planck Collaboration et al. 2018); yet its identity
remains unknown. Dwarf satellite galaxies of the Milky Way are
expected to be excellent sites for testing the properties of dark matter
(Battaglia, Helmi & Breddels 2013). These objects have velocity
dispersions indicative of a high dark matter content. If dark matter
is a self-annihilating particle, the products of its annihilation may
be detected with space- and ground-based instruments (Lake 1990),
such as the Fermi Large Area Telescope (Albert et al. 2017) and
the upcoming Cherenkov Telescope Array (Morselli & Consortium
2017). The detected spectra of these annihilation products would
reveal the particle physics properties of dark matter; however, these
analyses require the underlying dark matter distribution to be well
constrained. Some of the classical dwarf spheroidals, like Sculptor
and Fornax, host ∼106–108 M� in stars (McConnachie 2012) and
are sufficiently close to our Galaxy that large samples of high-quality
kinematic and photometric stellar data can be obtained, so inferences
may be made of the underlying gravitational potential (e.g. Battaglia
et al. 2008; Strigari et al. 2008; Walker et al. 2009; Charbonnier et al.
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2011; Walker & Peñarrubia 2011; Bonnivard et al. 2015b; Read,
Walker & Steger 2019; Strigari, Frenk & White 2018).

The exact dark matter density distribution in the central regions
of dwarf galaxies is controversial (e.g. de Blok 2010). Galaxy
rotation curves measured in some dwarf irregulars (Moore 1994;
Oh et al. 2008; Adams et al. 2014; Oh et al. 2015; Zhu et al. 2016a;
Read et al. 2017; Oman et al. 2019), analyses based on multiple
tracer populations in dwarf spheroidals (Walker & Peñarrubia 2011;
Amorisco & Evans 2012) and globular cluster survivability within
dwarfs (Goerdt et al. 2006; Cole et al. 2012; Contenta et al. 2018;
Orkney et al. 2019) have been used to argue in favour of dark matter
‘cores’, where the density remains constant in the central regions,
with ρ ∝ r0 (Flores & Primack 1994; Moore 1994). On the other hand,
dark matter-only N-body simulations in �-cold dark matter (�CDM)
cosmologies have found ‘cusps’ in inner haloes, with density profiles
scaling approximately as ρ ∝ r−1(Navarro, Frenk & White 1996b,
1997). This became known as the ‘core-cusp problem’. The problem
has motivated an introduction of alternative dark matter models,
such as self-interacting dark matter, where cores are created through
dark matter self-scattering on a scale related to the interaction cross-
section (Spergel & Steinhardt 2000; Elbert et al. 2015).

In recent years, the use of hydrodynamics to model baryonic pro-
cesses has become more common in simulations. Outflows associated
with supernova feedback have been shown to cause fluctuations in the
gravitational potential, which can alter the inner structure of haloes.
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This may occur in a single violent burst (Navarro, Eke & Frenk
1996a), through repeated dark matter ‘heating’ over time (Read &
Gilmore 2005; Pontzen & Governato 2012; Oñorbe et al. 2015; Read,
Agertz & Collins 2016) or both (Benı́tez-Llambay et al. 2019). Cores
in these models typically form on the scale of the half-light radius of
dwarf galaxies.

The formation of cores in dwarfs that have undergone extended
periods of star formation is a testable hypothesis. This idea was
explored in Read et al. (2019). These authors find that dwarf
spheroidals which have continued to form stars until recent times, like
Fornax and the Local Group dwarf irregulars, have lower densities
at 150 pc, ρ150, than those predicted for isolated dwarfs using the
halo mass–concentration relation in �CDM from Dutton & Macciò
(2014). These lower densities could be explained by core formation
through dark matter ‘heating’. Dwarfs that have ceased star formation
a long time ago have higher values of ρ150, consistent with a cusp.

The dark matter density distribution in dwarf galaxies can be
constrained through Jeans analysis applied to line-of-sight stellar
velocities and projected positions. This relies on the spherical Jeans
equation:

1

ν

d

dr

(
νσ 2

r

) + 2
βσ 2

r

r
= −GM(< r)

r2
, (1)

where ν is the tracer number density distribution, σ r is their radial
velocity dispersion, β their velocity anisotropy, M(<r) is the en-
closed mass, and G is Newton’s gravitational constant. The velocity

anisotropy, β, is defined as β = 1 − σ 2
t

2σ 2
r

, where σ t is the tangential

velocity dispersion. The product ν(r)σ 2
r (r) is typically obtained

through deprojection of 	(R)σ 2
P (R), where σ P(R) is the line-of-

sight velocity dispersion and 	(R) is the projected tracer number
density at a distance, R, both of which are observable quantities. If
models are assumed for β(r) and M(<r), the equation can be solved
for σ (R) via sampling methods such as Markov Chain Monte Carlo
(MCMC). This analysis assumes a non-rotating spherical system in
a steady pseudo-equilibrium state. These assumptions are known
to be violated by Local Group dwarfs, which exhibit ellipticity
(McConnachie 2012), signs of rotation (Battaglia et al. 2008; del
Pino et al. 2017), and are susceptible to tidal effects from their hosts
(Read et al. 2006; Peñarrubia et al. 2009; Ural et al. 2015).

Typically, only the line-of-sight motions of the stellar tracers
are known. This means that β is poorly constrained, such that
Jeans analysis suffers from the M–β degeneracy. This degeneracy
results in a wide range of models that satisfy a set of observational
constraints, such that cored and cuspy dark matter profiles both
provide acceptable fits to line-of-sight data (Strigari, Frenk & White
2010).

The breaking of M – β has been widely explored in the literature.
Several works have focused on the use of multiple tracer popula-
tions in dwarf spheroidals and chemodynamical models (Walker &
Peñarrubia 2011; Amorisco & Evans 2012; Agnello & Evans 2012;
Zhu et al. 2016b), as well as proper motions (Strigari, Bullock &
Kaplinghat 2007; Strigari et al. 2018). A number of works have used
Schwarzschild orbit superposition methods (Schwarzschild 1979;
Jardel & Gebhardt 2012; Breddels & Helmi 2013; Kowalczyk, Łokas
& Valluri 2017, 2018; Kowalczyk et al. 2019), which are able to take
into account the asphericity of stellar systems and have a benefit
of making no assumptions about the velocity anisotropy. These
methods, however, typically require significant computing time.

Other works, based on the Jeans equation, have focused on
exploiting the higher order velocity moments. Specifically, it has
been shown that line-of-sight velocity distributions are non-Gaussian

in the absence of isotropy (Merritt 1987). This warrants the use of
the fourth moment of the velocity distribution to place a constraint
on the anisotropy parameter (Mamon, Biviano & Boué 2013). The
use of the fourth velocity moments has been explored for the case
of constant anisotropy by Łokas (2002), Łokas & Mamon (2003),
Łokas, Mamon & Prada (2005), Łokas (2009) and was generalized
for radially varying anisotropies by Richardson & Fairbairn (2013).
More recently, Diakogiannis et al. (2017) have presented a non-
parametric method of reconstruction of the line-of-sight velocity
dispersion profiles. An extension of the method employs a machine
learning approach for data reconstruction that proves useful in the
absence of large samples of kinematic data (Diakogiannis et al. 2019).

Another method for breaking this degeneracy is through the
fourth-order projected virial theorem, giving rise to two equalities
(Merrifield & Kent 1990):

VSP1 = 2
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where VSP1 and VSP2 are referred to as the virial shape parameters
(i.e. VSPs). Here 〈σ 4

P 〉 is the fourth moment of the line-of-sight
velocities. The right-hand sides of equations (2) and (3) contain
quantities that can be directly inferred from data and the left-hand
sides contain the same parameters as equation (1). It is thus possible
to place two additional constraints on the velocity anisotropy β (see
e.g. Richardson & Fairbairn 2014, where VSPs were used to show
that a dark matter cusp is favoured in the Sculptor dwarf galaxy).
In practice, however, the finite quality of data may result in only a
partial breaking of the M – β degeneracy.

Read & Steger (2017) introduced the non-parametric Jeans
method, GravSphere (used in Read et al. 2019), which employs
the additional constraints from the VSPs in their MCMC analysis.
GravSphere operates under the standard assumptions of the spherical
Jeans equation (spherical symmetry, equilibrium, and no rotation).
The method had been shown to recover successfully the dark matter
density distributions in mock observations of idealized spherical,
triaxial and tidally stripped simulated dwarfs from the Gaia Chal-
lenge set.1 The cases for which the method works less well, such as
aspherical systems, are evident through poor quality fits to the line-
of-sight velocity dispersion. The method has been shown to recover
accurately the densities at 150 pc from the centre – a key region
where core formation is expected to reduce dark matter densities,
compared to �CDM predictions.

In this work, we test a new open-source PYTHON implementation of
the GravSphere method, PYGRAVSPHERE, on a sample of simulated
dwarf galaxies from cosmological hydrodynamics simulations of
Local Group-like environments.2 The aim of our work is to establish
whether Jeans analysis, under the assumption of spherical symmetry,
is a suitable method for constraining the mass profiles of dark matter
haloes in a fully cosmological setting and how much information
is typically gained through the inclusion of VSPs. We explore the
biases associated with mass and dark matter density profile recovery
for individual dwarfs as well as the sample as a whole. We examine
in detail the cases where GravSphere fails and identify the reasons
for this as well as potential warning signs.

1http://astrowiki.ph.surrey.ac.uk/dokuwiki/
2We ran also these same tests in the original GravSphere code, yielding
indistinguishable results from those presented here.
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In Section 2, we describe the suite of simulations used, as well as
the setup of GravSphere. Our analysis of GravSphere’s performance
on each galaxy and the comparison to more conventional Jeans
methods can be found in Section 3. We further discuss the various
sources of bias in the performance of this method and suggest a χ2

statistic to weed out particularly biased models. We summarize our
findings and conclude in Section 4.

2 SI M U L AT I O N S

2.1 APOSTLE simulations

In this work, we select analogues of classical dwarf spheroidals
from the APOSTLE suite of cosmological simulations. APOS-
TLE volumes are zoom-in simulations of Milky Way and An-
dromeda analogue pairs, selected from a dark matter-only volume.
The pairs have been chosen to satisfy constraints for the Local
Group, such as the total mass, separation and relative velocities.
The details of halo selection may be found in Fattahi et al.
(2016). Each Milky Way or Andromeda analogue hosts a popula-
tion of dwarf galaxies. The volumes additionally include isolated
dwarfs.

APOSTLE was run with the EAGLE model of galaxy formation
(Schaye et al. 2015; Crain et al. 2015), which is based on the
smoothed particle hydrodynamics (SPH) N-body code GADGET-3,
an improved version of the GADGET-2 code (Springel 2005). The
original APOSTLE suite consists of five high-resolution cosmo-
logical volumes, with dark matter mass resolution of mDM = 2.5–
5 × 104 M� and spatial resolution ε = 134 pc. An extra cosmological
volume was also run assuming a self-interacting dark matter (SIDM)
interaction cross-section of σ /m = 10 cm2g−1 (Santos-Santos et al.
2020; Lovell et al. 2020). We note that this is an extreme value
of the cross-section, which was chosen to explore the formation
of the largest cores in SIDM. The SIDM implementation within
EAGLE was introduced in Robertson et al. (2018), based on the
SIDM simulation method described in Robertson, Massey & Eke
(2017).

In order to increase our sample of dwarfs with a dark matter
core, we additionally used an SIDM version of the cosmological
volume presented in Benı́tez-Llambay et al. (2019),3 with an in-
teraction cross-section of σ /m = 10 cm2g−1 and galaxy formation
prescriptions following Schaye et al. (2015) and Crain et al. (2015).
This simulation was run with the same cosmological parameters
as the APOSTLE simulations but does not feature a Local Group-
like setting. The dark matter particle mass resolution is mDM =
4 × 105 M� and the softening is ε = 234 pc.

Each stellar particle in our simulations represents a stellar pop-
ulation assumed to follow a Chabrier (2003) initial mass func-
tion. Gas particles in APOSTLE have initial masses in the range
5−10 × 103 M�. APOSTLE resolves Sculptor-mass dwarf galaxies
with ∼102–103 stellar particles and Fornax-mass dwarf galaxies with
∼103–104 particles. Further details of the APOSTLE simulations
may be found in Sawala et al. (2016), Fattahi et al. (2016), and
Campbell et al. (2017). The SIDM run of the volume presented
in Benı́tez-Llambay et al. (2019) has an initial gas particle mass
mgas = 6.6 × 104 M�. Fornax-mass dwarfs are resolved with
∼102−103 stellar particles, sufficient for the purposes of this
work.

3The SIDM version of this volume has not yet been published. The simulation
data were obtained through private communications.

2.2 Numerical considerations

In order to establish whether GravSphere reproduces the mass
profiles of the simulated dwarfs, we must first define what the ‘true’
mass profile is within the simulations.

The mass profiles of dark matter haloes identified in pure N-body
simulations are affected by collisional relaxation. The enclosed mass
profiles of haloes are suppressed (relative to a higher resolution
simulation) below a radius where the two-body relaxation time, trelax,
is comparable to the age of the Universe, t0 (see e.g. Power et al. 2003;
Ludlow, Schaye & Bower 2019b). For the typical number of dark
matter particles in systems that are considered in this work, the Power
et al. (2003) radius, where trelax ∼ 0.6t0, corresponds to ∼60 per cent
of the half-light radius (about 0.7 kpc for high-resolution APOSTLE
CDM and SIDM dwarfs and ∼2 kpc for the lower-resolution SIDM
volume from Benı́tez-Llambay et al. 2019). Moreover, the APOSTLE
simulations model dark matter and stars using particles of unequal
mass, making them subject to energy equipartition, which artificially
inflates galaxy sizes (Ludlow et al. 2019a, 2020). These effects are
most problematic for systems with stellar half-mass radii smaller than
∼0.055 of the mean interparticle separation (dark matter, stars, and
gas), corresponding to ∼0.5 kpc for the APOSTLE simulations and
∼1.2 kpc for the SIDM volume of Benı́tez-Llambay et al. (2019).
We note, however, that the relaxation times at these radii are still
considerably longer than the dynamical times of the stars. Therefore,
our simulated dwarfs may be considered to be in a steady state locally.
The ability of GravSphere to recover masses in the innermost regions
is of interest in this work; therefore we will present results below the
convergence radius derived by Power et al. (2003) and Ludlow et al.
(2019b), although we will interpret these with caution.4

The use of the gravitational softening in N-body simulations sets
a limit on the central density, such that the innermost regions of
simulated haloes exhibit a small artificial core on the scale of
the gravitational softening. In comparing GravSphere to N-body
simulations, we thus restrict ourselves to radii greater than 2.8ε,
where ε is the Plummer-equivalent gravitational softening. For the
APOSTLE high-resolution simulations ε = 134 and 234 pc for
the SIDM version of the volume introduced in Benı́tez-Llambay
et al. (2019).5 At the radius of 2.8ε the forces become exactly
Newtonian.

2.3 Sample of dwarfs

For our sample of galaxies, we have selected simulated dwarfs
with comparable properties to classical Milky Way satellites and at
least 400 bound stellar particles. We restrict our sample to satellites
only, defined as the objects within 300 kpc of the Milky Way and
Andromeda analogues. As the GravSphere method relies on the
standard assumptions of the spherical Jeans equation (namely,
spherical symmetry, lack of rotation, and equilibrium), we further
restrict our sample of galaxies to those with no bound gas and those
that do not exhibit significant signs of rotation. We do, however,
include aspherical dwarfs in our sample. These conditions are
satisfied by classical Milky Way dwarfs, for which there are no H I
detections, only weak rotation is observed and asphericity is often

4The Power et al. (2003) criterion was derived for dark matter-only simula-
tions and it is unclear how applicable this criterion is in the presence of a
baryonic component.
5Although 2.8ε for this volume is near 0.5 kpc, the core sizes are typically
much larger than that, such that we are still able to probe the interesting
regions in these dwarfs.
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Figure 1. The sample of classical dwarf analogues. CDM dwarfs are shown with grey circles and SIDM dwarfs are shown with black squares. Left: line-of-
sight velocity dispersion as a function of stellar mass within three times the projected half-light radius. The purple bands show the measurements for Fornax
from McConnachie (2012) and de Boer et al. (2012). Middle: line-of-sight velocity dispersion as a function of the projected half-light radius. Right: ratio of
intermediate to major axes as a function of the ratio of minor to major axes for our sample of dwarfs. The limits on the sphericity of Fornax dwarf galaxy
(minor-to-major axial ratio 	0.7), which has a 2D ellipticity e 	 0.3, are shown with a purple shaded band. The grey triangles show a sample of 24 isolated
APOSTLE dwarfs with axis ratios comparable to the upper limit set on Fornax. The dashed one-to-one line highlights prolate galaxy shapes.

present (Battaglia et al. 2008; McConnachie 2012). We quantify
rotation by the fraction of stellar particles which are rotating in the
same direction as the total stellar angular momentum vector, fcorot.
We select galaxies with fcorot < 0.6. Note that, in order to obtain a
statistically significant sample of dwarfs in both CDM and SIDM
dark matter models, we do not include restrictions on the orbits or
star formation histories in the selection of our sample of simulated
dwarfs.

Our selection criteria have significantly cut down the available
sample of high-resolution SIDM dwarfs (which have large dark
matter cores), prompting inclusion of simulated dwarfs from the
lower resolution SIDM version of the volume presented in Benı́tez-
Llambay et al. (2019). The relative lack of suitable dwarfs in SIDM
is intriguing, however, the peculiarities of galaxy formation and
evolution in alternative dark matter models are beyond the focus
of this work (see Lovell et al. 2020 for details of star formation in
the APOSTLE SIDM volume).

The resulting sample consists of dwarfs with properties that are
generally similar to Fornax. This includes 25 CDM dwarfs and
7 SIDM dwarfs (two high resolution and five lower resolution).
Structural and kinematic properties of the sample are plotted in Fig. 1.
For each dwarf in Fig. 1, we show the distribution of projected half-
light radii, Re, from various line-of-sight projections, line-of-sight
velocity dispersion, σ los, and stellar mass within 3Re, M∗(<3Re).
These properties are computed using 192 isotropically distributed
lines of sight generated with the HEALPIX algorithm (Górski et al.
2005). HEALPIX provides a convenient way of generating an isotropi-
cally distributed set of lines of sight with a more uniform distribution
than one generated randomly. To calculate Re, to each projection
we fit a three-component 2D Plummer profile (more details may be
found in Section 2.4.1) and compute the radius which contains half
the projected stellar mass. The means and standard deviations of
these values are shown with circles and their error bars, with errors
primarily reflecting the asphericity of each system. Similarly, we
compute the mass-weighted mean velocity dispersion along each
projection, taking into account the error from sample size (the
standard error on the mean). The stellar masses within 3Re are
computed by summing the masses of stellar particles identified as
bound by the SUBFIND algorithm (Springel et al. 2001; Dolag et al.
2009) and removing the contaminant stars that belong to the host

galaxy.6 The contaminant stars are also removed in the calculation
of other galaxy properties and the Jeans analysis. Purple bands in
Fig. 1 show corresponding properties of the Fornax dwarf galaxy.
The velocity dispersion and the half-light radius of Fornax were taken
from McConnachie (2012). Stellar masses for Fornax span the range
of values from literature (McConnachie 2012; de Boer et al. 2012).

The rightmost panel of Fig. 1 shows intermediate-to-major axis
ratios as a function of minor-to-major axis ratios, computed for the
stellar component. The axes have been derived from the eigenvalues
of the reduced inertia tensor, computed for the stellar particles (see
e.g. Bett et al. 2007). The purple dashed line is the upper limit set on
the minor-to-major axial ratio of Fornax, determined by the measured
projected ellipticity, e = 1 − b/a 	 0.3 (Battaglia et al. 2006). Our
sample, which has an average axial ratio of c/a ∼ 0.9, is considerably
more spherical than Fornax (c/a 	 0.7). This is a consequence of our
selection criteria, specifically the lack of rotation and the lack of
gas for the selected sample of dwarfs. These are more likely to be
features of dwarf galaxies that have undergone tidal effects, which
tends to reduce asphericity (Barber et al. 2015).

In order to further investigate the effects of asphericity, we included
a sample of 24 isolated CDM dwarfs with c/a ∼ 0.7 (grey triangles
in Fig. 1). The sample has been chosen to contain galaxies where
gas does not dominate by mass within the 3D half-mass radius of the
stars. This is the reason for the lack of isolated dwarfs available for
the SIDM sample. In fact, we did find four isolated SIDM dwarfs
that match these criteria, but they turned out to be very oblate.
We excluded these dwarfs from our analysis. Since the GravSphere
method explicitly accounts for the mass contributed by stars, but not
by gas, when comparing GravSphere’s performance for these dwarfs
with the ‘true’ values, we compare to the combined mass in gas and
dark matter.

In order to generate the photometric and kinematic data required
by GravSphere, we obtained the stellar positions and velocities for
particles in each subhalo, which were classified as bound by SUBFIND

6Due to the specifics of particle assignment to haloes in SUBFIND, some low-
velocity host halo stars may end up attributed to a subhalo. We remove these
stars by ensuring they were not ‘bound’ to any given subhalo in the previous
simulation snapshot (Springel et al. 2001).
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(Dolag et al. 2009). We removed all contaminant stars belonging to
the host halo. Each stellar system was centred at the central peak of
the density field, computed using the ‘shrinking spheres’ algorithm
(Power et al. 2003). The positions and velocities were then projected
along three different lines of sight – major, minor, or intermediate
axes of the subhaloes. The stellar particles within 2R2D, where R2D is
the projected radius that contains half the stellar particle mass, were
randomly sampled, providing 400–2500 particles for the kinematic
sample of each dwarf. The photometric sample included 400–2500
particles and was chosen to be the same or bigger in size than the
kinematic sample. The velocities within the kinematic sample were
perturbed with Gaussian noise with a standard deviation of 2 km s−1,
representing typical measurement errors. The mass within 3R2D has
additionally been provided, M(<3R2D), such that GravSphere may
include the stellar mass contribution to the gravitational potential in
the Jeans modelling.

2.4 The PYGRAVSPHERE code

In this work we present a PYTHON implementation of the GravSphere
method, PYGRAVSPHERE. PYGRAVSPHERE is open source software.7

As in the work of Read & Steger (2017), PYGRAVSPHERE is based on
the affine-invariant ensemble sampler EMCEE (Foreman-Mackey et al.
2013). EMCEE differs from the classic Metropolis–Hasting algorithm
in that each individual Markov Chain, or ‘walker’, communicates
with the other ‘walkers’ at each step, thus allowing the chains to
efficiently sample the posterior distribution. EMCEE has parallel func-
tionality, which we exploit in this work. In the following, we outline
the assumptions and parameters that enter into our EMCEE setup.

2.4.1 EMCEE parameters

As in Read & Steger (2017), to parametrize the dark matter distri-
bution, PYGRAVSPHERE employs a broken power-law model with 5
spatial bins defined as logarithmically spaced fractions of the half-
light radius,8 Re, with bins rj = [0.25, 0.5, 1, 2, 4]Re. Within each
bin, the density follows a power law defined by slopes γ j. The overall
distribution is described by

ρdm(r) =
⎧⎨
⎩

ρ0

(
r
r0

)−γ0
, r < r0

ρ0

(
r

rj+1

)−γj+1 ∏n<j+1
n=0

(
rn+1
rn

)−γn+1
, rj < r < rj+1

(4)

where ρ0 is the density at r0. Beyond the outermost bin, the power
law is extrapolated. Note that this radial extent typically covers the
positions of available kinematic tracers.

For the light profile, PYGRAVSPHERE uses a sum of three Plummer
(1911) components (NP = 3):

ν(r) =
NP∑
j

3Mj

4πa3
j

(
1 + r2

a2
j

)−5/2

, (5)

7https://github.com/AnnaGenina/pyGravSphere
8In this work, we use multiple definitions of the half-mass radius, which we
list here for the purposes of clarification. R2D is the projected radius which
contains half of a dwarf’s stellar mass and it is computed by direct summation.
Re is the projected radius containing half the stellar mass, derived from a
three-component Plummer profile fit to the sample of stellar particle data. We
frequently refer to Re as the half-light radius.

where Mj and aj are the relative weight and spatial extent of
each component, respectively. This distribution is straightforward
to project, yielding:

	(R) =
NP∑
j

Mj

πa2
j

(
1 + R2

a2
j

)−2

. (6)

The velocity anisotropy is parametrized following Baes & van Hese
(2007):

β(r) = β0 + (β∞ − β0)
1

1 + (
rt
r

)η , (7)

where β0 is the central value of the anisotropy, β∞ is the value at
infinity, rt is the radius of transition, and η is its steepness.

2.4.2 PYGRAVSPHERE data input

The photometric sample of stars is split into bins of Nphot/
√

Nphot

particles per bin, where Nphot is the size of the photometric sample.
This choice allows for efficient spatial coverage and low Poisson
error. We weight each particle by the relative number of stars it
represents (i.e. we define the weight of each particle as wp =
mpNtot/M(<3R2D), where Ntot is the total number of particles in the
sample). For each photometric bin we calculate the Poisson errors
and use the LMFIT algorithm (Newville et al. 2014) to obtain the best
three-component Plummer fit (equation 6). This profile is then input
into EMCEE.

The kinematic data are also split into bins of Nkin/
√

Nkin particles
per bin, where Nkin is the size of the kinematic sample. The error
in each bin is computed by adding the Poisson and sampling errors
in quadrature, where we again weight each particle by wp. This
procedure is described in detail in Read & Steger (2017). The effect
of the number of particles per bin was explored in Read & Steger
(2017), who found little impact on their results. We confirm this
to be the case, provided the signal-to-noise ratio is not low due to
‘overbinning’ in the inner, dense, regions.

We use the same kinematic bins to compute the mean and errors
of the two VSPs. Because VSP2 is sensitive to the behaviour of the
velocity dispersion profile in the outer regions (due to the R3 term),
we fit a power law to the computed v4

P profile outside of the projected
half-light radius and extrapolate it following Read, Walker & Steger
(2018).

2.4.3 EMCEE set-up and priors

The priors on each of the parameters in the default PYGRAVSPHERE

set-up are shown in Table 1. Parameters log10Mj and aj of the best
three-component Plummer fit are allowed to vary within 50 per cent
of their linear best-fitting values, as determined by LMFIT, while
the stellar masses log10M∗ were varied within 25 per cent of the
M(<3R2D) value.

To ensure that the walkers sample the whole hypervolume of
parameter space, defined by the parameter constraints, the starting
positions of walkers are ideally generated to follow a uniform
distribution. This is difficult to achieve when the values of the
dark matter slope, γ j, in each radial bin, rj, are constrained to
monotonically increase. We find that typically ∼5 per cent of the
initially generated walker positions fall within these defined bounds.
If the chains are allowed to run for long enough, the walkers that are
‘stuck’ in forbidden regions of the parameter space may eventually
make their way to the allowed regions. This process is, however,
dependent on the efficiency of the active walkers in probing the
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Table 1. Default GravSphere priors.

Property Parameter Prior

Dark matter log10ρ0/M�kpc−3 [5, 10]
γ 0,1,2,3,4 [0, 3], 
γ max = 1

Anisotropy β̃0 [−1, 1]
β̃∞ [−1, 1]

log10rt/kpc log10[Re/2, 2Re]
η [1, 3]

Tracers log10Mj/M� log10[Mbf,j/2 , 3/2Mbf,j]
aj/kpc [abf,j/2, 3/2abf,j]

Baryons log10M∗/M� log10[0.75M(<3R2D),
1.25M(<3R2D)]

posterior distribution. In cases where the posterior is multimodal, for
example, some regions of the parameter space will not be probed
due to the nature of the ensemble sampler, where the walkers
communicate with each other, unlike in the classical Metropolis–
Hastings algorithm.

We thus use the following procedure to generate the initial walker
positions. For each walker, we generate the free parameters following
a uniform distribution. We then throw away the walkers that do not
satisfy our γ j constraints. For the discarded walker positions we
generate new ones, accepting those that satisfy the constraints and
rejecting the others. This procedure is repeated recursively until each
walker has a randomly generated initial position that satisfies the
constraints. The effective priors and the advantages of the method
over the one implemented in the original works using GravSphere
(e.g. Read & Steger 2017; Read et al. 2018) are discussed in
Appendix A.

We use 1000 walkers to probe the posterior distribution. Each
walker is run for 104 steps as a conservative ‘burn-in’ measure, and
then for a further 104 steps. The results presented in Appendix A
suggest that our walkers are converged after ∼6 × 103 steps, so the
above choices are rather extreme.

Since the anisotropy parameter, β, can take on values between 1
and −∞, one would benefit from transforming this into a finite range.
As in Read & Steger (2017), we use the symmetrized anisotropy
parameter,

β̃ = β

2 − β
, with −1 < β̃ < 1. (8)

This symmetrized form of the anisotropy allows the EMCEE

walkers to probe the entire range of possible anisotropy values. In
practice, we apply the constraints β̃0 > −0.95 and β̃∞ > −0.95,
as for more negative values the calculation becomes numerically
unstable.

PYGRAVSPHERE solves the Jeans equation for the projected ve-
locity dispersion profile, σ P(R). It additionally fits the projected
number density distribution, 	(R), and the two VSPs. We define
the ‘log-likelihood function’ as the chi-squared sum of these four
components:

lnL = −1

2

(
χ2

σLOS
+ χ2

	 + χ2
VSP1 + χ2

VSP2

)
. (9)

We note that equation (9) involves quantities that are, to some
extent, correlated. We must, therefore, consider whether the form
of the likelihood function in equation (9) is justified. It has been
pointed out in Łokas & Mamon (2003) and Łokas (2009) that the
correlation between the second and the fourth velocity moments is
typically weak. Aside from the fourth velocity moment, the virial

shape parameters are also related to the projected surface density
	(R). Given that the photometric samples for classical dwarfs are
typically large, 	(R) is measured to sufficiently high accuracy,
such that its uncertainties are negligible compared to those of the
fourth velocity moment. Moreover, Read & Steger (2017) find that
the estimates of the second velocity moment and the virial shape
parameters are typically normally distributed. This, together with the
weak correlation between the second and fourth velocity moments,
suggests that equation (9) is a good approximation to the true
likelihood function.

3 R ESULTS

In this section, we present the performance of the GravSphere
method, under a default setup, on each of the dwarfs in our sample.
We further quantify its global performance, for the entire sample,
and compare to standard Jeans analysis approaches. We identify the
causes of bias and scatter in the recovered enclosed mass profiles.

3.1 Individual dwarfs

Fig. 2 shows the recovery by GravSphere of the cumulative mass,
density, and the velocity anisotropy profiles of all dwarfs in our
sample. In this figure, we only display results for projections along
the vector to the centre of the host galaxy. The ‘true’ mass, density,
and anisotropy profiles are displayed in blue and the GravSphere
results in grey shaded bands. To generate the GravSphere profiles,
we took 105 random samples from the output MCMC chains and
for each radial position computed the median and the 68th and the
95th percentiles. The choice of 105 samples is sufficient to produce
representative posteriors, but is otherwise arbitrary.

Mass profiles of simulated dwarfs were computed by summing
dark matter particle masses radially from the centre of each dwarf,
where we define the centre as the centre of mass of the stellar
component. Densities were computed in 31 logarithmically spaced
bins in radius, from log10r/kpc = −2 up to the furthest bound dark
matter particle. In order to compute the stellar velocity anisotropy
profiles of simulated dwarfs, we bin the stars in each dwarf into 50
logarithmically spaced bins, starting from the position of the star
that is closest to the centre of mass and ending at the outermost star.
We then reduce the number of bins and widen the bin edges such
that each bin has at least 50 stars within. We construct 1σ error bars
by taking 1000 random samples of 25 stars with replacement and
computing the standard deviation of the velocity anisotropy in each
bin.

In this analysis, we focus on the key region within the half-
light radius of each galaxy (solid vertical blue lines in Fig. 2) and
above 2.8ε (dashed blue lines). GravSphere appears to be unbiased
on average. For the CDM sample, the dwarf mass, density, and
anisotropy profiles are typically contained within the 68 per cent
confidence limits, although the uncertainties can be large. Notable
exceptions in the CDM sample are Galaxies 1 and 8. These are known
aspherical objects (see Fig. 1). Similar systematics can be seen for
the remainder of the aspherical sample of dwarfs. It is clear that in
SIDM dwarfs the enclosed mass is always overestimated, although
even in these galaxies the true profiles are contained within the 95 per
cent confidence regions. We will return to this issue in Section 3.5.

We also note that the symmetrized anisotropy profiles in our
simulations are generally consistent with being constant and isotropic
(β̃ = 0). Deviations from this are seen in galaxies that are aspherical,
and, as we will see in Section 3.7.3, in those which are affected by
tides.

MNRAS 498, 144–163 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/498/1/144/5892581 by U
niversity of D

urham
 user on 18 Septem

ber 2020



150 A. Genina et al.

Figure 2. Enclosed dynamical mass profiles (top), density profiles (middle), and symmetrized anisotropy profiles recovered for a sample of 32 simulated dwarf
galaxies using the GravSphere method. Only one projection (from the centre of the host galaxy) is shown for each dwarf. The profiles are shown as a function
of 3D radius, normalized by the projected half-light radius, Re. The black lines and the dark and light grey shaded bands display the median, 68 and 95 per
cent confidence limits, respectively. The ‘true’ mass and density profiles, measured directly from the simulation, are shown in blue. The solid vertical blue line
shows the location of the projected half-light radius and the dashed blue line shows 2.8ε (≈380 pc for CDM dwarfs and SIDM dwarfs (25,26) and ≈655 kpc for
SIDM dwarfs 27–31), which is close to the convergence radius for these systems. The ‘true’ velocity anisotropy, as measured directly from the stellar particles,
is shown with a shaded blue band. For each galaxy, in the top left corner, we display the unique galaxy number and the principal axis along which the galaxy
was projected to produce this figure (which is the principal axis most closely aligned with the vector to the host galaxy). In the bottom right corner we show
whether the galaxy is from CDM or SIDM cosmology. Galaxies 25–31 are SIDM dwarfs. Note that for a number of these dwarfs the spatial resolution, 2.8ε

(vertical dashed line), is below 0.125Re and below the limits of the figure.

3.2 Comparison to standard estimators

We now compare the performance of GravSphere in recovering
enclosed masses to three mass estimators from the literature. The
mass estimators take the form:

M(< μRe) = λRe〈σ 2
P 〉

G
, (10)

where μ and λ are constants.
The estimator provided by Wolf et al. (2010) gives the mass

enclosed within the deprojected half-light radius R3, with R3 ≈ 4/3Re;
the Walker et al. (2009) estimator gives the enclosed mass at the
projected half-light radius, Re. Another estimator has been derived
by Campbell et al. (2017) for the mass within 1.44R2D, where R2D is

the projected radius containing half the stellar mass. The latter has
been calibrated on dwarfs from the APOSTLE suite of simulations
that we use here. We omit the estimator derived by Errani, Peñarrubia
& Walker (2018), which we find produces similar results to those of
Campbell et al. (2017).

As input for the estimators, we use the half-light radius, Re,
obtained from the best-fitting three-component Plummer profile, as
this is expected to provide more accurate results than the circular
radius containing half the stellar mass, R2D (González-Samaniego
et al. 2017). The latter definition was used in the calibration of the
Campbell et al. (2017) estimator, however, we refrain from using this
definition as the spatial extent of the sample of stellar particles in each
dwarf is already cut-off at 2R2D. For Wolf et al. (2010) and Walker
et al. (2009) estimators we calculate the mean velocity dispersion
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Figure 2 – continued

and the associated errors using the technique of Walker et al. (2006),
where we incorporate weighting by the number of stars per stellar
particle, wp, in the likelihood function. For the Campbell et al. (2017)
estimator we compute the mass-weighted mean velocity dispersion
below 1.04Re, as prescribed.

In the left-hand panel of Fig. 3, we show the bias in mass profiles
returned by GravSphere (mass recovered by GravSphere divided by
the true mass) and the 68 and 95 per cent confidence levels, as a
function of normalized radius, R/Re. We use the following procedure
to compute the global radial bias and the associated confidence levels.
For each galaxy and for each distance, R, we obtain a cumulative mass
distribution from 105 random samples of the MCMC posteriors. We
then use this cumulative distribution for Monte Carlo sampling of
accuracies, combining the samples from all galaxies at each distance.
This allows us to take into account the asymmetry in the GravSphere
confidence limits, as seen in Fig. 2.

The lower axis limit on R/Re in Fig. 3 has been chosen to be the
average value of 2.8ε/Re for our sample and the upper axis limit was
chosen so as to contain the smallest dark matter halo in the sample.
The bias and associated errors for each galaxy are only included in
the making of this figure for distances R > 2.8ε.

In purple, we show the CDM sample and in black the SIDM
sample. The symbols with error bars show the performance of
dynamical mass estimators from Walker et al. (2009), Wolf et al.
(2010), and Campbell et al. (2017, circles for CDM and squares for
SIDM). The Wolf et al. (2010) and Walker et al. (2009) estimators
are accurate to better than 10 per cent, however we observe a bias
in the Campbell et al. (2017) estimator. This is likely due to the
aforementioned difference in the definition of the half-light radius.
In all cases, the true mass is contained within the uncertainty of the
estimators.

From the left-hand panel of Fig. 3 it is clear that, for CDM dwarfs,
GravSphere performs just as well as the Wolf et al. (2010) and Walker
et al. (2009) estimators, and with similar scatter. The inferred masses
are, on average, very accurate across the entire radial range, with
the scatter becoming more significant in the innermost regions as
well as the outer regions. For the large values of R/Re this is caused
by the lack of kinematic tracers. Moreover, our priors permit only a
narrow range of slopes (0 < γ j < 3), whilst our sample is expected
to have undergone tidal effects, resulting in an outer slope γ ≈
4 (Peñarrubia et al. 2009). Nevertheless, the estimate is accurate,
on average, out to 3Re, with a root mean square (rms) fractional
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Figure 2 – continued

error9 of only 5 per cent. It is clear that the masses for SIDM dwarfs
are significantly overestimated in the inner regions (on average, up
to 80 per cent), with very large scatter. The mass is accurate near the
half-light radius and beyond that it is underestimated by ∼20 per cent.

3.3 The core-cusp problem

What do these results mean in the context of the core-cusp problem?
We now consider two ways to infer cores or cusps in dark matter
haloes: via their characteristic inner density (as in Read et al. 2019)
and via an accurate inference of profile shape.

3.3.1 Cores versus cusps via characteristic densities

In the right-hand panel of Fig. 3, we show the recovery by GravSphere
of the dark matter density profiles of our sample of dwarfs. For
CDM dwarfs, the density profiles are accurate across the entire
radial range (rms = 0.07) and the scatter is only ∼30 per cent in
the inner regions. In fig. 5 of Read et al. (2019) it can be seen that,
for a dwarf of Fornax-like pre-infall halo mass, the core and cusp-
like densities, ρ150, differ by a factor of at least 3.5. The spatial
resolution of our simulations does not allow us to probe radii below
380 pc; however, if GravSphere provides a similar level of bias and

9We define rms =
√

1
N

∑i=N
i=1 (Mcalc/Mtrue − 1)2, where Mcalc is the mass

obtained through GravSphere, or another method, N is the number of radial
intervals at which Mcalc is computed and Mtrue is the true enclosed mass at
these intervals, found directly from the simulation. We use a maximum of 30
intervals to construct Fig. 3.

scatter for ρ 150 (corresponding to log10R/Re ≈ −0.7 for a Fornax-
size dwarf), it is certainly possible to differentiate between the core-
and cusp-like densities, provided there is complete core formation
below the half-light radius and no reduction of central dark matter
density due to tides (Read et al. 2016). For SIDM dwarfs, the
density is overestimated in the inner regions by up to 50 per cent
and underestimated above the half-light radius by ∼30 per cent,
reflecting the pattern with enclosed mass. This suggests that in the
case of SIDM dwarfs with cores, GravSphere is biased towards cusps
in its standard configuration.

3.3.2 Cores versus cusps via profile shape

Let us now approximate the density profiles in the inner regions by
a single power law

ρ(r) = ρ(Re)

(
r

Re

)−γ

, (11)

where ρ(Re) is the density at Re and γ is the slope of the power law,
with γ = 0 corresponding to a core and γ = 1 to a cusp. If we assume
that a core forms below the radius Re, where otherwise the density
within Re follows ρ ∝ r−1, then the density ratio is

ρcusp

ρcore
=

(
r

Re

)−1

, (12)

and the mass ratio is

Mcusp

Mcore
= 3

2

(
r

Re

)−1

. (13)

We display these relations, and their inverse, with dashed (an
incorrectly inferred cusp) and solid (an incorrectly inferred core) grey
lines in Fig. 3. The relations are displayed out to the radius R = Re

for the case where a core forms below the half-light radius.10 Beyond
this radius, the relations are expected to converge to 1. The relations
should be taken more as visual guides for the radial dependence of
the bias that we expect in order to incorrectly infer a core or a cusp.
Note that for a core that forms at some fraction of the half-light
radius, we would only need to scale the relation in equation (12)
by a corresponding factor (or shift the relation up and down in log -
space). Unfortunately, cores on the scale of 0.5Re are too small to be
probed by our simulations for the dwarf galaxy masses we consider
here.

For the case of CDM dwarfs, it is clear that within the 68 per cent
confidence regions the mass and density profiles returned by
GravSphere are fully consistent with cusps. Cores lie outside the
95 per cent confidence regions. For SIDM dwarfs there is a clear bias
towards more cuspy profiles. Fully cored profiles below the half-light
radius are contained within the 68 per cent regions, but so are cusps
that are only slightly shallower than ρ ∝ r−1.

3.4 Comparison to other methods and parametrizations

We now compare the performance of GravSphere to that of more
conventional Jeans approaches. We will focus on the enclosed mass
profiles, rather than densities. Masses are more robust than their
differentials, they are simply measured in simulations and are a
fundamental property in Jeans analysis.

10We have verified that the relations in equations (12) and (13) are good
approximations for a dwarf with a Fornax-like pre-infall halo mass (Read
et al. 2019) with full core formation below the half-light radius and an NFW
profile otherwise (Read et al. 2016).
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Figure 3. Left: ratio of the recovered to true enclosed mass as a function of radial distance in units of the half-light radius, Re. The purple line and purple
shaded bands show the median, 68 and 95 per cent confidence limits for the CDM galaxy sample. The black line and the corresponding shaded bands show the
sample of SIDM dwarfs. The symbols and their error bars show the accuracy of standard estimators from Walker et al. (2009), Wolf et al. (2010), and Campbell
et al. (2017), identified by their colours. Circles are for the CDM dwarfs and squares for SIDM. The ‘rms’ values show the rms offset of the median value from
1 along the entire radial range displayed. The grey dashed line shows the radially dependent bias in the mass profiles that is required to infer an NFW cusp when
in reality there is a core. The solid grey line shows the bias required to infer a dark matter core when in reality there is a cusp. Right: ratio of the recovered to true
density as a function of radial distance in units of the half-light radius. The grey dashed line shows the bias in the recovered density profiles required to infer an
NFW cusp when in reality there is a core. The solid grey line shows the corresponding bias for an incorrect inference of a core when the true profiles are cuspy.

Table 2. Zhao (1996)+γ , rs MCMC priors, and the cuts applied in post-
processing.

Parameter Prior Constraint

log10ρs/M�kpc−3 [5, 13]
log10rs/kpc [−3, 1] log10rs ≥ log10Re

α [0.5, 3]
β [3, 7]
γ [0, 1.5] γ ≤ 1

3.4.1 Comparison to Zhao (1996) profile

We compare the performance of GravSphere to the method outlined
by Bonnivard et al. (2015a), who used the profile proposed by Zhao
(1996) to parametrize the dark matter distribution:

ρdm = ρ0(
r
rs

)−γ (
1 +

(
r
rs

)α) β−γ
α

(14)

where rs and ρ0 are the scale radius and scale density, γ is the inner
slope, β the outer slope, and α governs the steepness of transition
between γ and β.

The priors for this run, which we refer to as Zhao + γ , rs, are
given in Table 2. The method requires two post-processing cuts: one
on γ ≤ 1, which was shown to reduce the overall scatter, and another

on rs ≥ Re, which weeds out unphysical models from the fit. The
results are shown in the upper left panel of Fig. 4.

It can be seen that this method underestimates the enclosed mass
by ∼10 per cent in the inner regions for CDM dwarfs and is unbiased
in the outskirts. In SIDM dwarfs, however, the bias in the centre is
less severe than with GravSphere. In the inner regions, for CDM and
SIDM dwarfs, the scatter has not changed significantly, but outside
the half-light radius and in the outer parts the width of the scatter
increases by over 50 per cent. This is likely due to the priors (Table 2)
allowing a much wider range of outer slopes β than permitted by the
default GravSphere priors (Table 1). The exclusion of virial shape
parameters likely also plays a role. We explore this below.

3.4.2 GravSphere, excluding the VSPs

What is gained by including the virial shape parameters? We
repeat our GravSphere run, this time excluding the two VSPs from
equation ( 9). The results are shown in the top right of Fig. 4. It
can be seen that the accuracy in the inner regions has suffered from
excluding the VSPs in CDM dwarfs. In SIDM, however, the bias is
slightly reduced. As we shall see below, this reduction is consistent
with excluding only the second virial shape parameter. The bottom
panel shows the ratio of the upper and lower errors (84th and 16th
percentiles) compared to the default GravSphere run (including the
VSPs). It is evident that the scatter has increased beyond the half-light
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Figure 4. Top left: bias in enclosed mass profiles found assuming a Zhao (1996) profile and using priors as outlined in Table 2, together with post-processing
cuts (γ < 1 and rs > Re). The median for the original GravSphere run is shown in blue. The medians for the CDM and SIDM samples are shown with purple
(top subplot) and black (middle subplot) lines, respectively. The shaded bands of the same colour show the 68 per cent confidence limits on the bias, M/Mtrue,
for CDM (top) and SIDM (middle) samples. The bottom subplot shows the magnitude ratio of the 68 per cent confidence intervals between the Zhao (1996)
and default GravSphere results. The colour symbols are the Walker et al. (2009, blue), Wolf et al. (2010, black) and Campbell et al. (2017, red) estimators. The
grey dashed line corresponds to the bias required for an incorrect inference of an NFW cusp when in reality there is a core, and the solid grey line is the bias
required for an inference of a core when in reality there is an NFW cusp. Top right: bias found with GravSphere assumptions, but excluding the VSPs (noVSP).
Bottom left: bias found assuming constant anisotropy and no VSPs. Bottom right: bias found with the exclusion of the second virial shape parameter.

radius. This suggests that GravSphere runs that exclude the VSPs
result in a wider range of allowed models. Evidently, the inclusion of
VSPs plays a key role in minimizing the scatter in allowed anisotropy
models, particularly in the outer regions. These results mimic those
produced with the priors in Table 2, although the increase in scatter
in the outer regions is smaller. This suggests that another significant
source of this scatter is, in fact, the wider range of allowed slopes β.

3.4.3 Constant anisotropy and no VSPs

We now explore the performance of GravSphere under the assump-
tion of constant anisotropy and no VSPs. From Fig. 2, it is clear
that the vast majority of our simulated dwarfs have nearly constant
stellar velocity anisotropy profiles. It is therefore possible that forcing
the anisotropy profile to be constant with distance may encourage

the MCMC algorithm to select better models. The comparison with
GravSphere is shown in the bottom left of Fig. 4. Similar accuracy
to GravSphere is achieved (rms = 0.06) across the entire radial
range. The errors for CDM dwarfs are similar to GravSphere in the
innermost regions, but outside Re the errors are larger. This could be
partly due to lack of flexibility as compared to the Baes & van Hese
(2007) profile, but this is also overall consistent with the noVSP
run, suggesting a lack of constraint in the outer profile due to the
exclusion of VSPs.

For SIDM dwarfs the bias has reduced remarkably (now below
20 per cent in the inner regions). The scatter has also reduced by
∼25 per cent compared to GravSphere. This would suggest that
anisotropy profiles are not very well recovered with GravSphere and
are a significant source of bias for SIDM dwarfs. In Fig. 2, we can
see that the true anisotropy profiles are generally enclosed within the
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Figure 5. Bias found using wider priors on the slopes γ j that allow a ‘hole’
in the central regions. All values of γ j < 0 output by the MCMC are then
equated to 0. The coloured symbols and grey lines are as in Fig. 4.

confidence limits. These limits are, however, quite large and so the M
− β degeneracy is not fully broken. The breaking of the degeneracy
is forced when imposing a constant form for the anisotropy, resulting
in the reduction in bias. Note also that the bias associated with a CDM
cusp (dashed grey line in the bottom left of Fig. 4) is now far above
the 68 per cent limits, compared to the case of GravSphere.

We note that, based on the sample of galaxies presented in this
paper, our simulations suggest that dwarfs may have anisotropy
profiles that are well described by a constant value. For this sample,
the assumption of constant β is sufficient to accurately recover mass
profiles in the innermost regions of dwarfs and this does not require
the use of the VSPs.

3.4.4 Removing VSP2

In their recent work, Kaplinghat, Valli & Yu (2019) have opted
to exclude the second virial shape parameter, which is extremely
sensitive to the behaviour of the fourth velocity moment in the
outer regions of the dwarfs (due to the R3 weighting), where the
velocity distribution is typically poorly constrained. In GravSphere,
the uncertainty in the 〈v4

P 〉 profile is encapsulated within the errors,
though these errors are indeed very large. In this subsection, we
investigate the effects of excluding the second virial shape parameter
from our analysis.

The results can be seen in the lower right panel of Fig. 4. We can see
that, for CDM dwarfs, the mass profiles are now underestimated in
the inner regions by nearly 10 per cent, while the scatter is reduced.
For SIDM dwarfs, the accuracy has marginally improved and the
scatter has also reduced. We conclude that the inclusion of VSP2
in Jeans analysis tends to slightly increase the scatter (due to its
large errors), but the accuracy of the mass profiles is improved at the
expense of this scatter.

3.5 Bias towards cusps in SIDM haloes

We now return to the issue of the overestimation of the enclosed
mass profiles in SIDM dwarfs. We consider the effects of possible

offsets between the centre of mass of the stars and the dark matter as
well as the effect of our priors on the recovered mass profiles.

3.5.1 Galaxy–halo offsets in SIDM

For a profile with a core, it is particularly difficult to establish the
location of the density centre. If the centre is offset from the true
dynamical centre this may introduce a bias in the recovered mass
profile. Although it is unlikely that this bias would always cause an
overestimation of the true mass, we have investigated the differences
between the centre of mass of the stars and the dark matter for each
dwarf in our sample. We found that offsets are present, with a typical
magnitude of 80 ± 35 pc for the CDM sample. For SIDM haloes,
the offsets are particularly extreme, up to 1 kpc in size. We repeated
our analysis, comparing the mass profiles recovered by GravSphere
to those computed directly from the simulation, now centring the
‘true’ profiles at the centre of mass of the dark matter. We found no
discernible differences from the results presented in Fig. 3. Centring
on the centre of potential instead also did not change our results. We
conclude that galaxy–halo offsets have no significant effect on the
results presented in this work. This is because these offsets are rather
small compared to the half-light radii of SIDM dwarfs.

3.5.2 Using priors that favour a core

The systematic overestimation of enclosed mass at small radii has
been encountered previously in the work of Read et al. (2018). The
priors in Table 1 may bias the results towards more cusp-like values
when the data are not sufficiently constraining, as a core (with γ =
0) lies on the boundary of the allowed range of slopes (see Fig. A1).
In Read et al. (2018), a different set of priors was introduced, which
extends the parameter space of the dark matter density slopes γ j such
that EMCEE walkers are more likely to probe regions of space that
are compatible with a core. This is achieved by allowing the slopes
to range between −2 < γ j < 3. Note that γ j < 0 corresponds to a
‘hole’ in the central regions of the dwarf. While not implausible in
principle, in this work we assume that, in these extreme cases, the
dark matter distribution has a core. When computing the confidence
limits of the enclosed mass and density distributions in each dwarf,
we thus fix the γ j position of any walkers venturing into the space
where γ j < 0 to γ j = 0.

The results of this may be seen in Fig. 5. For SIDM dwarfs, we
can see that the bias along the entire radial range has been reduced to
∼25 per cent and the scatter is reduced by ∼10 per cent in the inner
regions. We also display the results for individual SIDM dwarfs in
Fig. A3, where a reduction in bias compared to Fig. 2.4.3 is evident.
For CDM dwarfs, the new priors slightly bias the recovered mass
profiles towards cores, although the true profiles still lie within the
68 per cent confidence levels. This is consistent with the findings of
Read et al. (2018).

We conclude that the lack of exploration of the models with γ j =
0 by GravSphere is clearly an issue, however, the data still lack
sufficient constraining power to prefer cores over cusps in SIDM.

3.6 Using all available stars

In this section, we briefly explore how much information is gained
by including all stars within 2Re of each dwarf (ranging from 103

to 104 stars for CDM), as opposed to a Fornax-like sample of
500−2500 stars. We note, however, that for the majority of SIDM
dwarfs the available samples are less than 1000 stellar particles.
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Figure 6. Bias found under standard GravSphere assumptions but using all
available stars in each dwarf. The symbols are as in Fig. 4. The additional
empty symbols representing the accuracy of mass estimators were evaluated
using all available stars within 2Re.

The results of this can be seen in Fig. 6, where it is clear that the
accuracy in the inner regions has slightly improved and the size of
the errors is reduced by ∼10 per cent at smaller radii and closer to
∼20 per cent at large radii. Larger samples of data from future
spectroscopic surveys will undoubtedly reduce the uncertainties
associated with recovered dark matter mass profiles; however, this
improvement is expected to be rather small when using line-of-sight
data only. Moreover, GravSphere is able to achieve the same level
of bias with present data samples. Further reduction in uncertainty
is more likely to come from exploiting kinematically distinct stellar
populations or proper motion data (Read & Steger 2017).

3.7 Sources of bias and scatter in GravSphere

We now explore possible origins of scatter in Fig. 3. Projection
effects, asphericity, and tides are of particular interest (Genina et al.
2018).

3.7.1 Line-of-sight effects

How does asphericity affect the accuracy of the enclosed mass
profiles recovered by GravSphere? In the top panel of Fig. 7, we split
our sample of dwarfs in bins of minor-to-major axial ratio s = c/a. It
can be seen that, on average, dwarfs of all asphericities in CDM have
mass profiles recovered to better than 10 per cent; however it is also
clear that the scatter is much larger for more aspherical objects (s <

0.9). Our sample has been chosen to contain galaxies projected along
their three principal axes. We can therefore split our sample into three
categories: dwarfs seen along the minor, major and intermediate
axes, and examine the accuracy of GravSphere in recovering mass
profiles in each case. For this, we select dwarfs with s < 0.8 in CDM
(six galaxies) and s < 0.85 in SIDM (three galaxies).11

11We have considered projection effects for the more spherical dwarfs in the
sample and found that they are irrelevant in those cases.

Figure 7. Top: bias in mass profiles returned by GravSphere for dwarfs
grouped by their minor-to-major axial ratio c/a. The top panel shows the
CDM sample and the bottom panel shows the SIDM sample. Bottom: line-
of-sight effects on the accuracy of the mass profile recovery by GravSphere.
The sample of galaxies is split into those viewed along the minor (blue line
and bands), intermediate (red) and major (black) axis. Only dwarfs with s <

0.8 for CDM and s < 0.85 for SIDM are shown. The dotted black line in
each plot represents unbiased results. The solid grey line corresponds to the
bias expected in order to incorrectly infer a core within the half-light radius
of a cuspy dark matter halo. The dashed grey line corresponds to the bias
expected to incorrectly infer an NFW cusp, when in reality there is a core.

The results are shown in the bottom panel of Fig. 7. For CDM
dwarfs, there is a clear distinction between mass profiles obtained
when viewing along the minor (blue), intermediate (red) and major
(black) axis. Along the intermediate axis, the mass profiles are
generally unbiased, but they are underestimated along the minor axis
and overestimated along the major axis. On average, this over- and
underestimation is of magnitude ∼30 per cent. For prolate systems,
this is consistent with the variation of line-of-sight velocity dispersion
when viewing along the three principal axes.

The picture is somewhat different for SIDM dwarfs, where the
mass profiles are overestimated more significantly when viewed
along the intermediate axes. We note that this sample contains only
three dwarfs and their three projections. We found that two of these
have dark substructure present within their haloes, resulting in in-
flated velocity dispersion along the intermediate axis of these dwarfs.
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Figure 8. The bias in density profiles inferred by GravSphere for 24 isolated CDM dwarfs that match the criteria of having an on-the-sky ellipticity e ∼ 0.3
when viewed along their minor (left, blue), intermediate (middle, red), and major (right, black) axes. The dark and light bands show the 68 and 95 per cent
confidence levels, respectively. The dotted grey line shows the average value of 2.8ε/Re. The purple line and bands show the inferred density profile for Fornax
from Read et al. (2019), divided by a cuspy profile, ρ ∝ r−1, which is normalized to the recovered density of Fornax at Re.

We have also considered the effects of dark matter halo asphericity.
We found that the shapes of dark matter haloes are typically consis-
tent with the stellar component, apart from a number of dwarfs with
aspherical stellar distributions, for which the dark matter component
was generally less aspherical than the stars. We conclude that the
systematics are driven by the asphericity of the stellar component.

3.7.2 The core-cusp problem in Fornax

Results presented in Read et al. (2019) suggest that Fornax may have
an inner core, based on the low inferred dark matter density and the
inner slope, γ0 = 0.3+0.28

−0.21, below 0.25Re (see also Goerdt et al. 2006;
Cole et al. 2012; Pascale et al. 2019). Earlier, we have established
that, for aspherical stellar distributions, line-of-sight effects may bias
the recovered mass and density profiles. What do these results mean
for the Fornax dwarf galaxy?

Fornax has a measured on-the-sky ellipticity e 	 0.3, matched by
only a few satellites in our sample. We therefore focus instead on a
sample of 24 isolated, dispersion-supported dwarfs from the APOS-
TLE simulations in CDM. For consistency with Fornax, these dwarfs
were chosen to have an ellipticity e ∼ 0.3 when viewed along at least
one of their principal axes. Otherwise, we marginalize over various
shapes of the stellar and dark matter components. The axis ratios for
these galaxies can be seen on the right panel of Fig. 1 (grey triangles).

Fig. 8 shows the bias in density profiles recovered with GravSphere
for dwarfs viewed along the minor, intermediate, and major axes
(and e ∼ 0.3 in each case). The results are shown for radii between
0.1Re and Re, a key region where core formation would be apparent.
Note that we have now gone below 2.8ε (grey dotted line), close
to the softening length of our simulations. We must be wary of the
discreteness noise contribution to the scatter at these radii. The purple
bands show the 68 and 95 per cent confidence levels of the Fornax
density profile recovered with GravSphere (Read et al. 2019), divided
by the profile in equation (11), with ρ0 equal to the density recovered
by GravSphere for Fornax at Re.

It is important to point out that, due to the mass resolution in
APOSTLE, the innermost regions of our simulated dwarfs are insuf-
ficiently sampled, compared to the real Fornax data, which results in
systematically larger errors in the recovered density profiles. Indeed,

the typical span of the 68 per cent confidence intervals below 0.25Re

in Fig. 2 is 0.5–0.6 in log10ρ, while for Fornax it is below 0.4, with the
size of the errors being approximately the same for simulations and
Fornax above 2.8ε. In order to compensate partially for this, in Fig. 8
we scale the errors for each dwarf by the ratio between the fractional
errors (the span of the 68 per cent confidence intervals divided by
the median) in a given APOSTLE dwarf and Fornax. This scaling,
however, is not able to alleviate the large growth in uncertainty
below R = 2.8ε for the mock data. Tackling this will require higher
resolution simulations that are beyond the scope of this work.

A particularly striking result in Fig. 8 is that, above 0.1Re, the
inferred density distribution in Fornax appears to be consistent within
its 95 per cent confidence intervals with a cuspy dark matter halo
viewed along any of the three principal axes. However, Read et al.
(2019) disfavour this interpretation – at least in the context of a
�CDM cosmology. This is because it requires an uncomfortably low
pre-infall halo mass12 for Fornax (M200 	 5 × 109 M�) as compared
to expectations from abundance matching (M200 	 2 × 1010 M�;
Read & Erkal 2019). It also requires a smaller halo concentration
than is characteristic of such a halo mass in �CDM (Dutton &
Macciò 2014). It remains to be seen whether a cuspy Fornax in
a low pre-infall mass and concentration halo can self-consistently
explain the relatively low density of Fornax in the context of �CDM
cosmology. We will revisit this in future work, but note it here as a
potential caveat to the conclusion of Read et al. (2019) that favours
a core in Fornax in a more massive pre-infall halo.

Finally, Fig. 8 shows that the bias in GravSphere tends to remain
fairly constant below the half-light radius. This is an encouraging
result, since, in the context of the core-cusp problem, we must be
particularly wary of any radially dependent systematics. If higher
resolution simulations find similarly little radial dependence in the
systematic errors down to 0.25Re and below, then this would suggest
that the dominant source of uncertainty, at present, in estimating
the inner dark matter density profile of the Fornax dwarf lies in the
random sampling error (i.e. the number of stars with kinematic data),

12M200 is the enclosed mass at r200, the radius below which the mean density
is 200 times the critical density of the Universe.
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Figure 9. Top: the pericentre of the dwarf galaxy orbit as a function of
the fraction of dark matter mass that has been lost since infall. The points
are coloured by the mean bias of the recovered mass profile above the half-
light radius and below the spatial extent of the dark matter halo. This is
averaged for the three principal axes. Red indicates overestimation and blue
indicates underestimation. Circles represent CDM dwarfs and squares the
SIDM dwarfs. Bottom: the radial change in anisotropy, quantified by an
anisotropy gradient measured below and above the half-light radius, as a
function of the fraction of dark matter mass lost through stripping.

rather than the systematic error due to asphericity and the projection
of Fornax on the sky.

3.7.3 The effect of tides

Dwarfs in our sample were selected to be satellites and these are
susceptible to tidal stripping by their host galaxy. In this section, we
explore whether the mass profiles recovered by GravSphere could be
affected by tides.

In the top panel of Fig. 9, we plot the pericentre of the satellite
orbits as a function of the dark matter mass lost since infall. We

find the pericentres by interpolating the position of each dwarf with
respect to its host with a cubic spline. This method may underestimate
the pericentres (see Richings et al. 2020); however, for all of our
dwarfs, we see little difference between pericentres found through
the linear and cubic splines. Moreover, the majority of the dwarfs
have infall times of ∼8 Gyr, such that typically 2–3 orbital periods
are available for pericentre calculation, with snapshots having shorter
temporal spacings at early times. We define the infall time as the
snapshot at which the subhalo has its maximum dark matter mass.
As expected, dwarfs with smaller pericentres tend to lose larger
fractions of their mass.

In the bottom panel of Fig. 9, we show anisotropy gradients as
a function of lost dark matter mass. We measure the anisotropy
gradients between two points: the mean stellar particle radii below
and above the projected half-light radius. A clear trend is evident,
whereby tides cause more tangential anisotropy in the outer parts of
galaxies. This is due to the preferential stripping of the stars moving
on radial orbits (Henon 1970; Keenan & Innanen 1975; Kravtsov,
Gnedin & Klypin 2004; Read et al. 2006; D’Onghia et al. 2010). We
note the apparent simplicity of the two relations in Fig. 9, excluding
perhaps the SIDM dwarfs, the orbits of which are more isotropic and
the anisotropy is approximately constant.

We colour the points in Fig. 9 by the mean bias, 〈M/Mtrue − 1〉,
measured for all radii outside Re and below the spatial extent of the
halo. This is averaged for the three lines of sight along the principal
axes of the dwarfs. We note that the bias is dominated by the line of
sight closest to that which points from the centre of the host galaxy
to the dwarf. This is indeed where we expect to see the largest effects
on mass modelling due to the ongoing process of tidal stripping
(Klimentowski et al. 2007).

It can be seen in Fig. 9 that for dwarfs that have undergone stronger
tidal effects the mass profile is overestimated. This is unsurprising
given that tides will result in the steepening of the outer slope
(Peñarrubia et al. 2009), beyond the 0 < γ j < 3 permitted by our
priors. Note, for example, the increased accuracy in the outer mass
profile when using the Zhao (1996) dark matter parametrization (top
left of Fig. 4), where such steep slopes are allowed. An exception
from this trend is SIDM Galaxy 29, where the mass profile is
overestimated in the outer parts, yet tidal effects seem to be less
significant. None the less, the steepening of the density profile of this
dwarf beyond γ = 3 is evident in Fig. 2.

We note the average underestimation of the outer mass profiles in
dwarfs with weaker tidal effects. It is unclear how significant this
result is, given that a number of these dwarfs (Galaxies 0,1,8,23)
are amongst the most aspherical objects in our sample and thus are
subject to other sources of bias.

Most importantly, we point out that we found no significant trend
for the accuracy of the enclosed mass profile below Re in our sample
of dwarfs with tidal effects. This suggests that Jeans analysis is a valid
method of mass modelling for dwarfs susceptible to tidal interactions,
provided the impact of stars that are in the process of being tidally
stripped is minimized. Here, we achieve this by limiting our sample of
stellar particles to those within 2R2D, as well as only using the stellar
particles considered as ‘bound’ by the subhalo finder. The study
of the performance of GravSphere on a realistically contaminated
sample of stars is certainly warranted and has been addressed, with
a smaller sample of galaxies, by Read & Steger (2017).

3.8 Identifying failing models

Is it possible to identify the cases where GravSphere produces a
biased result? In Read & Steger (2017), it was shown that for triaxial
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haloes it is possible to tell that the model has been unsuccessful
through the value of the χ2. Is this true for our sample of dwarfs?

In Fig. 10, we display the mean number of standard deviations
to the true mass profile from the profile recovered by GravSphere,
computed within the half-light radius of each dwarf, as a function of
the total normalized χ2 value (i.e. we divide the χ2 for the surface
density profile and the line-of-sight velocity dispersion profile by the
total number of photometric and kinematic bins, respectively). The
points are coloured by the number of standard deviations from the
‘truth’, with red indicating an overestimate and blue indicating an
underestimate. The grey shaded regions, highlighting the 1σ and 2σ

intervals form the true mass profile, are labelled by the fraction of
our galaxies falling within there regions. We thus confirm that in just
under 60 per cent of the dwarfs in our sample, GravSphere returns
the true mass profile within 1σ and in just under 90 per cent within
2σ , with the worst results encountered for SIDM dwarfs and the most
aspherical objects in our sample.

Strictly speaking, we would expect to classify models with χ2

> 4 as poor fits. Indeed, we see that for the values of χ2 � 3.5
(black dashed line) a stronger bias is observed. In general, there is
a significant scatter the quality of results for dwarfs with χ2 � 3.5.
Among these galaxies, we see the particularly aspherical dwarfs and
some SIDM galaxies (which are biased towards cusps), but not all.
Evidently, this cut in χ 2 may be used for the selection of models that
are more likely to be unbiased, such that the scatter in the accuracy
of mass profiles returned by GravSphere is minimized.

4 C O N C L U S I O N S

Dwarf spheroidals are some of the best objects in which to study
dark matter due to their proximity and high mass-to-light ratios. With
the increasing availability of high-quality spectroscopic, photometric
and proper motion data, studies of mass modelling methods and their
limitations using realistic N-body simulations are certainly becoming
more important in our efforts to narrow down the identity of dark
matter and its behaviour on small scales. Here, we presented such a
study for GravSphere, a higher order non-parametric Jeans analysis
method (Read & Steger 2017).

First, we selected a sample of 32 dwarf galaxies from a suite
of cosmological hydrodynamic simulations in �CDM and SIDM
cosmologies. These simulated galaxies were chosen to resemble clas-
sical Local Group dwarfs-like Fornax. We then applied GravSphere,
with its standard set of priors, to each of these dwarfs. We present
the following findings:

(i) Within the key region inside the projected half-light radius,
where dark matter cores form in some simulations (Navarro et al.
1996a; Pontzen & Governato 2012; Oñorbe et al. 2015; Tollet et al.
2016; Fitts et al. 2017; Read et al. 2016; Benı́tez-Llambay et al.
2019), the enclosed mass distributions are recovered within the 68
per cent confidence limits for ∼60 per cent of the dwarfs in our
sample and within the 95 per cent confidence limits for ∼90 per cent
of the dwarfs.

(ii) For our sample of CDM dwarfs, GravSphere returns unbiased
mass profiles (rms = 0.05) along the radial range of (0.4–3)R e, but
with ∼50 per cent scatter in the innermost regions and ∼25 per cent
scatter at the projected and deprojected half-light radii; this is compa-
rable to standard mass estimators (see the left-hand panel of Fig. 3).
In comparison to other Jeans methods, GravSphere achieves a more
consistent performance across the radial range considered and, typ-
ically, has smaller scatter in the recovered mass profiles (see Fig. 4).

Figure 10. Number of standard deviations between the GravSphere result
and the true mass profile, computed below the half-light radius and above
2.8ε, as a function of total, reduced χ2. CDM dwarfs are shown with circles
and SIDM dwarfs with squares. Red highlights an overestimation of true mass
and blue an underestimation (y-axis values). The grey dashed line indicates
unbiased results. The black dashed line shows our suggestion for a ‘cut’ in χ2

to separate ‘successful’ and likely biased models. The shaded regions display
the 1σ and 2σ regions and are labelled by the percentage of our sample,
where the true mass profile is contained within these regions.

(iii) The density profiles for our CDM sample recovered by
GravSphere are also accurate to better than 10 per cent (rms =
0.07) and exhibit a scatter of 30 per cent (see the right-hand panel
of Fig. 3). Within the 68 per cent confidence levels, this is sufficient
to reject cores that form on the scale of the half-light radius (when,
in reality, there is a cusp). Due to the spatial and mass resolution
of our simulations, we were only able to test GravSphere in regions
outside 380 pc; however, if the uncertainty in the density profile
does not increase for regions near 100 pc, it should be possible to
separate core- and cusp-like densities for Fornax-like dwarfs that
have undergone complete core formation on the scale of the half-
light radius, as described in Read et al. (2016), provided the central
density has not been reduced by tides and the pre-infall halo mass is
well constrained.

(iv) For the sample of SIDM dwarfs with interaction cross-section
of 〈σ /m〉 = 10 cm2g−1, which have cores on the scale of the half-light
radius, we find that GravSphere is biased towards cuspy models. The
density is overestimated by ∼20 per cent in the central regions. We
show that this bias is relieved when imposing the correct form of
anisotropy (β = β 0), suggesting that the data are not sufficiently
constraining to break the M − β degeneracy for these dwarfs (see
the bottom left panel of Fig. 4). Moreover, our priors do not allow a
full exploration of parameter space when there is a core in the central
density distribution. Widening the priors to allow ‘holes’ in central
regions leads GravSphere to a reduction in the bias for the SIDM
sample (see Fig. 5), although at the expense of slightly biasing the
CDM sample towards cores, with a 10 per cent underestimation in
the inner regions.
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(v) We explored the benefits gained by having larger stellar
samples for our dwarfs (see Fig. 6). We found that using all available
stellar particles within 2Re mildly improves the accuracy of the mass
profiles and reduces the scatter by ∼15 per cent for the CDM sample
and ∼5 per cent for the SIDM sample (where we are limited in the
number of available stellar particles due to mass resolution).

(vi) Our simulations suggest that Fornax-like dwarfs may have
anisotropy profiles consistent with a constant value, β = β0. In fact,
for dwarfs in CDM, assuming a constant β and no VSPs results in
a similar bias and scatter in the inner regions as GravSphere (with
an increase in the size of the errors in the outer parts). For SIDM
dwarfs, the assumption of constant β significantly reduces the bias
and scatter at small radii compared to GravSphere, without the need
to change the priors on the dark matter density slopes to allow for
more models with cores (see the bottom left panel of Fig. 4).

We have explored the reasons for the scatter in GravSphere’s
performance. We found the following:

(i) The scatter in the accuracy of the recovered mass profiles is
largest for objects that are particularly aspherical (see top panel of
Fig. 7). In our CDM sample of dwarfs with the minor-to-major
axial ratio, c/a ∼ 0.7, galaxies viewed along their intermediate
axis typically have their masses recovered accurately (rms = 0.05)
compared to objects viewed along the minor axis (where the mass is
underestimated by ∼30 per cent) or the major axis (where the mass is
typically overestimated by ∼30 per cent). If Fornax has a sphericity
of c/a 	 0.7 and is viewed along the intermediate axis, GravSphere
is expected to accurately recover the mass (and the density) profile
out to the half-light radius.

(ii) We have explored the effect of tides on the performance of
GravSphere. We found no significant effect on the recovery of the
mass profiles below the half-light radius. However, we did find that
the mass profiles of systems which are more significantly affected
by tides are typically overestimated in the outer regions (see Fig. 9),
primarily due to the imposed priors on the outer density slope. This
suggests that Jeans analysis is still valid for systems affected by tidal
interactions, provided the impact of stars in the outer regions, which
could be in the process of becoming unbound, is minimized.

(iii) We have investigated whether models which are biased (e.g.
due to the underlying asphericity of the system) manifest themselves
through poorer fits to the data. We found that these models typically
have a higher total value of the χ2 (see Fig. 10). We suggest a
χ2

tot = 3.5 cut to weed out biased models and reduce the uncertainty
in the recovered profiles.

In conclusion, GravSphere is certainly a promising method for
modelling dark matter distributions in dwarf galaxies. It remains to
be seen whether it can maintain its lack of bias in the innermost
regions of dwarfs (below Re/2), which would be possible with
higher resolution simulations. In this work, we focused on studying
the effects of the violation of the assumptions of the spherical
Jeans equation on GravSphere’s performance. This study could, in
the future, be extended with an inclusion of the effects of stellar
binaries and contamination from the Galactic halo to provide a
more realistic description of the expected systematics. This, together
with modelling of multiple tracer populations and proper motions,
has been explored on more idealized systems in Read & Steger
(2017). We aim to extend this study with N-body and hydrodynamics
simulations of realistic dwarf spheroidals in future work.
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A P P E N D I X A : C O N V E R G E N C E C R I T E R I A A N D
G E N E R AT I N G IN I T I A L PO S I T I O N S

In this section, we describe the effect of our choice of the initial
positions of EMCEE walkers on the convergence of GravSphere’s
results.

A1 Effective priors

As mentioned in the main text, we generate the initial positions
through the selection of walkers that satisfy the condition of radial
increase in power-law slopes, γ j, and the constraint on smoothness,

γ = 1.

The top panel of Fig. A1 shows the effective priors on each slope.
It is clear that these priors are not uniform as the selection of the
slopes is not independent; however, the width of these distributions
allows for a variety of density profiles. The inset shows the priors
for the density at 150 pc, ρ150. Despite the non-uniform nature of the
γ 0 prior, when combined with a uniform prior on the scale density,
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Figure A1. Top: effective priors on the logarithmic slopes γ j. Each slope
is identified by its colour. The inset shows priors on the density at 150 pc,
assuming a 1 kpc half-light radius. Middle: posterior distributions, collected
from all CDM dwarfs within our sample, weighted equally. The dotted lines
are the medians of the distributions. Bottom: posterior distributions, collected
from all SIDM dwarfs within our sample, weighted equally. The dotted lines
are the medians of the distributions.

ρ0, the resulting ρ150 prior is effectively uniform and is not biased
towards more core or cusp-like values (Read et al. 2019).

The middle panel of Fig. A1 suggests that the posteriors on γ

are not completely determined by the priors. The prior and posterior
distributions are offset, as seen from their median values, and their
shapes are noticeably different. The γ 4 posterior is clearly pushing
against the prior boundary, suggesting that a wider prior on this
parameter is desirable.

In the bottom panel, we see similar posterior distributions for
SIDM dwarfs. It is clear that the regions with γ 0 = 0 are not
prioritized by the EMCEE walkers, resulting in an inference of more
cuspy dark matter density profiles. It can be seen, however, that lower
values of γ j are preferred, compared to the CDM sample.

A2 Walker convergence compared to previous implementations

Previous implementations of GravSphere have used initial positions
of the walkers for the broken power-law slopes γ j that are completely
uniform. This results in a large number of EMCEE walkers starting off

Figure A2. The convergence of mass within the half-light radius, expressed
as a ratio of this mass to the true value, for two different prior selection
methods. Priors that are generated completely uniformly are shown in solid
blue, and those selected in a uniform, yet conditional, fashion (such that all
priors satisfy the monotonic increase in the values of γ j) are shown in red.
The shaded bands represent 68 per cent confidence limits. The blue dotted
line shows the fraction of ‘dead walkers’ (those stuck in the infinitely negative
log-likelihood space), when using fully uniform priors.

in regions of infinitely negative log-likelihood. This is because these
walkers do not satisfy the constraints for monotonically increasing
values of γ j. We will refer to these as ‘dead walkers’. Eventually,
some of these climb out and explore the posterior distribution, but
not all, and this can take many iterations. In Read & Steger (2017),
the chains were run for 5000 iterations, with the last 2500 used for
analysis. In Fig. A2, we compare this method to one employed in
this work.

We pick Galaxy 4 as our representative example and we select the
mass within the half-light radius, M(< Re), as a quantity for which
we wish to establish convergence. Fig. A2 shows the median value
of the bias, M(< Re)/Mtrue, and the 68 per cent confidence levels
for each walker iteration using the original GravSphere’s method for
generating initial positions (blue) and the initial positions generated
using the method described in this work (red). The blue dotted line
shows the fraction of dead walkers remaining after each iteration
when using the original GravSphere method (right vertical axis).

It can be seen that our new method reaches convergence after
∼5 × 103 iterations, whereas the original method requires ∼500
iterations to get out of the low log-likelihood regions and, in fact,
does not reach the converged distribution until after ∼9 × 103 MCMC
iterations. The chains start off with over 90 per cent dead walkers.
This percentage drops to ∼60 per cent near 104 iterations and can be
seen to decrease slowly. We conclude that our new method of initial
position selection allows for faster chain convergence and efficient
walker exploitation.

A3 Extended priors that favour cores

In Fig. A3, we display the mass, density, and anisotropy profile
recovery with GravSphere for our sample of SIDM dwarfs when the
priors on the power-law density slopes γ j are allowed to vary between
γ j = [−2, 3], allowing ‘holes’ in the density distribution. In the post-
processing, we fix all slopes γ j < 0 to γ j = 0. This effectively
increases the sampling by EMCEE walkers of the parameter space
regions where the dark matter distribution is cored.
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Figure A3. As Fig. 2c, but now using an extended set of priors on the density slopes γ j, allowing ‘holes’ in central regions of dwarfs. Note that for a number
of these dwarfs the spatial resolution, 2.8ε (vertical dashed line), is below 0.125Re and below the limits of the figure.
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