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Résumé. — L’algorithme de mélange de dominos (“domino shuffling algorithm”) [EKLP92a,
EKLP92b, Pro03] peut être vu comme un processus stochastique qui décrit la croissance irré-
versible d’une interface discrète (2 + 1)-dimensionnelle [CT19, Zha18]. Sa vitesse stationnaire
de croissance vw(ρ) dépend de la pente moyenne ρ de l’interface, aussi bien que des poids
w des arêtes. On suppose que ces poids sont périodiques dans l’espace. Nous montrons que
ce processus de croissance appartient à la classe KPZ anisotropique [Ton18, Wol91]: on a
det[D2vw(ρ)] < 0 et les fluctuations de hauteur croissent au plus en logarithme du temps. De
plus, nous montrons que Dvw(ρ) est discontinu à chacune des pentes « gazeuses » ρ (il y en a
un nombre fini). En correspondance avec ces pentes, les fluctuations ne divergent pas avec le
temps. Pour un cas spécial de poids de périodicité 2, des résultats analogues ont été montrés
récemment [CT19] grâce à un calcul explicite de vw(ρ). Dans le cas général, un tel calcul n’est
pas faisable; notre preuve passe plutôt par une relation entre la vitesse de croissance et la
forme limite des pavages par dominos du diamant Aztèque.

1. Introduction
In the realm of stochastic interface growth [BS95], dimension (2+1) (i.e., growth of

a two-dimensional interface in three-dimensional physical space) plays a distinguished
role. In (1 + 1) dimensions, one finds a non-trivial KPZ growth exponent β = 1/3 as
soon as the growth process is genuinely non-linear, while in dimension (d+ 1), d > 3
a phase transition is expected [KPZ86] between a regime of small non-linearity,
where the process behaves qualitatively like the stochastic heat equation (SHE) with
additive noise, and a regime of large non-linearity, characterized by new growth
and roughness critical exponents. See the recent [CCM20, DGRZ20, MU18] for
mathematical progress on the small non-linearity regime of the KPZ equation for
d > 3. On the other hand, dimension (2+1) is the “critical” or “marginal” case: here,
the critical exponents are expected to depend not so much on the intensity of the
non-linearity, but rather on its structure. In fact, in this case, the existence of two
different universality classes has been conjectured [BS95, Wol91] (see [Ton18] for a
recent mathematical review). The first, called Anisotropic KPZ (or AKPZ) class, is
characterized by logarithmic growth of height fluctuations in space and time, like the
two-dimensional SHE with additive noise. The second, called KPZ class tout court,
has universal and non-trivial roughness and growth exponents, αKPZ ' 0.39 and
βKPZ ' 0.24 respectively (these values are known only numerically, cf. e.g. [HH12,
TFW92]). Conjecturally, the universality class of a model is determined by the
properties of the average speed of growth v(ρ) = limt→∞

1
t
E[h(t, x)− h(0, x)] of the

interface height function h, where ρ is the macroscopic slope of the initial condition.
Namely, a model is expected to belong to the AKPZ class if and only if det(D2v(ρ))
6 0, where D2v(ρ) is the 2×2 Hessian matrix. From the mathematical point of view,
the understanding of the AKPZ universality class has remarkably progressed lately
but it is still limited to a few special cases (see Section 1.1 for references). For the
KPZ class, very interesting recent developments (in a somewhat different direction)
concern the weak non-linearity (or weak-disorder) regime [CD20, CSZ20]: if non-
linearity is scaled to zero as β̂/

√
| log ε|, with ε→ 0 a noise regularization parameter

and provided β̂ is smaller than a precisely identified critical value β̂c [CSZ20], then the
KPZ equation scales to the SHE with additive noise. In this regime, the non-trivial
exponents αKPZ , βKPZ do not emerge.
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In the present work, we focus on the so-called “domino shuffling algorithm”. This
is a discrete-time Markov chain on perfect matchings (or “domino tilings”) of Z2,
that was originally devised [EKLP92a, EKLP92b, Pro03] as a way to exactly sample
and to count perfect matchings of certain special two-dimensional domains (Aztec
diamonds). When this algorithm is run on the infinite square grid, it can be seen
also as a (2 + 1)-dimensional growth model, and it is from this point of view that we
consider it here. The shuffling algorithm is actually an infinite-dimensional family
of growth processes, indexed by the edge weights w, that we only assume to be
positive and periodic in both lattice directions, with some period 2n ∈ 2N. Along
the dynamics, the edge weights also evolve (deterministically) in time. In fact, the
evolution {wk}k> 0 of edge weights under the shuffling algorithm (or “spider moves”)
has a remarkable interest in itself, as a classical integrable dynamical system [GK13].
Its trajectories are in general not time-periodic.
For generic edge weights of period 2n, there are 2n(n−1) + 1 special values for the

slope (“smooth” or “gaseous” slopes), that correspond to “cusps” of the surface free
energy σ(ρ) of domino tilings with weights w. The slopes at which σ is smooth are
instead referred to as “rough slopes” (the reason for the nomenclature smooth/rough
is reminded in Section 2.2). We let S (resp. R) denote the set of smooth (resp. rough)
slopes.
Our main result is that the domino shuffling algorithm (with general weights w)

belongs to the AKPZ class, and that the speed of growth is singular at each of the
smooth slopes (see Theorem 2.3 and Section 2.4.1 for more precise statements):

Main Theorem (Informal version). — For ρ ∈ R, the speed of growth function
ρ 7→ vw(ρ) is C∞ and det[D2vw(ρ)] < 0. On the other hand, the gradient Dvw(ρ)
is discontinuous at each of the finitely many slopes ρ ∈ S. For ρ ∈ R, the height
fluctuations grow logarithmically in space (they scale to a Gaussian Free Field) and
at most logarithmically in time. For ρ ∈ S, the variance of the height fluctuations is
uniformly bounded in space and time.

In a special case of 2-periodic weights (n = 1) analogous results have been proven
recently in [CT19]. In that case, there is a single smooth slope (|S| = 1) and the
explicit computation of vw(ρ) is doable, though rather involved, via Kasteleyn theory.
In the general case we are considering here, computing vw(ρ) directly using Kaste-
leyn theory seems very complicated, and we do not proceed that way. The first key
point in the proof of the theorem is a simple relation (cf. (2.16)) between vw(·) and
the limit shape ψw of the dimer model with edge weights w in the Aztec diamond.
The limit shape is nothing but the solution of the Euler–Lagrange equation [KO07]
associated to the dimer model’s surface tension, with weights w and boundary con-
ditions determined by the geometry of the domain. This relation allows to translate
analytic properties of vw(·) into analytic properties of the limit shapes, for which we
use results from [ADPZ04, S10]. In particular, singularities of vw(·) are in bijection
with the facets (flat portions) of ψw that do not touch the boundary of the Aztec
diamond or, equivalently, with the holes of the amoeba of the spectral curve [KO06].
In [CT19], the discontinuity of Dvw(ρ) at the unique smooth phase was found via
the explicit formula, but the connection with the facet of the limit shape was not
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realized. Another point we wish to emphasize is that, since edge weights change non-
periodically with time as w = {wk}k> 0, it is a priori not obvious that an asymptotic
speed of growth even exists (the connection with the limit shape shows that it does,
because the limit shape ψwk is actually independent of k).
Let us conclude this section by mentioning a recent article [Zha18], that proves a

hydrodynamic limit for the domino shuffling dynamics, in the form of the convergence
of the rescaled height profile to the viscosity solution of the non-linear Hamilton–
Jacobi PDE ∂tφ = vw(∇φ). The result of [Zha18] is stated for the case of edge weights
with space periodicity 1, but the same proof presumably works for general periodic
edge weights, as in the framework of the present article.

1.1. Related works on AKPZ growth models

Historically, the first rigorous result we are aware of, on a (2 + 1)-dimensional
growth model in the AKPZ class, is [PS97], that computed the speed of growth
of the Gates–Westcott model [GW95], verified that det(D2v(ρ)) < 0 and proved
that stationary states are only logarithmically rough, in agreement with the above
conjecture (growth of fluctuations in time was not studied there). More recently,
a growth model that is a (2 + 1)-dimensional, discrete, analog of Hammersley’s
process has been introduced in [BF14]. Besides the computation of the speed of
growth and the verification of det(D2v(ρ)) < 0, rigorous results on this model
include the proof that height fluctuations grow at most logarithmically in space and
time [BF14, Ton17], the study of stationary states [Ton17], hydrodynamic limits
for the height profile [BF14, LT19], determinantal formulas for certain space-time
correlations [BF14] and a CLT on scale

√
log t for height fluctuations under special

initial conditions [BF14]. Some of these results have been extended to an AKPZ
growth process defined in terms of the dimer model on the square grid, see [CFT19].
Apart from the above references, that deal with specific models, let us men-

tion [BT18], that gives a sufficient condition for a (2 + 1)-dimensional growth model
to belong to the AKPZ class. In simple terms, [BT18, Theorem 2.1] states that if
the hydrodynamic equation ∂tφ = v(∇φ) preserves solutions of the Euler–Lagrange
equations associated to some strictly convex surface tension function σ(·), then
det(D2v(ρ)) 6 0. This condition can be verified on several growth models, e.g. the
one defined in [BF14], and it is related to the fact that these stochastic processes
preserve a certain “local Gibbs property” (σ is then the surface tension corresponding
with such Gibbs potential).
The rest of the paper is organized as follows. In Section 2, we introduce the dimer

model on Z2 for general weights, give some dimer model theory and give a precise
version of our theorem. In Section 3, we prove the existence of the speed and its
formula, while the main properties of the speed are proven in Section 4.
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Figure 2.1. Coordinates of the faces

2. Model and results

In this section, we introduce the shuffling algorithm for the dimer model on Z2 for
general weights, some of the basic dimer model theory and we precisely formulate
our results.

2.1. Shuffling algorithm for the dimer model on Z2 (general weights)

The vertices of the graph Z2 are colored black and white in a bipartite way and
they are assigned Cartesian coordinates, that is the neighbouring vertices which
share a common edge with the vertex (0, 0) are (1, 0), (0, 1), (−1, 0) and (0,−1). We
label a face (i, j) ∈ Z2 if its center has coordinates (i+ 1/2, j + 1/2); see Figure 2.1
for an example on a 4× 4 torus graph.
The discrete time index of the Markov chain will be denoted k = 0, 1, . . . . We will

say that a face (i, j) is even if its bottom-left vertex is white, and odd otherwise. In
the dynamics defined below, the colors of the vertices will interchange at each time
step k and we assume that initially the vertex (0, 0) is white. Therefore, a face with
coordinates (i, j) will be even at time k if i+ j = k mod 2 and odd otherwise.
Given a weighting w of the edges, i.e. an assignment of a strictly positive weight

to each edge, we first define a deterministic sequence {wk}k> 0 of edge weightings
with w0 := w. To this purpose, note first that the weighting is uniquely defined if we
specify the weights of edges on the boundary of every even face. We write then

wk =
{(
wai,j;k, w

b
i,j;k, w

c
i,j;k, w

d
i,j;k

)
: (i, j) ∈ Z2, (i+ j) = k mod 2

}
where the 4-tuple of positive numbers (wai,j;k, wbi,j;k, wci,j;k, wdi,j;k) denotes the edge
weights around the face (i, j) at time k, where a, b, c and d are the edges labelled
clockwise around the face, with a being the topmost horizontal edge on that face.
Also for (i, j) ∈ Z2 and k > 0, set

∆i,j;k = wai,j;kw
c
i,j;k + wbi,j;kw

d
i,j;k .
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Figure 2.2. The left figure shows the weights at time k while the right figure
shows the weights at time k + 1 after applying the shuffling algorithm. In each
figure, the shaded squares denote the even faces, at times k and k+1 respectively.
The central face has coordinates (i, j) with (i+ j) = k + 1 mod 2.

The relation between wk and wk+1 is, by definition,

(2.1)
(
wai,j;k+1, w

b
i,j;k+1, w

c
i,j;k+1, w

d
i,j;k+1

)
:=
(
wai,j+1;k

∆i,j+1;k
,
wbi+1,j;k

∆i+1,j;k
,
wci,j−1;k

∆i,j−1;k
,
wdi−1,j;k

∆i−1,j;k

)

for k > 0 and (i+ j) = k + 1 mod 2; see Figure 2.2.
We are now ready to define the shuffling algorithm. This is a discrete-time Markov

chain on Ω, the set of dimer coverings, or perfect matchings, of Z2. That is, each
η ∈ Ω is a subset of edges of Z2, such that each vertex is contained in exactly one of
them. Each edge contained in η will be said to be “occupied by a dimer”. The chain is
not time-homogeneous, since the transition rates depend on the time index k, via the
edge weights wk. For k > 0, we define a random map Ω 3 η 7→ Tk+1(η) ∈ Ω through
the following four steps, cf. Figure 2.3 (only the third one is actually random):

(Deletion step) All pairs of parallel dimers of η covering two of the four boundary edges of
any face that is even (at time k) are removed.

(Sliding step) For every even face (at time k) with only one boundary edge covered by a
dimer of η, slide this dimer across that face.

(Creation step) For each face that is even at time k (call (i, j) its coordinates), if there are no
dimers of η covering any of its four boundary edges, add two parallel vertical
dimers to the face with probability

wbi,j;kw
d
i,j;k

∆i,j;k
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or

Figure 2.3. The four steps of the dynamics applied to an even face for the three
different possibilities (up to rotations) of boundary edges at that face.

or two parallel horizontal dimers with probability
wai,j;kw

c
i,j;k

∆i,j;k

(the operations are performed independently for each (i, j) and k).
(Interchange step) Interchange the white and black colors of vertices of the graph.

It is well known, and easy to check, that Tk(η) ∈ Ω if η ∈ Ω. The swapping of colors
at each step, that may seem to be pointless at this stage, will appear more natural
in the discussion below of the evolution of the height function.
The maps Tk are independent but not identically distributed, since the edge weights

depend on k. Iteratively applying these maps and letting
ηk := Tk ◦ . . . ◦ T1(η0),

one obtains the desired Markov chain {ηk}k> 0 on Ω.

2.1.1. Height function and its evolution

Each dimer configuration η ∈ Ω is in one-to-one correspondence (up to a height
offset) with a height function hη(·) which is defined on the faces of Z2 [Ken09]. That
is, one fixes the height to be zero at some reference face f0 and one defines the height
gradients as
(2.2) hη(f ′)− hη(f) =

∑
e∼Cf→ f ′

σe(1e∈ η − 1/4)

where the sum runs over the edges crossed by a nearest-neighbor path Cf→f ′ from
f to f ′, 1e∈ η is the indicator that e is occupied by a dimer and σe = +1 or −1
according to whether e is crossed with the white vertex on the right or left. The
r.h.s. of (2.2) is well-known to be independent of the choice of Cf→ f ′ .
In order for the shuffling algorithm to define a Markovian evolution of the height

profile, we have to complement the definition of the maps Tk with a prescription
of how the height offset evolves as time k increases. The convention that we adopt
here is slightly different from that of [CT19, Zha18]. We start with the following
observation, which is immediately verified from the definition of Tk and of the height
function (recall that vertex colors are swapped at each step). Let f, f ′ be any two
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Figure 2.4. The height function change at even faces for configurations only
concerning vertical dimers. One can easily obtain the same picture for horizontal
edges, by rotating each configuration by π/4, interchanging the white and black
vertices (and as a result multiplying all heights by −1).

faces that are odd at time k, i.e. they have coordinates (i, j) and (i′, j′) respectively,
with i+ j = k + 1 mod 2 and i′ + j′ = k + 1 mod 2; then,

hTk+1(η)(f)− hTk+1(η)(f ′) = hη(f)− hη(f ′).
Therefore, we make the following choice:

Definition 2.1. — If f is an odd face at time k, then
(2.3) hTk+1(η)(f) = hη(f).

This convention fixes unambiguously the whole height function of ηk+1 and in
particular the value of hTk+1(η)(f) for even faces f . Namely, let f be any face and let
η|∂f (resp. Tk+1(η)|∂f ) be the restriction of the dimer configuration η (resp. Tk+1(η))
to the four boundary edges of f . Then, one may check by direct inspection starting
from the definition of Tk+1 that, if f is even at time k, then

(2.4) hTk+1(η)(f)− hη(f) = H[η] +H[Tk+1(η)]− V [η]− V [Tk+1(η)]
4 ,

where (denoting e1, . . . e4 the four boundary edges of f , labeled clockwise from the
top one),
(2.5) H[η] = 1e1(η) + 1e3(η)
and
(2.6) V [η] = 1e2(η) + 1e4(η);
see Figure 2.4.

2.2. Periodic weights

In this section, we introduce briefly some of the main aspects of the dimer model
machinery needed for the formulation of the main result. Since we are interested
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in stochastic growth in a translationally invariant situation, here we specialize to
the case where the edge weights are periodic in both directions of space. Let the
fundamental domain D0,0 of size 2n × 2n, n ∈ N, consist of the vertices {(i, j) : 0
6 i, j 6 2n − 1}, half of which are black and half white. For 0 6 j 6 2n − 1, the
vertices (2n, j) are identified with the vertices (0, j) but are on the fundamental
domain D1,0 (obtained from D0,0 via a horizontal translation by 2n), while for
0 6 i 6 2n− 1, the vertices (i, 2n) are identified with the vertices (i, 0) but on the
fundamental domain D0,1. The edge weights are chosen on all edges on D0,0 and
its boundary edges and then extended by periodicity to the whole graph. Call this
weighting w0.
Underlying the dimer model theory is the characteristic polynomial P . To define

P , consider D0,0 embedded on a 2n× 2n torus as above and let wt(x, y) denote the
weight of the edge (x, y) for two vertices x and y of D0,0. Given z, w ∈ C, define
K(z, w) to be the Kasteleyn matrix with rows indexed by white vertices and columns
indexed by black vertices of D0,0, with

(K(z, w))xy =


wt(x, y)za if (x, y) is a horizontal edge,
i wt(x, y)wb if (x, y) is a vertical edge,
0 if (x, y) is not an edge

.

where x is a white vertex and y is black vertex in D0,0, and

a =


1 if x = (2n− 1, k) and y = (0, k)
−1 if x = (0, k) and y = (2n− 1, k)
0 otherwise

and

b =


1 if x = (l, 2n− 1) and y = (l, 0)
−1 if x = (l, 0) and y = (l, 2n− 1)
0 otherwise

for 0 6 k, l 6 2n − 1. The Laurent polynomial P (z, w) = detK(z, w) is called
“characteristic polynomial” [KOS06]. Of course, P depends on n and on the weights.
From [KOS06], the Newton Polygon (depending on n) is defined to be

N(P ) = convex hull
{

(j, k) ∈ Z2
∣∣∣zjwk is a monomial in P (z, w)

}
⊂ R2.

One can check, for the K(z, w) specified above, that N(P ) is the (closed) square
with vertices (±n, 0), (0,±n).
A probability measure µ on Ω is said to be an ergodic Gibbs measure (corresponding

to the edge weights w0) if:
• it is invariant and ergodic with respect to horizontal/vertical translations by
multiples of 2n;
• it satisfies the following Dobrushin–Lanford–Ruelle (DLR) property. Given
any finite subset Λ of edges and any dimer configuration η̄ ∈ Ω, let ΩΛ,η̄ be
the (finite) set of dimer configurations η ∈ Ω that coincide with η̄ outside Λ.
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Then, conditionally on η = η̄ outside Λ, the µ-probability of a configuration
η is proportional to the product∏

e∈ η ∩Λ
w0(e)

of w0-weights of the edges in Λ occupied by dimers.
Thanks to translation invariance, one may associate to each ergodic Gibbs measure

µ an average slope ρ = (ρ1, ρ2). Here, ρ1 (resp. ρ2) is the expected height difference
between a face in D0,0 and its translate in D1,0 (resp. D0,1). The slope ρ is contained
in the Newton polygon N(P ). Moreover, provided that ρ belongs

◦
N(P ), the interior

of N(P ), there exists a unique Gibbs measure with slope ρ [KOS06] and we denote it
by πρ,w0 . This measure is known to be determinantal, in the sense that the probability
that r given edges e1, . . . , er belong to η is given by the determinant of an r × r
matrix, whose entries are elements of the so-called inverse Kasteleyn matrix.
Define the Ronkin function associated to P as

R(B) = 1
(2πi)2

∫ ∫
|z|=eB1

w|=eB2

log |P (z, w)|dz
z

dw

w
(2.7)

for B = (B1, B2) ∈ R2. From [KOS06], R is the Legendre transform of the so-called
surface tension σ of the dimer model with the given periodic weights, i.e.
(2.8) σ(ρ) = sup

B ∈R2
(−R(B) + ρ ·B).

We will recall later the relation between σ and the “limit shapes” of the dimer model.
We write

◦
N(P ), the interior of the Newton polygon, as the disjoint union of

R (rough region) and S (smooth region), whose definition we recall now. (Rough
(resp. smooth) phases are called “liquid” (resp. “gaseous”) phases in [KOS06].)
From [KOS06], it is known that if ρ ∈

◦
N(P ), two cases can occur:

• either the measure πρ,w0 is rough, meaning that height fluctuations of hη(f)
−hη(f ′) grow logarithmically w.r.t. the distance between the faces f, f ′. More
precisely,

(2.9) Varπρ,w0
(hη(f)− hη(f ′)) ∼

1
π2 log |f − f ′|

as the distance |f −f ′| between f and f ′ diverges. Moreover, the scaling limit
of the height profile is a Gaussian Free Field [Ken09]. We call R the set of
such “rough slopes”;
• or the measure πρ,w0 is smooth, meaning that height fluctuations of hη(f)
− hη(f ′) have uniformly bounded variance. In this case, σ has a cone singu-
larity (i.e. ∇σ is discontinuous) at this value of ρ. The set of “smooth slopes”
is denoted S.

In both cases, σ(·) is strictly convex.
From [KOS06], it is further known that S is a finite set and moreover

(2.10) S ⊂
[ ◦
N(P ) ∩ Z2

]
;
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for generic edge weights w0, S actually coincides with the whole
◦

N(P ) ∩ Z2, which
contains 2n(n−1)+1 points. However, this may fail for particular choices of weights:
for instance, when all edge-weights are equal, then it is known that S = ∅.

2.2.1. Shuffling algorithm with periodic weights

A remarkable feature of the shuffling algorithm is the following (see for instance
[CT19, Proposition 3.1] and [Zha18, Proposition 2.2]):
Proposition 2.2. — If the initial condition η0 at time 0 is drawn from πρ,w0 (i.e.,

η0 ∼ πρ,w0), then at time k one has ηk ∼ πρ,wk .
If we had not swapped vertex colors at each step, the slope ρ would swap to −ρ

at each step. There are two observations that we will need going forward. The first
one is that the characteristic polynomial only changes by a multiplicative constant
factor when the weights wk are replaced by wk+1 [GK13] In particular, in view of (2.7)
and (2.8), this implies that the surface tension σ(·) for weights wk equals that for
weights wk+1, up to an additive constant. Another consequence is the following: since
the rough or smooth nature of πρ,w depends on w only through the zeros of the
characteristic polynomial P (z, w) on the torus {z, w ∈ C : |z| = |w| = 1} [KOS06],
we deduce that πρ,wk+1 is rough (resp. smooth) iff πρ,wk is. In other words, the condition
ρ ∈ R does not depend on k.
Another important observation is the following: even though weights w0 (and

therefore wk) are periodic in space, the sequence {wk}k> 0 is in general not periodic
w.r.t. the time index k. Time-periodicity can, however, hold for special choices of w0
and indeed the cases studied in [CT19, Zha18] are time-periodic.

2.3. The Aztec diamond

The Aztec diamond AN of size N is the subset of the graph Z2 whose vertices have
Cartesian coordinates (x1, x2) satisfying the condition |x1 − 1/2|+ |x2 − 1/2| 6 N .
We let E+

N denote the set of edges outgoing from AN , F+
N the set of faces not in AN

but neighboring AN and FN the set of internal faces of AN .
Let πw,N be the probability measure on ΩN , the set of perfect matchings of AN ,

where the weight of a configuration is proportional to the product of the w-weights
of edges occupied by dimers. Since all vertices of AN are matched among themselves,
all edges in E+

N are empty and therefore the height difference between two faces
in F+

N is independent of the choice of η ∈ ΩN . We assume that the coloring of the
vertices is such that the vertex of coordinates (−N + 1, 1) is white. We fix the height
offset as in Figure 2.5, by setting the height to +N/4 on the leftmost face of F+

N ;
then, the boundary height ranges from −N/4 to +N/4.
The height function in AN satisfies a limit shape phenomenon (or law of large

numbers) as N → ∞. Namely, rescale the lattice mesh by 1/(2nN) and call ÂN
the rescaled Aztec diamond (and correspondingly denote Ê+

N , F̂
+
N , F̂N the analog of

E+
N , F

+
N , FN). The union of the faces of ÂN tends to the square

(2.11) Q = {(x1, x2) : |x1|+ |x2| 6 1/(2n)} .
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Figure 2.5. The Aztec diamond A3 (full edges and colored vertices). The dashed
edges are the boundary edges in E+

3 and the faces containing dashed edges are
the faces in F+

3 . The height function on F+
3 is given.

Define the rescaled height function ĥη : F̂N 7→ R as

ĥη(f̂) := 1
N
hη(f),

with f ∈ FN the face of AN that corresponds to f̂ before rescaling. Thanks to the
factor 2n in the rescaling, ĥη is a Lipschitz function whose gradient is contained in
the Newton polygon N(P ). Note that, if f̂ = f̂N is a face in F̂+

N whose center tends
to x = (x1, x2) ∈ ∂Q as N →∞, then

(2.12) ĥη(f̂) N→∞= ψ∂Q(x) := n

2 (|x1| − |x2|) .

The limit shape theorem (cf. [CKP01] for the model with uniform weights and [Kuc17]
for the general periodic case) states that there exists a Lipschitz function ψw : Q 7→ R
that coincides with ψ∂Q on ∂Q, such that for every δ > 0,

(2.13) lim
N→∞

πw,N

(
∃ f̂ ∈ F̂N :

∣∣∣ĥη(f̂)− ψw(f̂)
∣∣∣ > δ

)
= 0.

Here, with some abuse of notation, ψw(f̂) means ψw computed at the center of the
face f̂ . The “limit shape” ψw is characterized by being the unique minimizer of the
surface tension functional ∫

Q
σ(∇ψ)dx

among Lipschitz functions that equal ψ∂Q on the boundary. While the boundary
condition does not depend on w, the limit shape does (through the surface tension),
but ψwk+1 = ψwk because, as we already mentioned, σ changes only by an additive
constant when wk is changed into wk+1.
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2.4. Statement of Main theorem

Our main result concerns the average speed of growth for the Markov process in
the infinite graph, started from πρ,w. By definition, this is given by the limit (provided
it exists)

(2.14) vw(ρ) := lim
k→∞

1
k

k∑
j=1

(
Eπρ,w

(
hηj(f)

)
− Eπρ,w

(
hηj−1(f)

))
with f any face of Z2 and Eν the law of the process started from the probability
measure ν. Note that every second term in the sum is zero because every second
time the face f is odd.
Since ηj ∼ πρ,wj with w0 ≡ w, each non-zero term in the sum could in principle

be computed via (2.4) and Kasteleyn theory, using the determinantal structure of
the measure πρ,wk . Following this route, however, it is not clear how to get any
manageable expression or to prove that the limit k →∞ in (2.14) even exists. One
reason is that, for generic periodic weights, it is hard to invert the infinite-volume
Kasteleyn matrix explicitly. Fortunately, an alternative way exists, that leads to:

Theorem 2.3. — For every ρ ∈
◦

N(P ) and positive periodic weighting w, there
exists v = vw(ρ) such that, for any face f ∈ Z2,

(2.15) lim
k→∞

1
k
Eπρ,w (hηk(f)− hη0(f)) = vw(ρ).

The speed vw(·) is determined as follows: let ψw(·) be the limit shape for the dimer
model in the Aztec diamond with weights w and let xw(ρ) ∈

◦
Q (the interior of the

unit square in (2.11)) be a point such that ∇ψw(xw(ρ)) = ρ. Then
(2.16) vw(ρ) = ψw(xw(ρ))− xw(ρ) · ρ.
On the rough region R, vw(·) is C∞and det(D2vw) < 0. On the other hand, Dvw is

discontinuous at every ρ ∈ S.

A few comments are in order:
• the existence of xw(ρ) is part of the statement. Uniqueness in general fails
(the limit shape ψw may have “facets”, i.e. open regions where it is affine) but
for ρ ∈ R, the point xw(ρ) is unique (see Section 4).
• Using smoothness of vw(·) on R and (2.16), one sees that

(2.17) Dvw(ρ) = −xw(ρ).
Note that the r.h.s. of (2.16) looks like (minus) the Legendre transform of ψw,
except that there is no infimum over x and in fact neither vw nor ψw have any
definite convexity.
• It was observed in [KO07] that the Euler–Lagrange equation satisfied by
the limit shape ψw of dimer models can be written (in the “rough region”
where the limit shape is C2) in terms of a first-order PDE (“complex Burgers
equation”) for a complex pair (z, w) related by the relations P (z, w) = 0 and
π∇ψw = (− arg(w), arg(z)). Locally, these relations give a bijection between
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z and ρ = ∇ψw. Then, using [BT18, Section 3], the above Theorem 2.3 can
be complemented by the following statement:

v̂w(z) := vw(ρ(z)) is a harmonic function of z.

• For a special case of two-periodic weights (n = 1), it was found via explicit
computation in [CT19, Theorem 3.11] that the behavior of vw near the unique
gas slope ρ = 0 is of the type

(2.18) vw(ρ) ρ→0= |ρ|f1(arg(ρ)) + |ρ|3f3 (arg(ρ)) +O
(
|ρ|5

)
.

The absence of the |ρ|2 term can be given an interesting interpretation. In
fact, this is a simple consequence of formula (2.16) plus the fact that, if x
approaches a point x0 on the boundary of the “facet” where ∇ψw ≡ 0, then
generically ψw(x) − ψw(x0) vanishes as |x − x0|3/2 [KO07] (this behavior is
referred to as “Pokrovsky–Talapov law” [PT80]).

2.4.1. Fluctuations

One can further prove that height fluctuations grow slowly (at most logarithmically)
in time, as is typical for growth models in the AKPZ universality class. In fact, one
has uniformly in k > 1

Pπρ,w
(∣∣∣hηk(f)− hη0(f)− Eπρ,w (hηk(f)− hη0(f))

∣∣∣ > ug(k)
)
6

c

u2

for some constant c, where g(k) =
√

log(k + 1) if ρ ∈ R and g(k) ≡ 1 if ρ ∈ S. The
proof of this fact works the same as in [CT19] so we will not add details (the speed
of convergence O(u−2) was not explicitly stated in [CT19], but it can be immediately
extracted from the proof). Note in particular that

(2.19) Pπρ,w
(∣∣∣hηk(f)− hη0(f)− Eπρ,w (hηk(f)− hη0(f))

∣∣∣ > δk
)
6
c[log(k + 1)]2

δ2k2

and since the r.h.s. is summable in k, one can upgrade (2.15) to the almost-sure
convergence, with respect to the joint law of the initial condition and of the process,

(2.20) lim
k→∞

hηk(f)− hη0(f)
k

= vw(ρ).

3. Identification of the speed of growth

In this section, we prove existence of the speed and formula (2.16).
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3.1. General properties of the dynamics

We need two general facts: the dynamics is monotone (it preserves stochastic
ordering among height profiles) and it is local (information travels at most ballistically
through the system).
Let us start with monotonicity. Given two dimer configurations η, η′, we say that

hη � hη′ if hη(f) 6 hη′(f) for every face f . Given two initial configurations η0, η
′
0,

we can couple the two Markov chains {ηk}k> 0, {η′k}k> 0 in the following way (global
monotone coupling): for any face f , if in both configurations ηk−1|∂f = η′k−1|∂f = ∅,
then in the “creation step” of the shuffling map Tk we choose the same randomness
to decide whether we add two vertical or two horizontal dimers around f . Then, the
following statement holds (it implies the preservation of stochastic order mentioned
above): if hη0 � hη′0 , then the same holds at all later times k [Zha18, Lemma 2.4].
As far as locality is concerned the point is that, by the definition of the shuffling

algorithm, the value of hηk(f) is completely determined by the height at time k − 1
at the face f and at its four neighbors (this determines the dimer configuration ηk−1
on ∂f), plus the randomness used to create parallel dimers at f , if the face is even
and ηk−1|∂f = ∅. From this, it is immediate to deduce the following:
Proposition 3.1. — Let η0, η

′
0 be two dimer configurations whose height coin-

cides on all faces at `1-distance up to N + 1 from a given face f . Couple the Markov
chains started from η0, η

′
0 via the global monotone coupling. Then, hηk(f) = hη′

k
(f)

for every k 6 N .
Let us also describe in some more detail how the shuffling algorithm works on

the Aztec diamond (this is the framework where the algorithm was originally intro-
duced [EKLP92a, EKLP92b, Pro03]). In a step of the algorithm, a dimer configura-
tion η on AN is mapped to a configuration η′ on the larger domain AN+1. Suppose
that we have ηN ∈ ΩN , i.e. a dimer configuration on the diamond of size N . We
can also view ηN as a subset of edges of AN+1 (but not a perfect matching, since
the boundary vertices are necessarily unmatched). To construct ηN+1, apply the
map TN+1 in AN to ηN (with weights wN as above). Note that the faces in AN+1
that are closest to the boundary, i.e. the faces in F+

N , are even. It is well known
that the resulting dimer configuration ηN+1 is a perfect matching of AN+1. Due to
the swapping of colors, at the next step the faces in F+

N+1 are again even and the
procedure goes on.
The analog of Proposition 2.2 in the Aztec diamond is the well known fact that, if

we start at time zero with a configuration η0 on AN such that η0 ∼ πw0,N for certain
periodic weights w0, then at time k one has ηk ∼ πwk,N+k.
There is an important point to be discussed: when we introduced the shuffling

algorithm on the infinite lattice, we fixed the evolution of the height offset via Def-
inition 2.1. On the other hand, on the Aztec diamond the height offset is fixed by
the requirement that the left-most face in F+

k has height k/4. These two conven-
tions must be compatible, i.e., if we adopt the convention (2.4) for the evolution
of the height function, then the height on the left-most face of F+

k must be k/4
deterministically. This is easily seen inductively in k, as explained in the caption of
Figure 3.1.
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Figure 3.1. Let f be the left-most face of Ak and f ′ the left-most face of F+
k , where

(by inductive assumption) the height is equal to k/4. Suppose (top drawing) that
v, v′ are matched in ηk. Then, in the application of Tk+1 the red dimer slides to
edge e′ and vertex colors are swapped. Since f is odd at time k, its height is
unchanged and as a consequence the height at f ′′ (the left-most face in F+

k+1) is
(k + 1)/4 as it should be. If instead v′ is not matched with v (bottom drawing)
then ηk has no dimer on the boundary of the even face f ′. Then, in the application
of Tk+1, two parallel dimers (horizontal and drawn in blue in the example of the
picture) are created at f ′. Again, using that the height at the odd face f does
not change, one sees that the height at f ′′ is (k + 1)/4.

3.2. The speed of growth

Here we prove the following:

Proposition 3.2. — Let ρ ∈
◦

N(P ) and assume that there exists xw(ρ) in the
interior of Q, such that ψw(·) is C1 in a neighborhood of xw(ρ) and ∇ψw(xw(ρ)) = ρ.
Then, the limit in (2.15) exists and (2.16) holds.

The existence of xw(ρ) for every ρ in the interior of the Newton polygon will be
proved in the next section.
Proof. — For an integer N , let f̄N be a face of AN whose center is at minimal

distance from (2nN)xw(ρ). One should think of N as being a large multiple of k,
the time in (2.15), with ε := k/N that will be sent to zero at the end. For later
convenience, we let ΛN,ε be the square box of side 2k + 1 centered at the face f̄N .
Recall that AN denotes the N ×N Aztec diamond and take the edge weights to be
given by w. We run the shuffling dynamics in the Aztec diamond, starting at time
zero with the domain AN and with an initial condition η̃0 sampled from πw,N . We
denote η̃k the configuration at time k, where the tilde is used just to distinguish this

ANNALES HENRI LEBESGUE



Domino shuffling and stochastic growth 1021

from the evolution in the infinite graph. The height function of η̃0 is concentrated
at the limit shape ψw(·). In particular, from (2.13) with δ = ε2 we have

(3.1) πw,N

[
|hη̃0(f)−Nψw(f/(2nN))| 6 Nε2 for every f ∈ ΛN,ε

]
N→∞→ 1.

As before, we identify with some abuse of notation a face f with the point at its
center. As observed in Section 3.1, at time k, the configuration η̃k has law πwk,N+k
and we still have (3.1) with N replaced by N + k. Altogether, we see that

Eπw,N

[
hη̃k(f̄N)− hη̃0(f̄N)

k

]

= N

k

[
(1 + ε)ψw

(
xw(ρ)
1 + ε

)
− ψw (xw(ρ))

]
+O

(
ε2
N

k

)
= ψw(xw(ρ))− xw(ρ) · ρ+ oε(1)

(3.2)

where we used that ∇ψw(xw(ρ)) = ρ and the error term oε(1) vanishes as ε → 0,
since the limit shape is C1 around xw(ρ). We also used the fact that |hη̃0|/N, |hη̃k |/N
are uniformly bounded for k 6 εN , to deduce from (3.1) a statement about their
average.
Our goal now is to prove a statement analogous to (3.2) for the dynamics {ηk}k>0

on the infinite graph. By Proposition 3.1, the evolution of hηj(f̄N), j 6 k is not
influenced by the height function of η0 outside ΛN,ε. Recall that η0 is sampled from
the infinite-volume measure πρ,w. Under this probability measure, the height function
is essentially linear, with slope ρ and sub-linear fluctuations. More precisely,

(3.3) πρ,w

[∣∣∣∣hη0(f)− hη0(f̄N)− 1
2nρ · (f − f̄N)

∣∣∣∣ 6 Nε2 ∀ f ∈ ΛN,ε

]
N→∞→ 1

where once more we have identified a face with its center and the factor 1/(2n) is
there because ρ is the average height change per fundamental domain. To get (3.3),
observe first that

πρ,w
[
hη0(f)− hη0(f̄N)

]
= 1

2nρ · (f − f̄N) +O(1),

uniformly in f ∈ Λε,N (the error term is there because f is not necessarily an exact
translation of f̄N in a different fundamental domain). Also, recall that the fourth
centered moment of hη0(f̄N)−hη0(f) under πρ,w grows at most like (log |f̄N −f |)2 for
|f̄N − f | large (see [KOS06, Section 4] for a O(log |f̄N − f |) bound on the variance;
higher moments are treated analogously). Then, a union bound over f ∈ ΛN,ε and
an application of Chebyshev’s inequality leads to (3.3).
Note that we have not yet specified the height offset hη0(f̄N) at time zero. We will

fix it in such a way that, with high probability (w.h.p.) as N →∞,

(3.4) hη0(f) 6 hη̃0(f) for every f ∈ ΛN,ε.

For this, note that (3.3) implies that w.h.p.

(3.5) hη0(f) 6 Nε2 + hη0(f̄N) + 1
2nρ · (f − f̄N) for every f ∈ ΛN,ε
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while (3.1) and C1 continuity of the limit shape implies that w.h.p.

(3.6) hη̃0(f) > Nψw(xw(ρ)) + 1
2nρ · (f − f̄N) +RN,ε

with RN,ε/Nε = oε(1). Then, (3.4) holds provided we choose
hη0(f̄N) = Nψw(xw(ρ))−Nε2 − |RN,ε| .

By monotonicity of the dynamics and Proposition 3.1 we see that hηk(f̄N) 6 hη̃k(f̄N)
and therefore, w.h.p.,

(3.7)

hηk(f̄N)− hη0(f̄N)
k

6
1
k

(
hη̃k(f̄N)−Nψw(xw(ρ)) +Nε2 + |RN,ε|

)
6
hη̃k(f̄N)− hη̃0(f̄N)

k
+ oε(1)

where we used (3.1) in the last step and k = εN . Note that [hηk(f) − hη0(f)]/k is
deterministically bounded by 1, so we can turn the statement w.h.p. into a statement
in average and obtain that

(3.8) lim sup
k→∞

Eπρ,w
hηk(f̄N)− hη0(f̄N)

k
6 ψw(xw(ρ))− xw(ρ) · ρ+ oε(1)

where we used also (3.2). Note that the face f̄N depends on the time k = Nε.
However, since the measure πρ,w is invariant by translations of multiples of 2n and
the height function has bounded Lipschitz constant, we have (3.8) also for any fixed
face f . Finally, we let ε→ 0.
A lower bound is proven in the very same way and altogether the statements (2.15)

and (2.16) follow. �

With similar arguments, we also obtain the following result, that will be useful
later:

Proposition 3.3. — If there exists x in the interior of Q such that ψw is C1 in
a neighborhood of x and ∇ψw(x) = ρ with ρ = (ρ1, ρ2) at one of the four corners of
the Newton polygon (i.e., ρ = (±n, 0) or ρ = (0,±n)) then

(3.9) ψw(x) = ρ · x+ 1
4n (|ρ2| − |ρ1|) .

Proof. — Assume to fix ideas that ρ = (n, 0). As above, let f̄N be the face of AN
closest to (2nN)x, let k = Nε and ΛN,ε be the square of side 2k+ 1 centered around
f̄N . One has, in analogy with (3.2) and with the same argument,

(3.10) 1
|ΛN,ε|

∑
f ∈ΛN,ε

Eπw,N

[
hη̃k(f)− hη̃0(f)

k

]
= ψw(x)− x · ρ+ oε(1).

On the other hand, let F be the collection of faces in ΛN,ε (there are approximately
4k2 of them). Write F = F (+,j) ∪ F (−,j), where F (+,j) contains the faces that are
even at time j and F (−,j) all the others. Because of (2.13) and the fact that ∇ψw
= (n, 0) + oε(1) in an ε-neighborhood of x, from the definition of height function we
see that, with probability 1 − oε(1), a proportion 1 − oε(1) of the dimers of η̃0 in
ΛN,ε occupy a vertical edge with bottom white vertex. The same holds for η̃j, j 6 k,
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because η̃j has the same limit shape as η̃0. Therefore, a proportion 1− oε(1) of the
faces in F (+,j) have a single vertical dimer of η̃j along their boundary. From (2.4) we
see that each such even face contributes −1/2 to the height change from time j to
j + 1. Since |F (+,j)|/|F | = 1/2 + oε(1), the l.h.s. of (3.10) equals also −1/4 + oε(1)
and (3.9) follows. �

3.3. The limit shape

Here we give some analytic properties of the limit shape ψw(·) and prove the
existence of xw(ρ):

Theorem 3.4. — There exists a non-empty, open subset F of the rescaled Aztec
diamond Q (cf. (2.11)) where ψw(·) is C1 and the gradient

∇ψw(·) ∈
◦

N(P ) .

For every ρ ∈
◦

N(P ), there exists xw(ρ) ∈ F such that
∇ψw(xw(ρ)) = ρ.

Proof of Theorem 3.4. — For x = (x1, x2) ∈ Q, let

(3.11)
ψ−(x) = max [φW (x), φE(x)] := max

[
−nx1 −

1
4 , nx1 −

1
4

]
= n|x1| −

1
4 ,

ψ+(x) = min [φS(x), φN(x)] := min
[
nx2 + 1

4 ,−nx2 + 1
4

]
= −n|x2|+

1
4

and note that ψ− (resp. ψ+) is the minimal (resp. maximal) Lipschitz function with
gradient in N(P ) that equals ψ∂Q on ∂Q. We let

(3.12) F0 :=
{
x ∈ Q : ψw(x) 6= ψ±(x)

}
⊂
◦
Q .

It is easy to see the following (the proof is given below):

Lemma 3.5. — The set F0 is non-empty.

We need some regularity properties of the limit shape ψw, and for this we appeal
to [ADPZ04, S10]. Let us compactify the Newton polygon by introducing a continu-
ous map H : N(P ) 7→ S2 (the two-dimensional sphere) in such a way that ∂N(P ) is
mapped to a point of S2 while H is a homeomorphism between

◦
N(P ) and H(

◦
N(P )) .

Then one has:

Proposition 3.6 ([S10, Theorems 4.1 and 1.3]). — The map x 7→ H(∇ψw(x))
is continuous in the interior of Q. Moreover, ψw is C1 in F0.

Define further the open set

(3.13) F := {x ∈ F0 : ∇ψw(x) ∈
◦

N(P )},
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that is the one appearing in the statement of Theorem 3.4. Decompose F as the
union of the open set
(3.14) FR := {x ∈ F : ∇ψw(x) ∈ R}
and the closed set
(3.15) FS := {x ∈ F : ∇ψw(x) ∈ S} .

Proposition 3.7. — The set FR is non-empty.

Let us assume for the moment Proposition 3.7 (the proof is given below) and let
us proceed with the proof of Theorem 3.4. In general, FS consists of a collection
of disjoint, simply connected sets (these were called “bubbles” in [KO07]); on each
bubble, the gradient ∇ψw is constant and belongs to one of the finitely many slopes
in S. It is also known [Mor66] that, on FR, the limit shape ψw is not just C1 but
actually C∞, since the surface tension σ(ρ) is C∞ for ρ ∈ R. Therefore, in particular,
the map D : x 7→ ∇ψw(x) is a C1 map from FR to R. The next step requires the
following:

Theorem 3.8 ([ADPZ04]). — The map D : x 7→ ∇ψw(x) is a proper map(1) from
FR to R (i.e. the pre-image of every compact subset of R is compact).

Let us prove that the Jacobian det(J(x)) of the map D is everywhere non-positive
on FR and not identically zero. The Jacobian matrix equals

(3.16) J(x) =
[
∂2
x1ψw(x) ∂2

x1x2ψw(x)
∂2
x1x2ψw(x) ∂2

x2ψw(x)

]
.

On the other hand, on FR, ψw(·) satisfies the Euler-Lagrange equation
(3.17) σ11∂

2
x1ψw(x) + 2σ12∂

2
x1x2ψw(x) + σ22∂

2
x2ψw(x) = 0,

with σab the derivative of σ(ρ) w.r.t. the arguments ρa, ρb, computed at ρ := ∇ψw(x)
∈ R. For ρ ∈ R, the matrix {σab}a,b= 1,2 is strictly positive definite, in particular
|σ12| <

√
σ11σ22. From this, we deduce that

(3.18) det(J(x)) > 0⇒ J(x)i,j = 0 for every 1 6 i, j 6 2.
In fact, assume first that ∂2

x1x2ψw(x) = 0. Then, ∂2
x1ψw(x)∂2

x2ψw(x) > 0 (because
det J(x) > 0) but on the other hand (3.17) reduces to
(3.19) σ11∂

2
x1ψw(x) + σ22∂

2
x2ψw(x) = 0.

Since both σ11, σ22 are strictly positive, the only possibility is that ∂2
x1ψw(x)

= ∂2
x2ψw(x) = 0. On the other hand, assume (by contradiction) that ∂2

x1x2ψw(x) 6= 0,

(1) Properness does not hold for general domains Q and boundary values ψ∂Q. Theorem 3.8 holds
for the Aztec diamond because in this case Q is a convex polygonal domain with sides perpendicular
to the sides of the Newton polygon, and ψ∂Q in (2.12) is a “natural boundary value” for Q. The
notion of “natural boundary value” is defined in [ADPZ04] and it requires in particular that, if
the side ` of Q is perpendicular to the side [pi, pi+1] of the Newton polygon with pi, pi+1 two of its
adjacent corners, then the derivative of ψ∂Q along ` equals 〈t`, pi〉 with t` the tangent vector to
∂Q along `.
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so that ∂2
x1ψw(x)∂2

x2ψw(x) > 0. Then

(3.20)
0 > σ11∂

2
x1ψw(x) + σ22∂

2
x2ψw(x)− 2|σ12|

√
∂2
x1ψw(x)∂2

x2ψw(x)

> σ11∂
2
x1ψw(x) + σ22∂

2
x2ψw(x)− 2√σ11σ22

√
∂2
x1ψw(x)∂2

x2ψw(x) > 0

which is a contradiction because the second inequality is strict. Altogether, (3.18)
follows. From this, we see that det(J(·)) can vanish identically on FR only if ψw(·)
is affine, which is clearly not possible in view of Proposition 3.8.
We have that the map D is proper and its Jacobian is non-negative and not

identically vanishing. Then, by [NR62, Theorem 1], we deduce that the map D is
onto: for every ρ ∈ R, there exists xw(ρ) ∈ FR with ∇ψw(xw(ρ)) = ρ.
It remains to show the existence of xw(ρ) for every ρ ∈ S. Let {ρi} be a sequence

of slopes in R that converges to ρ. Any limit point x̄ of xw(ρi) is in F0 (because of
Proposition 3.8). Due to Proposition 3.6, the slope of ψw at x̄ is ρ, so we can set
xw(ρ) := x̄. �

We conclude this section by proving the two technical results, Lemma 3.5 and
Proposition 3.7 that were stated above.
Proof of Lemma 3.5. — Since ψ−(x) < ψ+(x) for every x in the interior of Q and

ψw is continuous, we have just to exclude that ψw ≡ ψ− or ψw ≡ ψ+. Assume for
instance that ψw ≡ ψ+; we are going to exhibit a function ψ, with the right boundary
value, such that

(3.21)
∫
Q
σ(∇ψ)dx <

∫
Q
σ(∇ψw)dx = |Q|2 (σ(0, n) + σ(0,−n)).

For this purpose, let for ε > 0 small

ψ(x) := min
(
ψ+(x), 4εn2x2

1 + (1/4− ε)
)
.

It is immediate to see that ψ(x) = 4εn2x2
1 + (1/4− ε) in

Sε :=
{
x : |x2| 6

ε

n

(
1− 4n2x2

1

)}
and ψ(x) = ψ+(x) in Q \ Sε, so in particular ψ equals ψ∂Q on ∂Q. The difference
between the r.h.s. and the l.h.s. of (3.21) is then

(3.22)
∫
Sε

[1
2 (σ(0, n) + σ(0,−n))− σ

(
8εn2x1, 0

)]
dx.

Since σ(·) is strictly convex, one has

1
2 [σ(0, n) + σ(0,−n)] > σ(0, 0).

Therefore, using continuity of σ(·), for ε small enough the difference (3.22) is strictly
positive and, as a consequence, the minimizer ψw of the surface tension functional
cannot coincide with ψ+. �
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(0, 1
2n )

( 1
2n , 0)

(0,− 1
2n )

(− 1
2n , 0) F0

QN

QS

QEQW

Figure 3.2. The square Q with the convex region F0 and the four frozen regions
Qa, a = N,W, S,E.

Proof of Proposition 3.7. — We begin by making an observation on the shape of
F0. Recall from (3.11) the definition of φa, a ∈ {N,E, S,W} and define the (possibly
empty) regions

(3.23) Qa :=
{
x ∈

◦
Q: ψw(x) = φa(x)

}
, a ∈ {N,E, S,W}.

QN belongs to the triangle {x ∈ Q : x2 > 0}, otherwise ψw would exceed the maximal
function ψ+; similar statements hold for QS, QE, QW . See Figure 3.2. Also, it follows
from [S10, Theorem 4.2] that

∂QN∩
◦
Q

is the graph of a concave function; analogously, ∂Qa∩
◦
Q for a ∈ {E, S,W} is the

graph of a concave function in a reference frame rotated clockwise by π/4, π/2 and
3π/4 respectively.
Because of the definition of ψ±, we see that

F0 =
◦
Q \ ∪a∈{N,E,S,W} Qa.

Note that F0 is convex.
Before proving that FR is non-empty, let us show that F is non-empty. Let ρ(a),

a ∈ {N,E, S,W} be the gradient of φa(·) (these are also the four corners of N(P ))
and `(i), i ∈ {NE,SE, SW,NW} the open segment connecting ρ(N) to ρ(E) etc.
Remark that if x ∈ F0, then ∇ψw(x) cannot coincide with any of the slopes ρ(a),
a ∈ {N,E, S,W}. In fact, thanks to Proposition 3.3, in this case one would have

ψw(x) = ρ(a) · x+ 1
4n

(∣∣∣ρ(a)
2

∣∣∣− ∣∣∣ρ(a)
1

∣∣∣) = φa(x),

which contradicts the fact that x ∈ F0. Therefore, we have that

(3.24) F = F0 \ ∪i∈{NE,SE,SW,NW}F (i),
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Figure 3.3. A random domino tiling of the Aztec diamond of size N = 800
(rotated by 45 degrees) with edge weights of period n = 2 (the weights were
randomly chosen on the fundamental domain and then extended by periodicity).
The configuration is obtained via the shuffling algorithm and it is therefore a
perfect sample from πw,N . In addition to the frozen regions QN , QE, QS, QW

adjacent to the corners of the domain, where the gradient of the limit shape
ψw equals (±n, 0), (0,±n), one remarks the presence of regions, adjacent to the
sides, where ∇ψw belongs to ∂N(P ) \ {(±n, 0), (0,±n)}. These regions belong
to F0 but not to F .

with
F (i) =

{
x ∈ F0 : ∇ψw(x) ∈ `(i)

}
.

In general, the region F is a proper subset of F0, see Figure 3.3.
Using also the second statement in Proposition 3.6, we conclude that if (by con-

tradiction) F is empty, then necessarily F0 must coincide with one of the four sets
F (i). To fix ideas, say that F0 = F (NW ), i.e. everywhere in F0, ∇ψw is a non-trivial
convex combination of ρ(W ) = (−n, 0) and ρ(N) = (0,−n). Let γ be the curve along
∂F0 from point A to point B, as in Figure 3.4, and let tp be the tangent vector at a
point p ∈ γ.
From the definition of QS, QW one has that the directional derivative of ψw in

direction tp equals tp · gp, with gp ∈ `(SE). On the other hand, if γ′ is a curve from A
to B that runs slightly inside F0 at distance δ from γ, we have that the directional
derivative along γ′ at a point p′ equals t′p′ · ∇ψw(p′), with ∇ψw(p′) ∈ `(NW ), because
F0 = F (NW ) by assumption. Taking δ → 0, one easily sees that these two facts are
not compatible with ψw being continuous along γ. This proves that F is not empty.
Finally, the fact that FR 6= ∅ follows easily from F 6= ∅. In fact, if FR were empty,

then ∇ψw(x) would belong to S for every x ∈ F and (because of Proposition 3.6)
it would actually take a constant value ρ̄ on F . If F = Q, this is a contradiction
since the affine function with slope ρ̄ cannot match the boundary datum ψ∂Q. If on
the other hand Q \ F 6= ∅, then take a sequence of points xi ∈ F and a sequence
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F0

QN

QS

QEQW

A

B

p
tp

Figure 3.4. The curve γ (in blue) and the tangent vector tp at a point p ∈ γ.

yi ∈ Q \ F that have the same limit in the interior of Q. One has ∇ψw(xi) = ρ̄ while
∇ψ(yi) ∈ ∂N(P ), which contradicts Proposition 3.6. �

4. Properties of vw(ρ)

We start with the following statement, whose proof is given below:
Proposition 4.1. — The function ρ 7→ vw(ρ) is C∞ on R.
Remark 4.2. — We know that the determinant of the Hessian matrix J(x) of ψw is

negative or zero on the rough region FR; if we knew that the inequality is everywhere
strict, C∞ continuity of vw(·) would easily follow from formula (4.2) below and from
further derivation w.r.t. ρ. On the other hand, non-vanishing of J(x) in the rough
region is not a general property of macroscopic shapes of dimer models. For instance,
for the dimer model on the honeycomb graph with uniform weights, one can verify
from the explicit solution [CLP98] that the macroscopic shape ψ in a hexagonal
domain has a Hessian with strictly negative determinant in the whole rough region,
except at a single point (the center of the domain), where all entries of the Hessian
matrix are zero. To overcome this problem, for the proof of Proposition 4.1 we
will not rely directly on analytic properties of the limit shapes, bur rather on the
definition (2.14) of the speed and on the properties of the dimer measure πρ,wj under
the dynamics {wj}j>0 of the edge weights (“spider move dynamics”).
From Proposition 4.1 and the formula (2.16) for the speed, we deduce

(4.1) Dvw(ρ) = −xw(ρ), ρ ∈ R.
By the way, this shows that xw(ρ) is unique for ρ in the rough region. This formula
also allows to prove that the speed is not C1 at smooth slopes. Indeed, we know from
Theorem 3.4 that for every ρ̄ ∈ S, there exists xw(ρ̄) in the interior of Q, where the
slope of ψw is ρ̄. Moreover, it is known [ADPZ04] that, since the boundary condition
ψ|∂Q is “natural” (cf. Footnote 1), the set Bρ̄ := {x ∈ Q : ∇ψw(x) = ρ̄} is a closed

ANNALES HENRI LEBESGUE



Domino shuffling and stochastic growth 1029

set with non-empty interior. Letting x ∈ FR approach different points of Bρ̄ (so that
∇ψw(x) approaches ρ̄, by continuity of x 7→ ∇ψw(x)), we see from (4.1) that Dvw(ρ)
does not have a unique limit as ρ→ ρ̄.
From (4.1) we see also that, for ρ ∈ R,

(4.2) D2vw(ρ) = −J(xw(ρ))−1,

where the 2× 2 Jacobian matrix J(·) is as in (3.16). We already know that det(J(x))
6 0, and the fact that the speed is C2 means that the inequality is strict. In particular,
(4.3) det

(
D2vw(ρ)

)
< 0

as wished.
Proof of Proposition 4.1. — Let f be an even face. From (2.14) and (2.4) one has,

with w ≡ w0,

(4.4) vw(ρ) = lim
k→∞

1
4k

k∑
j=0

πρ,wj [H(η)− V (η)] .

On the other hand, recall from (2.5) and (2.6) that H(η), V (η) are sums of dimer
indicator functions. From the determinantal structure of the measures πρ,w, one has
an explicit expression for the probability that an edge e is occupied. Assume that the
white endpoint of e is in the fundamental domain Dm1,m2 (that is the translation of
D0,0 by 2m1n in the horizontal direction and by 2m2n in the vertical one) and that,
modulo this translation, it is equivalent to the white vertex x of the fundamental
domain D0,0. Similarly, assume that the black endpoint is in D`1,`2 and that it is
equivalent to the black vertex y in D0,0. Then,
(4.5) πρ,w[e ∈ η] = Kw(e)K−1

w (e)
where Kw(e) equals the w-weight of e, times the complex unit i if the edge is vertical,
while

K−1
w (e) = 1

(2πi)2

∫
|z|=eB1

|w|=eB2

[
K(z, w)−1

]
y,x
zm1−`1wm2−`2 dz

z

dw

w
.(4.6)

We recall that K(z, w) is the 2n2×2n2 Kasteleyn matrix of the fundamental domain
D0,0 (recall Section 2.2) and B = B(ρ) = (B1(ρ), B2(ρ)) is the value that realizes the
supremum in (2.8). For ρ = (ρ1, ρ2) ∈ R the maximizer is unique and the relation
between ρ and B(ρ), through
(4.7) ∇σ(ρ) = B(ρ),
is a C∞ diffeomorphism between R and A(P ) ⊂ R2 (the amoeba of P , A(P ),
defined as the image of the curve P (z, w) = 0 in C2 under the map (z, w) 7→
(log |z|, log |w|)) [KO06]. We will prove:

Lemma 4.3. — The r.h.s. of (4.6) is a C∞ function of B.

As a consequence, (4.5) and therefore the sum in (4.4), for every fixed k, are C∞
functions of ρ. To conclude the proof of the Proposition 4.1, we will prove:

Lemma 4.4. — Let w = wj. The derivatives (of any order) of (4.5) w.r.t. B can
be bounded uniformly w.r.t. the index j.
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The smoothness claim for vw then easily follows from (4.4). �

Proof of Lemma 4.3. — Assume without loss of generality (by translation invari-
ance) that `1 = `2 = 0. Write

(4.8)
[
K(z, w)−1

]
y,x

= Q(z, w)
P (z, w)

with P (z, w) = detK(z, w) the characteristic polynomial and Q(z, w) (that is also a
Laurent polynomial in z, w) the cofactor (x, y) of K(z, w), so that (4.6) reduces to

(4.9) eB1m1+B2m2

(2π)2

∫ 2π

0
dθ
∫ 2π

0
dφ
Q
(
eB1+iθ, eB2+iφ

)
P (eB1+iθ, eB2+iφ) e

iθm1+iφm2 .

The prefactor of the integral is smooth and will be dropped; also, we write Q̃
for Q × eiθm1+iφm2 . If B = B(ρ) as in (4.7) with ρ ∈ R, it is known that (θ, φ)
7→ P (eB1+iθ, eB2+iφ) has two distinct simple zeros [KOS06], call them (θω, φω), ω = ±.
Write
(4.10) P

(
eB1+iθ, eB2+iφ

)
= P ω

1 +Rω := aω (θ − θω) + bω (φ− φω) +Rω

where P ω
1 is the first-order Taylor expansion around (θω, φω). The zeros (θω, φω) and

also aω, bω are real analytic functions of B1, B2, and the ratio aω/bω is not real. Write

1 = f+(θ, φ) + f−(θ, φ) +
(
1− f+(θ, φ)− f−(θ, φ)

)
(4.11)

where
fω = χ(|P ω

1 |)(4.12)

and χ : R 7→ [0, 1] is a C∞ function that equals 1 (resp. 0) when its argument is
smaller than ε (resp. larger than 2ε), with ε sufficiently small so that the supports
of f± are disjoint. The integral of

(4.13)
[
1− f+ − f−

] Q̃
P

is C∞ w.r.t. B. Now look at the integral of fωQ̃/P . Suppose we want to prove it is
Ck w.r.t B. Write

(4.14) Q̃

P
= Q̃ω

P ω
1

+ Q̂ω

P ω
1
− Q̃Rω

P P ω
1
,

with Q̃ω := Q̃(θω, φω) and Q̂ω := Q̃− Q̃ω. Write
(4.15) aωθ + bωφ = X + iY := (θRe(aω) + φRe(bω)) + i (θ Im(aω) + φ Im(bω)) .
Since the ratio aω/bω is not real, the Jacobian of the change of variables (θ, φ) ↔
(X, Y ) is non-singular. One has then

(4.16)
Q̃ω

∫ 2π

0
dθ
∫ 2π

0
dφ

fω(θ, φ)
P ω

1 (θ, φ) = Q̃ω
∫
R2
dθdφ

χ (|aωθ + bωφ|)
aωθ + bωφ

= const×
∫
R2
dXdY

χ (|X + iY |)
X + iY
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which is zero by symmetry. Next look at∫ 2π

0
dθ
∫ 2π

0
dφfω

Q̂ω

P ω
1

=
∫
R2
dθdφχ (|aωθ + bωφ|)Q̂

ω (θ + θω, φ+ φω)
aωθ + bωφ

(4.17)

= const×
∫
R2
dXdY χ(|X + iY |)Q̂

ω(X, Y )
X + iY

(4.18)

where, with some abuse of notation, we write
(4.19) Q̂ω(X, Y ) := Q̂ω (θω + θ(X, Y ), φω + φ(X, Y )) .
The constant prefactor has a C∞ (in fact, real analytic) dependence on B. Also, Q̂
is a polynomial with real analytic coefficients and it vanishes at least linearly when
(X, Y ) tends to zero. Then, it is easy to deduce that (4.18) is a C∞ function of B.
Finally, we look at

(4.20)
∫ 2π

0
dθ
∫ 2π

0
dφfω

RωQ̃

P P ω
1

= const×
∫
R2
dXdY χ(|X + iY |) Q̃(X, Y )Rω(X, Y )

(X + iY )(X + iY +Rω(X, Y )) .

with the same convention as in (4.19). Since Rω is at least quadratic for X, Y close
to zero, the derivatives of order k (w.r.t. the components of B) of the integrand are
upper bounded by
(4.21) c(k)χ(|X + iY |)
uniformly for B in compact sets of the amoeba A(P ). The function (4.21) is integrable
and the claim of the Lemma 4.3 easily follows. �

Proof of Lemma 4.4. — We have seen that for each choice of w, the derivatives
of (4.5) w.r.t. B are bounded. Now we let w = wj and we need to show uniformity of
the bounds w.r.t. j. It is immediate to see that uniformity follows if all edge weights
stay bounded away from 0 and ∞, uniformly in j.
Let us recall that the probability measure πρ,w depends on the edge weights only

modulo gauge transformations [Ken09, Section 3.2]. That is, if edge weights w are
changed as w(e) 7→ w(e)f(b)g(w), with e the edge with black/white endpoints b/w and
f/g two non-vanishing functions defined on black/white vertices, then the measure
is unchanged. In the (2n× 2n) periodic setting with fundamental domain D0,0 as in
the present work, the knowledge of the edge weights modulo gauge is equivalent to
the knowledge of:

(1) the “face weights”: for each of the 4n2 faces f of the fundamental domain
D0,0, one lets w(f) be the alternate product

w(e1)
w(e2)

w(e3)
w(e4)

with e1, . . . , e4 the four boundary edges of f labeled cyclically clockwise,
with e1 chosen such that it is clockwise oriented from white to black endpoint.
Actually, the product of face weights over all faces gives 1, so we need to know
only 4n2 − 1 of them.
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(2) the “magnetic coordinates”, i.e. the alternate product W1 (resp. W2) of the
weights of the edges belonging to a cycle on D0,0 with winding number (1, 0)
(resp. (0, 1)).

If the face weights, as well as W1, W2, are all bounded away from 0 and +∞, then
there exists a suitable gauge such that edge weights are also all bounded away from
0 and +∞.
When the weights w evolve along the sequence {wj}j > 0 associated to the shuffling

algorithm, the magnetic coordinates W1, W2 stay constant [GK13]. This is related to
the fact that the measure πρ,wj is mapped to πρ,wj+1 and the slope ρ is unchanged,
recall Proposition 2.2. On the other hand, the face weights do change with j: in
general they are not periodic in time but only quasi-periodic, they stay in a compact
set (that depends on the initial weights w0) and they approach neither zero nor
infinity. This can be extracted from the classical integrability of the dynamics of the
face weights under the spider moves [GK13] (cf. also [Foc15] and [KO06, Section 3]).
More explicitly, the spider move preserves the spectral curve and for positive-real-
valued edge weights, the common level set of the Hamiltonians is homeomorphic to
a finite cover of the product of the compact ovals of the spectral curve. �
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